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aipe.smd Sample size planning for the standardized mean different from the ac-
curacy in parameter estimation approach

Description

A set of functions that ss.aipe.smd calls upon to calculate the appropriate sample size for the
standardized mean difference such that the expected value of the confidence interval is sufficiently
narrow.

Usage

ss.aipe.smd.full(delta, conf.level, width, ...)
ss.aipe.smd.lower(delta, conf.level, width, ...)
ss.aipe.smd.upper(delta, conf.level, width, ...)

Arguments

delta the population value of the standardized mean difference

conf.level the desired degree of confidence (i.e., 1-Type I error rate)

width desired width of the specified (i.e., Lower, Upper, Full) region of the confidence
interval

... specify additional parameters in functions these functions call upon

Value

n The necessary sample size per group in order to satisfy the specified goals.

Warning

The returned value is the sample size per group. Currently only ss.aipe.smd.full returns the
exact value. However, ss.aipe.smd.lower and ss.aipe.smd.upper provide approximate sample
size values.

Note

The function ss.aipe.smd is the function users should generally use. The function ss.aipe.smd
calls upon these functions as needed. They can be thought of loosely as internal MBESS functions.
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Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum.

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence
intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
surement, 61, 532–574.

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the stan-
dardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psycho-
logical Measurement, 65, 51–69.

Kelley, K., Maxwell, S. E., & Rausch, J. R. (2003). Obtaining Power or Obtaining Precision:
Delineating Methods of Sample-Size Planning, Evaluation and the Health Professions, 26, 258–
287.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11(4),
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Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
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significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ss.aipe.smd

ancova.random.data Generate random data for an ANCOVA model

Description

Generate random data for a simple (one-response-one-covariate) ANCOVA model considering the
covariate as random. Data can be generated in the contexts of both randomized design (same pop-
ulation covariate mean across groups) and non-randomized design (different population covariate
means across groups).

Usage

ancova.random.data(mu.y, mu.x, sigma.y, sigma.x, rho, J, n, randomized = TRUE)
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Arguments

mu.y a vector of the population group means of the response variable

mu.x the population mean of the covariate (in the randomized design context), or a
vector of the population group means of the covariate (in the non-randomized
design context)

sigma.y the population standard deviation of the response (outcome) variable

sigma.x the population standard deviation of the covariate

rho the population correlation coefficient between the response and the covariate

J the number of groups

n the number of sample size per group

randomized a logical statement of whether randomized design is used

Details

This function uses a multivariate normal distribution to generate the random data; the covariate is
considered as a random variable in the model. This function uses mvrnorm in the MASS package in
an internal function, and thus it requires the MASS package be installed.

This function assumes homogeneous covariance matrix among groups, in both the randomized
design and non-randomized design contexts.

Value

This function returns an n by J2 matrix, where n and J are as defined in the argument. The first J
columns of the matrix contains the random data for the response, and the second J columns of the
matrix contains the random data for the covariate.

Author(s)

Keke Lai (University of California-Merced) and Ken Kelley (University of Notre Dame) <kkel-
ley@nd.edu>

See Also

mvrnorm in the MASS package

Examples

random.data <- ancova.random.data(mu.y=c(3,5), mu.x=10, sigma.y=1,
sigma.x=2, rho=.8, J=2, n=20)
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CFA.1 One-factor confirmatory factor analysis model

Description

Returns the MLE estimates and the estimated asymptotic covariance matrix of parameter estimates
for one-factor confirmatory factor analysis model

Usage

CFA.1(S, N, equal.loading = FALSE, equal.error = FALSE, package="lavaan",
se="standard", ...)

Arguments

S covariance matrix of the indicators

N total sample size

equal.loading logical statement indicating whether the path coefficients are the same

equal.error logical statement indicating whether the manifest variables have the same error
variances

package the package used in confirmatory factor analysis (sem or lavaan

se See the cfa and check the se argument

... Additional arguments for the cfa function

Value

Model the factor analysis model specified by the user
Factor.Loadings

factor loadings

Indicator.var the error variances of the indicator variables

Parameter.cov the covariance matrix of the parameters

converged TRUE or FALSE statement on if the model converged

package notes the package used to get the output

Note

The output will differ slightly, both in form and potentially values, based on which package lavaan
or sem is used.

Author(s)

Keke Lai (University of California-Merced) and Ken Kelley (University of Notre Dame)
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See Also

sem, covmat.from.cfm

Examples

## Not run:
cov.mat<- matrix(
c(1.384, 1.484, 1.988, 2.429, 3.031,
1.484, 2.756, 2.874, 3.588, 4.390,
1.988, 2.874, 4.845, 4.894, 6.080,
2.429, 3.588, 4.894, 6.951, 7.476,
3.031, 4.390, 6.080, 7.476, 10.313), nrow=5)

CFA.1(N=300, S=cov.mat, package="lavaan")

CFA.1(N=300, S=cov.mat, package="sem")

## End(Not run)

ci.c Confidence interval for a contrast in a fixed effects ANOVA

Description

Function to calculate the exact confidence interval for a contrast in a fixed effects analysis of vari-
ance context. This function assumes homogeneity of variance (as does the ANOVA upon which
’s.anova’ is based).

Usage

ci.c(means = NULL, s.anova = NULL, c.weights = NULL, n = NULL,
N = NULL, Psi = NULL, conf.level = 0.95, alpha.lower = NULL,
alpha.upper = NULL, df.error = NULL, ...)

Arguments

means a vector of the group means or the means of the particular level of the effect (for
fixed effect designs)

s.anova the standard deviation of the errors from the ANOVA model (i.e., the square root
of the mean square error)

c.weights the contrast weights (choose weights so that the positive c-weights sum to 1 and
the negative c-weights sum to -1; i.e., use fractional values not integers).

n sample sizes per group or level of the particular factor (if length 1 it is assumed
that the per group/level sample sizes are equal)

N total sample size
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Psi the (unstandardized) contrast effect, obtained by multiplying the jth mean by the
jth contrast weight (this is the unstandardized effect)

conf.level confidence interval coverage (i.e., 1- Type I error rate); default is .95

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

df.error the degrees of freedom for the error. In one-way designs, this is simply N-length
(means) and need not be specified; it must be specified if the design has multiple
factors.

... allows one to potentially include parameter values for inner functions

Value

Returns the confidence limits for the contrast:

Lower.Conf.Limit.Contrast

the lower confidence limit for the contrast effect

Contrast the value of the estimated unstandardized contrast effect
Upper.Conf.Limit.Contrast

the upper confidence limit for the contrast effect

Note

Be sure to use the standard deviation and not the error variance for s.anova, not the square of this
value (the error variance) which would come from the source table (i.e., do not use the variance of
the error but rather use its square root, the standard deviation).

Be sure to use fractional c-weights when doing complex contrasts (not integers) to specify c.weights.
For example, in an ANCOVA of four groups, if the user wants to compare the mean of group 1 and
2 with the mean of group 3 and 4, c.weights should be specified as c(0.5, 0.5, -0.5, -0.5) rather
than c(1, 1, -1, -1). Make sure the sum of the contrast weights is zero.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
analysis of variance and contrast analysis. Psychological Methods, 9, 164–182.

See Also

conf.limits.nct, ci.sc, ci.src, ci.smd, ci.smd.c, ci.sm



10 ci.c.ancova

Examples

# Here is a four group example. Suppose that the means of groups 1--4 are 2, 4, 9,
# and 13, respectively. Further, let the error variance be .64 and thus the standard
# deviation would be .80 (note we use the standard deviation in the function, not the
# variance). The contrast of interest here is the average of groups 1 and 4 versus the
# average of groups 2 and 3.

ci.c(means=c(2, 4, 9, 13), s.anova=.80, c.weights=c(.5, -.5, -.5, .5),
n=c(3, 3, 3, 3), N=12, conf.level=.95)

# Here is an example with two groups.
ci.c(means=c(1.6, 0), s.anova=.80, c.weights=c(1, -1), n=c(10, 10), N=20, conf.level=.95)

# An example given by Maxwell and Delaney (2004, pp. 155--171) :
# 24 subjects of mild hypertensives are assigned to one of four treatments: drug
# therapy, biofeedback, dietary modification, and a treatment combining all the
# three previous treatments. Subjects' blood pressure is measured two weeks
# after the termination of treatment. Now we want to form a 95% level
# confidence interval for the difference in blood pressure between subjects
# who received drug treatment and those who received biofeedback treatment

## Drug group's mean = 94; group size=4
## Biofeedback group's mean = 91; group size=6
## Diet group's mean = 92; group size=5
## Combination group's mean = 83; group size=5
## Mean Square Within (i.e., 'error.variance') = 67.375

ci.c(means=c(94, 91, 92, 83), s.anova=sqrt(67.375), c.weights=c(1, -1, 0, 0),
n=c(4, 6, 5, 5), N=20, conf.level=.95)

ci.c.ancova Confidence interval for an (unstandardized) contrast in ANCOVA with
one covariate

Description

To calculate the confidence interval for an unstandardized contrast in the one-covariate ANCOVA.

Usage

ci.c.ancova(Psi, adj.means, s.ancova = NULL, c.weights, n,
cov.means, SSwithin.x, conf.level = 0.95, ...)

Arguments

Psi the unstandardized contrast of adjusted means
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adj.means the vector that contains the adjusted mean of each group on the dependent vari-
able

s.ancova the standard deviation of the errors from the ANCOVA model (i.e., the square
root of the mean square error from ANCOVA)

c.weights the contrast weights

n either a single number that indicates the sample size per group or a vector that
contains the sample size of each group

cov.means a vector that contains the group means of the covariate

SSwithin.x the sum of squares within groups obtained from the summary table for ANOVA
on the covariate

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

... allows one to potentially include parameter values for inner functions

Value

lower.limit the lower confidence limit of the (unstandardized) ANCOVA contrast

upper.limit the upper confidence limit of the (unstandardized) ANCOVA contrast

Note

Be sure to use the standard deviation and not the error variance for s.ancova, not the square of this
value which would come from the source table (i.e., do not use the variance of the error but rather
use the square root).

If n receives a single number, that number is considered as the sample size per group. If n receives
a vector, the vector is considered as the sample size of each group.

Be sure to use fractions not the integers to specify c.weights. For example, in an ANCOVA of
four groups, if the user wants to compare the mean of group 1 and 2 with the mean of group 3 and
4, c.weights should be specified as c(0.5, 0.5, -0.5, -0.5) rather than c(1, 1, -1, -1). Make sure the
sum of the contrast weights are zero.

Author(s)

Keke Lai (University of California–Merced) and Ken Kelley (University of Notre Dame; <kkelley@nd.edu>)

References

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model
comparison perspective. Mahwah, NJ: Erlbaum.

See Also

ci.c, ci.sc.ancova
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Examples

# Maxwell & Delaney (2004, pp. 428-468) offer an example that 30 depressive
# individuals are randomly assigned to three groups, 10 in each, and ANCOVA
# is performed on the posttest scores using the participants' pretest
# scores as the covariate. The means of pretest scores of group 1 to 3 are
# 17, 17.7, and 17.4, respectively, and the adjusted means of groups 1 to 3
# are 7.5, 12, and 14, respectively. The error variance in ANCOVA is 29,
# and the sum of squares within groups from ANOVA on the covariate is
# 313.37.

# To obtain the confidence interval for adjusted mean of group 1 versus
# group 2:
ci.c.ancova(adj.means=c(7.5, 12, 14), s.ancova=sqrt(29), c.weights=c(1, -1, 0),
n=10, cov.means=c(17, 17.7, 17.4), SSwithin.x=313.37)

ci.cc Confidence interval for the population correlation coefficient

Description

This function is used to form a confidence interval for the population correlation coefficient. Note
that this appraoch assumes that the variables the sample correlation coefficient are based are as-
sumed to be bivariate normally distributed (e.g., Hays, 1994, Chapter 14).

Usage

ci.cc(r, n, conf.level = 0.95, alpha.lower = NULL, alpha.upper = NULL)

Arguments

r observed value of the correlation coefficient (specifically the zero-order Pearson
product-moment correlation coefficient)

n sample size

conf.level desired confidence level, where the error rate is the same on each side

alpha.lower the Type I error rate for the lower confidence interval limit

alpha.upper the Type I error rate for the upper confidence interval limit

Details

Note that this appraoch to confidence intervals does will not generally lead to a symmetric confi-
dence interval. The function first transforms r into Z ′ , forms a confidence interval for the popula-
tion value (i.e., ζ), and then transforms the confidence limits for ζ into the scale of the correlation
coefficient.
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Value

Lower.Limit lower limit of the confidence interval
Estimated.Correlation

observed value of the correlation coefficient
Upper.Limit upper limit of the confidence interval

Note

This confidence interval assumes that the two variables the correlation is based are bivariate normal.
See Hays (2004, Chapter 14) for details.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and
implementation. Journal of Statistical Software, 20(8), 1–24.

Hays, W. L. (1994). Statistics (5th ed). Fort Worth, TX: Harcourt Brace College Publishers)

See Also

transform_Z.r, transform_r.Z

Examples

# Example, from Hayes. Suppose n=100 and r=.35.
ci.cc(r=.35, n=100, conf.level=.95)

# Here is another way to enter the above example.
ci.cc(r=.35, n=100, conf.level=NULL, alpha.lower=.025, alpha.upper=.025)

# Here are examples of one-sided confidence intervals.
ci.cc(r=.35, n=100, conf.level=NULL, alpha.lower=0, alpha.upper=.05)
ci.cc(r=.35, n=100, conf.level=NULL, alpha.lower=.05, alpha.upper=0)

ci.cv Confidence interval for the coefficient of variation

Description

Function to calculate the confidence interval for the population coefficient of variation using the
noncentral t-distribution.

Usage

ci.cv(cv=NULL, mean = NULL, sd = NULL, n = NULL, data = NULL,
conf.level = 0.95, alpha.lower = NULL, alpha.upper = NULL, ...)
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Arguments

cv coefficient of variation

mean sample mean

sd sample standard deviation (square root of the unbiased estimate of the variance)

n sample size

data vector of data for which the confidence interval for the coefficient of variation is
to be calculated

conf.level desired confidence level (1-Type I error rate)

alpha.lower the proportion of values beyond the lower limit of the confidence interval (can-
not be used with conf.level).

alpha.upper the proportion of values beyond the upper limit of the confidence interval (can-
not be used with conf.level).

... allows one to potentially include parameter values for inner functions

Details

Uses the noncentral t-distribution to calculate the confidence interval for the population coefficient
of variation.

Value
Lower.Limit.CofV

Lower confidence interval limit
Prob.Less.Lower

Proportion of the distribution beyond Lower.Limit.CofV

Upper.Limit.CofV

Upper confidence interval limit
Prob.Greater.Upper

Proportion of the distribution beyond Upper.Limit.CofV

C.of.V Observed coefficient of variation

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Johnson, B. L., & Welch, B. L. (1940). Applications of the non-central t-distribution. Biometrika,
31, 362–389.

Kelley, K. (2007). Sample size planning for the coefficient of variation from the accuracy in param-
eter estimation approach. Behavior Research Methods, 39 (4), 755–766.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

McKay, A. T. (1932). Distribution of the coefficient of variation and the extended t distribution,
Journal of the Royal Statistical Society, 95, 695–698.
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See Also

cv

Examples

set.seed(113)
N <- 15
X <- rnorm(N, 5, 1)
mean.X <- mean(X)
sd.X <- var(X)^.5

ci.cv(mean=mean.X, sd=sd.X, n=N, alpha.lower=.025, alpha.upper=.025,
conf.level=NULL)
ci.cv(data=X, conf.level=.95)
ci.cv(cv=sd.X/mean.X, n=N, conf.level=.95)

ci.omega2 Confidence Interval for omega-squared (ωˆ2) for between-subject
fixed-effects ANOVA and ANCOVA designs (and partial omega-
squared ωˆ2_p for between-subject multifactor ANOVA and ANCOVA
designs)

Description

Function to obtain the exact confidence interval using the non-central F -distribution for omega-
squared or partial omega-squared in between-subject fixed-effects ANOVA and ANCOVA designs.

Usage

ci.omega2(F.value = NULL, df.1 = NULL, df.2 = NULL, N = NULL, conf.level = 0.95,
alpha.lower = NULL, alpha.upper = NULL, ...)

Arguments

F.value The value of the F -statistic for the analysis of (co)variace model (ANOVA) or,
in the case of a multifactor ANOVA, the F -statistic for the particular factor.)

df.1 numerator degrees of freedom

df.2 denominator degrees of freedom

N total sample size (i.e., the number of individual entities in the data)

conf.level confidence interval coverage (i.e., 1-Type I error rate), default is .95

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

... allows one to potentially include parameter values for inner functions
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Details

The confidence level must be specified in one of following two ways: using confidence interval
coverage (conf.level), or lower and upper confidence limits (alpha.lower and alpha.upper).
The value returned is the confidence interval limits for the population ω2 (or partial ω2).

This function uses the confidence interval transformation principle (Steiger, 2004) to transform the
confidence limits for the noncentality parameter to the confidence limits for the population’s (par-
tial) omega-squared (ω2). The confidence interval for the noncentral F -parameter can be obtained
from the conf.limits.ncf function in MBESS, which is used internally within this function.

Value

Returns the confidence limits for (partial) omega-sqaured.

lower_Limit_omega2

lower limit for omega-squared
lower_Limit_omega2

upper limit for omega-squared

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Fleishman, A. I. (1980). Confidence intervals for correlation ratios. Educational and Psychological
Measurement, 40, 659–670.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164–182.

See Also

ci.srsnr, ci.snr, conf.limits.ncf

Examples

## To illustrate the calculation of the confidence interval for noncentral
## F parameter,Bargman (1970) gave an example in which a 5-group ANOVA with
## 11 subjects in each group is conducted and the observed F value is 11.2213.
## This exmaple continued to be used in Venables (1975), Fleishman (1980),
## and Steiger (2004). If one wants to calculate the exact confidence interval
## for omega-squared of that example, this function can be used.

ci.omega2(F.value=11.221, df.1=4, df.2=50, N=55)

ci.omega2(F.value=11.221, df.1=4, df.2=50, N=55, conf.level=.90)
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ci.pvaf Confidence Interval for the Proportion of Variance Accounted for (in
the dependent variable by knowing the levels of the factor)

Description

Function to obtain the exact confidence limits for the proportion of variance of the dependent vari-
able accounted for by knowing the levels of the factor (or the grouping factor in a single factor
design) group status in a fixed factor analysis of variance.

Usage

ci.pvaf(F.value = NULL, df.1 = NULL, df.2 = NULL, N = NULL,
conf.level = 0.95, alpha.lower = NULL, alpha.upper = NULL, ...)

Arguments

F.value observed F-value from fixed effects analysis of variance
df.1 numerator degrees of freedom
df.2 denominator degrees of freedom
N sample size
conf.level confidence interval coverage (i.e., 1-Type I error rate); default is .95
alpha.lower Type I error for the lower confidence limit
alpha.upper Type I error for the upper confidence limit
... allows one to potentially include parameter values for inner functions

Details

The confidence level must be specified in one of following two ways: using confidence interval
coverage (conf.level), or lower and upper confidence limits (alpha.lower and alpha.upper).

This function uses the confidence interval transformation principle (Steiger, 2004) to transform
the confidence limits for the noncentrality parameter to the confidence limits for the population
proportion of variance accounted for by knowing the group status. The confidence interval for the
noncentral F parameter can be obtained from the function conf.limits.ncf in MBESS, which is
used within this function.

Value

Returns the confidence interval for the proportion of variance of the dependent variable accounted
for by knowing group status in a fixed factor analysis of variance (using a noncentral F-distribution).

Lower.Limit.Proportion.of.Variance.Accounted.for

The lower confidence limit for the proportion of variance accounted for in the
deviation by group status.

Upper.Limit.Proportion.of.Variance.Accounted.for

The upper confidence limit for the proportion of variance accounted for in the
deviation by group status.
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Note

This function can be used for single or factorial ANOVA designs.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Fleishman, A. I. (1980). Confidence intervals for correlation ratios. Educational and Psychological
Measurement, 40, 659–670.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164–182.

See Also

conf.limits.ncf

Examples

## Not run:
## Bargman (1970) gave an example in which a 5-group ANOVA with 11 subjects in each
## group is conducted and the observed F value is 11.2213. This example was used
## in Venables (1975), Fleishman (1980), and Steiger (2004). If one wants to calculate the
## exact confidence interval for the proportion of variance accounted for in that example,
## this function can be used.

ci.pvaf(F.value=11.221, df.1=4, df.2=50, N=55)

ci.pvaf(F.value=11.221, df.1=4, df.2=50, N=55, conf.level=.90)

ci.pvaf(F.value=11.221, df.1=4, df.2=50, N=55, alpha.lower=0, alpha.upper=.05)

## End(Not run)

ci.R Confidence interval for the multiple correlation coefficient

Description

A function to obtain the confidence interval for the population multiple correlation coefficient when
predictors are random (the default) or fixed.
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Usage

ci.R(R = NULL, df.1 = NULL, df.2 = NULL, conf.level = 0.95,
Random.Predictors = TRUE, Random.Regressors, F.value = NULL,
N = NULL, K=NULL, alpha.lower = NULL, alpha.upper = NULL, ...)

Arguments

R multiple correlation coefficient

df.1 numerator degrees of freedom

df.2 denominator degrees of freedom

conf.level confidence interval coverage (i.e., 1- Type I error rate); default is .95
Random.Predictors

whether or not the predictor variables are random or fixed (random is default)
Random.Regressors

an alias for Random.Predictors; Random.Regressors overrides Random.Predictors

F.value obtained F-value

N sample size

K number of predictors

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

... allows one to potentially include parameter values for inner functions

Details

This function is based on the function ci.R2 in MBESS package.

This function can be used with random predictor variables (Random.Predictors=TRUE) or when
predictor variables are fixed (Random.Predictors=FALSE). In many applications in the behavioral,
educational, and social sciences, predictor variables are random, which is the default for this func-
tion.

For random predictors, the function implements the procedure of Lee (1971), which was imple-
mented by Algina and Olejnik (2000; specifically in their ci.smcc.bisec.sas SAS script). When
Random.Predictors=TRUE, the function implements code that is in part based on the Alginia and
Olejnik (2000) SAS script.

When Random.Predictors=FALSE, and thus the predictors are planned and thus fixed in hypothet-
ical replications of the study, the confidence limits are based on a noncentral F-distribution (see
conf.limits.ncf).

Value
Lower.Conf.Limit.R

lower limit of the confidence interval around the population multiple correlation
coefficient

Prob.Less.Lower

proportion of the distribution less than Lower.Conf.Limit.R
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Upper.Conf.Limit.R

upper limit of the confidence interval around the population multiple correlation
coefficient

Prob.Greater.Upper

proportion of the distribution greater than Upper.Conf.Limit.R

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Algina, J. & Olejnik, S. (2000). Determining sample size for accurate estimation of the squared
multiple correlation coefficient. Multivariate Behavioral Research, 35, 119–136.

Lee, Y. S. (1971). Some results on the sampling distribution of the multiple correlation coefficient.
Journal of the Royal Statistical Society, B, 33, 117–130.

Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164–182.

Steiger, J. H. & Fouladi, R. T. (1992). R2: A computer program for interval estimation, power
calculation, and hypothesis testing for the squared multiple correlation. Behavior research methods,
instruments and computers, 4, 581–582.

See Also

ci.R2, ss.aipe.R2, conf.limits.nct

ci.R2 Confidence interval for the population squared multiple correlation
coefficient

Description

A function to calculate the confidence interval for the population squared multiple correlation coef-
ficient.

Usage

ci.R2(R2 = NULL, df.1 = NULL, df.2 = NULL, conf.level = .95,
Random.Predictors=TRUE, Random.Regressors, F.value = NULL, N = NULL,
p = NULL, K, alpha.lower = NULL, alpha.upper = NULL, tol = 1e-09)
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Arguments

R2 squared multiple correlation coefficient

df.1 numerator degrees of freedom

df.2 denominator degrees of freedom

conf.level confidence interval coverage; 1-Type I error rate
Random.Predictors

whether or not the predictor variables are random or fixed (random is default)
Random.Regressors

an alias for Random.Predictors; Random.Regressors overrides Random.Predictors

F.value obtained F-value

N sample size

p number of predictors

K alias for p, the number of predictors

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

tol tolerance for iterative convergence

Details

This function can be used with random predictor variables (Random.Predictors=TRUE) or when
predictor variables are fixed (Random.Predictors=FALSE). In many applications of multiple re-
gression, predictor variables are random, which is the default in this function.

For random predictors, the function implements the procedure of Lee (1971), which was imple-
mented by Algina and Olejnik (2000; specifically in their ci.smcc.bisec.sas SAS script). When
Random.Predictors=TRUE, the function implements code that is in part based on the Alginia and
Olejnik (2000) SAS script.

When Random.Predictors=FALSE, and thus the predictors are planned and thus fixed in hypothet-
ical replications of the study, the confidence limits are based on a noncentral F -distribution (see
conf.limits.ncf).

Value
Lower.Conf.Limit.R2

upper limit of the confidence interval around the population multiple correlation
coefficient

Prob.Less.Lower

proportion of the distribution less than Lower.Conf.Limit.R2

Upper.Conf.Limit.R2

upper limit of the confidence interval around the population multiple correlation
coefficient

Prob.Greater.Upper

proportion of the distribution greater than Upper.Conf.Limit.R2
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Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Algina, J. & Olejnik, S. (2000). Determining Sample Size for Accurate Estimation of the Squared
Multiple Correlation Coefficient. Multivariate Behavioral Research, 35, 119–136.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Lee, Y. S. (1971). Some results on the sampling distribution of the multiple correlation coefficient.
Journal of the Royal Statistical Society, B, 33, 117–130.

Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.

Steiger, J. H. & Fouladi, R. T. (1992) R2: A computer program for interval estimation, power
calculation, and hypothesis testing for the squared multiple correlation. Behavior research methods,
instruments and computers, 4, 581–582.

See Also

ss.aipe.R2, conf.limits.ncf

Examples

# For random predictor variables.
# ci.R2(R2=.25, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# ci.R2(F.value=6.266667, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# For fixed predictor variables.
# ci.R2(R2=.25, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# ci.R2(F.value=6.266667, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# One sided confidence intervals when predictors are random.
# ci.R2(R2=.25, N=100, K=5, alpha.lower=.05, alpha.upper=0, conf.level=NULL,
# Random.Predictors=TRUE)

# ci.R2(R2=.25, N=100, K=5, alpha.lower=0, alpha.upper=.05, conf.level=NULL,
# Random.Predictors=TRUE)

# One sided confidence intervals when predictors are fixed.
# ci.R2(R2=.25, N=100, K=5, alpha.lower=.05, alpha.upper=0, conf.level=NULL,
# Random.Predictors=FALSE)

# ci.R2(R2=.25, N=100, K=5, alpha.lower=0, alpha.upper=.05, conf.level=NULL,
# Random.Predictors=FALSE)
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ci.rc Confidence Interval for a Regression Coefficient

Description

A function to calculate a confidence interval for the population regression coefficient of interest
using the standard approach and the noncentral approach when the regression coefficients are stan-
dardized.

Usage

ci.rc(b.k, SE.b.k = NULL, s.Y = NULL, s.X = NULL, N, K, R2.Y_X = NULL,
R2.k_X.without.k = NULL, conf.level = 0.95, R2.Y_X.without.k = NULL,
t.value = NULL, alpha.lower = NULL, alpha.upper = NULL,
Noncentral = FALSE, Suppress.Statement = FALSE, ...)

Arguments

b.k value of the regression coefficient for the kth predictor variable

SE.b.k standard error for the kth predictor variable

s.Y standard deviation of Y, the dependent variable

s.X standard deviation of X, the predictor variable of interest

N sample size

K the number of predictors

R2.Y_X the squared multiple correlation coefficient predicting Y from the k predictor
variables

R2.k_X.without.k

the squared multiple correlation coefficient predicting the kth predictor variable
(i.e., the predictor of interest) from the remaining K-1 predictor variables

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

R2.Y_X.without.k

the squared multiple correlation coefficient predicting Y from the K-1 predictor
variable with the kth predictor of interest excluded

t.value the t-value evaluating the null hypothesis that the population regression coeffi-
cient for the kth predictor equals zero

alpha.lower the Type I error rate for the lower confidence interval limit

alpha.upper the Type I error rate for the upper confidence interval limit

Noncentral TRUE or FALSE statement specifying whether or not the noncentral approach to
confidence intervals should be used

Suppress.Statement

TRUE or FALSE statement specifying whether or not a statement should be printed
that identifies the type of confidence interval formed

... optional additional specifications for nested functions
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Details

This function calls upon ci.reg.coef in MBESS, but has a different naming system. See ci.reg.coef
for more details.

For standardized variables, do not specify the standard deviation of the variables and input the
standardized regression coefficient for b.k.

Value

Returns the confidence limits for the standardized regression coefficients of interest from the stan-
dard approach to confidence interval formation or from the noncentral approach to confidence in-
terval formation using the noncentral t-distribution.

Note

Not all of the values need to be specified, only those that contain all of the necessary information
in order to compute the confidence interval (options are thus given for the values that need to be
specified).

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and
implementation. Journal of Statistical Software, 20(8), 1–24.

Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321.

Kelley, K. & Maxwell, S. E. (2008). Power and accuracy for omnibus and targeted effects: Issues
of sample size planning with applications to Multiple Regression. Handbook of Social Research
Methods, J. Brannon, P. Alasuutari, and L. Bickman (Eds.). New York, NY: Sage Publications.

Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164–182.

See Also

ss.aipe.reg.coef, conf.limits.nct, ci.reg.coef, ci.src
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ci.reg.coef Confidence interval for a regression coefficient

Description

A function to calculate a confidence interval around the population regression coefficient of inter-
est using the standard approach and the noncentral approach when the regression coefficients are
standardized.

Usage

ci.reg.coef(b.j, SE.b.j=NULL, s.Y=NULL, s.X=NULL, N, p, R2.Y_X=NULL,
R2.j_X.without.j=NULL, conf.level=0.95, R2.Y_X.without.j=NULL,
t.value=NULL, alpha.lower=NULL, alpha.upper=NULL, Noncentral=FALSE,
Suppress.Statement=FALSE, ...)

Arguments

b.j value of the regression coefficient for the jth predictor variable

SE.b.j standard error for the jth predictor variable

s.Y standard deviation of Y, the dependent variable

s.X standard deviation of Xj , the predictor variable of interest

N sample size

p the number of predictors

R2.Y_X the squared multiple correlation coefficient predicting Y from the p predictor
variables

R2.j_X.without.j

the squared multiple correlation coefficient predicting the jth predictor variable
(i.e., the predictor of interest) from the remaining p-1 predictor variables

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

R2.Y_X.without.j

the squared multiple correlation coefficient predicting Y from the p-1 predictor
variable with the jth predictor of interest excluded

t.value the t-value evaluating the null hypothesis that the population regression coeffi-
cient for the jth predictor equals zero

alpha.lower the Type I error rate for the lower confidence interval limit

alpha.upper the Type I error rate for the upper confidence interval limit

Noncentral TRUE or FALSE, specifying whether or not the noncentral approach to confidence
intervals should be used

Suppress.Statement

TRUE/FALSE statement specifying whether or not a statement should be printed
that identifies the type of confidence interval formed

... optional additional specifications for nested functions
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Details

For standardized variables, do not specify the standard deviation of the variables and input the
standardized regression coefficient for b.j.

Value

Returns the confidence limits specified for the regression coefficient of interest from the standard
approach to confidence interval formation or from the noncentral approach to confidence interval
formation using the noncentral t-distribution.

Note

Not all of the values need to be specified, only those that contain all of the necessary information
in order to compute the confidence interval (options are thus given for the values that need to be
specified).

The function ci.rc in MBESS also calculates the confidence interval for the population (unstan-
dardized) regression coefficient. The function ci.src also calculates the confidence interval for
the population (standardized) regression coefficient. These two functions perform the same tasks as
ci.reg.coef does and are preferred to it because of simpler arguments.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321.

Kelley, K. & Maxwell, S. E. (2008). Sample Size Planning with applications to multiple regression:
Power and accuracy for omnibus and targeted effects. In P. Alasuuta, J. Brannen, & L. Bickman
(Eds.), The Sage handbook of social research methods (pp. 166–192). Newbury Park, CA: Sage.

Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.

See Also

ss.aipe.reg.coef, conf.limits.nct, ci.rc, ci.src

ci.reliability Confidence Interval for a Reliability Coefficient

Description

A function to calculate the point estimate and confidence interval for a reliability coefficient (al-
pha, omega, and variations thereof). Please see the many options; the defaults may not be best
for your situation. See Kelley and Pornprasertmanit (2016) for recommendation and a discussion
of the methods, where they ultimately recommend the bias-corrected and accelerated bootstrap
(interval.type="bca" with hierarchical omega (type="hierarchical") for continuous items.
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Usage

ci.reliability(data = NULL, S = NULL, N = NULL, aux = NULL,
type = "omega", interval.type = "default", B = 10000, conf.level = 0.95)

Arguments

data The data set that the reliability coefficient is obtained from. The full data set is
required for categorical omega. Also, the full data set is required for bootstrap
confidence intervals or asymptotic distribution free confidence interval.

S Symmetric covariance matrix. Correlation matrix can be specified here but not
recommended because, in the function, Confirmatory Factor Analysis (CFA) is
analyzed based on covariance matrix.

N The total sample size. Sample size is needed only that S is specified.

aux The names of auxiliary variables. Auxiliary variables will not be used as a
composite but they will be used to handle missing observations. Note that full
information maximum likelihood is used if auxiliary variables are specified. See
auxiliary for further details.

type The type of reliability coefficient to be calculated: "alpha" or 1 for coefficient
alpha analyzed by the formula proposed by Cronbach (1951), "alpha-cfa" or
2 for coefficient alpha analyzed by CFA with tau-equivalence (method of esti-
mator depending on confidence interval method but none of them is unweighted
least square so technically the result is not equal to the formula from Cron-
bach), "omega" for coefficient omega, "hierarchical" for hierarchical omega,
"categorical" for categorical omega. If type is specified as NULL, the de-
fault is to use hierarchical omega for continuous items and categorical omega
for categorical items. The default, however, is simply "omega".

interval.type There are 13 options for the methods. See details below. Based on our sim-
ulation studies (Kelley and Pornprasertmanit, 2016), bias corrected and accel-
erated bootstrap, "bca", is recommended for categorical omega. Any bootstrap
approaches (e.g., "bca" or "perc") are recommended for hierarchical omega,
coefficient omega, and coefficient alpha.

B the number of bootstrap replications

conf.level the confidence level (i.e., 1-Type I error rate)

Details

When coefficient alpha is used, the measurement model is assumed to be true-score equivalent (or
tau equivalent) model such that factor loadings are equal across items. When the coefficient omega,
hierarchical omega, and categorical omega are used, the measurement model is assumed to be
congeneric model (i.e., one-factor confirmatory factor analysis model). Coefficient omega assumes
that a model fits data perfectly so the variance of the composite scores is calculated from model-
implied covariance matrix. However, hierarchical omega allows a model to not fit data perfectly
(Kelley and Pornprasertmanit, in press). Categorical omega is a method to calculate coefficient
omega for categorical items (Green and Yang, 2009). That is, categorical omega is estimated by the
parameter estimates from CFA for categorical items. If coefficient omega or hierarchical omega is
used, CFA for continuous items is used, which is not appropriate for categorical items.
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If researchers wish to make the measurement model with all parallel items (equal factor loadings
and equal error variances), users can specify it by setting interval.type = "parallel" and type
= "alpha" or type = "alpha-cfa". See McDonald (1999) for the assumptions of each of these
models.

The list below shows all methods to find the confidence interval of reliability.

1. "none" or 0 to not find any confidence interval

2. "parallel" or 11 to assume that the items are parallel and analyze confidence interval based
on Wald confidence interval (see van Zyl, Neudecker, & Nel, 2000, Equation 22; also referred
as the asymptotic method of Koning & Franses, 2003).

3. "feldt" or 12 is based on that 1−α
1−α̂ is distributed as F distribution with the degree of freedoms

of N − 1 and (N − 1)× (p− 1) (Feldt, 1965).

4. "siotani" or 13 is the same as the "feldt" method but using the degree of freedoms of N
and N × (p−1) (Siotani, Hayakawa, & Fujikoshi, 1985; van Zyl et al., 2000, Equations 7 and
8; also referred as the exact method of Koning & Franses, 2003).

5. "fisher" or 21 for the Fisher’s z transformation on the correlation coefficient approach, z =
0.5 × log 1+α

1−α , directly on the coefficient alpha and find confidence interval of transformed
scale (Fisher, 1950). The variance of the z is 1

N−3 where N is the total sample size.

6. "bonett" or 22 for the Fisher’s z transformation on the intraclass correlation approach with
the variance of 2p

(N−2)(p−1) (Bonett, 2002, Equation 6).

7. "hakstian" or 23 uses the cube root transformation and assumes normal distribution on the
cube root transformation (Hakstian & Whalen, 1976). The variance of the transformed relia-
bility is based on the degrees of freedom in the "feldt" method.

8. "hakstianbarchard" or 24 uses a correction of the violation of compound symmetry of
covariance matrix by adjusting the degrees of freedom in the "hakstian". This correction
is used for the inference in type 12 sampling (both persons and items are sampled from the
population of persons and items) See Hakstian and Barchard (2000) for further details.

9. "icc" or 25 for the Fisher’s z transformation on the intraclass correlation approach, z =
log 1− α. The variance of the z is 2p

N(p−1) where p is the number of items (Fisher, 1991, p.
221; van Zyl et al., 2000, p. 277).

10. "ml" or 31 or normal-theory to analyze the confidence interval based on normal-theory ap-
proach (or multivariate delta method). See van Zyl, Neudecker, & Nel (2000, Equation 21) for
the confidence interval of coefficient alpha (also be referred as Iacobucci & Duhachek’s, 2003,
method). See Raykov (2002) for details for coefficient omega. If users use type="alpha-cfa",
the sem package will be used to obtain parameter estimates and standard errors used for the
formula proposed by Raykov (2002).

11. "mll" or 32 to analyze the confidence interval based on normal-theory approach as above.
However, the point estimate and standard error were used to build confidence interval using
logistic transformation as the note below.

12. "mlr" or 33 to analyze the confidence interval based on normal-theory approach (or multivari-
ate delta method). However, the estimation method uses robust standard errors (Satorra and
Bentler, 2000). This is the default estimation approach (but see Kelley and Pornprasertmanit
(2016) who recommend the BCa bootstrap [which is bca])

13. "mlrl" or 34 to analyze he confidence interval based on normal-theory approach using robust
standard error and logistic transformation (see below).
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14. "adf" or 35 for asymptotic distribution-free method (see Maydeu-Olivares, Coffman, & Hart-
man, 2007 for further details for coefficient omega; we use phantom variable approach, Che-
ung, 2009, and "WLS" estimator for coefficient omega, Browne, 1984, in the lavaan package,
Rosseel, 2012).

15. "adfl" or 36 to use asymptotic distribution-free method to derive standard error and parameter
estimate. Then, logistic transformation is used to build confidence interval (see below).

16. "ll" or 37 for profile likelihood-based confidence interval of both reliability coefficients (Che-
ung, 2009) analyzed by the OpenMx package (Boker et al., 2011)

17. "bsi" or 41 for standard bootstrap confidence interval which finds the standard deviation
across the bootstrap estimates, multiply the standard deviation by critical value, and add and
subtract from the reliability estimate.

18. "bsil" or 42 to use standard bootstrap confidence interval. However, logistic transformation
is used to build confidence interval.

19. "perc" or 43 for percentile bootstrap confidence interval.

20. "bca" or 44 for bias-corrected and accelerated bootstrap confidence interval.

The logistic transformation (Browne, 1982) is applicable for "ml", "mlr", "adf", and "bsi" as
"mll", "mlrl", "adfl", and "bsil". The logistic transformation does not assume that the sampling
distribution of reliability is symmetric. It acknowledges the fact that reliability ranges from 0 and
1. Logistic transformation is applied to the reliability estimates. Confidence interval is established
for the transformed value. The lower and upper bounds of the transformed value is translated back
to the reliability estimates. See Browne (1982) or Kelley and Pornprasertmanit (in press) for further
details.

Note that not all confidence interval methods are available for all types of reliability and all types
of input. For example, bootstrap confidence intervals are not available for covariance matrix input.
Parallel confidence intervals are not available for hierarchical omega. We provided appropriate error
messages for all impossible combinations.

Value

est The estimated reliability coefficient

se The standard error of the reliability coefficient. If the bootstrap methods are
used, this value represents the standard deviation across bootstrap estimates.

ci.lower The lower bound of the computed confidence interval

ci.upper The upper bound of the computed confidence interval

conf.Level The confidence level (i.e., 1 - Type I error rate)

type The type of estimated reliability coefficient (alpha or omega)

interval.type The method used to find confidence interval

Note

This function is not compatible with code from MBESS Version 3.
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Author(s)

Sunthud Pornprasertmanit (Texas Tech University; <sunthud.pornprasertmanit@ttu.edu>) and
Ken Kelley (University of Notre Dame; <kkelley@nd.edu>. The previous version was written by
Keke Lai (University of California-Merced), Leann J. Terry (while at Indiana University), and Ken
Kelley
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See Also

CFA.1; sem; lavaan

Examples

# Use this function for the attitude dataset (ignoring the overall rating variable)
# ci.reliability(data=attitude[,-1], type = "omega", interval.type = "mlrl")

# ci.reliability(data=attitude[,-1], type = "alpha", interval.type = "ll")

## Forming a hypothetical population covariance matrix
# Pop.Cov.Mat <- matrix(.3, 9, 9)
# diag(Pop.Cov.Mat) <- 1
# ci.reliability(S=Pop.Cov.Mat, N=50, type="alpha", interval.type = "bonett")

ci.rmsea Confidence interval for the population root mean square error of ap-
proximation

Description

Confidence interval for the population root mean square error of approximation (RMSEA).

Usage

ci.rmsea(rmsea, df, N, conf.level = 0.95, alpha.lower = NULL,
alpha.upper = NULL)

Arguments

rmsea observed root mean square error of approximation

df degrees of freedom of the model

N sample size
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conf.level desired confidence level (e.g., .90, .95, .99)

alpha.lower the Type I error rate for the lower tail

alpha.upper the Type I error rate for the upper tail

Details

Provides a confidence interval for the population root mean square error of approximation (RM-
SEA) using the noncentral chi-square distribution (e.g., Steiger & Lind, 1980).

Value

returns the upper and lower limit as well as the observed value of the RMSEA.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors.
Paper presented at the annual Spring meeting of the Psychometric Society, Iowa City, IA.

ci.sc Confidence Interval for a Standardized Contrast in a Fixed Effects
ANOVA

Description

Function to obtain the confidence interval for a standardized contrast in a fixed effects analysis of
variance context.

Usage

ci.sc(means = NULL, s.anova = NULL, c.weights = NULL, n = NULL,
N = NULL, Psi = NULL, ncp = NULL, conf.level = 0.95,
alpha.lower = NULL, alpha.upper = NULL, df.error = NULL, ...)

Arguments

means a vector of the group means or the means of the particular level of the effect (for
fixed effect designs)

s.anova the standard deviation of the errors from the ANOVA model (i.e., the square root
of the mean square error)

c.weights the contrast weights (chose weights so that the positive c-weights sum to 1 and
the negative c-weights sum to -1; i.e., use fractional values not integers).
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n sample sizes per group or sample sizes for the level of the particular factor (if
length 1 it is assumed that the sample size per group or for the level of the
particular factor are are equal)

N total sample size

Psi the (unstandardized) contrast effect, obtained by multiplying the jth mean by the
jth contrast weight (this is the unstandardized effect)

ncp the noncentrality parameter from the t-distribution

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

alpha.lower the Type I error rate for the lower confidence interval limit

alpha.upper the Type I error rate for the upper confidence interval limit

df.error the degrees of freedom for the error. In one-way designs, this is simply N-length
(means) and need not be specified; it must be specified if the design has multiple
factors.

... optional additional specifications for nested functions

Value

Lower.Conf.Limit.Standardized.Contrast

the lower confidence limit for the standardized contrast
Standardized.contrast

standardized contrast
Upper.Conf.Limit.Standardized.Contrast

the upper confidence limit for the standardized contrast

Note

Be sure to use the standard deviation and not the error variance for s.anova, not the square of this
value (the error variance) which would come from the source table (i.e., do not use the variance of
the error but rather use its square root, the standard deviation).

Be sure to use the error variance and not its square root (i.e., use the variance of the standard
deviation of the errors). Be sure to use the standard deviations of errors for s.anova and s.ancova,
not the square of these values (i.e., do not use the variance of the errors).

Be sure to use fractional c-weights when doing complex contrasts (not integers) to specify c.weights.
For exmaple, in an ANCOVA of four groups, if the user wants to compare the mean of group 1 and
2 with the mean of group 3 and 4, c.weights should be specified as c(0.5, 0.5, -0.5, -0.5) rather
than c(1, 1, -1, -1). Make sure the sum of the contrast weights are zero.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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See Also

conf.limits.nct, ci.src, ci.smd, ci.smd.c, ci.sm, ci.c

Examples

# Here is a four group example. Suppose that the means of groups 1--4 are 2, 4, 9,
# and 13, respectively. Further, let the error variance be .64 and thus the standard
# deviation would be .80 (note we use the standard deviation in the function, not the
# variance). The standardized contrast of interest here is the average of groups 1 and 4
# versus the average of groups 2 and 3.

ci.sc(means=c(2, 4, 9, 13), s.anova=.80, c.weights=c(.5, -.5, -.5, .5),
n=c(3, 3, 3, 3), N=12, conf.level=.95)

# Here is an example with two groups.
ci.sc(means=c(1.6, 0), s.anova=.80, c.weights=c(1, -1), n=c(10, 10), N=20, conf.level=.95)

ci.sc.ancova Confidence interval for a standardized contrast in ANCOVA with one
covariate

Description

Calculate the confidence interval for a standardized contrast in ANCOVA with one covariate. The
standardizer (i.e., the divisor) can be either the error standard deviation of the ANOVA model (i.e.,
the model excluding the covariate) or of the ANCOVA model.

Usage

ci.sc.ancova(Psi=NULL, adj.means=NULL, s.anova = NULL, s.ancova,
standardizer = "s.ancova", c.weights, n, cov.means, SSwithin.x,
conf.level = 0.95)



ci.sc.ancova 35

Arguments

Psi unstandardized contrast of adjusted means

adj.means the vector that contains the adjusted mean of each group on the dependent vari-
able

s.anova the standard deviation of the errors from the ANOVA model (i.e., the square root
of the mean square error from ANOVA)

s.ancova the standard deviation of the errors from the ANCOVA model (i.e., the square
root of the mean square error from ANCOVA)

standardizer which error standard deviation the user wants to use, the value of which can be
either "s.ancova" or "s.anova"

c.weights the contrast weights (chose weights so that the positive c-weights sum to 1 and
the negative c-weights sum to -1; i.e., use fractional values not integers).

n either a single number that indicates the sample size per group, or a vector that
contains the sample size of each group

cov.means a vector that contains the group means of the covariate

SSwithin.x the sum of squares within groups obtained from the summary table for ANOVA
on the covariate

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

Value

standardizer the divisor used in the standardization
psi.limit.lower

the lower confidence limit of the standardized contrast

psi the estimated contrast
psi.limit.upper

the upper confidence limit of the standardized contrast

Note

Be sure to use the standard deviations and not the error variances for s.anova and s.ancova, not
the squares of these values which would come from the source tables (i.e., do not use the variance
of the errors but rather use its square root, the standard deviation).

If n receives a single number, that number is considered as the sample size per group. If n is assigned
to a vector, the vector is considered as the sample size of each group.

Be sure to use fractional c-weights when doing complex contrasts (not integers) to specify c.weights.
For example, in an ANCOVA of four groups, if the user wants to compare the mean of group 1 and
2 with the mean of group 3 and 4, c.weights should be specified as c(0.5, 0.5, -0.5, -0.5) rather
than c(1, 1, -1, -1). Make sure the sum of the contrast weights are zero.

The argument to be assigned to standardizer must be either "s.ancova" or "s.anova".

Author(s)

Keke Lai (University of California–Merced) and Ken Kelley <kkelley@nd.edu>
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See Also

ci.c.ancova, ci.sc

Examples

# Maxwell & Delaney (2004, pp. 428--468) offer an example that 30 depressive
# individuals are randomly assigned to three groups, 10 in each, and ANCOVA
# is performed on the posttest scores using the participants' pretest
# scores as the covariate. The means of pretest scores of group 1, 2, and 3 are
# 17, 17.7, and 17.4, respectively, whereas the adjusted means of groups 1, 2, and 3
# are 7.5, 12, and 14, respectively. The error variance in ANCOVA is 29 and thus
# 5.385165 is the error standard deviation, with the sum of squares within groups
# from an ANOVA on the covariate is 752.5.

# To obtained the confidence interval for the standardized adjusted
# mean difference between group 1 and 2, using the ANCOVA error standard
# deviation:
ci.sc.ancova(adj.means=c(7.5, 12, 14), s.ancova=5.385165, c.weights=c(1,-1,0),
n=10, cov.means=c(17, 17.7, 17.4), SSwithin.x=752.5)

# Or, with less error in rounding:
ci.sc.ancova(adj.means=c(7.54, 11.98, 13.98), s.ancova=5.393, c.weights=c(-1,0,1),
n=10, cov.means=c(17, 17.7, 17.4), SSwithin.x=752.5)

# Now, using the standard deviation from ANOVA (and not ANCOVA as above), we have:
ci.sc.ancova(adj.means=c(7.54, 11.98, 13.98), s.anova=6.294, s.ancova=5.393, c.weights=c(-1,0,1),
n=10, cov.means=c(17, 17.7, 17.4), SSwithin.x=752.5, standardizer= "s.anova", conf.level=.95)

ci.sm Confidence Interval for the Standardized Mean

Description

Function to obtain the exact confidence interval for the standardized mean.



ci.sm 37

Usage

ci.sm(sm = NULL, Mean = NULL, SD = NULL, ncp = NULL, N = NULL,
conf.level = 0.95, alpha.lower = NULL, alpha.upper = NULL, ...)

Arguments

sm standardized mean

Mean mean

SD standard deviation

ncp noncentral parameter

N sample size

conf.level confidence interval coverage (i.e., 1 - Type I error rate); default is .95

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

... allows one to potentially include parameter values for inner functions

Details

The user must specify the standardized mean in one and only one of the three ways: a) mean and
standard deviation (Mean and SD), b) standardized mean (sm), and c) noncentral parameter (ncp).
The confidence level must be specified in one of following two ways: using confidence interval
coverage (conf.level), or lower and upper confidence limits (alpha.lower and alpha.upper).

This function uses the exact confidence interval method based on noncentral t-distributions. The
confidence interval for noncentral t-parameter can be obtained from the conf.limits.nct function
in MBESS.

Value

Lower.Conf.Limit.Standardized.Mean

lower confidence limit of the standardized mean
Standardized.Mean

standardized mean
Upper.Conf.Limit.Standardized.Mean

upper confidence limit of the standardized mean

Note

The standardized mean is the mean divided by the standard deviation.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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See Also

conf.limits.nct

Examples

ci.sm(sm=2.037905, N=13, conf.level=.95)
ci.sm(Mean=30, SD=14.721, N=13, conf.level=.95)
ci.sm(ncp=7.347771, N=13, conf.level=.95)
ci.sm(sm=2.037905, N=13, alpha.lower=.05, alpha.upper=0)
ci.sm(Mean=50, SD=10, N=25, conf.level=.95)

ci.smd Confidence limits for the standardized mean difference.

Description

Function to calculate the confidence limits for the population standardized mean difference using
the square root of the pooled variance as the divisor. This function is thus used to determine the
confidence bounds for the population quantity of what is generally referred to as Cohen’s d (delta
being that population quantity).

Usage

ci.smd(ncp=NULL, smd=NULL, n.1=NULL, n.2=NULL, conf.level=.95,
alpha.lower=NULL, alpha.upper=NULL, tol=1e-9, ...)

Arguments

ncp is the estimated noncentrality parameter, this is generally the observed t-statistic
from comparing the two groups and assumes homogeneity of variance

smd is the standardized mean difference (using the pooled standard deviation in the
denominator)

n.1 is the sample size for Group 1

n.2 is the sample size for Group 2

conf.level is the confidence level (1-Type I error rate)

alpha.lower is the Type I error rate for the lower tail
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alpha.upper is the Type I error rate for the upper tail

tol is the tolerance of the iterative method for determining the critical values

... allows one to potentially include parameter values for inner functions

Value
Lower.Conf.Limit.smd

The lower bound of the computed confidence interval

smd The standardized mean difference
Upper.Conf.Limit.smd

The upper bound of the computed confidence interval

Warning

This function uses conf.limits.nct, which has as one of its arguments tol (and can be modified
with tol of the present function). If the present function fails to converge (i.e., if it runs but does
not report a solution), it is likely that the tol value is too restrictive and should be increased by a
factor of 10, but probably by no more than 100. Running the function conf.limits.nct directly
will report the actual probability values of the limits found. This should be done if any modification
to tol is necessary in order to ensure acceptable confidence limits for the noncentral-t parameter
have been achieved.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cohen, J. (1988) Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum.

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence
intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
surement, 61, 532–574.

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Kelley, K., Maxwell, S. E., & Rausch, J. R. (2003). Obtaining Power or Obtaining Precision:
Delineating Methods of Sample-Size Planning, Evaluation and the Health Professions, 26, 258–
287.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik,&J.H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

smd, smd.c, ci.smd.c, conf.limits.nct
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Examples

# Steiger and Fouladi (1997) example values.
ci.smd(ncp=2.6, n.1=10, n.2=10, conf.level=1-.05)
ci.smd(ncp=2.4, n.1=300, n.2=300, conf.level=1-.05)

ci.smd.c Confidence limits for the standardized mean difference using the con-
trol group standard deviation as the divisor.

Description

Function to calculate the confidence limits for the standardized mean difference using the control
group standard deviation as the divisor (Glass’s g).

Usage

ci.smd.c(ncp = NULL, smd.c = NULL, n.C = NULL, n.E = NULL,
conf.level = 0.95, alpha.lower = NULL, alpha.upper = NULL,
tol = 1e-09, ...)

Arguments

ncp is the estimated noncentrality parameter, this is generally the observed t-statistic
from comparing the control and experimental group (assuming homogeneity of
variance)

smd.c is the standardized mean difference (using the control group standard deviation
in the denominator)

n.C is the sample size for the control group

n.E is the sample size for experimental group

conf.level is the confidence level (1-Type I error rate)

alpha.lower is the Type I error rate for the lower tail

alpha.upper is the Type I error rate for the upper tail

tol is the tolerance of the iterative method for determining the critical values

... Potentially include parameter for inner functions

Value
Lower.Conf.Limit.smd.c

The lower bound of the computed confidence interval

smd.c The standardized mean difference based on the control group standard deviation
Upper.Conf.Limit.smd.c

The upper bound of the computed confidence interval
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Warning

This function uses conf.limits.nct, which has as one of its arguments tol (and can be modified
with tol of the present function). If the present function fails to converge (i.e., if it runs but does
not report a solution), it is likely that the tol value is too restrictive and should be increased by a
factor of 10, but probably by no more than 100. Running the function conf.limits.nct directly
will report the actual probability values of the limits found. This should be done if any modification
to tol is necessary in order to ensure acceptable confidence limits for the noncentral-t parameter
have been achieved.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum.

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence
intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
surement, 61, 532–574.

Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5,
3–8.

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

smd.c, smd, ci.smd, conf.limits.nct

Examples

ci.smd.c(smd.c=.5, n.C=100, n.E=100, conf.level=.95)

ci.snr Confidence Interval for the Signal-To-Noise Ratio

Description

Function to obtain the exact confidence interval for the signal-to-noise ratio (i.e., the variance of the
specific factor over the error variance).
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Usage

ci.snr(F.value = NULL, df.1 = NULL, df.2 = NULL, N = NULL, conf.level = 0.95,
alpha.lower = NULL, alpha.upper = NULL, ...)

Arguments

F.value observed F-value from the analysis of variance

df.1 numerator degrees of freedom

df.2 denominator degrees of freedom

N sample size

conf.level confidence interval coverage (i.e., 1 - Type I error rate), default is .95

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

... allows one to potentially include parameter values for inner functions

Details

The confidence level must be specified in one of following two ways: using confidence interval
coverage (conf.level), or lower and upper confidence limits (alpha.lower and alpha.upper).

This function uses the confidence interval transformation principle (Steiger, 2004) to transform
the confidence limits for the noncentality parameter to the confidence limits for the population’s
signal-to-noise ratio. The confidence interval for noncentral F-parameter can be obtained from the
conf.limits.ncf function in MBESS, which is used internally within this function.

Value

Returns the confidence limits for the signal-to-noise ratio.

Lower.Limit.Signal.to.Noise.Ratio

lower limit for signal to noise ratio

Upper.Limit.Signal.to.Noise.Ratio

upper limit for signal to noise ratio

Note

The signal to noise ratio is defined as the variance due to the particular factor over the error variance
(i.e., the mean square error).

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Fleishman, A. I. (1980). Confidence intervals for correlation ratios. Educational and Psychological
Measurement, 40, 659–670.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164–182.

See Also

ci.srsnr, ci.omega2 conf.limits.ncf

Examples

## Bargman (1970) gave an example in which a 5-group ANOVA with 11 subjects in each
## group is conducted and the observed F value is 11.2213. This example was
## used in Venables (1975), Fleishman (1980), and Steiger (2004). If one wants to calculate
## the exact confidence interval for the signal-to-noise ratio of that example, this
## function can be used.

ci.snr(F.value=11.221, df.1=4, df.2=50, N=55)

ci.snr(F.value=11.221, df.1=4, df.2=50, N=55, conf.level=.90)

ci.snr(F.value=11.221, df.1=4, df.2=50, N=55, alpha.lower=.02, alpha.upper=.03)

ci.src Confidence Interval for a Standardized Regression Coefficient

Description

Function to obtain the confidence interval for a standardized regression coefficient.

Usage

ci.src(beta.k = NULL, SE.beta.k = NULL, N = NULL, K = NULL, R2.Y_X = NULL,
R2.k_X.without.k = NULL, conf.level = 0.95, R2.Y_X.without.k = NULL,
t.value = NULL, b.k = NULL, SE.b.k = NULL, s.Y = NULL, s.X = NULL,
alpha.lower = NULL, alpha.upper = NULL, Suppress.Statement = FALSE, ...)

Arguments

beta.k the standardized regression coefficient

SE.beta.k the standard error of the standarized regression coefficient

N sample size

K the number of predictors
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R2.Y_X the squared multiple correlation coefficient predicting Y from the k predictor
variables

R2.k_X.without.k

the squared multiple correlation coefficient predicting the kth predictor variable
(i.e., the predictor of interest) from the remaining p-1 predictor variables

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

R2.Y_X.without.k

the squared multiple correlation coefficient predicting Y from the p-1 predictor
variable with the kth predictor of interest excluded

t.value the t-value evaluating the null hypothesis that the population regression coeffi-
cient for the kth predictor equals zero

b.k the unstandardized regression coefficient
SE.b.k the standard error of the unstandardized regression coefficient
s.Y standard deviation of Y, the dependent variable
s.X standard deviation of X, the predictor variable of interest
alpha.lower the Type I error rate for the lower confidence interval limit
alpha.upper the Type I error rate for the upper confidence interval limit
Suppress.Statement

TRUE or FALSE statement specifying whether or not a statement should be printed
that identifies the type of confidence interval formed

... optional additional specifications for nested functions

Details

For standardized variables, do not specify the standard deviation of the variables and input the
standardized regression coefficient for b.k.

Value

Returns the confidence limits specified for the regression coefficient of interest from the standard
approach to confidence interval formation or from the noncentral approach to confidence interval
formation using the noncentral t-distribution.

Note

This function calls upon ci.reg.coef in MBESS, but has a different naming scheme. See ci.reg.coef
for more details.

To form a confidence interval for the unstandardized regression coefficient, use ci.rc. This func-
tion is used to form a confidence interval for the standardized regression coefficient.

Not all of the values need to be specified, only those that contain all of the necessary information
in order to compute the confidence interval (options are thus given for the values that need to be
specified).

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Kelley, K., & Maxwel, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321.

Kelley, K., & Maxwell, S. E. (2008). Sample Size Planning with applications to multiple regression:
Power and accuracy for omnibus and targeted effects. In P. Alasuuta, J. Brannen, & L. Bickman
(Eds.), The Sage handbook of social research methods (pp. 166–192). Newbury Park, CA: Sage.

Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164–182.

See Also

ss.aipe.reg.coef, conf.limits.nct, ci.reg.coef, ci.rc

ci.srsnr Confidence Interval for the Square Root of the Signal-To-Noise Ratio

Description

Function to calculate the exact confidence interval for the square root of the signal-to-noise ratio.

Usage

ci.srsnr(F.value = NULL, df.1 = NULL, df.2 = NULL, N = NULL,
conf.level = 0.95, alpha.lower = NULL, alpha.upper = NULL, ...)

Arguments

F.value observed F-value from the analysis of variance

df.1 numerator degrees of freedom

df.2 denominator degrees of freedom

N sample size

conf.level confidence interval coverage (i.e., 1 - Type I error rate); default is .95

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

... allows one to potentially include parameter values for inner functions
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Details

The confidence level must be specified in one of following two ways: using confidence interval
coverage (conf.level), or lower and upper confidence limits (alpha.lower and alpha.upper).

The square root of the signal-to-noise ratio is defined as the standard deviation due to the partic-
ular factor over the standard deviation of the error (i.e., the square root of the mean square error).
This function uses the confidence interval transformation principle (Steiger, 2004) to transform the
confidence limits for the noncentality parameter to the confidence limits for square root of signal-
to-noise ratio. The confidence interval for noncentral F parameter can be abtained from function
conf.limits.ncf in MBESS.

Value

Returns the square root of the confidence limits for the signal to noise ratio.

Lower.Limit.of.the.Square.Root.of.the.Signal.to.Noise.Ratio

lower limit of the square root of the signal to noise ratio
Upper.Limit.of.the.Square.Root.of.the.Signal.to.Noise.Ratio

upper limit of the square root of the signal to noise ratio

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Fleishman, A. I. (1980). Confidence intervals for correlation ratios. Educational and Psychological
Measurement, 40, 659–670.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the
Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164–182.

See Also

ci.snr, conf.limits.ncf

Examples

## To illustrate the calculation of the confidence interval for noncentral
## F parameter,Bargman (1970) gave an example in which a 5-group ANOVA with
## 11 subjects in each group is conducted and the observed F value is 11.2213.
## This exmaple continued to be used in Venables (1975), Fleishman (1980),
## and Steiger (2004). If one wants to calculate the exact confidence interval
## for square root of the signal-to-noise ratio of that example, this
## function can be used.

ci.srsnr(F.value=11.221, df.1=4, df.2=50, N=55)

ci.srsnr(F.value=11.221, df.1=4, df.2=50, N=55, conf.level=.90)
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ci.srsnr(F.value=11.221, df.1=4, df.2=50, N=55, alpha.lower=.02, alpha.upper=.03)

conf.limits.nc.chisq Confidence limits for noncentral chi square parameters

Description

Function to determine the noncentral parameter that leads to the observed Chi.Square-value, so
that a confidence interval for the population noncentral chi-squrae value can be formed.

Usage

conf.limits.nc.chisq(Chi.Square=NULL, conf.level=.95, df=NULL,
alpha.lower=NULL, alpha.upper=NULL, tol=1e-9, Jumping.Prop=.10)

Arguments

Chi.Square the observed chi-square value

conf.level the desired degree of confidence for the interval

df the degrees of freedom

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

tol tolerance for iterative convergence

Jumping.Prop Value used in the iterative scheme to determine the noncentral parameters neces-
sary for confidence interval construction using noncentral chi square-distributions
(0 < Jumping.Prop < 1)

Details

If the function fails (or if a function relying upon this function fails), adjust the Jumping.Prop (to
a smaller value).

Value

Lower.Limit Value of the distribution with Lower.Limit noncentral value that has at its spec-
ified quantile Chi.Square

Prob.Less.Lower

Proportion of cases falling below Lower.Limit

Upper.Limit Value of the distribution with Upper.Limit noncentral value that has at its spec-
ified quantile Chi.Square

Prob.Greater.Upper

Proportion of cases falling above Upper.Limit
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Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Keke Lai (University of California–
Merced)

See Also

conf.limits.nct, conf.limits.ncf

Examples

# A typical call to the function.
conf.limits.nc.chisq(Chi.Square=30, conf.level=.95, df=15)

# A one sided (upper) confidence interval.
conf.limits.nc.chisq(Chi.Square=30, alpha.lower=0, alpha.upper=.05,
conf.level=NULL, df=15)

conf.limits.ncf Confidence limits for noncentral F parameters

Description

Function to determine the noncentral parameter that leads to the observed F-value, so that a con-
fidence interval around the population F-value can be conducted. Used for forming confidence
intervals around noncentral parameters (given the monotonic relationship between the F-value and
the noncentral value).

Usage

conf.limits.ncf(F.value = NULL, conf.level = .95, df.1 = NULL,
df.2 = NULL, alpha.lower = NULL, alpha.upper = NULL, tol = 1e-09,
Jumping.Prop = 0.1)

Arguments

F.value the observed F-value

conf.level the desired degree of confidence for the interval

df.1 the numerator degrees of freedom

df.2 the denominator degrees of freedom

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit

tol tolerance for iterative convergence

Jumping.Prop Value used in the iterative scheme to determine the noncentral parameters nec-
essary for confidence interval construction using noncentral F-distributions (0 <
Jumping.Prop < 1) (users should not need to change this value)
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Details

This function is the relied upon by the ci.R2 and ss.aipe.R2. If the function fails (or if a function
relying upon this function fails), adjust the Jumping.Prop (to a smaller value).

Value

Lower.Limit Value of the distribution with Lower.Limit noncentral value that has at its spec-
ified quantile F.value

Prob.Less.Lower

Proportion of cases falling below Lower.Limit

Upper.Limit Value of the distribution with Upper.Limit noncentral value that has at its spec-
ified quantile F.value

Prob.Greater.Upper

Proportion of cases falling above Upper.Limit

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Keke Lai (University of Califonia-
Merced)

See Also

ss.aipe.R2, ci.R2, conf.limits.nct

Examples

conf.limits.ncf(F.value = 5, conf.level = .95, df.1 = 5,
df.2 = 100)

# A one sided confidence interval.
conf.limits.ncf(F.value = 5, conf.level = NULL, df.1 = 5,
df.2 = 100, alpha.lower = .05, alpha.upper = 0, tol = 1e-09,
Jumping.Prop = 0.1)

conf.limits.nct Confidence limits for a noncentrality parameter from a t-distribution

Description

Function to determine the noncentrality parameters necessary to form a confidence interval around
the population noncentrality parameter and related parameters.

Usage

conf.limits.nct(ncp, df, conf.level = 0.95, alpha.lower = NULL,
alpha.upper = NULL, t.value, tol = 1e-09, sup.int.warns = TRUE,
...)
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Arguments

ncp the noncentrality parameter (e.g., observed t-value) of interest.

df the degrees of freedom.

conf.level the level of confidence for a symmetric confidence interval.

alpha.lower the proportion of values beyond the lower limit of the confidence interval (can-
not be used with conf.level).

alpha.upper the proportion of values beyond the upper limit of the confidence interval (can-
not be used with conf.level).

t.value alias for ncp

tol is the tolerance of the iterative method for determining the critical values.

sup.int.warns Suppress internal warnings (from internal functions): TRUE or FALSE

... allows one to potentially include parameter values for inner functions

Details

Function for finding the upper and lower confidence limits for a noncentral parameter from a non-
central t-distribution with df degrees of freedom. This function is especially helpful when forming
confidence intervals around standardized mean differences (i.e., Cohen’s d; Glass’s g; Hedges’
g), standardized regression coefficients, and coefficients of variations. The Lower.Limit and the
Upper.Limit values correspond to the noncentral parameters of a t-distribution with df degrees of
freedom whose upper and lower tails contain the desired proportion of the respective noncentral t-
distribution. When ncp is zero, the Lower.Limit and Upper.Limit are simply the desired quantiles
of the central t-distribution with df degrees of freedom.

Note that the confidence interval limit(s) are found twice, using two different methods. The first
method uses the optimize function, whereas the second method uses the nlm function. The best of
the two methods, if not equal and numerically exact, is taken. This does not concern the user.

Value

Lower.Limit Value of the distribution with Lower.Limit noncentral value that has at its spec-
ified quantile F.value

Prob.Less.Lower

Proportion of the distribution beyond (i.e., less than) Lower.Limit

Upper.Limit Value of the distribution with Upper.Limit noncentral value that has at its spec-
ified quantile F.value

Prob.Greater.Upper

Proportion of the distribution beyond (i.e., larger than) Upper.Limit

Warning

At the present time, the largest ncp that R can accurately handle is 37.62.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References
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Mahwah, NJ: Lawrence Erlbaum.

See Also

pt, qt, ci.smd, ci.smd.c, ss.aipe, conf.limits.ncf, conf.limits.nc.chisq

Examples

# Suppose observed t-value based on 'df'=126 is 2.83. Finding the lower
# and upper critical values for the population noncentrality parameter
# with a symmetric confidence interval with 95% confidence is given as:
conf.limits.nct(ncp=2.83, df=126, conf.level=.95)

# Modifying the above example so that a nonsymmetric 95% confidence interval
# can be formed:
conf.limits.nct(ncp=2.83, df=126, alpha.lower=.01, alpha.upper=.04,
conf.level=NULL)

# Modifying the above example so that a single-sided 95% confidence interval
# can be formed:
conf.limits.nct(ncp=2.83, df=126, alpha.lower=0, alpha.upper=.05,
conf.level=NULL)

Cor.Mat.Lomax Correlation matrix for Lomax (1983) data set

Description

Correlation matrix for Lomax (1983) data set

Usage

data(Cor.Mat.Lomax)
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Details

Variables 1 through 14 in the correlation matrix are, respectively:

Variables
(1) DRS-consonant sounds
(2) DRS-consonant blends and diagraphs
(3) DRS-common syllables or phonograms
(4) DRS-blending
(5) WRAT-total raw score
(6) DRS-total correct both lists
(7) DRS-total words read correct oral
(8) DRS-wpm first oral passage
(9) DRS-wpm first silent passage
(10) DRS-mean wpm oral passages read
(11) DRS-mean wpm silent passages read
(12) DRS-total correct oral comprehension
(13) DRS-total correct silent comprehension
(14) CTBS-comprehension ESS scores

DRS refers to Diagnostic Reading Scales, WRAT refers to Wide Range Achievement Test, and
CTBS refers to Comprehensive Tests of basic skills.

The model was designed to study the causal relationship between the phonological, word recog-
nition, reading rate, and comprehension components of the reading process. There are four latent
variables in the model: (a) phonological; (b) word recognition; (c) reading rate; (d) reading com-
prehension.

Phonological is indicated by (a) DRS-consonant sounds; (b) DRS-consonant blends and diagraphs;
(c) DRS-common syllables or phonograms; (d) DRS-blending.

Word recognition is indicated by (a) WRAT-total raw score; (b) DRS-total correct both lists; (c)
DRS-total words read correct oral

Reading rate is indicated by (a) DRS-wpm first oral passage; (b) DRS-wpm first silent passage; (c)
DRS-mean wpm oral passages read; (d) DRS-mean wpm silent passages read.

Reading comprehension is indicated by (a) DRS-total correct oral comprehension; (b) DRS-total
correct silent comprehension; (c) CTBS-comprehension ESS scores.

Source

Lomax, R. G. (1983). Applying structural modeling to some component processes of reading com-
prehension development. Journal of Experimental Education, 52 (1), 33–40.

References

Lomax, R. G. (1983). Applying structural modeling to some component processes of reading com-
prehension development. Journal of Experimental Education, 52 (1), 33–40.
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Cor.Mat.MM Correlation matrix for Maruyama & McGarvey (1980) data set

Description

Correlation matrix for Maruyama & McGarvey (1980) data set

Usage

data(Cor.Mat.MM)

Details

Variables 1 through 13 in the correlation matrix are, respectively:

Variables
(1) seating popularity
(2) playground popularity
(3) schoolwork popularity
(4) verbal achievement
(5) verbal grades
(6) Duncan SEI
(7) education of head of house
(8) No. of rooms over No. of persons
(9) Raven Progressive Matrices
(10) Peabody PVT
(11) father’s evaluation
(12) mothers evaluation
(13) teacher’s evaluation

The model was designed to examine whether acceptance by significant others (i.e., parents, teach-
ers, and peers) causes improved scholastic achievement. There are five latent variables in the model:
(a) SES, socio-economic status; (b) ABL, academic ability; (c) ACH, achievement; (d) ASA, ac-
ceptance by significant adults; (e) APR, acceptance by peers.

SES is indicated by (a) SEI, Duncan Socioeconomic Index of Occupations; (b) EDHH, educational
attainment of the head of the household; (c) R/P, ratio of rooms in the house to persons living in the
house.

ACH is indicated by (a) VACH, standardized verbal test scores; (b) VGR, verbal grades.

ABL is indicated by (a) PEA, Peabody Picture Vocabulary Test; (b) RAV, Raven Progressive Matri-
ces.

ASA is indicated by (a) FEV, father’s evaluation; (b) MEV, mother’s evaluation; (c) TEV, teacher’s
evaluation.

APR is indicated by (a) PPOP, playground popularity; (b) SPOP, seating popularity; (c) WPOP,
schoolwork popularity.
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Source

Maruyama, G., & McGarvey, B. (1980). Evaluating causal models: An application of maximum-
likelihood analysis of structural equations. Psychological Bulletin, 87 (3), 502–512.

References

Maruyama, G., & McGarvey, B. (1980). Evaluating causal models: An application of maximum-
likelihood analysis of structural equations. Psychological Bulletin, 87 (3), 502–512.

cor2cov Correlation Matrix to Covariance Matrix Conversion

Description

Function to convert a correlation matrix to a covariance matrix.

Usage

cor2cov(cor.mat, sd)

Arguments

cor.mat the correlation matrix to be converted

sd a vector that contains the standard deviations of the variables in the correlation
matrix

Details

The correlation matrix to convert can be either symmetric or triangular. The covariance matrix
returned is always a symmetric matrix.

Note

The correlation matrix input should be a square matrix, and the length of sd should be equal to the
number of variables in the correlation matrix (i.e., the number of rows/columns).

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>), Keke Lai
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covmat.from.cfm Covariance matrix from confirmatory (single) factor model.

Description

Function calculates a covariance matrix using the specified Lambda and Psi.Square values from a
confirmatory factor model approach (McDonald, 1999).

Usage

covmat.from.cfm(Lambda, Psi.Square, tol.det = 1e-05)

Arguments

Lambda the vector of population factor loadings

Psi.Square the vector of population error variances

tol.det the specified tolerance for the determinant

Value
Population.Covariance

the population covariance matrix
True.Covariance

the true covariance matrix
True.Covariance

the error covariance matrix

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Leann Terry (Indiana University;
<ljterry@Indiana.Edu>)

References

McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Erlbaum.

See Also

CFA.1;sem

Examples

# General Congeneric
# covmat.from.cfm(Lambda=c(.8, .9, .6, .8), Psi.Square=c(.6, .2, .1, .3), tol.det=.00001)

# True-score equivalent
# covmat.from.cfm(Lambda=c(.8, .8, .8, .8), Psi.Square=c(.6, .2, .1, .3), tol.det=.00001)
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# Parallel
# covmat.from.cfm(Lambda=c(.8, .8, .8, .8), Psi.Square=c(.2, .2, .2, .2), tol.det=.00001)

cv Function to calculate the regular (which is also biased) estimate of
the coefficient of variation or the unbiased estimate of the coefficient
of variation.

Description

Returns the estimated coefficient of variation or the unbiased estimate of the coefficient of variation.

Usage

cv(C.of.V=NULL, mean=NULL, sd=NULL, N=NULL, unbiased=FALSE)

Arguments

C.of.V Usual estimate of the coefficient of variation (C.of.V=sd/mean)

mean observed mean

sd observed standard deviation (based on N-1 in the denominator of the variance)

N sample size

unbiased return the unbiased estimate of the coefficient of variation

Details

A function to calculate the usual estimate of the coefficient of variation or its unbiased estimate.

Value

Returns the estimated coefficient of variation (regular but biased estimate or unbiased estimate.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

See Also

ci.cv

Examples

cv(mean=100, sd=15)
cv(mean=100, sd=15, N=50, unbiased=TRUE)
cv(C.of.V=.15, N=2, unbiased=TRUE)
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Expected.R2 Expected value of the squared multiple correlation coefficient

Description

Returns the expected value of the squared multiple correlation coefficient given the population
squared multiple correlation coefficient, sample size, and the number of predictors

Usage

Expected.R2(Population.R2, N, p)

Arguments

Population.R2 population squared multiple correlation coefficient

N sample size

p the number of predictor variables

Details

Uses the hypergeometric function as discussed in section 28 of Stuart, Ord, and Arnold (1999)
in order to obtain the correct value for the squared multiple correlation coefficient. Many times an
exact value is given that ignores the hypergeometric function. This function yields the correct value.

Value

Returns the expected value of the squared multiple correlation coefficient.

Note

Uses package gsl and its hyperg_2F1 function.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Olkin, I. & Pratt, J. W. (1958). Unbiased estimation of certain correlation coefficients. Annals of
Mathematical statistics, 29, 201–211.

Stuart, A., Ord, J. K., & Arnold, S. (1999). Kendall’s advanced theory of statistics: Classical
inference and the linear model (Volume 2A, 2nd Edition). New York, NY: Oxford University Press.

See Also

ss.aipe.R2, ci.R2, Variance.R2
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Examples

# library(gsl)
# Expected.R2(.5, 10, 5)
# Expected.R2(.5, 25, 5)
# Expected.R2(.5, 50, 5)
# Expected.R2(.5, 100, 5)
# Expected.R2(.5, 1000, 5)
# Expected.R2(.5, 10000, 5)

F.and.R2.Noncentral.Conversion

Conversion functions from noncentral noncentral values to their cor-
responding and vice versa, for those related to the F-test and R Square.

Description

Given values of test statistics (and the appropriate additional information) the value of the non-
central values can be obtained. Likewise, given noncentral values (and the appropriate additional
information) the value of the test statistic can be obtained.

Usage

Rsquare2F(R2 = NULL, df.1 = NULL, df.2 = NULL, p = NULL, N = NULL)

F2Rsquare(F.value = NULL, df.1 = NULL, df.2 = NULL)

Lambda2Rsquare(Lambda = NULL, N = NULL)

Rsquare2Lambda(R2 = NULL, N = NULL)

Arguments

R2 squared multiple correlation coefficient (population or observed)

df.1 degrees of freedom for the numerator of the F-distribution

df.2 degrees of freedom for the denominator of the F-distribution

p number of predictor variables for R2

N sample size

F.value The obtained F value from a test of significance for the squared multiple corre-
lation coefficient

Lambda The noncentral parameter from an F-distribution

Details

These functions are especially helpful in the search for confidence intervals for noncentral parame-
ters, as they convert to and from related quantities.
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Value

Returns the converted value from the specified function.

Author(s)

Ken Kelley (University of Notre Dame, <KKelley@ND.Edu>)

See Also

ss.aipe.R2, ci.R2, conf.limits.nct, conf.limits.ncf

Examples

Rsquare2Lambda(R2=.5, N=100)

Gardner.LD The Gardner learning data, which was used by L.R. Tucker

Description

Repeated measures data on 24 participants, each with 21 trials (each trial based on 20 replications).

Usage

data(Gardner.LD)

Format

A data frame where the rows represent the timepoints for the individuals.

ID : a numeric vector

Trial : a numeric vector

Score : a numeric vector

Group : a numeric vector

Details

The 24 participants of this study were presented with 420 presentations of four letters where the task
was to identify the next letter that was to be presented. Twelve of the participants (Group 1) were
presented the letters S, L, N, and D with probabilities .70, .10, .10, and .10, respectively. The other
12 participants (Group 2) were presented the letter L with probability .70 and three other letters,
each with a probability of .10. The 420 presentations were (arbitrarily it seems) grouped into 21
trials of 20 presentations. The score for each trial was the number of times the individual correctly
guessed the dominant letter. The participants were naive to the probability that the letters would
be presented. Other groups of individuals (although the data is not available) were tested under a
different probability structure. The data given here is thus known as the 70-10-10-10 group from
Gardner’s paper. L. R. Tucker used this data set to illustrate methods for understanding change.
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Source

Tucker, L. R. (1960). Determination of Generalized Learning Curves by Factor Analysis, Educa-
tional Testing Services, Princeton, NJ.

References

Gardner, R. A., (1958). Multiple-choice decision-behavior, American Journal of Psychology, 71,
710–717.

HS Complete Data Set of Holzinger and Swineford’s (1939) Study

Description

The complete data set of scores of 301 participants in 26 tests in Holzinger and Swineford’s (1939)
study.

Usage

data(HS)

Format

A data frame with 301 observations on the following 34 variables.

id case number of participants (note there are skips)

sex sex of participants

grade grade in school of the participants with levels Female Male

age the age (ignoring months into the year) of the participants

month_since_birthday the number of months since the last birthday

age_months age in months

age_years age in years and months combined (more fine grained measure of years)

school the school the participant is from with levels Grant-White Pasteur

t1_visual_perception scores on visual perception test, test 1

t2_cubes scores on cubes test, test 2

t3_paper_form_board scores on paper form board test, test 3

t4_lozenges scores on lozenges test, test 4

t5_general_information scores on general information test, test 5

t6_paragraph_comprehension scores on paragraph comprehension test, test 6

t7_sentence scores on sentence completion test, test 7

t8_word_classification scores on word classification test, test 8

t9_word_meaning scores on word meaning test, test 9



HS 61

t10_addition scores on add test, test 10

t11_code scores on code test, test 11

t12_counting_groups_of_dots scores on counting groups of dots test, test 12

t13_straight_and_curved_capitals scores on straight and curved capitals test, test 13

t14_word_recognition scores on word recognition test, test 14

t15_number_recognition scores on number recognition test, test 15

t16_figure_recognition scores on figure recognition test, test 16

t17_object_number scores on object-number test, test 17

t18_number_figure scores on number-figure test, test 18

t19_figure_word scores on figure-word test, test 19

t20_deduction scores on deduction test, test 20

t21_numerical_puzzles scores on numerical puzzles test, test 21

t22_problem_reasoning scores on problem reasoning test, test 22

t23_series_completion scores on series completion test, test 23

t24_woody_mccall scores on Woody-McCall mixed fundamentals, form I test, test 24

t25_paper_form_board_r scores on additional paper form board test, test 25

t26_flags scores on flags test, test 26

Details

Holzinger and Swineford (1939) data is widely cited, but generally only the Grant-White School
data is used. The present dataset contains the complete data of Holzinger and Swineford (1939).

A total number of 301 pupils, coming from Paster School and Grant-White School, who participated
in Holzinger and Swineford’s (1939) study. This study consists of 26 tests, which are used to
measure the participants’ spatial, verbal, mental speed, memory, and mathematical ability.

The spatial tests consist of t1_visual_perception, t2_cubes, t3_paper_form_board, t4_lozenges.
Additional spatial tests are t25_paper_form_board_r (revised test 3) and t26_flags. t25_paper_form_board_r
can (potentially) be used as a substitute for t3_paper_form_board. t26_flags is thought to be a
possible substitute for t4_lozenges.

The verbal tests consist of t5_general_information, t6_paragraph_comprehension, t7_sentence,
t8_word_classification, and t9_word_meaning.

The speed tests consist of t10_addition, t11_code, t12_counting_groups_of_dots, and t13_straight_and_curved_capitals.

The memory tests consist of t14_word_recognition, t15_number_recognition, t16_figure_recognition,
t17_object_number, t18_number_figure, and t19_figure_word.

The mathematical-ability tests consist of t20_deduction, t21_numerical_puzzles, t22_problem_reasoning,
t23_series_completion, and t24_woody_mccall.

Source

Holzinger, K. J. and Swineford, F. A. (1939). A study in factor analysis: The stability of a bi-factor
solution. Supplementary Education Monographs, 48. University of Chicago.
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References

Holzinger, K. J. and Swineford, F. A. (1939). A study in factor analysis: The stability of a bi-factor
solution. Supplementary Education Monographs, 48. University of Chicago.

Examples

data(HS)
summary(HS)

intr.plot Regression Surface Containing Interaction

Description

To plot a three dimentional figure of a multiple regression surface containing one two-way interac-
tion.

Usage

intr.plot(b.0, b.x, b.z, b.xz, x.min = NULL, x.max = NULL, z.min = NULL,
z.max = NULL, n.x = 50, n.z = 50, x = NULL, z = NULL, col = "lightblue",
hor.angle = -60, vert.angle = 15, xlab = "Value of X", zlab = "Value of Z",
ylab = "Dependent Variable", expand = 0.5, lines.plot=TRUE, col.line = "red",
line.wd = 2, gray.scale = FALSE, ticktype="detailed", ...)

Arguments

b.0 the intercept

b.x regression coefficient for predictor x

b.z regression coefficient for predictor z

b.xz regression coefficient for the interaction of predictors x and z
x.min, x.max, z.min, z.max

ranges of x and z. The regression surface defined by these limits will be plotted.

n.x number of elements in predictor vector x; number of points to be plotted on the
regression surface; default is 50

n.z number of elements in predictor vector z; number of points to be plotted on the
regression surface; default is 50

x a specific predictor vector x, used instead of x.max and x.min

z a specific predictor vector z, used instead of z.max and z.min

col color of the regression surface; default is lightbule

hor.angle rotate the regression surface horizontally; default is -60 degree

vert.angle rotate the regression surface vertically; default is 15 degree

xlab title for the axis which the predictor x is on
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zlab title for the axis which the predictor z is on

ylab title for the axis which the dependent y is on

expand default is 0.5; expansion factor applied to the axis of the dependent variable.
Often used with 0 < expand < 1 to shrink the plotting box in the direction of the
dependent variable’s axis.

lines.plot whether or not to plot on the regression surface regression lines holding z at
values 0, 1, -1, 2, -2 above the mean; default is TRUE.

col.line the color of regression lines plotted on the regression surface; default is red

line.wd the width of regression lines plotted on the regression surface; default is 2

gray.scale whether or not to plot the figure black and white; default is FALSE

ticktype whether the axes should be plotted with ("detailed") or without ("simple")
tick marks

... allows one to potentially include parameter values for inner functions

Details

The user can input either the limits of x and z, or specific x and z vectors, to draw the regression
surface. If the user inputs simply the limits of the predictors, the function would generate predic-
tor vectors for plotting. If the user inputs specific predictor vectors, the function would plot the
regression surface based on those vectors.

Note

If the user enters specific vectors instead of the ranges of predictors, please make sure elements in
those vectors are in ascending order. This is required by function persp, which is used within this
function.

Author(s)

Keke Lai (University of California – Merced) and Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cohen, J., Cohen, P., West, S. G. and Aiken, L. S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

See Also

intr.plot.2d, persp

Examples

## A way to replicate the example given by Cohen et al. (2003) (pp. 258--263):
## The regression equation with interaction is y=.2X+.6Z+.4XZ+2
## To plot a regression surface and regression lines of Y on X holding Z
## at -1, 0, and 1 standard deviation above the mean

x<- c(0,2,4,6,8,10)
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z<-c(0,2,4,6,8,10)
intr.plot(b.0=2, b.x=.2, b.z=.6, b.xz=.4, x=x, z=z)

## input limits of the predictors instead of specific x and z predictor vectors
intr.plot(b.0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=5, x.max=10, z.min=0, z.max=20)

intr.plot(b.0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10, z.min=0, z.max=10,
col="gray", hor.angle=-65, vert.angle=10)

## To plot a black-and-white figure
intr.plot(b.0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10, z.min=0, z.max=10,
gray.scale=TRUE)

## to adjust the tick marks on the axes
intr.plot(b.0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10, z.min=0, z.max=10,
ticktype="detailed", nticks=8)

intr.plot.2d Plotting Conditional Regression Lines with Interactions in Two Di-
mensions

Description

To plot regression lines for one two-way interactions, holding one of the predictors (in this function,
z) at values -2, -1, 0, 1, and 2 standard deviations above the mean.

Usage

intr.plot.2d(b.0, b.x, b.z, b.xz,x.min=NULL, x.max=NULL, x=NULL,
n.x=50, mean.z=NULL, sd.z=NULL, z=NULL,xlab="Value of X",
ylab="Dependent Variable", sd.plot=TRUE, sd2.plot=TRUE, sd_1.plot=TRUE,
sd_2.plot=TRUE, type.sd=2, type.sd2=3, type.sd_1=4, type.sd_2=5,
legend.pos="bottomright", legend.on=TRUE, ... )

Arguments

b.0 the intercept

b.x regression coefficient for predictor x

b.z regression coefficient for predictor z

b.xz regression coefficient for the interaction of predictors x and z

x.min, x.max the range of x used in the plot

x a specific predictor vector x, used instead of x.min and x.max

n.x number of elements in predictor vector x

mean.z mean of predictor z

sd.z standard deviation of predictor z

z a specific predictor vector z, used instead of z.min and z.max
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xlab title for the axis which the predictor x is on

ylab title for the axis which the dependent y is on
sd.plot, sd2.plot, sd_1.plot, sd_2.plot

whether or not to plot the regression line holding z at values 1, 2, -1, and -2
standard deviations above the mean, respectively. Default values are all TRUE.

type.sd, type.sd2, type.sd_1, type.sd_2
types of lines to be plotted holding z at values 1, 2, -1, and -2 standard deviations
above the mean, respectively. Default are line type 2,3,4, and 5, respectively.

legend.pos position of the legend; possible options are "bottomright", "bottom", "bottomleft",
"left", "center", "right", "topleft", "top", and "topright".

legend.on whether or not to show the legend

... allows one to potentially include parameter values for inner functions

Details

To input the predictor x, one can use either the limits of x (x.max and x.min) , or a specific vector
x (x). To input the predictor z, one can use either the mean and standard deviation of z (mean.z and
sd.z ), or a specific vector z (z).

Note

Sometimes some of the regression lines are outside the default scope of the coordinates and thus
cannot be seen; in such situations, one needs to, by entering additional arguments, adjust the scope
to let proper sections of regression lines be seen. Refer to examples below for more details.

Author(s)

Keke Lai, Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cohen, J., Cohen, P., West, S. G. and Aiken, L. S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

See Also

intr.plot

Examples

## A situation where one regression line is outside the default scope of the coordinates
intr.plot.2d(b.0=16, b.x=2.2, b.z=2.6, b.xz=.4, x.min=0, x.max=20, mean.z=0, sd.z=3)

## Adjust the scope of x and y axes so that proper sections of regression lines can be seen
intr.plot.2d(b.0=16, b.x=2.2, b.z=2.6, b.xz=.4, x.min=0, x.max=50, mean.z=0,
sd.z=3, xlim=c(0,50), ylim=c(-20,100) )

## Use specific vector(s) to define the predictor(s)
intr.plot.2d(b.0=16, b.x=2.2, b.z=2.6, b.xz=.4, x=c(1:10), z=c(0,2,4,6,8,10))
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intr.plot.2d(b.0=16, b.x=2.2, b.z=2.6, b.xz=.4, x.min=0, x.max=20,
z=c(1,3,6,7,9,13,16,20), ylim=c(0,100))

## Change the position of the legend so that it does not block regression lines
intr.plot.2d(b.0=10, b.x=-.3, b.z=1, b.xz=.5, x.min=0, x.max=40, mean.z=-5, sd.z=3,
ylim=c(-100,100),legend.pos="topright" )

MBESS MBESS

Description

MBESS Implements methods that are useful in designing research studies and analyzing data, with
particular emphasis on methods that are developed for or used within the behavioral, educational,
and social sciences (broadly defined). That being said, many of the methods implemented within
MBESS are applicable to a wide variety of disciplines. MBESS has a suite of functions for a
variety of related topics, such as effect sizes, confidence intervals for effect sizes (including stan-
dardized effect sizes and noncentral effect sizes), sample size planning (from the accuracy in pa-
rameter estimation [AIPE], power analytic, equivalence, and minimum-risk point estimation per-
spectives), mediation analysis, various properties of distributions, and a variety of utility func-
tions. MBESS (pronounced ’em-bes’) was originally an acronym for ’Methods for the Behav-
ioral, Educational, and Social Sciences,’ but MBESS became more general and now contains meth-
ods applicable and used in a wide variety of fields and is an orphan acronym, in the sense that
what was an acronym is now literally its name. MBESS has greatly benefited from others, see
<https://www3.nd.edu/~kkelley/site/MBESS.html> for a detailed list of those that have contributed
and other details.

Details

Package: MBESS
Type: Package
Version: 4.9.41
Date: 2025-07-07
License: GPL(>=2)

Please read the help files for information on the capabilities of the MBESS package. Feel free to
contact me if there is a feature you would like to see added if it would complement the goals of the
MBESS package. Beginning with version 4.8.0, the package also has a home on GitHub https:
//github.com/yelleKneK/MBESS. Over the years, multiple people have contributed functions to
the package. See individual functions for details.

Author(s)

Ken Kelley <<KKelley@ND.Edu>; https://www3.nd.edu/~kkelley/>

Maintainer: Ken Kelley <<KKelley@ND.Edu>; https://www3.nd.edu/~kkelley/>

https://github.com/yelleKneK/MBESS
https://github.com/yelleKneK/MBESS
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mediation Effect sizes and confidence intervals in a mediation model

Description

Automate the process of simple mediation analysis (one independent variable and one mediator)
and effect size estimation for mediation models, as discussed in Preacher and Kelley (2011).

Usage

mediation(x, mediator, dv, S = NULL, N = NULL, x.location.S = NULL,
mediator.location.S = NULL, dv.location.S = NULL, mean.x = NULL,
mean.m = NULL, mean.dv = NULL, conf.level = 0.95,
bootstrap = FALSE, B = 10000, which.boot="both", save.bs.replicates=FALSE,
complete.set=FALSE)

Arguments

x vector of the predictor/independent variable

mediator vector of the mediator variable

dv vector of the dependent/outcome variable

S Covariance matrix

N Sample size, necessary when a covariance matrix (S) is used

x.location.S location of the predictor/independent variable in the covariance matrix (S)
mediator.location.S

location of the mediator variable in the covariance matrix (S)

dv.location.S location of the dependent/outcome variable in the covariance matrix (S)

mean.x mean of the x (independent/predictor) variable when a covariance matrix (S) is
used

mean.m mean of the m (mediator) variable when a covariance matrix (S) is used

mean.dv mean of the y/dv (dependent/outcome) variable when a covariance matrix (S) is
used

conf.level desired level of confidence (e.g., .90, .95, .99, etc.)

bootstrap TRUE or FALSE, based on whether or not a bootstrap procedure is performed to
obtain confidence intervals for the various effect sizes

B number of bootstrap replications when bootstrap=TRUE (e.g., 10000)

which.boot which bootstrap method to use. It can be Percentile or BCa, or both
save.bs.replicates

Logical argument indicating whether to save the each bootstrap sample or not

complete.set identifies if the function should report the estimated kappa.squarred (see below)
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Details

Based on the work of Preacher and Kelley (2010) and works cited therein, this function implements
(simple) mediation analysis in a way that automates much of the results that are generally of interest,
where "simple" means one independent variable, one mediator, and one dependent variable. More
specifically, three regression outputs are automated as is the calculation of effect sizes that are
thought to be useful or potentially useful in the context of mediation. Much work on mediation
models exists in the literature, which should be consulted for proper interpretation of the effect
sizes, models, and meaning of results. The usefulness of effect size κ2 was called into question by
Wen and Fan (2015). Further, another paper by Lachowicz, Preacher, and Kelley (submitted) offers
a better was of quantifying the effect size and it is developed for more complex models. Users are
encouraged to use, instead of or in addition to this function, the upsilon function.

Value
Y.on.X$Regression.Table

Regression table of Y conditional on X

Y.on.X$Model.Fit

Summary of model fit for the regression of Y conditional on X

M.on.X$Regression.Table

Regression table of X conditional on M

M.on.X$Model.Fit

Summary of model fit for the regression of X conditional on M

Y.on.X.and.M$Regression.Table

Regression table of Y conditional on X and M

Y.on.X.and.M$Model.Fit

Summary of model fit for the regression of Y conditional on X and M

Indirect.Effect

the product of â × b̂, where â and b̂ are the estimated coefficients of the path
from the independent variable to the mediator and the path from the mediator to
the dependent variable

Indirect.Effect.Partially.Standardized

It is the indirect effect (see Indirect.Effect above) divided by the estimated
standard deviation of Y (MacKinnon, 2008)

Index.of.Mediation

Index of mediation (indirect effect multiplied by the ratio of the standard devia-
tion of X to the standard deviation of Y) (Preacher and Hayes, 2008)

R2_4.5 An index of explained variance see MacKinnon (2008, Eq. 4.5) for details

R2_4.6 An index of explained variance see MacKinnon (2008, Eq. 4.6) for details

R2_4.7 An index of explained variance see MacKinnon (2008, Eq. 4.7) for details

Maximum.Possible.Mediation.Effect

the maximum attainable value of the mediation effect (i.e., the indirect effect), in
the direction of the observed indirect effect, that could have been observed, con-
ditional on the sample variances and on the magnitudes of relationships among
some of the variables
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ab.to.Maximum.Possible.Mediation.Effect_kappa.squared

the proportion of the maximum possible indirect effect; Uses the indirect effect
in the numerator with the maximum possible mediation effect in the denomina-
tor (Preacher & Kelley, 2010)

Ratio.of.Indirect.to.Total.Effect

ratio of the indirect effect to the total effect (Freedman, 2001); also known as
mediation ratio (Ditlevsen, Christensen, Lynch, Damsgaard, & Keiding, 2005);
in epidemiological research and as the relative indirect effect (Huang, Sivagane-
san, Succop, & Goodman, 2004); often loosely interpreted as the relative indi-
rect effect

Ratio.of.Indirect.to.Direct.Effect

ratio of the indirect effect to the direct effect (Sobel, 1982)
Success.of.Surrogate.Endpoint

Success of a surrogate endpoint (Buyse & Molenberghs, 1998)

SOS shared over simple effects (SOS) index, which is the ratio of the variance in Y
explained by both X and M divided by the variance in Y explained by X (Linden-
berger & Potter, 1998)

Residual.Based_Gamma

A residual based index (Preacher & Kelley, 2010)
Residual.Based.Standardized_gamma

A residual based index that is standardized, where the scales of M and Y are
removed by using standardized values of M and Y (Preacher & Kelley, 2010)

ES.for.two.groups

When X is 0 and 1 representing a two group structure, Hansen and McNeal’s
(1996) Effect Size Index for Two Groups

Author(s)

Ken Kelley (University of Notre Dame; KKelley@nd.edu)

References

Buyse, M., & Molenberghs, G. (1998). Criteria for the validation of surrogate endpoints in random-
ized experiments. Biometrics, 54, 1014–1029.
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See Also

mediation.effect.plot, mediation.effect.bar.plot

Examples

## Not run:
############################################
# EXAMPLE 1
# Using the Jessor data discussed in Preacher and Kelley (2011), to illustrate
# the methods based on summary statistics.

mediation(S=rbind(c(2.26831107, 0.6615415, -0.08691755),
c(0.66154147, 2.2763549, -0.22593820), c(-0.08691755, -0.2259382, 0.09218055)),
N=432, x.location.S=1, mediator.location.S=2, dv.location.S=3, mean.x=7.157645,
mean.m=5.892785, mean.dv=1.649316, conf.level=.95)

############################################
# EXAMPLE 2
# Clear the workspace:
rm(list=ls(all=TRUE))

# An (unrealistic) example data (from Hayes)
Data <- rbind(

c(-5.00, 25.00, -1.00),
c(-4.00, 16.00, 2.00),
c(-3.00, 9.00, 3.00),
c(-2.00, 4.00, 4.00),
c(-1.00, 1.00, 5.00),
c(.00, .00, 6.00),
c(1.00, 1.00, 7.00),
c(2.00, 4.00, 8.00),
c(3.00, 9.00, 9.00),
c(4.00, 16.00, 10.00),
c(5.00, 25.00, 13.00),
c(-5.00, 25.00, -1.00),
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c(-4.00, 16.00, 2.00),
c(-3.00, 9.00, 3.00),
c(-2.00, 4.00, 4.00),
c(-1.00, 1.00, 5.00),
c(.00, .00, 6.00),
c(1.00, 1.00, 7.00),
c(2.00, 4.00, 8.00),
c(3.00, 9.00, 9.00),
c(4.00, 16.00, 10.00),
c(5.00, 25.00, 13.00))

# Raw data example of the Hayes data.
mediation(x=Data[,1], mediator=Data[,2], dv=Data[,3], conf.level=.95)

# Sufficient statistics example of the Hayes data.
mediation(S=var(Data), N=22, x.location.S=1, mediator.location.S=2, dv.location.S=3,
mean.x=mean(Data[,1]), mean.m=mean(Data[,2]), mean.dv=mean(Data[,3]), conf.level=.95)

# Example had there been two groups.
gp.size <- length(Data[,1])/2 # adjust if using an odd number of observations.
grouping.variable <- c(rep(0, gp.size), rep(1, gp.size))
mediation(x=grouping.variable, mediator=Data[,2], dv=Data[,3])

############################################
# EXAMPLE 3
# Bootstrap of continuous data.
set.seed(12414) # Seed used for repeatability (there is nothing special about this seed)
bs.Results <- mediation(x=Data[,1], mediator=Data[,2], dv=Data[,3],
bootstrap=TRUE, B=5000, save.bs.replicates=TRUE)

ls() # Notice that Bootstrap.Replicates is available in the
workspace (if save.bs.replicates=TRUE in the above call).

#Now, given the Bootstrap.Replicates object, one can do whatever they want with them.

# See the names of the effect sizes (and their ordering)
colnames(Bootstrap.Replicates)

# Define IE as the indirect effect from the Bootstrap.Replicates object.
IE <- Bootstrap.Replicates$Indirect.Effect

# Summary statistics
mean(IE)
median(IE)
sqrt(var(IE))

# CIs from percentile perspective
quantile(IE, probs=c(.025, .975))

# Two-sided p-value.
## First, calculate obseved value of the indirect effect and extract it here.
IE.Observed <- mediation(x=Data[,1], mediator=Data[,2], dv=Data[,3],
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conf.level=.95)$Effect.Sizes[1,]

## Now, find those values of the bootstrap indirect effects that are more extreme (in an absolute
## sense) than the indirect effect observed. Note that the p-value is 1 here because the observed
## indirect effect is exactly 0.
mean(abs(IE) >= abs(IE.Observed))

## End(Not run)

mediation.effect.bar.plot

Bar plots of mediation effects

Description

Provides an effect bar plot in the context of simple mediation.

Usage

mediation.effect.bar.plot(x, mediator, dv,
main = "Mediation Effect Bar Plot", width = 1, left.text.adj = 0,
right.text.adj = 0, rounding = 3, file = "", save.pdf = FALSE,
save.eps = FALSE, save.jpg = FALSE, ...)

Arguments

x vector of the predictor/independent variable

mediator vector of the mediator variable

dv vector of the dependent/outcome variable

main main title

width width of bar, default 1

left.text.adj for fine tuning left side text adjustment

right.text.adj for fine tuning right side text adjustment

rounding how to round so that the values displayed in the plot do not have too few or too
many significant digits

file file name of the plot to be saved (not necessary)

save.pdf TRUE or FALSE if the produced figure should be saved as a PDF file

save.eps TRUE or FALSE if the produced figure should be saved as an EPS file

save.jpg TRUE or FALSE if the produced figure should be saved as a JPG file

... optional additional specifications for nested functions
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Details

Provides an effect bar for mediation (Bauer, Preacher, & Gil, 2006) may be used to plot the results
of a mediation analysis compactly. Effect bars represent, in a single metric, the relative magnitudes
of several values that are important for interpreting indirect effects. Preacher and Kelley (2011)
discuss this plotting method also.

Value

Only a figure is returned

Author(s)

Ken Kelley (University of Notre Dame; KKelley@nd.edu)

References

Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect
effects and moderated mediation in multilevel models: New procedures and recommendations.
Psychological Methods, 11, 142–163.

Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative and
graphical strategies for communicating indirect effects. Psychological Methods, 16, 93–115.

See Also

mediation, mediation.effect.bar.plot

mediation.effect.plot Visualizing mediation effects

Description

Create a mediation effect plot

Usage

mediation.effect.plot(x, mediator, dv, ylab = "Dependent Variable",
xlab = "Mediator", main = "Mediation Effect Plot",
pct.from.top.a = 0.05, pct.from.left.c = 0.05, arrow.length.a = 0.05,
arrow.length.c = 0.05, legend.loc = "topleft", file = "", pch = 20,
xlim = NULL, ylim = NULL, save.pdf = FALSE, save.eps = FALSE,
save.jpg = FALSE, ...)
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Arguments

x vector of the predictor/independent variable

mediator vector of the mediator variable

dv vector of the dependent/outcome variable

ylab y-axis title label

xlab x-axis title label

main main title label

pct.from.top.a figure fine tuning adjustment
pct.from.left.c

figure fine tuning adjustment

arrow.length.a figure fine tuning adjustment

arrow.length.c figure fine tuning adjustment

legend.loc specify the location of the legend

file file name of the plot to be saved (not necessary)

pch plotting character

xlim limits for the x-axis

ylim limits for the y-axis

save.pdf TRUE or FALSE if the produced figure should be saved as a PDF file

save.eps TRUE or FALSE if the produced figure should be saved as an EPS file

save.jpg TRUE or FALSE if the produced figure should be saved as a JPG file

... to incorporate options from interval functions

Details

Merrill (1994; see also MacKinnon, 2008; MacKinnon et al., 2007; Sy, 2004) presents a method that
involves plotting the indirect effect as the vertical distance between two lines. Fritz and MacKinnon
(2008) present a detailed exposition of this method too. Preacher and Kelley (2011) discuss this
plotting method and implement their own code, which was also independently done as part of Fritz
and MacKinnon (2008).

In this type of plot, the two horizontal lines correspond to the predicted values of Y regressed on X
at the mean of X and at one unit above the mean of X. The distance between these two lines is thus
ĉ. The two vertical lines correspond to predicted values of M regressed on X at the same two values
of X. The distance between these lines is â. The lines corresponding to the regression of Y on M
(controlling for X) are plotted for the same two values of X.

Value

A figure is returned.

Note

Requires raw data.
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Author(s)

Ken Kelley (University of Notre Dame; KKelley@nd.edu)

References

Fritz, M. S., & MacKinnon, D. P. (2008). A graphical representation of the mediated effect. Behav-
ior Research Methods, 40, 55–60.

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Erlbaum.

MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of
Psychology, 58, 593–614.

Merrill, R. M. (1994). Treatment effect evaluation in non-additive mediation models. Unpublished
dissertation, Arizona State University.

Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative and
graphical strategies for communicating indirect effects. Psychological Methods, 16, 93–115.

Sy, O. S. (2004). Multilevel mediation analysis: Estimation and applications. Unpublished disser-
tation, Kansas State University.

See Also

mediation.effect.plot, mediation.effect.bar.plot

mr.cv Minimum risk point estimation of the population coefficient of varia-
tion

Description

A function for the sequential estimation of the coefficient of variations with minimum risk. The
function implements the ideas of Chattopadhyay and Kelley (in press), which considers study cost
and accuracy of the estimated coefficient of variation simultaneously.

Usage

mr.cv(data, A, structural.cost, epsilon, sampling.cost, pilot=FALSE, m0=4, gamma=.49,
verbose=FALSE)

Arguments

data the data for which to evalaute the function

A structural.cost/epsilon^2; this is the structural cost that one is willing to
pay in a study to estimate the coefficient of variation divided by the square of
the desired difference (between the estimate and the parameter)

structural.cost

this is the the structural cost of what one is willing to pay in a study (see note
below).
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epsilon The maximum desired difference between the estimated coefficient of variation
and the population value)

sampling.cost The sampling cost to collect an additional observation. For example, if each
survey costs 10 dollars to distribute and score, sampling.cost would be 10
dollars per additional observation.

pilot TRUE or FALSE based on whether the users is using the function to plan a pilot
sample size (TRUE) or if it is being used to assess if the optimization criterion
has been satisfied (FALSE)

m0 the minimum bound on the initial pilot sample size

gamma A correction factor in which we suggest .49; see the two Chattopadhyay & Kel-
ley articles for more details (ignorable for most users).

verbose If TRUE, extra information is printed; defaults to FALSE

Details

The value of epsilon is context specific; the smaller the value the closer the estimated value will
tend to be to the population value.

Value

Risk The value of the risk function

N The current sample size

cv The current coefficient of variation

Is.Satisfied? A TRUE/FALSE statement of whether or not the risk function has been satisfied.
If TRUE then sampling can stop as the stopping rule has been satisfied.

Note

When a study’s aim is to estimate a parameter accurately, such as the coefficient of variation, the
structural costs and the maximum probable error of the estimate (i.e., ϵ) are combined to form A.
When we say “what the researcher is willing to pay," we literally mean the structural cost (c) the
researcher is willing to invest in a study in order to estimate the parameter of interest with the desired
degree of accuracy. This value is implicitly included (along with anticipated sampling cost) in grant
applications for empirical studies when a certain amount of money is requested to conduct a study.
If a researcher is willing to pay more and/or desire a smaller value of ϵ, A is larger than it would
have been. A larger A value will translate into a more expensive study, holding everything else
constant. Notice that A is a fixed value in any investigation, as the researcher specifies A directly or
by specifying its two components (structural cost and ϵ) individually. However, what is not fixed but
rather evaluated in multiple steps throughout the process is the sampling cost, as it is unknown the
necessary sample size in order to accomplish the study’s goal of achieving a sufficiently accurate
estimate of the coefficient of variation. This is the core of our contributions: minimizing sampling
cost, and thereby study cost, by using a sequential procedure that evaluates a stopping rule using
the risk function to determine if the optimation criterion has been satisfied (based on the goals of
the researcher and current information available). This function implements the ideas of sampling
error and the study costs are considered simultaneously, so that the cost is not higher than necessary
for the tolerable sampling error.
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Author(s)

Ken Kelley (University of Notre Dame; <kkelley@nd.edu>) and Bhargab Chattopadhyay (Univer-
sity of Texas - Dallas; <bhargab@utdallas.edu>)

References

Chattopadhyay, B., & Kelley, K. (in press). Estimation of the Coefficient of Variation with Min-
imum Risk: A Sequential Method for Minimizing Sampling Error and Study Cost. Multivariate
Behavioral Research, X, X–X.

Kelley, K. (2007). Sample size planning for the coefficient of variation from the accuracy in param-
eter estimation approach. Behavior Research Methods, 39 4, 755–766.

See Also

ci.cv, cv, mr.smd

Examples

# Determine pilot sample size:
mr.cv(pilot=TRUE, A=400000, sampling.cost=75, gamma=.49)

# Collect data (the size of which is the pilot sample size)
Data <- c(36, 53, 19, 11, 10, 24, 14, 65, 18, 48, 25, 35, 13, 18, 3, 41, 5, 3)

# Use mr.cv() to assess if the criterion for stopping the sequential study has been satisfied:
mr.cv(data=Data, A=400000, sampling.cost=75, gamma=.49)

# Collect another data (m=1 here) and perform another check:
Data <- c(Data, 44)
mr.cv(data=Data, A=400000, sampling.cost=75, gamma=.49)

# Continue adding obervations, checking each time if m=1, until the minimum risk criteria
# are satisfied:
Data <- c(Data, 26, 13, 39, 2, 3, 26, 22, 8, 15, 12, 22, 5, 21, 23, 40, 18)
mr.cv(data=Data, A=400000, sampling.cost=75, gamma=.49)

mr.smd Minimum risk point estimation of the population standardized mean
difference

Description

A function for the sequential estimation of the standardized mean difference with minimum risk.
The function implements the ideas of Chattopadhyay and Kelley (submitted, Psychological Meth-
ods), which considers study cost and accuracy of the estimated standardized mean difference si-
multaniously. This is important to specify that mr.smd.R was developed under the assumption of
normally distributed data with equal sample size and equal cost of sampling per observation for
each group.
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Usage

mr.smd(A, structural.cost, epsilon, d, n, sampling.cost, pilot = FALSE, m0 = 4,
gamma = 0.49)

Arguments

A is the price one is willing to pay in order to have a maximum allowable differ-
ence of epsilon2 between the estimate of the standardized mean difference and
its corresponding parameter.

structural.cost

Other costs not associated the cost of sampling itself. That is, beyond sampling
costs, the fnancial resources that are required to design, conduct, analyze the
data of a study.

epsilon The maximum desired difference between the estimated standardized mean dif-
ference and the population value)

d the current estimate of the standardized mean difference

n current sample size per group (thus total sample size is 2n); requires equal sam-
ple size per group.

sampling.cost The sampling cost to collect an additional observation. For example, if each
survey costs 10 dollars to distribute and score, sampling.cost would be 10
dollars per additional observation.

pilot TRUE or FALSE based on whether the users is using the function to plan a pilot
sample size (TRUE) or if it is being used to assess if the optimization criterion
has been satisfied (FALSE)

m0 the minimum bound on the initial pilot sample size

gamma A correction factor in which we suggest .49; see the two Chattopadhyay & Kel-
ley articles for more details (ignorable for most users).

Details

The standardized mean difference is a widely used measure effect size. In this article, we developed
a general theory for estimating the population standardized mean difference by minimizing both
the mean square error of the estimator and the total sampling cost. This function implements our
ideas discussed in Chattopadhyay and Kelley (submitted). See also Kelley and Rausch (2006) for
additional information on the standardized mean difference.

Value

Risk Per group sample size (this simply repeats what was supplied to the function)

n1 Sample size for group 1 (echos the input value)

n1 Sample size for group 2 (echos the input value)

d Observed value of the standardized mean difference (i.e., d; echos the input
value)

Is.Satisfied? A TRUE or FALSE statement of that evaluates a stopping rule using the risk func-
tion to determine if the optimation criterion has been satisfied (based on the
goals of the researcher and current information available)
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Note

When pilot=TRUE the function returns the size of the pilot sample size, per group, that should be
used (thus, the total sample size is twice the pilot sample size).

Author(s)

Ken Kelley (University of Notre Dame; <kkelley@nd.edu>) and Bhargab Chattopadhyay (Univer-
sity of Texas - Dallas; <bhargab@utdallas.edu>)

References

Chattopadhyay, B., & Kelley, K. (submitted, minor revision requested). Estimating the standardized
mean difference with minimum risk: Maximizing accuracy and minimizing cost with sequential
estimation. Psychological Methods, X, X–X.

Chattopadhyay, B., & Kelley, K. (in press). Estimation of the Coefficient of Variation with Min-
imum Risk: A Sequential Method for Minimizing Sampling Error and Study Cost. Multivariate
Behavioral Research, X, X–X.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11,
363–385.

See Also

ci.smd, mr.cv

Examples

# To obtain pilot sample size in a situation in which A=10000. Note that 'A' is
# 'structural.cost' divided by the square of 'epsilon'.

# From Chattopadhyay and Kelley (submitted, minor revision requested)
mr.smd(pilot=TRUE, A=10000, sampling.cost=2.4, gamma=.49)

High.SLS <- c(11, 7, 22, 13, 6, 9, 11, 16, 12, 17, 14, 8, 16)
Low.SLS <- c(3, 6, 10, 8, 14, 5, 12, 10, 6, 8, 13, 5, 9)

mr.smd(d=1.021484, n=13, A=10000, sampling.cost=2.40, gamma=.49)

# Or, using the smd() function:
mr.smd(d=smd(Group.1=High.SLS, Group.2=Low.SLS), n=13, A=10000, sampling.cost=2.40, gamma=.49)

# Here, for this situation, the stopping rule is satisfied:
mr.smd(d=1.00, n=75, A=10000, sampling.cost=2.40, gamma=.49)
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power.density.equivalence.md

Density for power of two one-sided tests procedure (TOST) for equiv-
alence

Description

A function to calculate density for the power of the two one-sided tests prodedure (TOST). (See
package equivalence, function tost.)

Usage

power.density.equivalence.md(power_sigma, alpha = alpha, theta1 = theta1,
theta2 = theta2, diff = diff, sigma = sigma, n = n, nu = nu)

Arguments

power_sigma x-value for integration

alpha α level (Type I error rate) for the 2 t-tests (usually α = 0.05). Confidence
interval for full test is at level 1− 2 ∗ α

theta1 lower limit of equivalence interval on appropriate scale (regular or log)

theta2 upper limit of equivalence interval on appropriate scale

diff true difference (ratio on log scale) in treatment means on appropriate scale

sigma sqrt(error variance) as fraction (i.e., square root of the mean square error from
ANOVA, or coefficient of variation)

n number of participants per treatment (number of total subjects for crossover
design)

nu degrees of freedom for sigma

Value

power_density density at diff for power of TOST: the probability that the confidence interval
will lie within [’theta1’, ’theta2’]

Author(s)

Kem Phillips; <kemphillips@comcast.net>

References

Diletti, E., Hauschke D. & Steinijans, V.W. (1991). Sample size determination of bioequivalence as-
sessment by means of confidence intervals, International Journal of Clinical Pharmacology, Ther-
apy and Toxicology, 29, No. 1, 1–8.

Phillips, K.F. (1990). Power of the Two One-Sided Tests Procedure in Bioquivalence, Journal of
Pharmacokinetics and Biopharmaceutics, 18, No. 2, 139–144.
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Schuirmann, D.J. (1987). A comparison of the two one-sided tests procedure and the power ap-
proach for assessing the equivalence of average bioavailability, Journal of Pharmacokinetics and
Biopharmaceutics, 15. 657–680.

See Also

power.equivalence.md.plot, power.density.equivalence.md

Examples

## Not run:
# This function is called by power.equivalence.md within
# the integrate function. It is integrated over
# appropriate limits to compute the power. Use

power.density.equivalence.md(.1, alpha=.05, theta1=-.2, theta2=.2, diff=.05,
sigma= .20, n=24, nu=22)

# The usage for the logarithmic scale is the same, except that
# theta1, theta2, and diff must be on that scale. That is, use log(.8), etc.

## End(Not run)

power.equivalence.md Power of Two One-Sided Tests Procedure (TOST) for Equivalence

Description

A function to calculate the power of the two one-sided tests prodedure (TOST). This is the prob-
ability that a confidence interval lies within a specified equivalence interval. (See also package
equivalence, function tost.)

Usage

power.equivalence.md(alpha, logscale, ltheta1, ltheta2, ldiff, sigma, n, nu)

Arguments

alpha α level (Type I error rate) for the two t-tests (usually α = 0.05). Confidence
interval for full test is at 1− 2 ∗ α

logscale whether to use logarithmic scale (TRUE) or not (FALSE)
ltheta1 lower limit of equivalence interval
ltheta2 upper limit of equivalence interval
ldiff true difference (ratio on log scale) in treatment means
sigma sqrt(error variance) as fraction (square root of the mean square error from

ANOVA, or coefficient of variation)
n number of participants per treatment (number of total subjects for crossover

design)
nu degrees of freedom for sigma
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Value

power Power of TOST; the probability that the confidence interval will lie within [’theta1’,
’theta2’] given sigma, n, and nu

Author(s)

Kem Phillips; <kemphillips@comcast.net>

References

Diletti, E., Hauschke D. & Steinijans, V.W. (1991). Sample size determination of bioequivalence as-
sessment by means of confidence intervals, International Journal of Clinical Pharmacology, Ther-
apy and Toxicology, 29, No. 1, 1–8.

Phillips, K.F. (1990). Power of the Two One-Sided Tests Procedure in Bioquivalence, Journal of
Pharmacokinetics and Biopharmaceutics, 18, No. 2, 139–144.

Schuirmann, D.J. (1987). A comparison of the two one-sided tests procedure and the power ap-
proach for assessing the equivalence of average bioavailability, Journal of Pharmacokinetics and
Biopharmaceutics, 15. 657–680.

Examples

# Suppose that two formulations of a drug are to be compared on
# the regular scale using a two-period crossover design, with
# theta1 = -0.20, theta2 = 0.20, rm{CV} = 0.20, the
# difference in the mean bioavailability is 0.05 (5 percent), and we choose
# n=24, corresponding to 22 degrees of freedom. We need to test
# bioequivalence at the 5 percent significance level, which corresponds to
# having a 90 percent confidence interval lying within (-0.20, 0.20). Then
# the power will be 0.8029678. This corresponds to Phillips (1990),
# Table 1, 5th row, 5th column, and Figure 3. Use

power.equivalence.md(.05, FALSE, -.2, .2, .05, .20, 24, 22)

# If the formulations are compared on the logarithmic scale with
# theta1 = 0.80, theta2 = 1.25, n=18 (16 degrees of freedom), and
# a ratio of test to reference of 1.05. Then the power will be 0.7922796.
# This corresponds to Diletti, Table 1, power=.80, CV=.20, ratio=1.05, and Figure 1c. Use

power.equivalence.md(.05, TRUE, .8, 1.25, 1.05, .20, 18, 16)

power.equivalence.md.plot

Plot power of Two One-Sided Tests Procedure (TOST) for Equivalence

Description

A function to plot the power of the two one-sided tests prodedure (TOST) for various alternatives.
(See also package equivalence, function tost.)
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Usage

power.equivalence.md.plot(alpha, logscale, theta1, theta2, sigma, n, nu, title2)

Arguments

alpha alpha level for the 2 t-tests (usually alpha=0.05). Confidence interval for full
test is at level 1- 2*alpha

logscale whether to use logarithmic scale TRUE or not FALSE

theta1 lower limit of equivalence interval

theta2 upper limit of equivalence interval

sigma sqrt(error variance) as fraction (root MSE from ANOVA, or coefficient of vari-
ation)

n number of subjects per treatment (number of total subjects for crossover design)

nu degrees of freedom for sigma

title2 Title appearing at bottom of plot

Value

power Plot of power of TOST (probability that (1-2*alpha) confidence interval will
lie within (theta1, theta2) given sigma, n, and nu. Also returns matrix of
201 differences between theta1 and theta2 as first column, and power values
corresponding to n for other columns.

Author(s)

Kem Phillips; <kemphillips@comcast.net>

References

Diletti, E., Hauschke D. & Steinijans, V.W. (1991) Sample size determination of bioequivalence as-
sessment by means of confidence intervals, International Journal of Clinical Pharmacology, Ther-
apy and Toxicology, 29, No. 1, 1-8.

Phillips, K.F. (1990) Power of the Two One-Sided Tests Procedure in Bioquivalence, Journal of
Pharmacokinetics and Biopharmaceutics, 18, No. 2, 139-144.

Schuirmann, D.J. (1987) A comparison of the two one-sided tests procedure and the power ap-
proach for assessing the equivalence of average bioavailability, Journal of Pharmacokinetics and
Biopharmaceutics, 15. 657-680.

Examples

## Not run:
# Suppose that two formulations of a drug are to be compared
# on the regular scale using a two-period crossover design,
# with theta1 = -0.20, theta2 = 0.20, rm(CV) = 0.20, and
# we choose
n<-c(9,12,18,24,30,40,60)
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# corresponding to
nu<-c(7,10,16,22,28,38,58)

# degrees of freedom. We need to test bioequivalence at the
# .05 significance level, which corresponds to having a .90 confidence
# interval lying within (-0.20, 0.20). This corresponds to
# Phillips (1990), Figure 3. Use

power.equivalence.md.plot(.05, FALSE, -.2, .2, .20, n, nu, 'Phillips Figure 3')

# If the formulations are compared on the logarithmic scale with
# theta1 = 0.80, theta2 = 1.25, and

n<-c(8,12,18,24,30,40,60)

# corresponding to
nu<-c(6,10,16,22,28,38,58)

# degrees of freedom. This corresponds to Diletti, Figure 1c. Use

power.equivalence.md.plot(.05, TRUE, .8, 1.25, .20, n, nu, 'Diletti, Figure 1c')

## End(Not run)

prof.salary Cohen et. al. (2003)’s professor salary data set

Description

The data set of the salaries and other information of 62 some professors in Cohen et. al. (2003, pp.
81-82).

Usage

data(prof.salary)

Format

A data frame with 62 observations on the following 6 variables.

id the identification number

time the time since getting the Ph.D. degree

pub the number of publications

sex the gender, 1 for female and 0 for male

citation the citation count

salary the professor’s current salary
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Source

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

References

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

Examples

data(prof.salary)

s.u Unbiased estimate of the population standard deviation

Description

Transforms the usual (and biased) estimate of the standard deviation into an unbiased estimator.

Usage

s.u(s=NULL, N=NULL, X=NULL)

Arguments

s the usual estimate of the standard deviation (i.e., the square root of the unibased
estimate of the variance)

N sample size s is based

X vector of scores in which the unbiased estimate of the standard deviation should
be calculated

Details

Returns the unbiased estimate for the standard deviation.

Value

The unbiased estimate for the standard deviation.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References

Holtzman, W. H. (1950). The unbiased estimate of the population variance and standard deviation.
American Journal of Psychology, 63, 615–617.

Examples

set.seed(113)
X <- rnorm(10, 100, 15)

# Square root of the unbiased estimate of the variance (not unbiased)
var(X)^.5

# One way to implement the function.
s.u(s=var(X)^.5, N=length(X))

# Another way to implement the function.
s.u(X=X)

Sigma.2.SigmaStar Construct a covariance matrix with specified error of approximation

Description

This function implements Cudeck & Browne’s (1992) method to construct a covariance matrix in
the structural equation modeling (SEM) context. Given an SEM model and its model parameters,
a covariance matrix is obtained so that (a) the population discrepancy due to approximation equals
a certain specified value; and (b) the population model parameter vector is the minimizer of the
discrepancy function.

Usage

Sigma.2.SigmaStar(model, model.par, latent.var, discrep, ML = TRUE)

Arguments

model an RAM (reticular action model; e.g., McArdle & McDonald, 1984) specifica-
tion of a structural equation model, and should be of class mod. The model is
specified in the same manner as does the sem package; see sem and specify.model
for detailed documentations about model specifications in the RAM notation.

model.par a vector containing the model parameters. The names of the elements in theta
must be the same as the names of the model parameters specified in model.

latent.var a vector containing the names of the latent variables

discrep the desired discrepancy function minimum value

ML the discrepancy function to be used, if ML=TRUE then the discrepancy function is
based on normal theory maximum likelihood
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Details

This function constructs a covariance matrix Σ∗ such that Σ∗ = Σ(θ) + E, where Σ(θ) is the
population model-implied covariance matrix, and E is a matrix containing the errors due to approx-
imation. The matrix E is chosen so that the discrepancy function F (Σ∗,Σ(θ)) has the specified
discrepancy value.

This function uses the same notation to specify SEM models as does sem. Please refer to sem
for more detailed documentation about model specification and the RAM notation. For technical
discussion on how to obtain the model implied covariance matrix in the RAM notation given model
parameters, see McArdle and McDonald (1984).

Value

Sigma.star the population covariance matrix of manifest variables

Sigma_theta the population model-implied covariance matrix

E the matrix containing the population errors of approximation, i.e., Sigma.star
- Sigma_theta

Author(s)

Keke Lai (University of California-Merced)

References

Cudeck, R., & Browne, M. W. (1992). Constructing a covariance matrix that yields a specified
minimizer and a specified minimum discrepancy function value. Psychometrika, 57, 357–369.

Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Mod-
eling, 13, 465–486.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model.
British Journal of Mathematical and Statistical Psychology, 37, 234–251.

See Also

sem; specify.model; theta.2.Sigma.theta

Examples

## Not run:
library(sem)

###############
## EXAMPLE 1; a CFA model with three latent variables and nine indicators.
###############

# To specify the model
model.cfa<-specify.model()
xi1 -> x1, lambda1, 0.6
xi1 -> x2, lambda2, 0.7
xi1 -> x3, lambda3, 0.8
xi2 -> x4, lambda4, 0.65
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xi2 -> x5, lambda5, 0.75
xi2 -> x6, lambda6, 0.85
xi3 -> x7, lambda7, 0.5
xi3 -> x8, lambda8, 0.7
xi3 -> x9, lambda9, 0.9
xi1 <-> xi1, NA, 1
xi2 <-> xi2, NA, 1
xi3 <-> xi3, NA, 1
xi1 <-> xi2, phi21, 0.5
xi1 <-> xi3, phi31, 0.4
xi2 <-> xi3, phi32, 0.6
x1 <-> x1, delta11, 0.36
x2 <-> x2, delta22, 0.5
x3 <-> x3, delta33, 0.9
x4 <-> x4, delta44, 0.4
x5 <-> x5, delta55, 0.5
x6 <-> x6, delta66, 0.6
x7 <-> x7, delta77, 0.6
x8 <-> x8, delta88, 0.7
x9 <-> x9, delta99, 0.7

# To specify model parameters
theta <- c(0.6, 0.7, 0.8,
0.65, 0.75, 0.85,
0.5, 0.7, 0.9,
0.5, 0.4, 0.6,
0.8, 0.6, 0.5,
0.6, 0.5, 0.4,
0.7, 0.7, 0.6)

names(theta) <- c("lambda1", "lambda2", "lambda3",
"lambda4","lambda5", "lambda6",
"lambda7", "lambda8","lambda9",
"phi21", "phi31", "phi32",
"delta11", "delta22","delta33",
"delta44", "delta55","delta66",
"delta77", "delta88","delta99")

res.matrix <- Sigma.2.SigmaStar(model=model.cfa, model.par=theta,
latent.var=c("xi1", "xi2", "xi3"), discrep=0.06)

# res.matrix

# To verify the returned covariance matrix; the model chi-square
# should be equal to (N-1) times the specified discrepancy value.
# Also the "point estimates" of model parameters should be
# equal to the specified model parameters

# res.sem<-sem(model.cfa, res.matrix$Sigma.star, 1001)
# summary(res.sem)

# To construct a covariance matrix so that the model has
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# a desired population RMSEA value, one can transform the RMSEA
# value to the discrepancy value

res.matrix <- Sigma.2.SigmaStar(model=model.cfa, model.par=theta,
latent.var=c("xi1", "xi2", "xi3"), discrep=0.075*0.075*24)

# To verify the population RMSEA value
# res.sem<-sem(model.cfa, res.matrix$Sigma.star, 1000000)
# summary(res.sem)

###############
## EXAMPLE 2; an SEM model with five latent variables
###############

model.5f <- specify.model()
eta1 -> y4, NA, 1
eta1 -> y5, lambda5, NA
eta2 -> y1, NA, 1
eta2 -> y2, lambda2, NA
eta2 -> y3, lambda3, NA
xi1 -> x1, NA, 1
xi1 -> x2, lambda6, NA
xi1 -> x3, lambda7, NA
xi2 -> x4, NA, 1
xi2 -> x5, lambda8, NA
xi3 -> x6, NA, 1
xi3 -> x7, lambda9, NA
xi3 -> x8, lambda10, NA
xi1 -> eta1, gamma11, NA
xi2 -> eta1, gamma12, NA
xi3 -> eta1, gamma13, NA
xi3 -> eta2, gamma23, NA
eta1 -> eta2, beta21, NA
xi1 <-> xi2, phi21, NA
xi1 <-> xi3, phi31, NA
xi3 <-> xi2, phi32, NA
xi1 <-> xi1, phi11, NA
xi2 <-> xi2, phi22, NA
xi3 <-> xi3, phi33, NA
eta1 <-> eta1, psi11, NA
eta2 <-> eta2, psi22, NA
y1 <-> y1, eplison11, NA
y2 <-> y2, eplison22, NA
y3 <-> y3, eplison33, NA
y4 <-> y4, eplison44, NA
y5 <-> y5, eplison55, NA
x1 <-> x1, delta11, NA
x2 <-> x2, delta22, NA
x3 <-> x3, delta33, NA
x4 <-> x4, delta44, NA
x5 <-> x5, delta55, NA
x6 <-> x6, delta66, NA
x7 <-> x7, delta77, NA
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x8 <-> x8, delta88, NA

theta <- c(0.84, 0.8, 0.9,
1.26, 0.75, 1.43, 1.58, 0.83,
0.4, 0.98, 0.52, 0.6,0.47,
0.12, 0.14, 0.07,
0.44, 0.22, 0.25,
0.3, 0.47,
0.37, 0.5, 0.4, 0.4, 0.58,
0.56,0.3, 0.6, 0.77, 0.54, 0.75, 0.37, 0.6)

names(theta) <- c(
"lambda5","lambda2","lambda3",
"lambda6","lambda7","lambda8","lambda9","lambda10" ,
"gamma11", "gamma12","gamma13" , "gamma23" , "beta21",
"phi21","phi31", "phi32",
"phi11","phi22", "phi33",
"psi11" , "psi22" ,
"eplison11","eplison22" ,"eplison33", "eplison44" ,"eplison55",

"delta11" , "delta22" , "delta33" , "delta44" , "delta55" , "delta66",
"delta77" , "delta88")

# To construct a covariance matrix so that the model has
# a population RMSEA of 0.08

res.matrix <- Sigma.2.SigmaStar(model=model.5f, model.par=theta,
latent.var=c("xi1", "xi2", "xi3", "eta1","eta2"), discrep=0.08*0.08*57)

# To verify
# res.sem<- sem(model.5f, res.matrix$Sigma.star, 1000000)
# summary(res.sem)

## End(Not run)

signal.to.noise.R2 Signal to noise using squared multiple correlation coefficient

Description

Function that calculates five different signal-to-noise ratios using the squared multiple correlation
coefficient.

Usage

signal.to.noise.R2(R.Square, N, p)
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Arguments

R.Square usual estimate of the squared multiple correlation coefficient (with no adjust-
ments)

N sample size

p number of predictors

Details

The method of choice is phi2.UMVUE.NL, but it requires p of 5 or more. In situations where p < 5,
it is suggested that phi2.UMVUE.L be used.

Value

phi2.hat Basic estimate of the signal-to-noise ratio using the usual estimate of the squared
multiple correlation coefficient: phi2.hat=R.Square/(1-R.Square)

phi2.adj.hat Estimate of the signal-to-noise ratio using the usual adjusted R Square in place
of R-Square: phi2.hat=Adj.R2/(1-Adj.R2)

phi2.UMVUE Muirhead’s (1985) unique minimum variance unbiased estimate of the signal-
to-noise ratio (Muirhead uses theta-U): see reference or code for formula

phi2.UMVUE.L Muirhead’s (1985) unique minimum variance unbiased linear estimate of the
signal-to-noise ratio (Muirhead uses theta-L): see reference or code for formula

phi2.UMVUE.NL Muirhead’s (1985) unique minimum variance unbiased nonlinear estimate of the
signal-to-noise ratio (Muirhead uses theta-NL); requires the number of predic-
tors to be greater than five: see reference or code for formula

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum.

Muirhead, R. J. (1985). Estimating a particular function of the multiple correlation coefficient.
Journal of the American Statistical Association, 80, 923–925.

See Also

ci.R2, ss.aipe.R2

Examples

signal.to.noise.R2(R.Square=.5, N=50, p=2)
signal.to.noise.R2(R.Square=.5, N=50, p=5)
signal.to.noise.R2(R.Square=.5, N=100, p=2)
signal.to.noise.R2(R.Square=.5, N=100, p=5)
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smd Standardized mean difference

Description

Function to calculate the standardized mean difference (regular or unbiased) using either raw data
or summary measures.

Usage

smd(Group.1 = NULL, Group.2 = NULL, Mean.1 = NULL, Mean.2 = NULL,
s.1 = NULL, s.2 = NULL, s = NULL, n.1 = NULL, n.2 = NULL,
Unbiased=FALSE)

Arguments

Group.1 Raw data for group 1.

Group.2 Raw data for group 2.

Mean.1 The mean of group 1.

Mean.2 The mean of group 2.

s.1 The standard deviation of group 1 (i.e., the square root of the unbiased estimator
of the population variance).

s.2 The standard deviation of group 2 (i.e., the square root of the unbiased estimator
of the population variance).

s The pooled group standard deviation (i.e., the square root of the unbiased esti-
mator of the population variance).

n.1 The sample size within group 1.

n.2 The sample size within group 2.

Unbiased Returns the unbiased estimate of the standardized mean difference.

Details

When Unbiased=TRUE, the unbiased estimate of the standardized mean difference is returned (Hedges,
1981).

Value

Returns the estimated standardized mean difference.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum.

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence
intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
surement, 61, 532–574.

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Kelley, K. (2005) The effects of nonnormal distributions on confidence intervals around the stan-
dardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psycho-
logical Measurement, 65, 51–69.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

smd.c, conf.limits.nct, ss.aipe

Examples

# Generate sample data.
set.seed(113)
g.1 <- rnorm(n=25, mean=.5, sd=1)
g.2 <- rnorm(n=25, mean=0, sd=1)
smd(Group.1=g.1, Group.2=g.2)

M.x <- .66745
M.y <- .24878
sd <- 1.048
smd(Mean.1=M.x, Mean.2=M.y, s=sd)

M.x <- .66745
M.y <- .24878
n1 <- 25
n2 <- 25
sd.1 <- .95817
sd.2 <- 1.1311
smd(Mean.1=M.x, Mean.2=M.y, s.1=sd.1, s.2=sd.2, n.1=n1, n.2=n2)

smd(Mean.1=M.x, Mean.2=M.y, s.1=sd.1, s.2=sd.2, n.1=n1, n.2=n2,
Unbiased=TRUE)
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smd.c Standardized mean difference using the control group as the basis of
standardization

Description

Function to calculate the standardized mean difference (regular or unbiased) using the control group
standard deviation as the basis of standardization (for either raw data or summary measures).

Usage

smd.c(Group.T = NULL, Group.C = NULL, Mean.T = NULL, Mean.C = NULL,
s.C = NULL, n.C = NULL, Unbiased=FALSE)

Arguments

Group.T Raw data for the treatment group.

Group.C Raw data for the control group.

Mean.T The mean of the treatment group.

Mean.C The mean of the control group.

s.C The standard deviation of the control group (i.e., the square root of the unbiased
estimator of the population variance).

n.C The sample size of the control group.

Unbiased Returns the unbiased estimate of the standardized mean difference using the
standard deviation of the control group.

Details

When Unbiased=TRUE, the unbiased estimate of the standardized mean difference (using the control
group as the basis of standardization) is returned (Hedges, 1981). Although the unbiased estimate of
the standardized mean difference is not often reported, at least at the present time, it is nevertheless
made available to those who are interested in calculating this quantity.

Value

Returns the estimated standardized mean difference using the control group standard deviation as
the basis of standardization.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Glass, G. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5,
3–8.

See Also

smd, conf.limits.nct

Examples

# Generate sample data.
set.seed(113)
g.T <- rnorm(n=25, mean=.5, sd=1)
g.C <- rnorm(n=25, mean=0, sd=1)
smd.c(Group.T=g.T, Group.C=g.C)

M.T <- .66745
M.C <- .24878
sd.c <- 1.1311
n.c <- 25
smd.c(Mean.T=M.T, Mean.C=M.C, s=sd.c)
smd.c(Mean.T=M.T, Mean.C=M.C, s=sd.c, n.C=n.c, Unbiased=TRUE)

ss.aipe.c Sample size planning for an ANOVA contrast from the Accuracy in
Parameter Estimation (AIPE) perspective

Description

A function to calculate the appropriate sample size per group for the (unstandardized) ANOVA
contrast so that the width of the confidence interval is sufficiently narrow.

Usage

ss.aipe.c(error.variance = NULL, c.weights, width, conf.level = 0.95,
assurance = NULL, certainty = NULL, MSwithin = NULL, SD = NULL, ...)

Arguments

error.variance the common error variance; i.e., the mean square error

c.weights the contrast weights

width the desired full width of the obtained confidence interval

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)
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assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

certainty an alias for assurance

MSwithin an alias for error.variance

SD the standard deviation of the common error in ANOVA model

... allows one to potentially include parameter values for inner functions

Value

n the necessary sample size per group

Note

Be sure to use the error varaince and not its square root (i.e., the standard deviation of the errors).

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>), Keke Lai

References

Kelley, K., Maxwell, S. E., & Rausch, J. R. (2003). Obtaining power or obtaining precesion:
Delineating methods of sample size planning. Evaluation and the Health Professions, 26, 258–287.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model
comparison perspective. Mahwah, NJ: Erlbaum.

See Also

ss.aipe.sc, ss.aipe.c.ancova, ci.c

Examples

# Suppose the population error variance of some three-group ANOVA model
# is believed to be 40. The researcher is interested in the difference
# between the mean of group 1 and the average of means of group 2 and 3.
# To plan the sample size so that, with 90 percent certainty, the
# obtained 95 percent full confidence interval width is no wider than 3:

ss.aipe.c(error.variance=40, c.weights=c(1, -0.5, -0.5), width=3, assurance=.90)
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ss.aipe.c.ancova Sample size planning for a contrast in randomized ANCOVA from the
Accuracy in Parameter Estimation (AIPE) perspective

Description

A function to calculate the appropriate sample size per group for the (unstandardized) contrast,
in one-covariate randomized ANCOVA, so that the width of the confidence interval is sufficiently
narrow.

Usage

ss.aipe.c.ancova(error.var.ancova = NULL, error.var.anova = NULL,
rho = NULL, c.weights, width, conf.level = 0.95,
assurance = NULL, certainty = NULL)

Arguments
error.var.ancova

the population error variance of the ANCOVA model (i.e., the mean square
within of the ANCOVA model)

error.var.anova

the population error variance of the ANOVA model (i.e., the mean square within
of the ANOVA model)

rho the population correlation coefficient of the response and the covariate

c.weights the contrast weights

width the desired full width of the obtained confidence interval

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

certainty an alias for assurance

Details

Either the error variance of the ANCOVA model or of the ANOVA model can be used to plan the
appropriate sample size per group. When using the error variance of the ANOVA model to plan
sample size, the correlation coefficient of the response and the covariate is also needed.

Value

n the necessary sample size per group

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Keke Lai <Lai.15@ND.Edu>
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References

Kelley, K., Maxwell, S. E., & Rausch, J. R. (2003). Obtaining power or obtaining precision: Delin-
eating methods of sample size planning. Evaluation and the Health Professions, 26, 258-287.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model
comparison perspective. Mahwah, NJ: Erlbaum.

See Also

ci.c.ancova, ci.sc.ancova, ss.aipe.c

Examples

# Suppose the population error variance of some three-group ANOVA model
# is believed to be 40, and the population correlation coefficient
# of the response and the covariate is 0.22. The researcher is
# interested in the difference between the mean of group 1 and
# the average of means of group 2 and 3. To plan the sample size so
# that, with 90 percent certainty, the obtained 95 percent full
# confidence interval width is no wider than 3:

ss.aipe.c.ancova(error.var.anova=40, rho=.22,
c.weights=c(1, -0.5, -0.5), width=3, assurance=.90)

ss.aipe.c.ancova.sensitivity

Sensitivity analysis for sample size planning for the (unstandardized)
contrast in randomized ANCOVA from the Accuracy in Parameter Es-
timation (AIPE) Perspective

Description

Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estima-
tion (AIPE) Perspective for the (unstandardized) contrast in randomized ANCOVA design.

Usage

ss.aipe.c.ancova.sensitivity(true.error.var.ancova = NULL,
est.error.var.ancova = NULL, true.error.var.anova = NULL,
est.error.var.anova = NULL, rho, est.rho = NULL, G = 10000,
mu.y, sigma.y, mu.x, sigma.x, c.weights, width,
conf.level = 0.95, assurance = NULL, certainty=NULL)

Arguments
true.error.var.ancova

population error variance of the ANCOVA model
est.error.var.ancova

estimated error variance of the ANCOVA model
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true.error.var.anova

population error variance of the ANOVA model (i.e., excluding the covariate)
est.error.var.anova

estimated error variance of the ANOVA model (i.e., excluding the covariate)

rho population correlation coefficient of the response and the covariate

est.rho estimated correlation coefficient of the response and the covariate

G number of generations (i.e., replications) of the simulation

mu.y vector that contains the response’s population mean of each group

sigma.y the population standard deviation of the response

mu.x the population mean of the covariate

sigma.x the population standard deviation of the covariate

c.weights the contrast weights

width the desired full width of the obtained confidence interval

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

certainty an alias for assurance

Details

The arguments mu.y, mu.x, sigma.y, and sigma.x are used to generate random data in the sim-
ulations for the sensitivity analysis. The value of mu.y should be the same as the square root of
true.error.var.anova

So far this function is based on one-covariate randomized ANCOVA design only. The argument
mu.x should be a single number, because it is assumed that the population mean of the covariate is
equal across groups in randomized ANCOVA.

Value

Psi.obs the observed (unstandardized) contrast

se.Psi the standard error of the observed (unstandardized) contrast
se.Psi.restricted

the standard error of the observed (unstandardized) contrast calculated by ignor-
ing the covariate

se.res.over.se.full

the ratio of contrast’s full standard error over the restricted one in each iteration

width.obs full confidence interval width

Type.I.Error Type I error happens in each iteration
Type.I.Error.Upper

Type I error happens in the upper end in each iteration
Type.I.Error.Lower

Type I error happens in the lower end in each iteration
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Type.I.Error percentage of Type I error happened in the entire simulation
Type.I.Error.Upper

percentage of Type I error happened in the upper end in the entire simulation
Type.I.Error.Lower

percentage of Type I error happened in the lower end in the entire simulation
width.NARROWER.than.desired

percentage of obtained widths that are narrower than the desired width

Mean.width.obs mean width of the obtained full confidence intervals
Median.width.obs

median width of the obtained full confidence intervals
Mean.se.res.vs.se.full

the mean of the ratios of contrast’s full standard error over the restricted one

Psi.pop population (unstandardized) contrast
Contrast.Weights

contrast weights

mu.y the response’s population mean of each group

mu.x the population mean of the covariate

sigma.x the population standard deviation of the covariate
Sample.Size.per.Group

sample size per group

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

assurance specified assurance

rho population correlation coefficient of the response and the covariate

est.rho estimated correlation coefficient of the response and the covariate
true.error.var.ANOVA

population error variance of the ANOVA model
est.error.var.ANOVA

estimated error variance of the ANOVA model

Author(s)

Keke Lai (University of Notre Dame; <Lai.15@ND.Edu>)

Examples

## Not run:
ss.aipe.c.ancova.sensitivity(true.error.var.ancova=30,
est.error.var.ancova=30, rho=.2, mu.y=c(10,12,15,13), mu.x=2,
G=1000, sigma.x=1.3, sigma.y=2, c.weights=c(1,0,-1,0), width=3)

ss.aipe.c.ancova.sensitivity(true.error.var.anova=36,
est.error.var.anova=36, rho=.2, est.rho=.2, G=1000,
mu.y=c(10,12,15,13), mu.x=2, sigma.x=1.3, sigma.y=6,
c.weights=c(1,0,-1,0), width=3, assurance=NULL)

## End(Not run)
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ss.aipe.crd Find target sample sizes for the accuracy in unstandardized conditions
means estimation in CRD

Description

Find target sample sizes (the number of clusters, cluster size, or both) for the accuracy in unstan-
dardized conditions means estimation in CRD. If users wish to seek for both types of sample sizes
simultaneously, an additional constraint is required, such as a desired width or a desired budget.

Usage

ss.aipe.crd.nclus.fixedwidth(width, nindiv, prtreat, tauy=NULL, sigma2y=NULL,
totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0,
assurance=NULL, conf.level = 0.95, cluscost=NULL, indivcost=NULL, diffsize=NULL)
ss.aipe.crd.nindiv.fixedwidth(width, nclus, prtreat, tauy=NULL, sigma2y=NULL,
totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0,
assurance=NULL, conf.level = 0.95, cluscost=NULL, indivcost=NULL, diffsize=NULL)
ss.aipe.crd.nclus.fixedbudget(budget, nindiv, cluscost = 0, indivcost = 1,
prtreat = NULL, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0,
r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize=NULL)
ss.aipe.crd.nindiv.fixedbudget(budget, nclus, cluscost = 0, indivcost = 1,
prtreat = NULL, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0,
r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize=NULL)
ss.aipe.crd.both.fixedbudget(budget, cluscost=0, indivcost=1, prtreat, tauy=NULL,
sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0,
numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize=NULL)
ss.aipe.crd.both.fixedwidth(width, cluscost=0, indivcost=1, prtreat, tauy=NULL,
sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0,
numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize=NULL)

Arguments

width The desired width of the confidence interval of the unstandardized means differ-
ence

budget The desired amount of budget

nclus The desired number of clusters

nindiv The number of individuals in each cluster (cluster size)

prtreat The proportion of treatment clusters

cluscost The cost of collecting a new cluster regardless of the number of individuals
collected in each cluster

indivcost The cost of collecting a new individual

tauy The residual variance in the between level before accounting for the covariate

sigma2y The residual variance in the within level before accounting for the covariate
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totalvar The total resiudal variance before accounting for the covariate
iccy The intraclass correlation of the dependent variable
r2within The proportion of variance explained in the within level (used when covariate

= TRUE)
r2between The proportion of variance explained in the between level (used when covariate

= TRUE)
numpredictor The number of predictors used in the between level
assurance The degree of assurance, which is the value with which confidence can be placed

that describes the likelihood of obtaining a confidence interval less than the value
specified (e.g, .80, .90, .95)

conf.level The desired level of confidence for the confidence interval
diffsize Difference cluster size specification. The difference in cluster sizes can be spec-

ified in two ways. First, users may specify cluster size as integers, which can be
negative or positive. The resulting cluster sizes will be based on the estimated
cluster size adding by the specified vectors. For example, if the cluster size is 25,
the number of clusters is 10, and the specified different cluster size is c(-1, 0,
1), the cluster sizes will be 24, 25, 26, 24, 25, 26, 24, 25, 26, and 24. Second,
users may specify cluster size as positive decimals. The resulting cluster size
will be based on the estimated cluster size multiplied by the specified vectors.
For example, if the cluster size is 25, the number of clusters is 10, and the speci-
fied different cluster size is c(-1, 0, 1), the cluster sizes will be 24, 25, 26, 24,
25, 26, 24, 25, 26, and 24. If NULL, the cluster size is equal across clusters.

Details

Here are the functions’ descriptions:

• ss.aipe.crd.nclus.fixedwidth Find the number of clusters given a specified width of the
confidence interval and the cluster size

• ss.aipe.crd.nindiv.fixedwidth Find the cluster size given a specified width of the confi-
dence interval and the number of clusters

• ss.aipe.crd.nclus.fixedbudget Find the number of clusters given a budget and the cluster
size

• ss.aipe.crd.nindiv.fixedbudget Find the cluster size given a budget and the number of
clusters

• ss.aipe.crd.both.fixedbudget Find the sample size combinations (the number of clusters
and that cluster size) providing the narrowest confidence interval given the fixed budget

• ss.aipe.crd.both.fixedwidth Find the sample size combinations (the number of clusters
and that cluster size) providing the lowest cost given the specified width of the confidence
interval

Value

The ss.aipe.crd.nclus.fixedwidth and ss.aipe.crd.nclus.fixedbudget functions provide
the number of clusters. The ss.aipe.crd.nindiv.fixedwidth and ss.aipe.crd.nindiv.fixedbudget
functions provide the cluster size. The ss.aipe.crd.both.fixedbudget and ss.aipe.crd.both.fixedwidth
provide the number of clusters and the cluster size, respectively.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Pornprasertmanic, S., & Schneider, W. J. (2014). Accuracy in parameter estimation in cluster ran-
domized designs. Psychological Methods, 19, 356–379.

Examples

## Not run:
# Examples for each function
ss.aipe.crd.nclus.fixedwidth(width=0.3, nindiv=30, prtreat=0.5, tauy=0.25, sigma2y=0.75)

ss.aipe.crd.nindiv.fixedwidth(width=0.3, nclus=250, prtreat=0.5, tauy=0.25, sigma2y=0.75)

ss.aipe.crd.nclus.fixedbudget(budget=10000, nindiv=20, cluscost=20, indivcost=1)

ss.aipe.crd.nindiv.fixedbudget(budget=10000, nclus=30, cluscost=20, indivcost=1,
prtreat=0.5, tauy=0.05, sigma2y=0.95, assurance=0.8)

ss.aipe.crd.both.fixedbudget(budget=10000, cluscost=30, indivcost=1, prtreat=0.5, tauy=0.25,
sigma2y=0.75)

ss.aipe.crd.both.fixedwidth(width=0.3, cluscost=0, indivcost=1, prtreat=0.5, tauy=0.25,
sigma2y=0.75)

# Examples for different cluster size
ss.aipe.crd.nclus.fixedwidth(width=0.3, nindiv=30, prtreat=0.5, tauy=0.25, sigma2y=0.75,
diffsize = c(-2, 1, 0, 2, -1, 3, -3, 0, 0))

ss.aipe.crd.nclus.fixedwidth(width=0.3, nindiv=30, prtreat=0.5, tauy=0.25, sigma2y=0.75,
diffsize = c(0.6, 1.2, 0.8, 1.4, 1, 1, 1.1, 0.9))

## End(Not run)

ss.aipe.crd.es Find target sample sizes for the accuracy in standardized conditions
means estimation in CRD

Description

Find target sample sizes (the number of clusters, cluster size, or both) for the accuracy in stan-
dardized conditions means estimation in CRD. If users wish to seek for both types of sample sizes
simultaneously, an additional constraint is required, such as a desired width or a desired budget.
This function uses the likelihood-based confidence interval (Cheung, 2009) by the OpenMx package
(Boker et al., 2011). See further details at Pornprasertmanit and Schneider (2010, submitted).
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Usage

ss.aipe.crd.es.nclus.fixedwidth(width, nindiv, es, estype = 1, iccy, prtreat,
r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL,
conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE,
numProc=NULL, cluscost=NULL, indivcost=NULL, diffsize=NULL)
ss.aipe.crd.es.nindiv.fixedwidth(width, nclus, es, estype = 1, iccy, prtreat,
r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL,
conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE,
numProc=NULL, cluscost=NULL, indivcost=NULL, diffsize=NULL)
ss.aipe.crd.es.nclus.fixedbudget(budget, nindiv, cluscost, indivcost, nrep=NULL,
prtreat=NULL, iccy=NULL, es=NULL, estype = 1, numpredictor = 0,
iccz=NULL, r2within=NULL, r2between=NULL, assurance=NULL,
seed=123321, multicore=FALSE, numProc=NULL, conf.level=0.95, diffsize=NULL)
ss.aipe.crd.es.nindiv.fixedbudget(budget, nclus, cluscost, indivcost, nrep=NULL,
prtreat=NULL, iccy=NULL, es=NULL, estype = 1, numpredictor = 0,
iccz=NULL, r2within=NULL, r2between=NULL, assurance=NULL,
seed=123321, multicore=FALSE, numProc=NULL, conf.level=0.95, diffsize=NULL)
ss.aipe.crd.es.both.fixedbudget(budget, cluscost=0, indivcost=1, es, estype = 1,
iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL,
conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE,
numProc=NULL, diffsize=NULL)
ss.aipe.crd.es.both.fixedwidth(width, cluscost=0, indivcost=1, es, estype = 1,
iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL,
conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE,
numProc=NULL, diffsize=NULL)

Arguments

width The desired width of the confidence interval of the unstandardized means differ-
ence

budget The desired amount of budget
nclus The desired number of clusters
nindiv The number of individuals in each cluster (cluster size)
prtreat The proportion of treatment clusters
cluscost The cost of collecting a new cluster regardless of the number of individuals

collected in each cluster
indivcost The cost of collecting a new individual
iccy The intraclass correlation of the dependent variable
es The amount of effect size
estype The type of effect size. There are only three possible options: 0 = the effect

size using total standard deviation, 1 = the effect size using the individual-level
standard deviation (level 1), 2 = the effect size using the cluster-level standard
deviation (level 2)

numpredictor If 1, a single covariate is included into the model. If 0, the no-covariate model
is used. This function cannot handle multiple covariates. Therefore, only the
values of 0 and 1 are allowed.
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iccz The intraclass correlation of the covariate (used when covariate = TRUE). If
iccz = 0, the within-level covariate will be only used. If iccz = 1, the between-
level covariate will be only used.

r2within The proportion of variance explained in the within level (used when covariate
= TRUE)

r2between The proportion of variance explained in the between level (used when covariate
= TRUE)

assurance The degree of assurance, which is the value with which confidence can be placed
that describes the likelihood of obtaining a confidence interval less than the value
specified (e.g, .80, .90, .95)

nrep The number of replications used in a priori Monte Carlo simulation

seed A desired seed number

multicore Use multiple processors within a computer. Specify as TRUE to use it.

numProc The number of processors to be used when multicore=TRUE. If it is not speci-
fied, the package will use the maximum number of processors in a machine.

conf.level The desired level of confidence for the confidence interval

diffsize Difference cluster size specification. The difference in cluster sizes can be spec-
ified in two ways. First, users may specify cluster size as integers, which can be
negative or positive. The resulting cluster sizes will be based on the estimated
cluster size adding by the specified vectors. For example, if the cluster size is 25,
the number of clusters is 10, and the specified different cluster size is c(-1, 0,
1), the cluster sizes will be 24, 25, 26, 24, 25, 26, 24, 25, 26, and 24. Second,
users may specify cluster size as positive decimals. The resulting cluster size
will be based on the estimated cluster size multiplied by the specified vectors.
For example, if the cluster size is 25, the number of clusters is 10, and the speci-
fied different cluster size is c(-1, 0, 1), the cluster sizes will be 24, 25, 26, 24,
25, 26, 24, 25, 26, and 24. If NULL, the cluster size is equal across clusters.

Details

Here are the functions’ descriptions:

• ss.aipe.crd.es.nclus.fixedwidth Find the number of clusters given a specified width of
the confidence interval and the cluster size

• ss.aipe.crd.es.nindiv.fixedwidth Find the cluster size given a specified width of the
confidence interval and the number of clusters

• ss.aipe.crd.es.nclus.fixedbudget Find the number of clusters given a budget and the
cluster size

• ss.aipe.crd.es.nindiv.fixedbudget Find the cluster size given a budget and the number
of clusters

• ss.aipe.crd.es.both.fixedbudget Find the sample size combinations (the number of clus-
ters and that cluster size) providing the narrowest confidence interval given the fixed budget

• ss.aipe.crd.es.both.fixedwidth Find the sample size combinations (the number of clus-
ters and that cluster size) providing the lowest cost given the specified width of the confidence
interval



106 ss.aipe.crd.es

Value

The ss.aipe.crd.es.nclus.fixedwidth and ss.aipe.crd.es.nclus.fixedbudget functions
provide the number of clusters. The ss.aipe.crd.es.nindiv.fixedwidth and ss.aipe.crd.es.nindiv.fixedbudget
functions provide the cluster size. The ss.aipe.crd.es.both.fixedbudget and ss.aipe.crd.es.both.fixedwidth
provide the number of clusters and the cluster size, respectively.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Boker, S., M., N., Maes, H., Wilde, M., Spiegel, M., Brick, T., et al. (2011). OpenMx: An open
source extended structural equation modeling framework. Psychometrika, 76, 306-317.

Cheung, M. W.-L. (2009). Constructing approximate confidence intervals for parameters with struc-
tural constructing approximate confidence intervals for parameters with structural equation models.
Structural Equation Modeling, 16, 267-294.

Pornprasertmanit, S., & Schneider, W. J. (2010). Efficient sample size for power and desired accu-
racy in Cohen’s d estimation in two-group cluster randomized design (Master Thesis). Illinois State
University, Normal, IL.

Pornprasertmanic, S., & Schneider, W. J. (2014). Accuracy in parameter estimation in cluster ran-
domized designs. Psychological Methods, 19, 356–379.

Examples

## Not run:
# Examples for each function
ss.aipe.crd.es.nclus.fixedwidth(width=0.3, nindiv=20, es=0.5, estype=1, iccy=0.25, prtreat=0.5,
nrep=20)

ss.aipe.crd.es.nindiv.fixedwidth(width=0.3, 250, es=0.5, estype=1, iccy=0.25, prtreat=0.5,
nrep=20)

ss.aipe.crd.es.nclus.fixedbudget(budget=1000, nindiv=20, cluscost=0, indivcost=1, nrep=20,
prtreat=0.5, iccy=0.25, es=0.5)

ss.aipe.crd.es.nindiv.fixedbudget(budget=1000, nclus=200, cluscost=0, indivcost=1, nrep=20,
prtreat=0.5, iccy=0.25, es=0.5)

ss.aipe.crd.es.both.fixedbudget(budget=1000, cluscost=5, indivcost=1, es=0.5, estype=1,
iccy=0.25, prtreat=0.5, nrep=20)

ss.aipe.crd.es.both.fixedwidth(width=0.5, cluscost=5, indivcost=1, es=0.5, estype=1, iccy=0.25,
prtreat=0.5, nrep=20)

# Examples for different cluster size
ss.aipe.crd.es.nclus.fixedwidth(width=0.3, nindiv=20, es=0.5, estype=1, iccy=0.25, prtreat=0.5,
nrep=20, diffsize = c(-2, 1, 0, 2, -1, 3, -3, 0, 0))

ss.aipe.crd.es.nclus.fixedwidth(width=0.3, nindiv=20, es=0.5, estype=1, iccy=0.25, prtreat=0.5,
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nrep=20, diffsize = c(0.6, 1.2, 0.8, 1.4, 1, 1, 1.1, 0.9))

## End(Not run)

ss.aipe.cv Sample size planning for the coefficient of variation given the goal of
Accuracy in Parameter Estimation approach to sample size planning

Description

Determines the necessary sample size so that the expected confidence interval width for the coeffi-
cient of variation will be sufficiently narrow, optionally with a desired degree of certainty that the
interval will not be wider than desired. The value of C.of.V should be positive.

Usage

ss.aipe.cv(C.of.V = NULL, width = NULL, conf.level = 0.95,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
mu = NULL, sigma = NULL, alpha.lower = NULL, alpha.upper = NULL,
Suppress.Statement = TRUE, sup.int.warns = TRUE, ...)

Arguments

C.of.V population coefficient of variation on which the sample size procedure is based

width desired (full) width of the confidence interval

conf.level confidence interval coverage; 1-Type I error rate
degree.of.certainty

value with which confidence can be placed that describes the likelihood of ob-
taining a confidence interval less than the value specified (e.g., .80, .90, .95)

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty

mu population mean (specified with sigma when C.of.V is not specified)

sigma population standard deviation (specified with mu when C.of.V) is not specified)

alpha.lower Type I error for the lower confidence limit

alpha.upper Type I error for the upper confidence limit
Suppress.Statement

Suppress a message restating the input specifications

sup.int.warns suppress internal function warnings (e.g., warnings associated with qt)

... for modifying parameters of functions this function calls

Value

Returns the necessary sample size given the input specifications.
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Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

See Also

ss.aipe.cv.sensitivity, cv

Examples

# Suppose one wishes to have a confidence interval with an expected width of .10
# for a 99% confidence interval when the population coefficient of variation is .25.
ss.aipe.cv(C.of.V=.1, width=.1, conf.level=.99)

# Ensuring that the confidence interval will be sufficiently narrow with a 99%
# certainty for the situation above.
ss.aipe.cv(C.of.V=.1, width=.1, conf.level=.99, degree.of.certainty=.99)

ss.aipe.cv.sensitivity

Sensitivity analysis for sample size planning given the Accuracy in
Parameter Estimation approach for the coefficient of variation.

Description

Performs sensitivity analysis for sample size determination for the coefficient of variation given a
population coefficient of variation (or population mean and standard deviation) and goals for the
sample size procedure. Allows one to determine the effect of being wrong when estimating the
population coefficient of variation in terms of the width of the obtained (two-sided) confidence
intervals. The values of True.C.of.V and Estimated.C.of.V should be positive.

Usage

ss.aipe.cv.sensitivity(True.C.of.V = NULL, Estimated.C.of.V = NULL,
width = NULL, degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
mean = 100, Specified.N = NULL, conf.level = 0.95,
G = 1000, print.iter = TRUE)

Arguments

True.C.of.V population coefficient of variation
Estimated.C.of.V

estimated coefficient of variation

width desired confidence interval width
degree.of.certainty

parameter to ensure confidence interval width with a specified degree of cer-
tainty (must be NULL or between zero and unity)

assurance the alias for degree.of.certainty
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certainty an alias for degree.of.certainty

mean Some arbitrary value that the simulation uses to generate data (the variance of
the data is determined by the mean and the coefficient of variation)

Specified.N selected sample size to use in order to determine distributional properties of at a
given value of sample size (not used with Estimated.C.of.V)

conf.level the desired degree of confidence (i.e., 1-Type I error rate).

G number of generations (i.e., replications) of the simulation

print.iter to print the current value of the iterations

Details

For sensitivity analysis when planning sample size given the desire to obtain narrow confidence
intervals for the population coefficient of variation. Given a population value and an estimated
value, one can determine the effects of incorrectly specifying the population coefficient of variation
(True.C.of.V) on the obtained widths of the confidence intervals. Also, one can evaluate the
percent of the confidence intervals that are less than the desired width (especially when modifying
the degree.of.certainty parameter); see ss.aipe.cv)

Alternatively, one can specify Specified.N to determine the results at a particular sample size
(when doing this Estimated.C.of.V cannot be specified).

Value

Data.from.Simulation

list of the results in matrix form

Specifications specification of the function

Summary.of.Results

summary measures of some important descriptive statistics

Note

Returns three lists, where each list has multiple components.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

See Also

cv, ss.aipe.cv
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ss.aipe.pcm Sample size planning for polynomial change models in longitudinal
study

Description

This function plans sample size with respect to the group-by-time interaction in the context of a
longitudinal design with two groups. It plans sample size from the accuracy in parameter estimation
(AIPE) perspective, where the goal is to obtain a sufficiently narrow confidence interval for the
fixed effect polynomial change coefficient parameter (e.g., linear, quadratic, etc.). The sample size
returned can be one such that (a) the expected confidence interval width is sufficiently narrow, or
(b) the observed confidence interval will be sufficiently narrow with a specified high degree of
assurance (e.g., .99, .95, .90, etc.). This function accompanies Kelley and Rausch (2011).

Usage

ss.aipe.pcm(true.variance.trend, error.variance,
variance.true.minus.estimated.trend = NULL, duration, frequency,
width, conf.level = 0.95, trend = "linear", assurance = NULL)

Arguments

true.variance.trend

The variance of the individuals’ true change coefficients (i.e., σ2
υm

in Kelley &
Rausch, 2011) for the polynomial trend (e.g., linear, quadratic, etc.) of interest.

error.variance The true error variance (i.e., σ2
ϵ in Kelley & Rausch, 2011).

variance.true.minus.estimated.trend

The variance of the difference between the mth true change coefficient minus
the mth estimated change coefficient (i.e., σ2

π̂m−πm
from Equation 19 in Kelley

& Rausch, 2011).

duration The duration of the study.

frequency The number of times measurement occurs within each unit of time.

width width of the confidence interval

conf.level The desired level of confidence for the confidence interval that will be computed
at the completion of the study.

trend The polynomial trend (1st-3rd) of interest specified as "linear", "quadratic", or
"cubic".

assurance Value with which confidence can be placed that describes the likelihood of ob-
taining a confidence interval less than the value specified (e.g, .80, .90, .95)

Value

Returns the necessary sample size for the combination of the desired goals and values of the popu-
lation parameters for a specific design.



ss.aipe.R2 111

Note

Like in all formal sample size planning methods that require the value of one or more population
parameter(s), if the population parameters are incorrectly specified, there is no guarantee that the
sample size this function returns will be accurate. Of course, the further away from the true values,
the further away the true sample size will tend to be.

The number of timepoints in a study (say M ) is defined by f × D + 1, where f is the frequency
and D is the duration.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K., & Rausch, J. R. (2011). Accuracy in parameter estimation for polynomial change mod-
els. Psychological Methods.

Examples

## Not run:
# An example used in Kelley and Rausch for the expected confidence interval
# width (returns 278). Thus, a necessary sample size of 278 is required when
# the duration of the study will be 4 units and the frequency of measurement
# occasions is 1 year in order for the expected confidence interval
# width to be 0.025 units.

ss.aipe.pcm(true.variance.trend=0.003, error.variance=0.0262, duration=4,
frequency=1, width=0.025, conf.level=.95)

# Now, when incorporating an assurance parameter (returns 316).
# Thus, a necessary sample size of 316 will ensure that the 95% confidence
# interval will be sufficiently narrow (i.e., have a width less than .025 units)
# at least 99% of the time.

ss.aipe.pcm(true.variance.trend=.003, error.variance=.0262, duration=4,
frequency=1, width=.025, conf.level=.95, assurance=.99)

## End(Not run)

ss.aipe.R2 Sample Size Planning for Accuracy in Parameter Estimation for the
multiple correlation coefficient.

Description

Determines necessary sample size for the multiple correlation coefficient so that the confidence
interval for the population multiple correlation coefficient is sufficiently narrow. Optionally, there
is a certainty parameter that allows one to be a specified percent certain that the observed interval
will be no wider than desired.
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Usage

ss.aipe.R2(Population.R2 = NULL, conf.level = 0.95, width = NULL,
Random.Predictors = TRUE, Random.Regressors, which.width = "Full", p = NULL,
K, degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
verify.ss = FALSE, Tol = 1e-09, ...)

Arguments

Population.R2 value of the population multiple correlation coefficient

conf.level confidence interval level (e.g., .95, .99, .90); 1-Type I error rate

width width of the confidence interval (see which.width)
Random.Predictors

whether or not the predictor variables are random (set to TRUE) or are fixed (set
to FALSE)

Random.Regressors

an alias for Random.Predictors; Random.Regressors overrides Random.Predictors

which.width defines the width that width refers to

p the number of predictor variables

K an alias for p; K overrides p
degree.of.certainty

value with which confidence can be placed that describes the likelihood of ob-
taining a confidence interval less than the value specified (e.e.g, .80, .90, .95)

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty

verify.ss evaluates numerically via an internal Monte Carlo simulation the exact sample
size given the specifications

Tol the tolerance of the iterative function conf.limits.nct for convergence

... for modifying the parameters of functions this function calls upon

Details

This function determines a necessary sample size so that the expected confidence interval width for
the squared multiple correlation coefficient is sufficiently narrow (when degree.of.certainty=NULL)
so that the obtained confidence interval is no larger than the value specified with some desired de-
gree of certainty (i.e., a probability that the obtained width is less than the specified width). The
method depends on whether or not the regressors are regarded as fixed or random. This is the case
because the distribution theory for the two cases is different and thus the confidence interval proce-
dure is conditional on the type of regressors. The default methods are approximate but can be made
exact with the specification of verify.ss=TRUE, which performs an a priori Monte Carlo simula-
tion study. Kelley (2007) and Kelley & Maxwell (2008) detail the methods used in the function,
with the former focusing on random regressors and the latter on fixed regressors.

It is recommended that the option verify.ss should always be used! Doing so uses the method
implied sample size as an estimate and then evaluates with an internal Monte Carlo simulation (i.e.,
via "brute-force" methods) the exact sample size given the goals specified. When verify.ss=TRUE,
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the default number of iterations is 10,000 but this can be changed by specifying G=5000 (or some
other value; 10000 is the recommended) When verify.ss=TRUE is specified, an internal function
verify.ss.aipe.R2 calls upon the ss.aipe.R2.sensitivity function for purposes of the inter-
nal Monte Carlo simulation study. See the verify.ss.aipe.R2 function for arguments that can be
passed from ss.aipe.R2 to verify.ss.aipe.R2.

Value
Required.Sample.Size

sample size that should be used given the conditions specified.

Note

This function without verify.SS=FALSE can be slow to converge when verify.SS=TRUE, the func-
tion can take some time to converge (e.g., 15 minutes). Most times this will not be the case, but it
is possible in some situations.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Algina, J. & Olejnik, S. (2000). Determining sample size for accurate estimation of the squared
multiple correlation coefficient. Multivariate Behavioral Research, 35, 119–136.

Steiger, J. H. & Fouladi, R. T. (1992). R2: A computer program for interval estimation, power
calculation, and hypothesis testing for the squared multiple correlation. Behavior research methods,
instruments and computers, 4, 581–582.

Kelley, K. (2007). Sample size planning for the squared multiple correlation coefficient: Accuracy
in parameter estimation via narrow confidence intervals, manuscripted submitted for publication.

Kelley, K. & Maxwell, S. E. (2008). Power and accuracy for omnibus and targeted effects: Issues
of sample size planning with applications to multiple regression. In P. Alasuuta, J. Brannen, & L.
Bickman (Eds.), Handbook of Social Research Methods (pp. 166–192). Newbury Park, CA: Sage.

See Also

ci.R2, conf.limits.nct, ss.aipe.R2.sensitivity

Examples

## Not run:
# Returned sample size should be considered approximate; exact sample
# size is obtained by specifying the argument 'verify.ss=TRUE' (see below).
# ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
# p=5, Random.Predictors=TRUE)
# Uncomment to run in order to get exact sample size.
# ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
# p=5, Random.Predictors=TRUE, verify.ss=TRUE)
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# Same as above, except the predictor variables are considered fixed.
# Returned sample size should be considered approximate; exact sample
# size is obtained by specifying the argument 'verify.ss=TRUE'.
# ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
# p=5, Random.Predictors=FALSE)
# Uncomment to run in order to get exact sample size.
#ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
#p=5, Random.Predictors=FALSE, verify.ss=TRUE)

# Returned sample size should be considered approximate; exact sample
# size is obtained by specifying the argument 'verify.ss=TRUE'.
# ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
# p=5, degree.of.certainty=.85, Random.Predictors=TRUE)
# Uncomment to run in order to get exact sample size.
#ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
#p=5, degree.of.certainty=.85, Random.Predictors=TRUE, verify.ss=TRUE)

# Same as above, except the predictor variables are considered fixed.
# Returned sample size should be considered approximate; exact sample
# size is obtained by specifying the argument 'verify.ss=TRUE'.
# ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
# p=5, degree.of.certainty=.85, Random.Predictors=FALSE)
# Uncomment to run in order to get exact sample size.
#ss.aipe.R2(Population.R2=.50, conf.level=.95, width=.10, which.width="Full",
#p=5, degree.of.certainty=.85, Random.Predictors=FALSE, verify.ss=TRUE)

## End(Not run)

ss.aipe.R2.sensitivity

Sensitivity analysis for sample size planning with the goal of Accuracy
in Parameter Estimation (i.e., a narrow observed confidence interval)

Description

Given Estimated.R2 and True.R2, one can perform a sensitivity analysis to determine the effect
of a misspecified population squared multiple correlation coefficient using the Accuracy in Param-
eter Estimation (AIPE) approach to sample size planning. The function evaluates the effect of a
misspecified True.R2 on the width of obtained confidence intervals.

Usage

ss.aipe.R2.sensitivity(True.R2 = NULL, Estimated.R2 = NULL, w = NULL,
p = NULL, Random.Predictors=TRUE, Selected.N=NULL,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
conf.level = 0.95, Generate.Random.Predictors=TRUE, rho.yx = 0.3,
rho.xx = 0.3, G = 10000, print.iter = TRUE, ...)
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Arguments

True.R2 value of the population squared multiple correlation coefficient

Estimated.R2 value of the estimated (for sample size planning) squared multiple correlation
coefficient

w full confidence interval width of interest

p number of predictors
Random.Predictors

whether or not the sample size procedure and the simulation itself should be
based on random (set to TRUE) or fixed predictors (set to FALSE)

Selected.N selected sample size to use in order to determine distributional properties at a
given value of sample size

degree.of.certainty

parameter to ensure confidence interval width with a specified degree of cer-
tainty

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty

conf.level confidence interval coverage (symmetric coverage)
Generate.Random.Predictors

specify whether the simulation should be based on random (default) or fixed
regressors.

rho.yx value of the correlation between y (dependent variable) and each of the x vari-
ables (independent variables)

rho.xx value of the correlation among the x variables (independent variables)

G number of generations (i.e., replications) of the simulation

print.iter should the iteration number (between 1 and G) during the run of the function

... for modifying parameters of functions this function calls upon

Details

When Estimated.R2=True.R2, the results are that of a simulation study when all assumptions
are satisfied. Rather than specifying Estimated.R2, one can specify Selected.N to determine the
results of a particular sample size (when doing this Estimated.R2 cannot be specified).

The sample size estimation procedure technically assumes multivariate normal variables (p+1) with
fixed predictors (x/indepdent variables), yet the function assumes random multivariate normal pre-
dictors (having a p+1 multivariate distribution). As Gatsonis and Sampson (1989) note in the context
of statistical power analysis (recall this function is used in the context of precision), there is little
difference in the outcome.

In the behavioral, educational, and social sciences, predictor variables are almost always ran-
dom, and thus Random.Predictors should generally be used. Random.Predictors=TRUE spec-
ifies how both the sample size planning procedure and the confidence intervals are calculated based
on the random predictors/regressors. The internal simulation generates random or fixed predic-
tors/regressors based on whether variables predictor variables are random or fixed. However, when
Random.Predictors=FALSE, only the sample size planning procedure and the confidence intervals
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are calculated based on the parameter. The parameter Generate.Random.Predictors (where the
default is TRUE so that random predictors/regressors are generated) allows random or fixed predictor
variables to be generated. Because the sample size planning procedure and the internal simulation
are both specified, for purposes of sensitivity analysis random/fixed can be crossed to examine the
effects of specifying sample size based on one but using it on data based on the other.

Value

Results a list containing vectors of the empirical results

Specifications outputs the input specifications and required sample size

Summary summary values for the results of the sensitivity analysis (simulation study)

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Algina, J. & Olejnik, S. (2000). Determining Sample Size for Accurate Estimation of the Squared
Multiple Correlation Coefficient. Multivariate Behavioral Research, 35, 119–136.

Gatsonis, C. & Sampson, A. R. (1989). Multiple Correlation: Exact power and sample size calcu-
lations. Psychological Bulletin, 106, 516–524.

Steiger, J. H. & Fouladi, R. T. (1992). R2: A computer program for interval estimation, power
calculation, and hypothesis testing for the squared multiple correlation. Behavior research methods,
instruments and computers, 4, 581–582.

Kelley, K. (2008). Sample size planning for the squared multiple correlation coefficient: Accuracy
in parameter estimation via narrow confidence intervals, Multivariate Behavioral Research, 43,
524–555.

Kelley, K. & Maxwell, S. E. (2008). Sample Size Planning with applications to multiple regression:
Power and accuracy for omnibus and targeted effects. In P. Alasuuta, J. Brannen, & L. Bickman
(Eds.), The Sage handbook of social research methods (pp. 166–192). Newbury Park, CA: Sage.

See Also

ci.R2, conf.limits.nct, ss.aipe.R2

Examples

## Not run:
# Change 'G' to some large number (e.g., G=10,000)
# ss.aipe.R2.sensitivity(True.R2=.5, Estimated.R2=.4, w=.10, p=5, conf.level=0.95,
# G=25)

## End(Not run)
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ss.aipe.rc Sample size necessary for the accuracy in parameter estimation ap-
proach for an unstandardized regression coefficient of interest

Description

A function used to plan sample size from the accuracy in parameter estimation perspective for an
unstandardized regression coefficient of interest given the input specification.

Usage

ss.aipe.rc(Rho2.Y_X = NULL, Rho2.k_X.without.k = NULL,
K = NULL, b.k = NULL, width, which.width = "Full", sigma.Y = 1,
sigma.X.k = 1, RHO.XX = NULL, Rho.YX = NULL, which.predictor = NULL,
alpha.lower = NULL, alpha.upper = NULL, conf.level = .95,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
Suppress.Statement = FALSE)

Arguments

Rho2.Y_X Population value of the squared multiple correlation coefficient
Rho2.k_X.without.k

Population value of the squared multiple correlation coefficient predicting the
kth predictor variable from the remaining K-1 predictor variables

K the number of predictor variables

b.k the regression coefficient for the kth predictor variable (i.e., the predictor of
interest)

width the desired width of the confidence interval

which.width which width ("Full", "Lower", or "Upper") the width refers to (at present, only
"Full" can be specified)

sigma.Y the population standard deviation of Y (i.e., the dependent variables)

sigma.X.k the population standard deviation of the kth X variable (i.e., the predictor vari-
able of interest)

RHO.XX Population correlation matrix for the p predictor variables

Rho.YX Population K length vector of correlation between the dependent variable (Y)
and the K independent variables

which.predictor

identifies which of the K predictors is of interest

alpha.lower Type I error rate for the lower confidence interval limit

alpha.upper Type I error rate for the upper confidence interval limit

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)
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degree.of.certainty

degree of certainty that the obtained confidence interval will be sufficiently nar-
row

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty
Suppress.Statement

TRUE or FALSE statement whether or not a sentence describing the situation de-
fined is printed with the necessary sample size

Details

Not all of the arguments need to be specified, only those that provide all of the necessary information
so that the sample size can be determined for the conditions specified.

Value

Returns the necessary sample size in order for the goals of accuracy in parameter estimation to be
satisfied for the confidence interval for a particular regression coefficient given the input specifica-
tions.

Note

This function calls upon ss.aipe.reg.coef in MBESS but has a different naming scheme. See
ss.aipe.reg.coef for more details.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. & Maxwel, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accuracy, not simply significant. Psychological Methods, 8, 305–321.

See Also

ss.aipe.reg.coef.sensitivity, conf.limits.nct,

ss.aipe.reg.coef, ss.aipe.src

Examples

## Not run:
# Exchangable correlation structure
# Rho.YX <- c(.3, .3, .3, .3, .3)
# RHO.XX <- rbind(c(1, .5, .5, .5, .5), c(.5, 1, .5, .5, .5), c(.5, .5, 1, .5, .5),
# c(.5, .5, .5, 1, .5), c(.5, .5, .5, .5, 1))

# ss.aipe.rc(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# Rho.YX=Rho.YX, which.predictor=1, conf.level=1-.05)
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# ss.aipe.rc(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# Rho.YX=Rho.YX, which.predictor=1, conf.level=1-.05, degree.of.certainty=.85)

## End(Not run)

ss.aipe.rc.sensitivity

Sensitivity analysis for sample size planing from the Accuracy in Pa-
rameter Estimation Perspective for the unstandardized regression co-
efficient

Description

Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estima-
tion Perspective for the unstandardized regression coefficient.

Usage

ss.aipe.rc.sensitivity(True.Var.Y = NULL, True.Cov.YX = NULL,
True.Cov.XX = NULL, Estimated.Var.Y = NULL, Estimated.Cov.YX = NULL,
Estimated.Cov.XX = NULL, Specified.N = NULL, which.predictor = 1,
w = NULL, Noncentral = FALSE, Standardize = FALSE, conf.level = 0.95,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
G = 1000, print.iter = TRUE)

Arguments

True.Var.Y Population variance of the dependent variable (Y)

True.Cov.YX Population covariances vector between the p predictor variables and the depen-
dent variable (Y)

True.Cov.XX Population covariance matrix of the p predictor variables
Estimated.Var.Y

Estimated variance of the dependent variable (Y)
Estimated.Cov.YX

Estimated covariances vector between the p predictor variables and the depen-
dent variable (Y)

Estimated.Cov.XX

Estimated Population covariance matrix of the p predictor variables

Specified.N Directly specified sample size (instead of using Estimated.Rho.YX and Estimated.RHO.XX)
which.predictor

identifies which of the p predictors is of interest

w desired confidence interval width for the regression coefficient of interest

Noncentral specify with a TRUE or FALSE statement whether or not the noncentral approach
to sample size planning should be used
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Standardize specify with a TRUE or FALSE statement whether or not the regression coefficient
will be standardized; default is TRUE

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

degree.of.certainty

degree of certainty that the obtained confidence interval will be sufficiently nar-
row (i.e., the probability that the observed interval will be no larger than desired).

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty

G the number of generations/replication of the simulation student within the func-
tion

print.iter specify with a TRUE/FALSE statement if the iteration number should be printed
as the simulation within the function runs

Details

Direct specification of True.Rho.YX and True.RHO.XX is necessary, even if one is interested in
a single regression coefficient, so that the covariance/correlation structure can be specified when
when the simulation student within the function runs.

Value

Results a matrix containing the empirical results from each of the G replication of the
simulation

Specifications a list of the input specifications and the required sample size
Summary.of.Results

summary values for the results of the sensitivity analysis (simulation study)
given the input specification

Note

Note that when True.Rho.YX=Estimated.Rho.YX and True.RHO.XX=Estimated.RHO.XX, the re-
sults are not literally from a sensitivity analysis, rather the function performs a standard simulation
study. A simulation study can be helpful in order to determine if the sample size procedure under
or overestimates necessary sample size.

See ss.aipe.reg.coef.sensitivity in MBESS for more details.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accuracy, not simply significant. Psychological Methods, 8, 305–321.
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See Also

ss.aipe.reg.coef.sensitivity, ss.aipe.src.sensitivity,

ss.aipe.reg.coef, ci.reg.coef

ss.aipe.reg.coef Sample size necessary for the accuracy in parameter estimation ap-
proach for a regression coefficient of interest

Description

A function used to plan sample size from the accuracy in parameter estimation approach for a
regression coefficient of interest given the input specification.

Usage

ss.aipe.reg.coef(Rho2.Y_X=NULL, Rho2.j_X.without.j=NULL, p=NULL,
b.j=NULL, width, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=NULL,
Rho.YX=NULL, which.predictor=NULL, Noncentral=FALSE, alpha.lower=NULL,
alpha.upper=NULL, conf.level=.95, degree.of.certainty=NULL, assurance=NULL,
certainty=NULL, Suppress.Statement=FALSE)

Arguments

Rho2.Y_X Population value of the squared multiple correlation coefficient
Rho2.j_X.without.j

Population value of the squared multiple correlation coefficient predicting the
jth predictor variable from the remaining p-1 predictor variables

p the number of predictor variables

b.j the regression coefficient for the jth predictor variable (i.e., the predictor of in-
terest)

width the desired width of the confidence interval

which.width which width ("Full", "Lower", or "Upper") the width refers to (at present, only
"Full" can be specified)

sigma.Y the population standard deviation of Y (i.e., the dependent variables)

sigma.X the population standard deviation of the jth X variable (i.e., the predictor variable
of interest)

RHO.XX Population correlation matrix for the p predictor variables

Rho.YX Population p length vector of correlation between the dependent variable (Y)
and the p independent variables

which.predictor

identifies which of the p predictors is of interest

Noncentral specify with a TRUE or FALSE statement whether or not the noncentral approach
to sample size planning should be used
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alpha.lower Type I error rate for the lower confidence interval limit

alpha.upper Type I error rate for the upper confidence interval limit

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

degree.of.certainty

degree of certainty that the obtained confidence interval will be sufficiently nar-
row

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty
Suppress.Statement

TRUE/FALSE statement whether or not a sentence describing the situation defined
is printed with the necessary sample size

Details

Not all of the arguments need to be specified, only those that provide all of the necessary information
so that the sample size can be determined for the conditions specified.

Value

Returns the necessary sample size in order for the goals of accuracy in parameter estimation to be
satisfied for the confidence interval for a particular regression coefficient given the input specifica-
tions.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. & Maxwel, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321.

See Also

ss.aipe.reg.coef.sensitivity, conf.limits.nct

Examples

## Not run:
# Exchangable correlation structure
# Rho.YX <- c(.3, .3, .3, .3, .3)
# RHO.XX <- rbind(c(1, .5, .5, .5, .5), c(.5, 1, .5, .5, .5), c(.5, .5, 1, .5, .5),
# c(.5, .5, .5, 1, .5), c(.5, .5, .5, .5, 1))
# ss.aipe.reg.coef(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# Rho.YX=Rho.YX, which.predictor=1, Noncentral=FALSE, conf.level=1-.05,
# degree.of.certainty=NULL, Suppress.Statement=FALSE)

# ss.aipe.reg.coef(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
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# Rho.YX=Rho.YX, which.predictor=1, Noncentral=FALSE, conf.level=1-.05,
# degree.of.certainty=.85, Suppress.Statement=FALSE)

# ss.aipe.reg.coef(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# Rho.YX=Rho.YX, which.predictor=1, Noncentral=TRUE, conf.level=1-.05,
# degree.of.certainty=NULL, Suppress.Statement=FALSE)

# ss.aipe.reg.coef(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# Rho.YX=Rho.YX, which.predictor=1, Noncentral=TRUE, conf.level=1-.05,
# degree.of.certainty=.85, Suppress.Statement=FALSE)
## End(Not run)

ss.aipe.reg.coef.sensitivity

Sensitivity analysis for sample size planning from the Accuracy in Pa-
rameter Estimation Perspective for the (standardized and unstandard-
ized) regression coefficient

Description

Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estima-
tion Perspective for the standardized or unstandardized regression coefficient.

Usage

ss.aipe.reg.coef.sensitivity(True.Var.Y = NULL, True.Cov.YX = NULL,
True.Cov.XX = NULL, Estimated.Var.Y = NULL, Estimated.Cov.YX = NULL,
Estimated.Cov.XX = NULL, Specified.N = NULL, which.predictor = 1,
w = NULL, Noncentral = FALSE, Standardize = FALSE, conf.level = 0.95,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
G = 1000, print.iter = TRUE)

Arguments

True.Var.Y Population variance of the dependent variable (Y)

True.Cov.YX Population covariances vector between the p predictor variables and the depen-
dent variable (Y)

True.Cov.XX Population covariance matrix of the p predictor variables
Estimated.Var.Y

Estimated variance of the dependent variable (Y)
Estimated.Cov.YX

Estimated covariances vector between the p predictor variables and the depen-
dent variable (Y)

Estimated.Cov.XX

Estimated Population covariance matrix of the p predictor variables

Specified.N Directly specified sample size (instead of using Estimated.Rho.YX and Estimated.RHO.XX)
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which.predictor

identifies which of the p predictors is of interest

w desired confidence interval width for the regression coefficient of interest

Noncentral specify with a TRUE or FALSE statement whether or not the noncentral approach
to sample size planning should be used

Standardize specify with a TRUE or FALSE statement whether or not the regression coefficient
will be standardized

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

degree.of.certainty

degree of certainty that the obtained confidence interval will be sufficiently nar-
row

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty

G the number of generations/replication of the simulation student within the func-
tion

print.iter specify with a TRUE/FALSE statement if the iteration number should be printed
as the simulation within the function runts

Details

Direct specification of True.Rho.YX and True.RHO.XX is necessary, even if one is interested in a
single regression coefficient, so that the covariance/correlation structure can be specified when the
simulation student within the function runs.

Value

Results a matrix containing the empirical results from each of the G replications of the
simulation

Specifications a list of the input specifications and the required sample size

Summary.of.Results

summary values for the results of the sensitivity analysis (simulation study)
given the input specification

Note

Note that when True.Rho.YX=Estimated.Rho.YX and True.RHO.XX=Estimated.RHO.XX, the re-
sults are not literally from a sensitivity analysis, rather the function performs a standard simulation
study. A simulation study can be helpful in order to determine if the sample size procedure under
or overestimates necessary sample size.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References

Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accuracy, not simply significant. Psychological Methods, 8, 305–321.

See Also

ss.aipe.reg.coef, ci.reg.coef

ss.aipe.reliability Sample Size Planning for Accuracy in Parameter Estimation for Reli-
ability Coefficients.

Description

This function determines a necessary sample size so that the expected confidence interval width
for the alpha coefficient or omega coefficient is sufficiently narrow (when assurance=NULL) or
so that the obtained confidence interval is no larger than the value specified with some desired
degree of certainty (i.e., a probability that the obtained width is less than the specified width; as-
surance=.85). This function calculates coefficient alpha based on McDonald’s (1999) formula for
coefficient alpha, also known as Guttman-Cronbach alpha. It also uses coefficient omega from Mc-
Donald (1999). When the ’Parallel’ or ’True Score’ model is used, coefficient alpha is calculated.
When the ’Congeneric’ model is used, coefficient omega is calculated.

Usage

ss.aipe.reliability(model = NULL, type = NULL, width = NULL, S = NULL,
conf.level = 0.95, assurance = NULL, data = NULL, i = NULL, cor.est = NULL,
lambda = NULL, psi.square = NULL, initial.iter = 500,
final.iter = 5000, start.ss = NULL, verbose=FALSE)

Arguments

model the type of measurement model (e.g., "parallel items", "true-score equivalent",
or "congeneric model") for a homogeneous single common factor test

type the type of method to base the formation of the confidence interval on, ei-
ther the "Factor Analytic" (McDonald, 1999) or "Normal Theory" (van Zyl,
Neudecker, & Nel, 2000)

width the desired full width of the confidence interval

S a symmetric covariance matrix

conf.level the desired confidence interval coverage, (i.e., 1- Type I error rate)

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specificied degree of certainty

data the data set that the reliability coefficient is obtained from

i number of items
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cor.est the estimated inter-item correlation

lambda the vector of population factor loadings

psi.square the vector of population error variances

initial.iter the number of initial iterations or generations/replications of the simulation study
within the function

final.iter the number of final iterations or generations/replications of the simulation study

start.ss the initial sample size to start the simulation at

verbose shows extra information one the current sample size and current level of assur-
ance; helpful if the function gets stuck in a long iterative process

Details

Use verbose=TRUE if the function is taking a very long time to provide an answer.

Value
Required.Sample.Size

the necessary sample size

width the specified full width of the confidence interval

specified.assurance

the specified degree of certainty

empirical.assurance

the empirical assurance based on the necessary sample size returned

final.iter the specified number of iterations in the simulation study

Warning

In some conditions, you may receive a warning, such as "In sem.default(ram = ram, S = S, N =
N, param.names = pars, var.names = vars,; Could not compute QR decomposition of Hessian.
Optimization probably did not converge." This indicates that the model likely did not con-
verge. In certain conditions this may occur because the model is not being fit well due to small
sample size, a low number of iterations, or a poorly behaved covariance matrix.

Note

Not all of the items can be entered into the function to represent the population values. For example,
either ’data’ can be used, or S, or i, cor.est, and psi.square, or i, lambda, and psi.square. With
a large number of iterations (final.iter) this function may take considerable time.

Author(s)

Leann J. Terry (Indiana University; <ljterry@Indiana.Edu>); Ken Kelley (University of Notre
Dame; <KKelley@ND.Edu>)
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References

McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, New Jersey: Lawrence Erlbaum
Associates, Publishers.

van Zyl, J. M., Neudecker, H., & Nel, D. G. (2000). On the distribution of the maximum likelihood
estimator of Cronbach’s alpha. Psychometrika, 65 (3), 271–280.

See Also

CFA.1; sem; ci.reliability;

Examples

## Not run:
ss.aipe.reliability (model='Parallel', type='Normal Theory', width=.1, i=6,

cor.est=.3, psi.square=.2, conf.level=.95, assurance=NULL, initial.iter=500,
final.iter=5000)

# Same as above but now 'assurance' is used.
ss.aipe.reliability (model='Parallel', type='Normal Theory', width=.1, i=6,
cor.est=.3, psi.square=.2, conf.level=.95, assurance=.85, initial.iter=500,
final.iter=5000)

# Similar to the above but now the "True Score" model is used. Note how the psi.square changes
# from a scalar to a vector of length i (number of items).
# Also note, however, that cor.est is a single value (due to the true-score model specified)
ss.aipe.reliability (model='True Score', type='Normal Theory', width=.1, i=5,

cor.est=.3, psi.square=c(.2, .3, .3, .2, .3), conf.level=.95,
assurance=.85, initial.iter=500, final.iter=5000)

ss.aipe.reliability (model='True Score', type='Normal Theory', width=.1, i=5,
cor.est=.3, psi.square=c(.2, .3, .3, .2, .3), conf.level=.95,
assurance=.85, initial.iter=500, final.iter=5000)

# Now, a congeneric model is used with the factor analytic appraoch. This is likely the
# most realistic scenario (and maps onto the ideas of Coefficient Omega).
ss.aipe.reliability (model='Congeneric', type='Factor Analytic', width=.1, i=5,
lambda=c(.4, .4, .3, .3, .5), psi.square=c(.2, .4, .3, .3, .2), conf.level=.95,
assurance=.85, initial.iter=1000, final.iter=5000)

# Now, the presumed population matrix among the items is used.
Pop.Mat<-rbind(c(1.0000000, 0.3813850, 0.4216370, 0.3651484, 0.4472136),
c(0.3813850, 1.0000000, 0.4020151, 0.3481553, 0.4264014), c(0.4216370,
0.4020151, 1.0000000, 0.3849002, 0.4714045), c(0.3651484, 0.3481553,
0.3849002, 1.0000000, 0.4082483), c(0.4472136, 0.4264014, 0.4714045,
0.4082483, 1.0000000))

ss.aipe.reliability (model='True Score', type='Normal Theory', width=.15,
S=Pop.Mat, conf.level=.95, assurance=.85, initial.iter=1000, final.iter=5000)
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## End(Not run)

ss.aipe.rmsea Sample size planning for RMSEA in SEM

Description

Sample size planning for the population root mean square error of approximation (RMSEA) from
the accuracy in parameter estimation (AIPE) perspective. The sample size is planned so that the
expected width of a confidence interval for the population RMSEA is no larger than desired.

Usage

ss.aipe.rmsea(RMSEA, df, width, conf.level = 0.95)

Arguments

RMSEA the input RMSEA value

df degrees of freedom of the model

width desired confidence interval width

conf.level desired confidence level (e.g., .90, .95, .99, etc.)

Value

Returns the necessary total sample size in order to achieve the desired degree of accuracy (i.e., the
sufficiently narrow confidence interval).

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>) and Keke Lai

See Also

ci.rmsea

Examples

## Not run:
# ss.aipe.rmsea(RMSEA=.035, df=50, width=.05, conf.level=.95)

## End(Not run)
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ss.aipe.rmsea.sensitivity

a priori Monte Carlo simulation for sample size planning for RMSEA
in SEM

Description

Conduct a priori Monte Carlo simulation to empirically study the effects of (mis)specifications of
input information on the calculated sample size. The sample size is planned so that the expected
width of a confidence interval for the population RMSEA is no larger than desired. Random data
are generated from the true covariance matrix but fit to the proposed model, whereas sample size is
calculated based on the input covariance matrix and proposed model.

Usage

ss.aipe.rmsea.sensitivity(width, model, Sigma, N=NULL,
conf.level=0.95, G=200, save.file="sim.results.txt", ...)

Arguments

width desired confidence interval width for the model parameter of interest
model the model the researcher proposes, may or may not be the true model. This ar-

gument should be an RAM (reticular action model; e.g., McArdle & McDonald,
1984) specification of a structural equation model, and should be of class mod.
The model is specified in the same manner as does the sem package; see sem
and specify.model for detailed documentation about model specifications in
the RAM notation.

Sigma the true population covariance matrix, which will be used to generate random
data for the simulation study. The row names and column names of Sigma
should be the same as the manifest variables in model.

N if N is specified, random sample of the specified N size will be generated. Oth-
erwise the sample size is calculated with the sample size planning method with
the goal that the expected width of a confidence interval for population RMSEA
is no larger than desired.

conf.level confidence level (i.e., 1- Type I error rate)
G number of replications in the Monte Carlo simulation
save.file the name of the file that simulation results will be saved to
... allows one to potentially include parameter values for inner functions

Details

This function implements the sample size planning methods proposed in Kelley and Lai (2010).
It depends on the function sem in the sem package to fit the proposed model to random data, and
uses the same notation to specify SEM models as does sem. Please refer to sem for more detailed
documentation about model specifications, the RAM notation, and model fitting techniques. For
technical discussion on how to obtain the model implied covariance matrix in the RAM notation
given model parameters, see McArdle and McDonald (1984)
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Value
successful.replication

the number of successful replications

w the G random confidence interval widths

RMSEA.hat the G estimated RMSEA values based on the G random samples

sample.size the sample size calculated

df degrees of freedom of the proposed model

RMSEA.pop the input RMSEA value that is used to calculated the necessary sample size

desired.width desired confidence interval width

mean.width mean of the random confidence interval widths

median.width median of the random confidence interval widths

assurance the proportion of confidence interval widths narrower than desired

quantile.width 99, 97, 95, 90, 80, 70, and 60 percentiles of the random confidence interval
widths

alpha.upper the upper empirical Type I error rate

alpha.lower the lower empirical Type I error rate

alpha total empirical Type I error rate

conf.level confidence level
sim.results.txt

a text file that saves the simulation results; it updates after each replication.
’sim.results.txt’ is the default file name

Note

Sometimes this function jumps out of the loop before it finishes the simulation. The reason is
because the sem function that this function calls to fit the model fails to converge when searching
for maximum likelihood estimates of model parameters. Since the results in previous replications
are saved, the user can start this function again, and specify the number of replications (i.e., G) to
be the desired total number of replications minus the number of previous successful replications.

Author(s)

Keke Lai (University of California – Merced) and Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cudeck, R., & Browne, M. W. (1992). Constructing a covariance matrix that yields a specified
minimizer and a specified minimum discrepancy function value. Psychometrika, 57, 357–369.

Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Mod-
eling, 13, 465–486.

Kelley, K., & Lai, K. (2010). Accuracy in parameter estimation for the root mean square of approx-
imation: Sample size planning for narrow confidence intervals. Manuscript under review.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model.
British Journal of Mathematical and Statistical Psychology, 37, 234–251.
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See Also

sem; specify.model; ss.aipe.rmsea; theta.2.Sigma.theta; Sigma.2.SigmaStar

Examples

## Not run:
#########################
EXAMPLE 1
#########################
# To replicate the simulation in the first panel, second column of
# Table 2 (i.e., population RMSEA=0.0268, df=23, desired width=0.02)
# in Lai and Kelley (2010), the following steps can be used.

## STEP 1: Obtain the (correct) population covariance matrix implied by Model 2
# This requires the model and its population model parameter values.
library(MASS)
library(sem)

# Specify Model 2 in the RAM notation
model.2<-specifyModel()
xi1 -> y1, lambda1, 1
xi1 -> y2, NA, 1
xi1 -> y3, lambda2, 1
xi1 -> y4, lambda3, 0.3
eta1 -> y4, lambda4, 1
eta1 -> y5, NA, 1
eta1 -> y6, lambda5, 1
eta1 -> y7, lambda6, 0.3
eta2 -> y6, lambda7, 0.3
eta2 -> y7, lambda8, 1
eta2 -> y8, NA, 1
eta2 -> y9, lambda9, 1
xi1 -> eta1, gamma11, 0.6
eta1 -> eta2, beta21, 0.6
xi1 <-> xi1, phi11, 0.49
eta1 <-> eta1, psi11, 0.3136
eta2 <-> eta2, psi22, 0.3136
y1 <-> y1, delta1, 0.51
y2 <-> y2, delta2, 0.51
y3 <-> y3, delta3, 0.51
y4 <-> y4, delta4, 0.2895
y5 <-> y5, delta5, 0.51
y6 <-> y6, delta6, 0.2895
y7 <-> y7, delta7, 0.2895
y8 <-> y8, delta8, 0.51
y9 <-> y9, delta9, 0.51

# To inspect the specified model
model.2

# Specify model parameter values
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theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)

names(theta) <- c("lambda1","lambda2","lambda3",
"lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
"gamma11", "beta21",
"phi11", "psi11", "psi22",
"delta1","delta2","delta3","delta4","delta5","delta6","delta7",
"delta8","delta9")

res<-theta.2.Sigma.theta(model=model.2, theta=theta,
latent.vars=c("xi1", "eta1","eta2"))

Sigma.theta <- res$Sigma.theta
# Then 'Sigma.theta' is the (true) population covariance matrix

## STEP 2: Create a misspecified model
# The following model is misspecified in the same way as did Lai and Kelley (2010)
# with the goal to obtain a relatively small population RMSEA

model.2.mis<-specifyModel()
xi1 -> y1, lambda1, 1
xi1 -> y2, NA, 1
xi1 -> y3, lambda2, 1
xi1 -> y4, lambda3, 0.3
eta1 -> y4, lambda4, 1
eta1 -> y5, NA, 1
eta1 -> y6, lambda5, 0.96
eta2 -> y6, lambda7, 0.33
eta2 -> y7, lambda8, 1.33
eta2 -> y8, NA, 1
eta2 -> y9, lambda9, 1
xi1 -> eta1, gamma11, 0.6
eta1 -> eta2, beta21, 0.65
xi1 <-> xi1, phi11, 0.49
eta1 <-> eta1, psi11, 0.3136
eta2 <-> eta2, psi22, 0.23
y1 <-> y1, delta1, 0.51
y2 <-> y2, delta2, 0.51
y3 <-> y3, delta3, 0.51
y4 <-> y4, delta4, 0.2895
y5 <-> y5, delta5, 0.51
y6 <-> y6, delta6, 0.29
y7 <-> y7, delta7, 0.22
y8 <-> y8, delta8, 0.56
y9 <-> y9, delta9, 0.56

# To verify the population RMSEA of this misspecified model
fit<-sem(ram=model.2.mis, S=Sigma.theta, N=1000000)
summary(fit)$RMSEA

## STEP 3: Conduct the simulation
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# The number of replications is set to a very small value just to demonstrate
# and save time. Real simulation studies require a larger number (e.g., 500, 1,000)

ss.aipe.rmsea.sensitivity(width=0.02, model=model.2.mis, Sigma=Sigma.theta, G=10)

## STEP 3+: In cases where this function stops before it finishes the simulation
# Suppose it stops at the 7th replication. The text
# file "results_ss.aipe.rmsea.sensitivity.txt" saves the results in all
# previous replications; in this case it contains 6 replications since
# the simulation stopped at the 7th. The user can start this function again and specify
# 'G' to 4 (i.e., 10-6). New results will be appended to previous ones in the same file.

ss.aipe.rmsea.sensitivity(width=0.02, model=model.2.mis, Sigma=Sigma.theta, G=4)

########################################
EXAMPLE 2
########################################
# In addition to create a misspecified model by changing the model
# parameters in the true model as does Example 1, a misspecified
# model can also be created with the Cudeck-Browne (1992) procedure.
# This procedure is implemented in the 'Sigma.2.SigmaStar( )' function in
# the MBESS package. Please refer to the help file of 'Sigma.2.SigmaStar( )'
# for detailed documentation.

## STEP 1: Specify the model
# This model is the same as the model in the first step of Example 1, but the
# model-implied population covariance matrix is no longer the true population
# covariance matrix. The true population covariance matrix will be generated
# in Step 2 with the Cudeck-Browne procedure.
library(MASS)
library(sem)

model.2<-specifyModel()
xi1 -> y1, lambda1, 1
xi1 -> y2, NA, 1
xi1 -> y3, lambda2, 1
xi1 -> y4, lambda3, 0.3
eta1 -> y4, lambda4, 1
eta1 -> y5, NA, 1
eta1 -> y6, lambda5, 1
eta1 -> y7, lambda6, 0.3
eta2 -> y6, lambda7, 0.3
eta2 -> y7, lambda8, 1
eta2 -> y8, NA, 1
eta2 -> y9, lambda9, 1
xi1 -> eta1, gamma11, 0.6
eta1 -> eta2, beta21, 0.6
xi1 <-> xi1, phi11, 0.49
eta1 <-> eta1, psi11, 0.3136
eta2 <-> eta2, psi22, 0.3136
y1 <-> y1, delta1, 0.51
y2 <-> y2, delta2, 0.51
y3 <-> y3, delta3, 0.51
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y4 <-> y4, delta4, 0.2895
y5 <-> y5, delta5, 0.51
y6 <-> y6, delta6, 0.2895
y7 <-> y7, delta7, 0.2895
y8 <-> y8, delta8, 0.51
y9 <-> y9, delta9, 0.51

theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)

names(theta) <- c("lambda1","lambda2","lambda3",
"lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
"gamma11", "beta21",
"phi11", "psi11", "psi22",
"delta1","delta2","delta3","delta4","delta5","delta6","delta7",
"delta8","delta9")

## STEP 2: Create the true population covariance matrix, so that (a) the model fits
# to this covariance matrix with specified discrepancy; (b) the population model
# parameters (the object 'theta') is the minimizer in fitting the model to the true
# population covariance matrix.

# Since the desired RMSEA is 0.0268 and the df is 22, the MLE discrepancy value
# is specified to be 22*0.0268*0.0268, given the definition of RMSEA.

res <- Sigma.2.SigmaStar(model=model.2, model.par=theta,
latent.var=c("xi1", "eta1", "eta2"), discrep=22*0.0268*0.0268)

Sigma.theta.star <- res$Sigma.star

# To verify that the population RMSEA is 0.0268
res2 <- sem(ram=model.2, S=Sigma.theta.star, N=1000000)
summary(res2)$RMSEA

## STEP 3: Conduct the simulation
# Note although Examples 1 and 2 have the same population RMSEA, the
# model df and true population covariance matrix are different. Example 1
# uses 'model.2.mis' and 'Sigma.theta', whereas Example 2 uses 'model.2'
# and 'Sigma.theta.star'. Since the df is different, it requires a different sample
# size to achieve the same desired confidence interval width.
ss.aipe.rmsea.sensitivity(width=0.02, model=model.2, Sigma=Sigma.theta.star, G=10)

## End(Not run)

ss.aipe.sc Sample size planning for Accuracy in Parameter Estimation (AIPE) of
the standardized contrast in ANOVA
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Description

A function to calculate the appropriate sample size per group for the standardized contrast in
ANOVA such that the width of the confidence interval is sufficiently narrow.

Usage

ss.aipe.sc(psi, c.weights, width, conf.level = 0.95,
assurance = NULL, certainty = NULL, ...)

Arguments

psi population standardized contrast

c.weights the contrast weights

width the desired full width of the obtained confidence interval

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

certainty an alias for assurance

... allows one to potentially include parameter values for inner functions

Value

n necessary sample size per group

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Keke Lai

References

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence
intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
surement, 61, 532–574.

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the stan-
dardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psycho-
logical Measurement, 65, 51–69.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11(4),
363–385.

Lai, K., & Kelley, K. (2007). Sample size planning for standardized ANCOVA and ANOVA con-
trasts: Obtaining narrow confidence intervals. Manuscript submitted for publication.
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Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ci.sc, conf.limits.nct, ss.aipe.c

Examples

# Suppose the population standardized contrast is believed to be .6
# in some 5-group ANOVA model. The researcher is interested in comparing
# the average of means of group 1 and 2 with the average of group 3 and 4.

# To calculate the necessary sample size per gorup such that the width
# of 95 percent confidence interval of the standardized
# contrast is, with 90 percent assurance, no wider than .4:

# ss.aipe.sc(psi=.6, c.weights=c(.5, .5, -.5, -.5, 0), width=.4, assurance=.90)

ss.aipe.sc.ancova Sample size planning from the AIPE perspective for standardized AN-
COVA contrasts

Description

Sample size planning from the accuracy in parameter estimation (AIPE) perspective for standard-
ized ANCOVA contrasts.

Usage

ss.aipe.sc.ancova(Psi = NULL, sigma.anova = NULL, sigma.ancova = NULL,
psi = NULL, ratio = NULL, rho = NULL, divisor = "s.ancova",
c.weights, width, conf.level = 0.95, assurance = NULL, ...)

Arguments

Psi the population unstandardized ANCOVA (adjusted) contrast

sigma.anova the population error standard deviation of the ANOVA model

sigma.ancova the population error standard deviation of the ANCOVA model

psi the population standardized ANCOVA (adjusted) contrast

ratio the ratio of sigma.ancova over sigma.anova

rho the population correlation coefficient between the response and the covariate

divisor which error standard deviation to be used in standardizing the contrast; the value
can be either "s.ancova" or "s.anova"

c.weights contrast weights
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width the desired full width of the obtained confidence interval

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

... allows one to potentially include parameter values for inner functions

Details

The sample size planning method this function is based on is developed in the context of simple
(i.e., one-response-one-covariate) ANCOVA model and randomized design (i.e., same population
covariate mean across groups).

An ANCOVA contrast can be standardized in at least two ways: (a) divided by the error standard
deviation of the ANOVA model, (b) divided by the error standard deviation of the ANCOVA model.
This function can be used to analyze both types of standardized ANCOVA contrasts.

Not all of the arguments about the effect sizes need to be specified. If divisor="s.ancova" is used
in the argument, then input either (a) psi, or (b) Psi and s.ancova. If divisor="s.anova" is used
in the argument, possible specifications are (a) Psi, s.ancova, and s.anova; (b) psi, and ratio;
(c) psi, and rho.

Value

This function returns the sample size per group.

Note

When divisor="s.anova" and the argument assurance is specified, the necessary sample size per
group returned by the function with assurance specified is slightly underestimated. The method
to obtain exact sample size in the above situation has not been developed yet. A practical solution
is to use the sample size returned as the starting value to conduct a priori Montre Carlo simulations
with function ss.aipe.sc.ancova.sensitivity, as discussed in Lai & Kelley (under review).

Author(s)

Keke Lai (University of California–Merced)

References

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11 (4),
363–385.

Lai, K., & Kelley, K. (2012). Accuracy in parameter estimation for ANCOVA and ANOVA con-
trasts: Sample size planning via narrow confidence intervals. British Journal of Mathematical and
Statistical Psychology, 65, 350–370.
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Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ss.aipe.sc, ss.aipe.sc.ancova.sensitivity

Examples

## Not run:
ss.aipe.sc.ancova(psi=.8, width=.5, c.weights=c(.5, .5, 0, -1))

ss.aipe.sc.ancova(psi=.8, ratio=.6, width=.5,
c.weights=c(.5, .5, 0, -1), divisor="s.anova")

ss.aipe.sc.ancova(psi=.5, rho=.4, width=.3,
c.weights=c(.5, .5, 0, -1), divisor="s.anova")

## End(Not run)

ss.aipe.sc.ancova.sensitivity

Sensitivity analysis for the sample size planning method for standard-
ized ANCOVA contrast

Description

Sensitivity analysis for the sample size planning method with the goal to obtain sufficiently narrow
confidence intervals for standardized ANCOVA complex contrasts.

Usage

ss.aipe.sc.ancova.sensitivity(true.psi = NULL, estimated.psi = NULL,
c.weights, desired.width = NULL, selected.n = NULL, mu.x = 0,
sigma.x = 1, rho, divisor = "s.ancova", assurance = NULL,
conf.level = 0.95, G = 10000, print.iter = TRUE, detail = TRUE, ...)

Arguments

true.psi the population standardized ANCOVA contrast

estimated.psi the estimated standardized ANCOVA contrast

c.weights the contrast weights

desired.width the desired full width of the obtained confidence interval

selected.n selected sample size to use in order to determine distributional properties of a
given value of sample size
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mu.x the population mean for the covariate

sigma.x the population standard deviation of the covariate

rho the population correlation coefficient between the response and the covariate

divisor which error standard deviation to be used in standardizing the contrast; the value
can be either "s.ancova" or "s.anova"

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

G number of generations (i.e., replications) of the simulation

print.iter to print the current value of the iterations

detail whether the user needs a detailed (TRUE) or brief (FALSE) report of the simulation
results; the detail report includes all the raw data in the simulations

... allows one to potentially include parameter values for inner functions

Details

The sample size planning method this function is based on is developed in the context of simple
(i.e., one-response-one-covariate) ANCOVA model and randomized design (i.e., same population
covariate mean across groups).

An ANCOVA contrast can be standardized in at least two ways: (a) divided by the error standard
deviation of the ANOVA model, (b) divided by the error standard deviation of the ANCOVA model.
This function can be used to analyze both types of standardized ANCOVA contrasts.

The population mean and standard deviation of the covariate does not affect the sample size plan-
ning procedure; they can be specified as any values that are considered as reasonable by the user.

Value

psi.obs observed standardized contrast in each iteration

Full.Width vector of the full confidence interval width
Width.from.psi.obs.Lower

vector of the lower confidence interval width
Width.from.psi.obs.Upper

vector of the upper confidence interval width
Type.I.Error.Upper

iterations where a Type I error occurred on the upper end of the confidence
interval

Type.I.Error.Lower

iterations where a Type I error occurred on the lower end of the confidence
interval

Type.I.Error iterations where a Type I error happens

Lower.Limit the lower limit of the obtained confidence interval

Upper.Limit the upper limit of the obtained confidence interval

replications number of replications of the simulation
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True.psi population standardized contrast
Estimated.psi estimated standardized contrast
Desired.Width the desired full width of the obtained confidence interval
assurance the value assigned to the argument assurance
Sample.Size.per.Group

sample size per group
Number.of.Groups

number of groups
mean.full.width

mean width of the obtained full confidence intervals
median.full.width

median width of the obtained full confidence intervals
sd.full.width standard deviation of the widths of the obtained full confidence intervals
Pct.Width.obs.NARROWER.than.desired

percentage of the obtained full confidence interval widths that are narrower than
the desired width

mean.Width.from.psi.obs.Lower

mean lower width of the obtained confidence intervals
mean.Width.from.psi.obs.Upper

mean upper width of the obtained confidence intervals
Type.I.Error.Upper

Type I error rate from the upper side
Type.I.Error.Lower

Type I error rate from the lower side
Type.I.Error Type I error rate

Author(s)

Keke Lai

References

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11 (4),
363–385.

Lai, K., & Kelley, K. (2012). Accuracy in parameter estimation for ANCOVA and ANOVA con-
trasts: Sample size planning via narrow confidence intervals. British Journal of Mathematical and
Statistical Psychology, 65, 350–370.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ss.aipe.sc.ancova; ss.aipe.sc.sensitivity
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ss.aipe.sc.sensitivity

Sensitivity analysis for sample size planning for the standardized
ANOVA contrast from the Accuracy in Parameter Estimation (AIPE)
Perspective

Description

Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estima-
tion (AIPE) Perspective for the standardized ANOVA contrast.

Usage

ss.aipe.sc.sensitivity(true.psi = NULL, estimated.psi = NULL, c.weights,
desired.width = NULL, selected.n = NULL, assurance = NULL, certainty=NULL,
conf.level = 0.95, G = 10000, print.iter = TRUE, detail = TRUE, ...)

Arguments

true.psi population standardized contrast

estimated.psi estimated standardized contrast

c.weights the contrast weights

desired.width the desired full width of the obtained confidence interval

selected.n selected sample size to use in order to determine distributional properties of at a
given value of sample size

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

certainty an alias for assurance

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

G number of generations (i.e., replications) of the simulation

print.iter to print the current value of the iterations

detail whether the user needs a detailed (TRUE) or brief (FALSE) report of the simulation
results; the detailed report includes all the raw data in the simulations

... allows one to potentially include parameter values for inner functions

Value

psi.obs observed standardized contrast in each iteration

Full.Width vector of the full confidence interval width
Width.from.psi.obs.Lower

vector of the lower confidence interval width
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Width.from.psi.obs.Upper

vector of the upper confidence interval width

Type.I.Error.Upper

iterations where a Type I error occurred on the upper end of the confidence
interval

Type.I.Error.Lower

iterations where a Type I error occurred on the lower end of the confidence
interval

Type.I.Error iterations where a Type I error happens

Lower.Limit the lower limit of the obtained confidence interval

Upper.Limit the upper limit of the obtained confidence interval

replications number of replications of the simulation

True.psi population standardized contrast

Estimated.psi estimated standardized contrast

Desired.Width the desired full width of the obtained confidence interval

assurance the value assigned to the argument assurance

Sample.Size.per.Group

sample size per group

Number.of.Groups

number of groups

mean.full.width

mean width of the obtained full conficence intervals
median.full.width

median width of the obtained full confidence intervals

sd.full.width standard deviation of the widths of the obtained full confidence intervals
Pct.Width.obs.NARROWER.than.desired

percentage of the obtained full confidence interval widths that are narrower than
the desired width

mean.Width.from.psi.obs.Lower

mean lower width of the obtained confidence intervals
mean.Width.from.psi.obs.Upper

mean upper width of the obtained confidence intervals

Type.I.Error.Upper

Type I error rate from the upper side

Type.I.Error.Lower

Type I error rate from the lower side

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Keke Lai (University of California –
Merced)
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References

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence
intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
surement, 61, 532–574.

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
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Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11 (4),
363–385.

Lai, K., & Kelley, K. (2007). Sample size planning for standardized ANCOVA and ANOVA con-
trasts: Obtaining narrow confidence intervals. Manuscript submitted for publication.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there where no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ss.aipe.sc, ss.aipe.c, conf.limits.nct

ss.aipe.sem.path Sample size planning for SEM targeted effects

Description

Plan sample size for structural equation models so that the confidence intervals for the model pa-
rameters of interest are sufficiently narrow

Usage

ss.aipe.sem.path(model, Sigma, desired.width, which.path,
conf.level = 0.95, assurance = NULL, ...)

Arguments

model an RAM (reticular action model; e.g., McArdle & McDonald, 1984) specifica-
tion of a structural equation model, and should be of class mod. The model is
specified in the same manner as the sem package; see sem and specify.model
for detailed documentation about model specifications in the RAM notation.

Sigma estimated population covariance matrix of the manifest variables

desired.width desired confidence interval width for the model parameter of interest

which.path the name of the model parameter of interest, presented in double quotation
marks
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conf.level confidence level (i.e., 1- Type I error rate)

assurance the assurance that the confidence interval obtained in a particular study will be
no wider than desired (must be NULL or a value between 0.50 and 1)

... allows one to potentially include parameter values for inner functions

Details

This function implements the sample size planning methods proposed in Lai and Kelley (2010). It
depends on the function sem in the sem package to calculate the expected information matrix, and
uses the same notation to specify SEM models as does sem. Please refer to sem for more detailed
documentations about model specification, the RAM notation, and model fitting techniques. For
technical discussion on how to obtain the model implied covariance matrix in the RAM notation
given model parameters, see McArdle and McDonald (1984).

Value

parameters the names of the model parameters

path.index the index of the model parameter of interest

sample.size the necessary sample size calculated

obs.vars the names of the observed variables

var.theta.j the population variance of the model parameter of interest at the calculated sam-
ple size

Author(s)

Keke Lai (University of California–Merced)

References

Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Mod-
eling, 13, 465–486.

Lai, K., & Kelley, K. (in press). Accuracy in parameter estimation for targeted effects in structural
equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model.
British Journal of Mathematical and Statistical Psychology, 37, 234–251.

See Also

sem; specify.model; theta.2.Sigma.theta; ss.aipe.sem.path.sensitiv

Examples

## Not run:
# Suppose the model of interest is Model 2 in the simulation study
# in Lai and Kelley (2010), and the goal is to obtain a 95% confidence
# interval for 'beta21' no wider than 0.3. The necessary sample size
# can be calculated as follows.
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library(sem)

# specify a model object in the RAM notation
model.2<-specifyModel()
xi1 -> y1, lambda1, 1
xi1 -> y2, NA, 1
xi1 -> y3, lambda2, 1
xi1 -> y4, lambda3, 0.3
eta1 -> y4, lambda4, 1
eta1 -> y5, NA, 1
eta1 -> y6, lambda5, 1
eta1 -> y7, lambda6, 0.3
eta2 -> y6, lambda7, 0.3
eta2 -> y7, lambda8, 1
eta2 -> y8, NA, 1
eta2 -> y9, lambda9, 1
xi1 -> eta1, gamma11, 0.6
eta1 -> eta2, beta21, 0.6
xi1 <-> xi1, phi11, 0.49
eta1 <-> eta1, psi11, 0.3136
eta2 <-> eta2, psi22, 0.3136
y1 <-> y1, delta1, 0.51
y2 <-> y2, delta2, 0.51
y3 <-> y3, delta3, 0.51
y4 <-> y4, delta4, 0.2895
y5 <-> y5, delta5, 0.51
y6 <-> y6, delta6, 0.2895
y7 <-> y7, delta7, 0.2895
y8 <-> y8, delta8, 0.51
y9 <-> y9, delta9, 0.51

# to inspect the specified model
model.2

# one way to specify the population covariance matrix is to first
# specify path coefficients and then calcualte the model-implied
# covariance matrix
theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)

names(theta) <- c("lambda1","lambda2","lambda3",
"lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
"gamma11", "beta21",
"phi11", "psi11", "psi22",
"delta1","delta2","delta3","delta4","delta5","delta6","delta7",
"delta8","delta9")

res<-theta.2.Sigma.theta(model=model.2, theta=theta,
latent.vars=c("xi1", "eta1","eta2"))

Sigma.theta <- res$Sigma.theta
# thus 'Sigma.theta' is the input covariance matrix for sample size
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# planning procedure.

# the necessary sample size can be calculated as follows.
# ss.aipe.sem.path(model=model.2, Sigma=Sigma.theta,
# desired.width=0.3, which.path="beta21")

## End(Not run)

ss.aipe.sem.path.sensitiv

a priori Monte Carlo simulation for sample size planning for SEM
targeted effects

Description

Conduct a priori Monte Carlo simulation to empirically study the effects of (mis)specifications of
input information on the calculated sample size. Random data are generated from the true covari-
ance matrix but fit to the proposed model, whereas sample size is calculated based on the input
covariance matrix and proposed model.

Usage

ss.aipe.sem.path.sensitiv(model, est.Sigma, true.Sigma = est.Sigma,
which.path, desired.width, N=NULL, conf.level = 0.95, assurance = NULL,
G = 100, ...)

Arguments

model the model the researcher proposes, may or may not be the true model. This ar-
gument should be an RAM (reticular action model; e.g., McArdle & McDonald,
1984) specification of a structural equation model, and should be of class mod.
The model is specified in the same manner as does the sem package; see sem
and specify.model for detailed documentation about model specifications in
the RAM notation.

est.Sigma the covariance matrix used to calculate sample size, may or may not be the true
covariance matrix. The row names and column names of est.Sigma should be
the same as the manifest variables in est.model.

true.Sigma the true population covariance matrix, which will be used to generate random
data for the simulation study. The row names and column names of est.Sigma
should be the same as the manifest variables in est.model.

which.path the name of the model parameter of interest, and must be in a double quote

desired.width desired confidence interval width for the model parameter of interest

N the sample size of random data. If it is NULL, it will be determined by the sample
size planning method

conf.level confidence level (i.e., 1- Type I error rate)
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assurance the assurance that the confidence interval obtained in a particular study will be
no wider than desired (must be NULL or a value between 0.50 and 1)

G number of replications in the Monte Carlo simulation

... allows one to potentially include parameter values for inner functions

Details

This function implements the sample size planning methods proposed in Lai and Kelley (2010). It
depends on the function sem in the sem package to calculate the expected information matrix, and
uses the same notation to specify SEM models as does sem. Please refer to sem for more detailed
documentation about model specifications, the RAM notation, and model fitting techniques. For
technical discussion on how to obtain the model implied covariance matrix in the RAM notation
given model parameters, see McArdle and McDonald (1984).

Value

w the G random confidence interval widths

sample.size the sample size calculated
path.of.interest

name of the model parameter of interest

desired.width desired confidence interval width

mean.width mean of the G random confidence interval widths

median.width median of the G random confidence interval widths

quantile.width 99, 95, 90, 85, 80, 75, 70, and 60 percentiles of the G random confidence interval
widths

width.less.than.desired

the proportion of confidence interval widths narrower than desired
Type.I.err.upper

the upper empirical Type I error rate
Type.I.err.lower

the lower empirical Type I error rate

Type.I.err total empirical Type I error rate

conf.level confidence level

rep successful replications

Note

Sometimes the simulation stops in the middle of fitting the model to the random data. The reason is
that nlm, the function sem calls to fit the model, fails to converge. We suggest using the try function
in simulation so that the simulation can proceed with unsuccessful iterations.

Author(s)

Keke Lai (University of California – Merced) and Ken Kelley <kkelley@nd.edu>



148 ss.aipe.sem.path.sensitiv

References

Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Mod-
eling, 13, 465–486.

Lai, K., & Kelley, K. (in press). Accuracy in parameter estimation for targeted effects in structural
equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model.
British Journal of Mathematical and Statistical Psychology, 37, 234–251.

See Also

sem; specify.model; theta.2.Sigma.theta; ss.aipe.sem.path

Examples

## Not run:
# Suppose the model of interest is Model 2 of the simulation study in
# Lai and Kelley (2010), and the goal is to obtain a 95% confidence
# interval for 'beta21' no wider than 0.3.

library(sem)

# specify a model object in the RAM notation
model.2<-specifyModel()
xi1 -> y1, lambda1, 1
xi1 -> y2, NA, 1
xi1 -> y3, lambda2, 1
xi1 -> y4, lambda3, 0.3
eta1 -> y4, lambda4, 1
eta1 -> y5, NA, 1
eta1 -> y6, lambda5, 1
eta1 -> y7, lambda6, 0.3
eta2 -> y6, lambda7, 0.3
eta2 -> y7, lambda8, 1
eta2 -> y8, NA, 1
eta2 -> y9, lambda9, 1
xi1 -> eta1, gamma11, 0.6
eta1 -> eta2, beta21, 0.6
xi1 <-> xi1, phi11, 0.49
eta1 <-> eta1, psi11, 0.3136
eta2 <-> eta2, psi22, 0.3136
y1 <-> y1, delta1, 0.51
y2 <-> y2, delta2, 0.51
y3 <-> y3, delta3, 0.51
y4 <-> y4, delta4, 0.2895
y5 <-> y5, delta5, 0.51
y6 <-> y6, delta6, 0.2895
y7 <-> y7, delta7, 0.2895
y8 <-> y8, delta8, 0.51
y9 <-> y9, delta9, 0.51
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# to inspect the specified model
model.2

# one way to specify the population covariance matrix is to
# first specify path coefficients and then calcualte the
# model-implied covariance matrix
theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)

names(theta) <- c("lambda1","lambda2","lambda3",
"lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
"gamma11", "beta21",
"phi11", "psi11", "psi22",
"delta1","delta2","delta3","delta4","delta5","delta6","delta7",
"delta8","delta9")

res<-theta.2.Sigma.theta(model=model.2, theta=theta,
latent.vars=c("xi1", "eta1","eta2"))

Sigma.theta <- res$Sigma.theta
# thus 'Sigma.theta' is the input covariance matrix for sample size planning procedure.

# the necessary sample size can be calculated as follows.
# ss.aipe.sem.path(model=model.2, Sigma=Sigma.theta,
# desired.width=0.3, which.path="beta21")

# to verify the sample size calculated
# ss.aipe.sem.path.sensitiv(est.model=model.2, est.Sigma=Sigma.theta,
# which.path="beta21", desired.width=0.3, G = 300)

# suppose the true covariance matrix ('var(X)' below) is in fact
# a point close to 'Sigma.theta':

# X<-mvrnorm(n=1000, mu=rep(0,9), Sigma=Sigma.pop)
# var(X)
# ss.aipe.sem.path.sensitiv(est.model=model.2, est.Sigma=Sigma.theta,
# true.Sigma=var(X), which.path="beta21", desired.width=0.3, G=300)

## End(Not run)

ss.aipe.sm Sample size planning for Accuracy in Parameter Estimation (AIPE) of
the standardized mean

Description

A function to calculate the appropriate sample size for the standardized mean such that the width of
the confidence interval is sufficiently narrow.
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Usage

ss.aipe.sm(sm, width, conf.level = 0.95, assurance = NULL, certainty=NULL, ...)

Arguments

sm the population standardized mean

width the desired full width of the obtained confidence interval

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

certainty an alias for assurance

... allows one to potentially include parameter values for inner functions

Value

n the necessary sample size in order to achieve the desired degree of accuracy (i.e.,
the sufficiently narrow confidence interval)

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Keke Lai

References

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence
intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
surement, 61, 532–574.

Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the stan-
dardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psycho-
logical Measurement, 65, 51–69.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1–24.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11(4),
363–385.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik,& J.H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

conf.limit.nct, ci.sm
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Examples

# Suppose the population mean is believed to be 20, and the population
# standard deviation is believed to be 2; thus the population standardized
# mean is believed to be 10. To determine the necessary sample size for a
# study so that the full width of the 95 percent confidence interval
# obtained in the study will be, with 90% assurance, no wider than 2.5,
# the function should be specified as follows.

# ss.aipe.sm(sm=10, width=2.5, conf.level=.95, assurance=.90)

ss.aipe.sm.sensitivity

Sensitivity analysis for sample size planning for the standardized mean
from the Accuracy in Parameter Estimation (AIPE) Perspective

Description

Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estima-
tion (AIPE) Perspective for the standardized mean.

Usage

ss.aipe.sm.sensitivity(true.sm = NULL, estimated.sm = NULL,
desired.width = NULL, selected.n = NULL, assurance = NULL,
certainty=NULL, conf.level = 0.95, G = 10000, print.iter = TRUE,
detail = TRUE, ...)

Arguments

true.sm population standardized mean

estimated.sm estimated standardized mean

desired.width desired full width of the confidence interval for the population standardized
mean

selected.n selected sample size to use in order to determine distributional properties of a
given value of sample size

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty (must be NULL or between
zero and unity)

certainty an alias for assurance

conf.level the desired confidence interval coverage, (i.e., 1 - Type I error rate)

G number of generations (i.e., replications) of the simulation

print.iter to print the current value of the iterations

detail whether the user needs a detailed (TRUE) or brief (FALSE) report of the simulation
results; the detailed report includes all the raw data in the simulations

... allows one to potentially include parameter values for inner functions
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Value

sm.obs vector of the observed standardized mean

Full.Width vector of the full confidence interval width
Width.from.sm.obs.Lower

vector of the lower confidence interval width
Width.from.sm.obs.Upper

vector of the upper confidence interval width
Type.I.Error.Upper

iterations where a Type I error occurred on the upper end of the confidence
interval

Type.I.Error.Lower

iterations where a Type I error occurred on the lower end of the confidence
interval

Type.I.Error iterations where a Type I error happens

Lower.Limit the lower limit of the obtained confidence interval

Upper.Limit the upper limit of the obtained confidence interval

replications number of replications of the simulation

True.sm the population standardized mean

Estimated.sm the estimated standardized mean

Desired.Width the desired full confidence interval width

assurance parameter to ensure that the obtained confidence interval width is narrower than
the desired width with a specified degree of certainty

Sample.Size the sample size used in the simulation
mean.full.width

mean width of the obtained full confidence intervals
median.full.width

median width of the obtained full confidence intervals

sd.full.width standard deviation of the widths of the obtained full confidence intervals
Pct.Width.obs.NARROWER.than.desired

percentage of the obtained full confidence interval widths that are narrower than
the desired width

mean.Width.from.sm.obs.Lower

mean lower width of the obtained confidence intervals
mean.Width.from.sm.obs.Upper

mean upper width of the obtained confidence intervals
Type.I.Error.Upper

Type I error rate from the upper side
Type.I.Error.Lower

Type I error rate from the lower side

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>); Keke Lai
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See Also

ss.aipe.sm

Examples

# Since 'true.sm' equals 'estimated.sm', this usage
# returns the results of a correctly specified situation.
# Note that 'G' should be large (10 is used to make the
# example run easily)
# Res.1 <- ss.aipe.sm.sensitivity(true.sm=10, estimated.sm=10,
# desired.width=.5, assurance=.95, conf.level=.95, G=10,
# print.iter=FALSE)

# Lists contained in Res.1.
# names(Res.1)

#Objects contained in the 'Results' lists.
# names(Res.1$Results)

#How many obtained full widths are narrower than the desired one?
# Res.1$Summary$Pct.Width.obs.NARROWER.than.desired

# True standardized mean difference is 10, but specified at 12.
# Change 'G' to some large number (e.g., G=20)
# Res.2 <- ss.aipe.sm.sensitivity(true.sm=10, estimated.sm=12,
# desired.width=.5, assurance=NULL, conf.level=.95, G=20)

# The effect of the misspecification on mean confidence intervals is:
# Res.2$Summary$mean.full.width
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ss.aipe.smd Sample size planning for the standardized mean difference from the
Accuracy in Parameter Estimation (AIPE) perspective

Description

A function to calculate the appropriate sample size for the standardized mean difference such that
the expected value of the confidence interval is sufficiently narrow, optionally with a degree.of.certainty.

Usage

ss.aipe.smd(delta, conf.level, width, which.width="Full",
degree.of.certainty=NULL, assurance=NULL, certainty=NULL, ...)

Arguments

delta the population value of the standardized mean difference

conf.level the desired degree of confidence (i.e., 1-Type I error rate)

width desired width of the specified (i.e., Full, Lower, and Upper widths) region of
the confidence interval

which.width the width that the width argument refers identifies the width of interest (i.e.,
Full, Lower, and Upper widths)

degree.of.certainty

parameter to ensure confidence interval width with a specified degree of cer-
tainty

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty

... for modifying parameters of functions this function calls upon

Value

Returns the necessary sample size per group in order to achieve the desired degree of accuracy (i.e.,
the sufficiently narrow confidence interval).

Warning

Finding sample size for lower and uppper confidence limits is approximate, but very close to being
exact. The pt() function is limited to accurate values when the the noncentral parameter is less
than 37.62.

Note

The function ss.aipe.smd is the preferred function, and is the one that is recommended for widespread
use. The functions ss.aipe.smd.lower, ss.aipe.smd.upper and ss.aipe.smd.full are called
from the ss.aipe.smd function.
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Author(s)
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See Also

smd, smd.c, ci.smd, ci.smd.c, conf.limits.nct, power.t.test, ss.aipe.smd.lower, ss.aipe.smd.upper,
ss.aipe.smd.full

Examples

# ss.aipe.smd(delta=.5, conf.level=.95, width=.30)
# ss.aipe.smd(delta=.5, conf.level=.95, width=.30, degree.of.certainty=.8)
# ss.aipe.smd(delta=.5, conf.level=.95, width=.30, degree.of.certainty=.95)

ss.aipe.smd.sensitivity

Sensitivity analysis for sample size given the Accuracy in Parameter
Estimation approach for the standardized mean difference.

Description

Performs sensitivity analysis for sample size determination for the standardized mean difference
given a population and a standardized mean difference. Allows one to determine the effect of being
wrong when estimating the population standardized mean difference in terms of the width of the
obtained (two-sided) confidence intervals.
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Usage

ss.aipe.smd.sensitivity(true.delta = NULL, estimated.delta = NULL,
desired.width = NULL, selected.n=NULL, assurance=NULL, certainty = NULL,
conf.level = 0.95, G = 10000, print.iter = TRUE, ...)

Arguments

true.delta population standardized mean difference
estimated.delta

estimated standardized mean difference; can be true.delta to perform stan-
dard simulations

desired.width describe full width for the confidence interval around the population standard-
ized mean difference

selected.n selected sample size to use in order to determine distributional properties of at a
given value of sample size

assurance parameter to ensure confidence interval width with a specified degree of cer-
tainty (must be NULL or between zero and unity)

certainty an alias for assurance

conf.level the desired degree of confidence (i.e., 1-Type I error rate).

G number of generations (i.e., replications) of the simulation

print.iter to print the current value of the iterations

... for modifying parameters of functions this function calls

Details

For sensitivity analysis when planning sample size given the desire to obtain narrow confidence
intervals for the population standardized mean difference. Given a population value and an esti-
mated value, one can determine the effects of incorrectly specifying the population standardized
mean difference (true.delta) on the obtained widths of the confidence intervals. Also, one can
evaluate the percent of the confidence intervals that are less than the desired width (especially when
modifying the certainty parameter); see ss.aipe.smd)

Alternatively, one can specify selected.n to determine the results at a particular sample size (when
doing this estimated.delta cannot be specified).

Value

Results list of the results in G-length vector form

Specifications specification of the function

Summary summary measures of some important descriptive statistics

d contained in Results list: vector of the observed d values

Full.Width contained in Results list: vector of
Width.from.d.Upper

contained in Results list: vector of the observed upper widths of the confidence
interval (upper limit minus observed standardized mean difference)
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Width.from.d.Lower

contained in Results list: vector of the observed lower widths of the confidence
interval (standardized mean difference minus lower limit)

Type.I.Error.Upper

contained in Results list: iterations where a Type I error occurred on the upper
end of the confidence interval

Type.I.Error.Lower

contained in Results list: iterations where a Type I error occurred on the lower
end of the confidence interval

Type.I.Error contained in Results list: iterations where a Type I error occurred

Upper.Limit contained in Results list: vector of the obtained upper limits from the simula-
tion

Low.Limit contained in Results list: vector of the obtained lower limits from the simula-
tion

replications contained in Specifications list: number of generations (i.e., replication) of
the simulation

true.delta contained in Specifications list: population value of the standardized mean
difference

estimated.delta

contained in Specifications list: value of the population (mis)specified for
purposes of sample size planning

desired.width contained in Specifications list: desired full width of the confidence interval
around the population standardized mean difference

certainty contained in Specifications list: desired degree of certainty that the obtained
confidence interval width is less than the value specified

n.j contained in Specifications list: sample size per group given the specifica-
tions

mean.full.width

contained in Summary list: mean width of the obtained confidence intervals
median.full.width

contained in Summary list: median width of the obtained confidence intervals

sd.full.width contained in Summary list: standard deviation of the obtained confidence inter-
vals

Pct.Less.Desired

contained in Summary list: Percent of the confidence widths less than the width
specified.

mean.Width.from.d.Lower

contained in Summary list:mean width of the lower portion of the confidence
interval (from d)

mean.Width.from.d.Upper

contained in Summary list:mean width of the upper portion of the confidence
interval (from d)

Type.I.Error.Upper

contained in Summary list: Type I error rate from the upper side
Type.I.Error.Lower

contained in Summary list: Type I error rate from the lower side
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Note

Returns three lists, where each list has multiple components.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References
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intervals that are based on central and noncentral distributions, Educational and Psychological Mea-
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Hedges, L. V. (1981). Distribution theory for Glass’s Estimator of effect size and related estimators.
Journal of Educational Statistics, 2, 107–128.

Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the stan-
dardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psycho-
logical Measurement, 65, 51–69.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no
significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ss.aipe.smd

Examples

# Since 'true.delta' equals 'estimated.delta', this usage
# returns the results of a correctly specified situation.
# Note that 'G' should be large (50 is used to make the example run easily)
# Res.1 <- ss.aipe.smd.sensitivity(true.delta=.5, estimated.delta=.5,
# desired.width=.30, certainty=NULL, conf.level=.95, G=50,
# print.iter=FALSE)

# Lists contained in Res.1.
# names(Res.1)

#Objects contained in the 'Results' lists.
# names(Res.1$Results)

#Extract d from the Results list of Res.1.
# d <- Res.1$Results$d

# hist(d)

# Pull out summary measures
# Res.1$Summary

# True standardized mean difference is .4, but specified at .5.
# Change 'G' to some large number (e.g., G=5,000)
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# Res.2 <- ss.aipe.smd.sensitivity(true.delta=.4, estimated.delta=.5,
# desired.width=.30, certainty=NULL, conf.level=.95, G=50,
# print.iter=FALSE)

# The effect of the misspecification on mean confidence intervals is:
# Res.2$Summary$mean.full.width

# True standardized mean difference is .5, but specified at .4.
# Res.3 <- ss.aipe.smd.sensitivity(true.delta=.5, estimated.delta=.4,
# desired.width=.30, certainty=NULL, conf.level=.95, G=50,
# print.iter=FALSE)

# The effect of the misspecification on mean confidence intervals is:
# Res.3$Summary$mean.full.width

ss.aipe.src sample size necessary for the accuracy in parameter estimation ap-
proach for a standardized regression coefficient of interest

Description

A function used to plan sample size from the accuracy in parameter estimation approach for a
standardized regression coefficient of interest given the input specification.

Usage

ss.aipe.src(Rho2.Y_X = NULL, Rho2.k_X.without.k = NULL, K = NULL,
beta.k = NULL, width, which.width = "Full", sigma.Y = 1, sigma.X.k = 1,
RHO.XX = NULL, Rho.YX = NULL, which.predictor = NULL,
alpha.lower = NULL, alpha.upper = NULL, conf.level = .95,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
Suppress.Statement = FALSE)

Arguments

Rho2.Y_X Population value of the squared multiple correlation coefficient
Rho2.k_X.without.k

Population value of the squared multiple correlation coefficient predicting the
kth predictor variable from the remaining p-1 predictor variables

K the number of predictor variables

beta.k the regression coefficient for the kth predictor variable (i.e., the predictor of
interest)

width the desired width of the confidence interval

which.width which width ("Full", "Lower", or "Upper") the width refers to (at present, only
"Full" can be specified)

sigma.Y the population standard deviation of Y (i.e., the dependent variables)
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sigma.X.k the population standard deviation of the kth X variable (i.e., the predictor vari-
able of interest)

RHO.XX Population correlation matrix for the p predictor variables

Rho.YX Population p length vector of correlation between the dependent variable (Y)
and the p independent variables

which.predictor

identifies which of the p predictors is of interest

alpha.lower Type I error rate for the lower confidence interval limit

alpha.upper Type I error rate for the upper confidence interval limit

conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error
rate)

degree.of.certainty

degree of certainty that the obtained confidence interval will be sufficiently
narrow, which yields an approximate sample size to be verified with function
ss.aipe.reg.coef.sensitivity to determine if it is appropriate.

assurance an alias for degree.of.certainty

certainty an alias for degree.of.certainty
Suppress.Statement

TRUE/FALSE statement whether or not a sentence describing the situation defined
is printed with the necessary sample size

Details

Not all of the arguments need to be specified, only those that provide all of the necessary information
so that the sample size can be determined for the conditions specified.

Value

Returns the necessary sample size in order for the goals of accuracy in parameter estimation to be
satisfied for the confidence interval for a particular regression coefficient given the input specifica-
tions.

Warning

As discussed in Kelley and Maxwell (2008), the sample size planning approach from the AIPE
perspective used in this function is only an approximation.

Note

This function calls upon ss.aipe.reg.coef in MBESS but has a different naming scheme. See
ss.aipe.reg.coef for more details.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)
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References

Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321.

Kelley, K. & Maxwell, S. E. (2008). Sample Size Planning with applications to multiple regression:
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See Also

ss.aipe.reg.coef.sensitivity, conf.limits.nct, ss.aipe.reg.coef, ss.aipe.rc

Examples

# Exchangable correlation structure
# Rho.YX <- c(.3, .3, .3, .3, .3)
# RHO.XX <- rbind(c(1, .5, .5, .5, .5), c(.5, 1, .5, .5, .5), c(.5, .5, 1, .5, .5),
# c(.5, .5, .5, 1, .5), c(.5, .5, .5, .5, 1))

# ss.aipe.src(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# Rho.YX=Rho.YX, which.predictor=1, conf.level=1-.05)

# ss.aipe.src(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# Rho.YX=Rho.YX, which.predictor=1, conf.level=1-.05, degree.of.certainty=.85)

ss.aipe.src.sensitivity

Sensitivity analysis for sample size planing from the Accuracy in Pa-
rameter Estimation Perspective for the standardized regression coeffi-
cient

Description

Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estima-
tion Perspective for the standardized regression coefficient.

Usage

ss.aipe.src.sensitivity(True.Var.Y = NULL, True.Cov.YX = NULL,
True.Cov.XX = NULL, Estimated.Var.Y = NULL, Estimated.Cov.YX = NULL,
Estimated.Cov.XX = NULL, Specified.N = NULL, which.predictor = 1,
w = NULL, Noncentral = TRUE, Standardize = TRUE, conf.level = 0.95,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
G = 1000, print.iter = TRUE)
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Arguments

True.Var.Y Population variance of the dependent variable (Y)
True.Cov.YX Population covariances vector between the p predictor variables and the depen-

dent variable (Y)
True.Cov.XX Population covariance matrix of the p predictor variables
Estimated.Var.Y

Estimated variance of the dependent variable (Y)
Estimated.Cov.YX

Estimated covariances vector between the p predictor variables and the depen-
dent variable (Y)

Estimated.Cov.XX

Estimated Population covariance matrix of the p predictor variables
Specified.N Directly specified sample size (instead of using Estimated.Rho.YX and Estimated.RHO.XX)
which.predictor

identifies which of the p predictors is of interest
w desired confidence interval width for the regression coefficient of interest
Noncentral specify with a TRUE or FALSE statement whether or not the noncentral approach

to sample size planning should be used
Standardize specify with a TRUE or FALSE statement whether or not the regression coefficient

will be standardized; default is TRUE
conf.level desired level of confidence for the computed interval (i.e., 1 - the Type I error

rate)
degree.of.certainty

degree of certainty that the obtained confidence interval will be sufficiently nar-
row

assurance an alias for degree.of.certainty
certainty an alias for degree.of.certainty
G the number of generations/replication of the simulation study within the function
print.iter specify with a TRUE/FALSE statement if the iteration number should be printed

as the simulation within the function runs

Details

Direct specification of True.Rho.YX and True.RHO.XX is necessary, even if one is interested in a
single regression coefficient, so that the covariance/correlation structure can be specified when the
simulation study within the function runs.

Value

Results a matrix containing the empirical results from each of the G replication of the
simulation

Specifications a list of the input specifications and the required sample size
Summary.of.Results

summary values for the results of the sensitivity analysis (simulation study)
given the input specification
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Note

Note that when True.Rho.YX=Estimated.Rho.YX and True.RHO.XX=Estimated.RHO.XX, the re-
sults are not literally from a sensitivity analysis, rather the function performs a standard simulation
study. A simulation study can be helpful in order to determine if the sample size procedure under
or overestimates necessary sample size.

See ss.aipe.reg.coef.sensitivity in MBESS for more details.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression
coefficients that are accurate, not simply significant.Psychological Methods, 8, 305–321.

See Also

ss.aipe.reg.coef.sensitivity, ss.aipe.rc.sensitivity,

ss.aipe.reg.coef, ci.reg.coef

ss.power.pcm Sample size planning for power for polynomial change models

Description

Returns power given the sample size, or sample size given the desired power, for polynomial change
models (currently only linear, that is, straight-line, change models)

Usage

ss.power.pcm(beta, tau, level.1.variance, frequency, duration, desired.power = NULL,
N = NULL, alpha.level = 0.05, standardized = TRUE, directional = FALSE)

Arguments

beta the level two regression coefficient for the group by time (linear) interaction;
where "X" is coded -.5 and .5 for the two groups.

tau the true variance of the individuals’ slopes
level.1.variance

level one variance

frequency frequency of measurements per unit of time duration of the study in the particu-
lar units (e.g., age, hours, grade level, years, etc.)

duration time in some number of units (e.g., years)

desired.power desired power
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N total sample size (one-half in each of the two groups)

alpha.level Type I error rate

standardized the standardized slope is the unstandardized slope divided by the square root of
tau, the variance of the unique effects for beta.

directional should a one (TRUE) or two (FALSE) tailed test be performed.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Raudenbush, S. W., & X-F., Liu. (2001). Effects of study duration, frequency of observation, and
sample size on power in studies of group differences in polynomial change. Psychological Methods,
6, 387–401.

Examples

# Example from Raudenbush and Liu (2001)
ss.power.pcm(beta=-.4, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
desired.power=.80, alpha.level=.05, standardized=TRUE, directional=FALSE)
ss.power.pcm(beta=-.4, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
N=238, alpha.level=.05, standardized=TRUE, directional=FALSE)

# The standardized effect size is obtained as beta/sqrt(tau): -.4/sqrt(.003) = -.0219.
# ss.power.pcm(beta=-.0219, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
# desired.power=.80, alpha.level=.05, standardized=FALSE, directional=FALSE)
ss.power.pcm(beta=-.0219, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
N=238, alpha.level=.05, standardized=FALSE, directional=FALSE)

ss.power.R2 Function to plan sample size so that the test of the squared multiple
correlation coefficient is sufficiently powerful.

Description

Function for determining the necessary sample size for the test of the squared multiple correlation
coefficient or for determining the statistical power given a specified sample size for the squared
multiple correlation coefficient in models where the regressors are regarded as fixed.

Usage

ss.power.R2(Population.R2 = NULL, alpha.level = 0.05, desired.power = 0.85,
p, Specified.N = NULL, Cohen.f2 = NULL, Null.R2 = 0,
Print.Progress = FALSE, ...)
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Arguments

Population.R2 Population squared multiple correlation coefficient

alpha.level Type I error rate

desired.power desired degree of statistical power

p the number of predictor variables

Specified.N the sample size used to calculate power (rather than determine necessary sample
size)

Cohen.f2 Cohen’s (1988) effect size for multiple regression: Population.R2/(1-Population.R2)

Null.R2 value of the null hypothesis that the squared multiple correlation will be evalu-
ated against (this will typically be zero)

Print.Progress if the progress of the iterative procedure is printed to the screen as the iterations
are occuring

... possible additional parameters for internal functions

Details

Determine the necessary sample size given a particular Population.R2, alpha.level, p, and
desired.power. Alternatively, given Population.R2, alpha.level, p, and Specified.N, the
function can be used to determine the statistical power.

Value

Sample.Size returns either Necessary.Sample.Size or Specified.Sample.Size, depend-
ing on if sample size is being determined for a desired degree of statistical power
analysis or if statistical power is being determined given a specified sample size,
respectively

Actual.Power Actual power of the situation described

Note

When determining sample size for a desired degree of power, there will always be a slightly larger
degree of actual power. This is the case because the algorithm employed determines sample size
until the actual power is no less than the desired power (given sample size is a whole number power
will almost certainly not be exactly the specified value). This is the same as other statistical power
procedures that return whole numbers for necessary sample size.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

See Also

ss.aipe.R2, ss.power.reg.coef, conf.limits.ncf
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Examples

# ss.power.R2(Population.R2=.5, alpha.level=.05, desired.power=.85, p=5)
# ss.power.R2(Cohen.f2=1, alpha.level=.05, desired.power=.85, p=5)
# ss.power.R2(Population.R2=.5, Specified.N=15, alpha.level=.05,
# desired.power=.85, p=5)
# ss.power.R2(Cohen.f2=1, Specified.N=15, alpha.level=.05, desired.power=.85, p=5)

ss.power.rc sample size for a targeted regression coefficient

Description

Determine the necessary sample size for a targeted regression coefficient or determine the degree of
power given a specified sample size

Usage

ss.power.rc(Rho2.Y_X = NULL, Rho2.Y_X.without.k = NULL, K = NULL,
desired.power = 0.85, alpha.level = 0.05, Directional = FALSE,
beta.k = NULL, sigma.X = NULL, sigma.Y = NULL,
Rho2.k_X.without.k = NULL, RHO.XX = NULL, Rho.YX = NULL,
which.predictor = NULL, Cohen.f2 = NULL, Specified.N = NULL,
Print.Progress = FALSE)

Arguments

Rho2.Y_X population squared multiple correlation coefficient predicting the dependent vari-
able (i.e., Y) from the p predictor variables (i.e., the X variables)

Rho2.Y_X.without.k

population squared multiple correlation coefficient predicting the dependent vari-
able (i.e., Y) from the K-1 predictor variables, where the one not used is the
predictor of interest

K number of predictor variables

desired.power desired degree of statistical power for the test of targeted regression coefficient

alpha.level Type I error rate

Directional whether or not a direction or a nondirectional test is to be used (usually directional=FALSE)

beta.k population value of the regression coefficient for the predictor of interest

sigma.X population standard deviation for the predictor variable of interest

sigma.Y population standard deviation for the outcome variable
Rho2.k_X.without.k

population squared multiple correlation coefficient predicting the predictor vari-
able of interest from the remaining K-1 predictor variables

RHO.XX population correlation matrix for the p predictor variables
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Rho.YX population vector of correlation coefficient between the p predictor variables and
the criterion variable

which.predictor

identifies the predictor of interest when RHO.XX and Rho.YX are specified

Cohen.f2 Cohen’s (1988) definition for an effect size for a targeted regression coefficient:
(Rho2.YX −Rho2.YX .without.j)/(1−Rho2.YX)

Specified.N sample size for which power should be evaluated

Print.Progress if the progress of the iterative procedure is printed to the screen as the iterations
are occurring

Details

Determines the necessary sample size given a desired level of statistical power. Alternatively, de-
termines the statistical power for a given a specified sample size. There are a number of ways that
the specification regarding the size of the regression coefficient can be entered. The most basic, and
often the simplest, is to specify Rho2.Y_X and Rho2.Y_X.without.k. See the examples section for
several options.

Value

Sample.Size either the necessary sample size or the specified sample size, depending if one
is interested in determining the necessary sample size given a desired degree of
statistical power or if one is interested in the determining the value of statistical
power given a specified sample size, respectively

Actual.Power Actual power of the situation described

Noncentral.t.Parm

value of the noncentral distribution for the appropriate t-distribution

Effect.Size.NC.t

effect size for the noncentral t-distribution; this is the square root of Cohen.f2,
because Cohen.f2 is the effect size using an F-distribution

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Maxwell, S. E. (2000). Sample size for multiple regression. Psychological Methods, 4, 434–458.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Erlbaum.

See Also

ss.aipe.reg.coef, ss.power.R2, conf.limits.ncf
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Examples

Cor.Mat <- rbind(
c(1.00, 0.53, 0.58, 0.60, 0.46, 0.66),
c(0.53, 1.00, 0.35, 0.07, 0.14, 0.43),
c(0.58, 0.35, 1.00, 0.18, 0.29, 0.50),
c(0.60, 0.07, 0.18, 1.00, 0.30, 0.26),
c(0.46, 0.14, 0.29, 0.30, 1.00, 0.30),
c(0.66, 0.43, 0.50, 0.26, 0.30, 1.00))

RHO.XX <- Cor.Mat[2:6,2:6]
Rho.YX <- Cor.Mat[1,2:6]

# Method 1
# ss.power.rc(Rho2.Y_X=0.7826786, Rho2.Y_X.without.k=0.7363697, K=5,
# alpha.level=.05, Directional=FALSE, desired.power=.80)

# Method 2
# ss.power.rc(alpha.level=.05, RHO.XX=RHO.XX, Rho.YX=Rho.YX,
# which.predictor=5, Directional=FALSE, desired.power=.80)

# Method 3
# Here, beta.j is the standardized regression coefficient. Had beta.j
# been the unstandardized regression coefficient, sigma.X and sigma.Y
# would have been the standard deviation for the
# X variable of interest and Y, respectively.
# ss.power.rc(Rho2.Y_X=0.7826786, Rho2.k_X.without.k=0.3652136,
# beta.k=0.2700964, K=5, alpha.level=.05, sigma.X=1, sigma.Y=1,
# Directional=FALSE, desired.power=.80)

# Method 4
# ss.power.rc(alpha.level=.05, Cohen.f2=0.2130898, K=5,
# Directional=FALSE, desired.power=.80)

# Power given a specified N and squared multiple correlation coefficients.
# ss.power.rc(Rho2.Y_X=0.7826786, Rho2.Y_X.without.k=0.7363697,
# Specified.N=25, K=5, alpha.level=.05, Directional=FALSE)

# Power given a specified N and effect size.
# ss.power.rc(alpha.level=.05, Cohen.f2=0.2130898, K=5, Specified.N=25,
# Directional=FALSE)

# Reproducing Maxwell's (2000, p. 445) Example
Cor.Mat.Maxwell <- rbind(
c(1.00, 0.35, 0.20, 0.20, 0.20, 0.20),
c(0.35, 1.00, 0.40, 0.40, 0.40, 0.40),
c(0.20, 0.40, 1.00, 0.45, 0.45, 0.45),
c(0.20, 0.40, 0.45, 1.00, 0.45, 0.45),
c(0.20, 0.40, 0.45, 0.45, 1.00, 0.45),
c(0.20, 0.40, 0.45, 0.45, 0.45, 1.00))

RHO.XX.Maxwell <- Cor.Mat.Maxwell[2:6,2:6]
Rho.YX.Maxwell <- Cor.Mat.Maxwell[1,2:6]
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R2.Maxwell <- Rho.YX.Maxwell

RHO.XX.Maxwell.no.1 <- Cor.Mat.Maxwell[3:6,3:6]
Rho.YX.Maxwell.no.1 <- Cor.Mat.Maxwell[1,3:6]
R2.Maxwell.no.1 <-
Rho.YX.Maxwell.no.1

# Note that Maxwell arrives at N=113, whereas this procedure arrives at 111.
# This seems to be the case becuase of rounding error in calculations
# and tables (Cohen, 1988) used. The present procedure is correct and
# contains no rounding error in the application of the method.
# ss.power.rc(Rho2.Y_X=R2.Maxwell, Rho2.Y_X.without.k=R2.Maxwell.no.1, K=5,
# alpha.level=.05, Directional=FALSE, desired.power=.80)

ss.power.reg.coef sample size for a targeted regression coefficient

Description

Determine the necessary sample size for a targeted regression coefficient or determine the degree of
power given a specified sample size

Usage

ss.power.reg.coef(Rho2.Y_X = NULL, Rho2.Y_X.without.j = NULL, p = NULL,
desired.power = 0.85, alpha.level = 0.05, Directional = FALSE,
beta.j = NULL, sigma.X = NULL, sigma.Y = NULL, Rho2.j_X.without.j = NULL,
RHO.XX = NULL, Rho.YX = NULL, which.predictor = NULL, Cohen.f2 = NULL,
Specified.N=NULL, Print.Progress = FALSE)

Arguments

Rho2.Y_X population squared multiple correlation coefficient predicting the dependent vari-
able (i.e., Y) from the p predictor variables (i.e., the X variables)

Rho2.Y_X.without.j

population squared multiple correlation coefficient predicting the dependent vari-
able (i.e., Y) from the p-1 predictor variables, where the one not used is the
predictor of interest

p number of predictor variables

desired.power desired degree of statistical power for the test of targeted regression coefficient

alpha.level Type I error rate

Directional whether or not a direction or a nondirectional test is to be used (usually directional=FALSE)

beta.j population value of the regression coefficient for the predictor of interest

sigma.X population standard deviation for the predictor variable of interest

sigma.Y population standard deviation for the outcome variable



170 ss.power.reg.coef

Rho2.j_X.without.j

population squared multiple correlation coefficient predicting the predictor vari-
able of interest from the remaining p-1 predictor variables

RHO.XX population correlation matrix for the p predictor variables

Rho.YX population vector of correlation coefficient between the p predictor variables and
the criterion variable

Cohen.f2 Cohen’s (1988) definition for an effect size for a targeted regression coefficient:
(Rho2.Y_X-Rho2.Y_X.without.j)/(1-Rho2.Y_X)

which.predictor

identifies the predictor of interest when RHO.XX and Rho.YX are specified

Specified.N sample size for which power should be evaluated

Print.Progress if the progress of the iterative procedure is printed to the screen as the iterations
are occurring

Details

Determines the necessary sample size given a desired level of statistical power. Alternatively, de-
termines the statistical power for a given a specified sample size. There are a number of ways that
the specification regarding the size of the regression coefficient can be entered. The most basic, and
often the simplest, is to specify Rho2.Y_X and Rho2.Y_X.without.j. See the examples section for
several options.

Value

Sample.Size either the necessary sample size or the specified sample size, depending if one
is interested in determining the necessary sample size given a desired degree of
statistical power or if one is interested in the determining the value of statistical
power given a specified sample size, respectively

Actual.Power Actual power of the situation described
Noncentral.t.Parm

value of the noncentral distribution for the appropriate t-distribution
Effect.Size.NC.t

effect size for the noncentral t-distribution; this is the square root of Cohen.f2,
because Cohen.f2 is the effect size using an F-distribution

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Erlbaum.

Kelley, K. & Maxwell, S. E. (2008). Sample Size Planning with applications to multiple regression:
Power and accuracy for omnibus and targeted effects. In P. Alasuuta, J. Brannen, & L. Bickman
(Eds.), The Sage handbook of social research methods (pp. 166–192). Newbury Park, CA: Sage.

Maxwell, S. E. (2000). Sample size for multiple regression. Psychological Methods, 4, 434–458.
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See Also

ss.aipe.reg.coef, ss.power.R2, conf.limits.ncf

Examples

Cor.Mat <- rbind(
c(1.00, 0.53, 0.58, 0.60, 0.46, 0.66),
c(0.53, 1.00, 0.35, 0.07, 0.14, 0.43),
c(0.58, 0.35, 1.00, 0.18, 0.29, 0.50),
c(0.60, 0.07, 0.18, 1.00, 0.30, 0.26),
c(0.46, 0.14, 0.29, 0.30, 1.00, 0.30),
c(0.66, 0.43, 0.50, 0.26, 0.30, 1.00))

RHO.XX <- Cor.Mat[2:6,2:6]
Rho.YX <- Cor.Mat[1,2:6]

# Method 1
# ss.power.reg.coef(Rho2.Y_X=0.7826786, Rho2.Y_X.without.j=0.7363697, p=5,
# alpha.level=.05, Directional=FALSE, desired.power=.80)

# Method 2
# ss.power.reg.coef(alpha.level=.05, RHO.XX=RHO.XX, Rho.YX=Rho.YX,
# which.predictor=5,
# Directional=FALSE, desired.power=.80)

# Method 3
# Here, beta.j is the standardized regression coefficient. Had beta.j
# been the unstandardized regression coefficient, sigma.X and sigma.Y
# would have been the standard deviation for the
# X variable of interest and Y, respectively.
# ss.power.reg.coef(Rho2.Y_X=0.7826786, Rho2.j_X.without.j=0.3652136,
# beta.j=0.2700964,
# p=5, alpha.level=.05, sigma.X=1, sigma.Y=1, Directional=FALSE,
# desired.power=.80)

# Method 4
# ss.power.reg.coef(alpha.level=.05, Cohen.f2=0.2130898, p=5,
# Directional=FALSE,
# desired.power=.80)

# Power given a specified N and squared multiple correlation coefficients.
# ss.power.reg.coef(Rho2.Y_X=0.7826786, Rho2.Y_X.without.j=0.7363697,
# Specified.N=25,
# p=5, alpha.level=.05, Directional=FALSE)

# Power given a specified N and effect size.
# ss.power.reg.coef(alpha.level=.05, Cohen.f2=0.2130898, p=5, Specified.N=25,
# Directional=FALSE)

# Reproducing Maxwell's (2000, p. 445) Example
Cor.Mat.Maxwell <- rbind(
c(1.00, 0.35, 0.20, 0.20, 0.20, 0.20),
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c(0.35, 1.00, 0.40, 0.40, 0.40, 0.40),
c(0.20, 0.40, 1.00, 0.45, 0.45, 0.45),
c(0.20, 0.40, 0.45, 1.00, 0.45, 0.45),
c(0.20, 0.40, 0.45, 0.45, 1.00, 0.45),
c(0.20, 0.40, 0.45, 0.45, 0.45, 1.00))

RHO.XX.Maxwell <- Cor.Mat.Maxwell[2:6,2:6]
Rho.YX.Maxwell <- Cor.Mat.Maxwell[1,2:6]
R2.Maxwell <- Rho.YX.Maxwell

RHO.XX.Maxwell.no.1 <- Cor.Mat.Maxwell[3:6,3:6]
Rho.YX.Maxwell.no.1 <- Cor.Mat.Maxwell[1,3:6]
R2.Maxwell.no.1 <-
Rho.YX.Maxwell.no.1

# Note that Maxwell arrives at N=113, whereas this procedure arrives at 111.
# This seems to be the case becuase of rounding error in calculations
# in Cohen (1988)'s tables. The present procedure is correct and contains no
# rounding error
# in the application of the method.
# ss.power.reg.coef(Rho2.Y_X=R2.Maxwell,
# Rho2.Y_X.without.j=R2.Maxwell.no.1, p=5,
# alpha.level=.05, Directional=FALSE, desired.power=.80)

ss.power.sem Sample size planning for structural equation modeling from the power
analysis perspective

Description

Calculate the necessary sample size for an SEM study, so as to have enough power to reject the null
hypothesis that (a) the model has perfect fit, or (b) the difference in fit between two nested models
equal some specified amount.

Usage

ss.power.sem(F.ML = NULL, df = NULL, RMSEA.null = NULL, RMSEA.true = NULL,
F.full = NULL, F.res = NULL, RMSEA.full = NULL, RMSEA.res = NULL,
df.full = NULL, df.res = NULL, alpha = 0.05, power = 0.8)

Arguments

F.ML The true maximum likelihood fit function value in the population for the model
of interest. Leave this argument NULL if you are doing nested model signifi-
cance tests.

df The degrees of freedom of the model of interest. Leave this argument NULL if
you are doing nested model significance tests.
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RMSEA.null The model’s population RMSEA under the null hypothesis. Leave this argument
NULL if you are doing nested model significance tests.

RMSEA.true The model’s population RMSEA under the alternative hypothesis. This should
be the model’s true population RMSEA value. Leave this argument NULL if
you are doing nested model significance tests.

F.full The maximum likelihood fit function value for the full model.

F.res The maximum likelihood fit function value for the restricted model.

RMSEA.full The population RMSEA value for the full model.

RMSEA.res The population RMSEA value for the restricted model.

df.full The degrees of freedom for the full model.

df.res The degrees of freedom for the restricted model.

alpha The Type I error rate.

power The desired power.

Author(s)

Keke Lai (University of California - Merced)

t.and.smd.conversion Conversion functions for noncentral t-distribution

Description

Functions useful for converting a standardized mean difference to a noncentrality parameter, and
vice versa.

Usage

lambda2delta(lambda, n.1, n.2)
delta2lambda(delta, n.1, n.2)

Arguments

lambda noncentral value from a t-distribution

delta population value of the standardized mean difference

n.1 sample size in group 1

n.2 sample size in group 2

Details

Although lambda is the population noncentral value, an estimate of it is the observed value of a t-
statistic. Likewise, delta can be estimated as the observed standardized mean difference. Thus, the
observed standardized mean difference can be converted to the observed t-value. These functions
are especially helpful in the context of forming confidence intervals for the population standardized
mean difference.
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Value

Either the value of delta given lambda or lambda given delta (and the per group sample sizes).

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

See Also

smd, ci.smd, ss.aipe.smd

Examples

lambda2delta(lambda=2, n.1=113, n.2=113)
delta2lambda(delta=.266076, n.1=113, n.2=113)

theta.2.Sigma.theta Compute the model-implied covariance matrix of an SEM model

Description

Obtain the model-implied covariance matrix of manifest variables given a structural equation model
and its model parameters

Usage

theta.2.Sigma.theta(model, theta, latent.vars)

Arguments

model an RAM (reticular action model; e.g., McArdle & McDonald, 1984) specifica-
tion of a structural equation model, and should be of class mod. The model is
specified in the same manner as does the sem package; see sem and specify.model
for detailed documentations about model specifications in the RAM notation.

theta a vector containing the model parameters. The names of the elements in theta
must be the same as the names of the model parameters specified in model.

latent.vars a vector containing the names of the latent variables

Details

Part of the codes in this function are adapted from the function sem in the sem R package (Fox,
2006). This function uses the same notation to specify SEM models as does sem. Please refer
to sem and the example below for more detailed documentation about model specification and the
RAM notation. For technical discussion on how to obtain the model implied covariance matrix in
the RAM notation given model parameters, see McArdle and McDonald (1984).
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Value

ram RAM matrix, including any rows generated for covariances among fixed exoge-
nous variables; column 5 includes computed start values.

t number of model parameters (i.e., the length of theta)

m total number of variables (i.e., manifest variables plus latent variables)

n number of observed variables

all.vars the names of all variables (i.e., manifest plus latent)

obs.vars the names of observed variables

latent.vars the names of latent variables

pars the names of model parameters

P the P matrix in RAM notation

A the A matrix in RAM notation

Sigma.theta the model implied covariance matrix

Author(s)

Keke Lai (University of California–Merced)

References

Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Mod-
eling, 13, 465–486.

Lai, K., & Kelley, K. (in press). Accuracy in parameter estimation for targeted effects in structural
equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model.
British Journal of Mathematical and Statistical Psychology, 37, 234–251.

See Also

sem; specify.model

Examples

## Not run:
# to obtain the model implied covariance matrix of Model 2 in the simulation
# study in Lai and Kelley (2010), one can use the present function in the
# following manner.

library(sem)

# specify a model object in the RAM notation
model.2<-specify.model()
xi1 -> y1, lambda1, 1
xi1 -> y2, NA, 1
xi1 -> y3, lambda2, 1
xi1 -> y4, lambda3, 0.3
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eta1 -> y4, lambda4, 1
eta1 -> y5, NA, 1
eta1 -> y6, lambda5, 1
eta1 -> y7, lambda6, 0.3
eta2 -> y6, lambda7, 0.3
eta2 -> y7, lambda8, 1
eta2 -> y8, NA, 1
eta2 -> y9, lambda9, 1
xi1 -> eta1, gamma11, 0.6
eta1 -> eta2, beta21, 0.6
xi1 <-> xi1, phi11, 0.49
eta1 <-> eta1, psi11, 0.3136
eta2 <-> eta2, psi22, 0.3136
y1 <-> y1, delta1, 0.51
y2 <-> y2, delta2, 0.51
y3 <-> y3, delta3, 0.51
y4 <-> y4, delta4, 0.2895
y5 <-> y5, delta5, 0.51
y6 <-> y6, delta6, 0.2895
y7 <-> y7, delta7, 0.2895
y8 <-> y8, delta8, 0.51
y9 <-> y9, delta9, 0.51

# to inspect the specified model
model.2

theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)

names(theta) <- c("lambda1","lambda2","lambda3",
"lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
"gamma11", "beta21",
"phi11", "psi11", "psi22",
"delta1","delta2","delta3","delta4","delta5","delta6","delta7",
"delta8","delta9")

res<-theta.2.Sigma.theta(model=model.2, theta=theta,
latent.vars=c("xi1", "eta1","eta2"))

Sigma.theta <- res$Sigma.theta

## End(Not run)

transform_r.Z Transform a correlation coefficient (r) into the scale of Fisher’s Zˆ′

Description

This function transform a correlation coefficient into the scale of Fisher’s Z ′.
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Usage

transform_r.Z(r)

Arguments

r correlation coefficient (between two variables)

Details

This function is typically used in the context of forming a confidence interval for a population cor-
relation coefficient. Note that, in that situation, the two variables are assumed to follow a bivariate
normal distribution (e.g., Hays, 1994).

Value

returns a value on the scale of Fisher’s Z ′, also called Fisher’s Z, from a given correlation value.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and
implementation. Journal of Statistical Software, 20(8), 1–24.

Hays, W. L. (1994). Statistics (5th ed). Fort Worth, TX: Harcourt Brace College Publishers)

See Also

transform_Z.r, ci.cc

Examples

# From Hays (1994, pp. 649--650)
transform_r.Z(.35)

transform_Z.r Transform Fischer’s Z into the scale of a correlation coefficient

Description

A function to transform Fischer’s Z ′ into the scale of a correlation coefficient.

Usage

transform_Z.r(Z)
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Arguments

Z Value of Fisher’s Z ′ (also called Fisher’s Z).

Details

This function is typically used in the context of forming a confidence interval for a population cor-
relation coefficient. Note that, in that situation, the two variables are assumed to follow a bivariate
normal distribution (e.g., Hays, 1994).

Value

returns a value on the scale of a correlation coefficieint from a value of Fisher’s Z.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and
implementation. Journal of Statistical Software, 20(8), 1–24.

Hays, W. L. (1994). Statistics (5th ed). Fort Worth, TX: Harcourt Brace College Publishers)

See Also

transform_r.Z, ci.cc

Examples

# From Hays (1994, pp. 649--650)
transform_Z.r(0.3654438)

upsilon This function implements the upsilon effect size statistic as described
in Lachowicz, Preacher, & Kelley (2018) for mediation.

Description

This function implements the upsilon effect size statistic as described in Lachowicz, Preacher, &
Kelley (2018) for mediation.

Usage

upsilon(x, mediator, dv, conf.level = 0.95, bootstrap = TRUE,
bootstrap.package = "lavaan", bootstrap.type="ordinary", B = 1000,
boot.data.out=FALSE, ...)
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Arguments

x x is the independent variable.
mediator mediator is the mediator variable.
dv dv is the outcome or dependent variable.
conf.level conf.level is the desired confidence coefficient (i.e., the complement of the

Type I error rate).
bootstrap TRUE or FALSE regarding if a bootstrap confidence interval should be constructed
bootstrap.package

The package that will be used for bootstrapping, either lavaan or boot (default
is lavaan).

bootstrap.type The type of bootstrap confidence interval. If bootstrap.package = ``lavaan'',
this can be either "ordinary" or"bollen.stine" (default is "ordinary"). If
bootstrap.package = ``boot'', "normal", "basic", "student", "perc", or
"bca" CIs (default is "perc".

B The number of bootstrap replications (1000 is default)
boot.data.out TRUE or FALSE regarding if bootstrap data is returned with function output (only

available if bootstrap.boot = TRUE).
... Allows specifictions for functions that are used within this function.

Value

Returns the value of the effect size upsilon for a simple mediation model.

Note

Note that this function overcomes some limitations of other effects for mediation models, such as
those discussed in Preacher and Kelley (2012) and Wen and Fan (2015) and that was developed and
delineated in Lachowicz, Preacher, and Kelley, K (2018). This function can only be used for simple
mediation models at this time. Note that upsilon() was included in the mediation() function but
it has become it’s own function to provide more flexibility.

Author(s)

Lachowicz Mark J. Lachowicz (Vanderbilt University; <Mark.J.Lachowicz@Vanderbilt.edu>)

References

Lachowicz, M. J., Preacher, K. J., & Kelley, K. (2018). A novel measure of effect size for mediation
analysis. Psychological Methods, 23, 244–261.

Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: quantitative
strategies for communicating indirect effects. Psychological Methods, 16, 93–115.

Wen, Z., & Fan, X. (2015). Monotonicity of effect sizes: Questioning kappa-squared as mediation
effect size measure. Psychological Methods, 20, 193–203.

See Also

mediation lavaan boot
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var.ete The Variance of the Estimated Treatment Effect at Selected Covariate
Values in a Two-group ANCOVA.

Description

Calculate the variance or an estimated variance of the estimated treatment effect at selected covariate
values assuming heterogeneity of regression and a random covariate in a two-group ANCOVA.

Usage

var.ete(sigma2, sigmaz2, n1, n2, beta1, beta2, muz = 0, c = 0, type = "sample",
covariate.value = "sample.mean")

Arguments

sigma2 Variance of the residual errors if ’type = population’ and sample variance of the
residual errors if ’type = sample’

sigmaz2 Variance of the random covariate if ’type = population’ and sample variance of
the random covariate if ’type = sample’

n1 Sample size of group 1

n2 Sample size of group 2

beta1 Slope of the random covariate for group 1 if ’type = population’ and estimated
slope of the random covariate for group 1 if ’type = sample’

beta2 Slope of the random covariate for group 2 if ’type = population’ and estimated
slope of the random covariate for group 2 if ’type = sample’

muz Population mean of the random covariate if ’type = population’ and sample mean
of the random covariate if ’type = sample’

c Fixed value where the treatment effect is assessed

type The type of variance formula: ’population’ refers to the variance of the esti-
mated treatment effect using population slopes and variances; ’sample’refers to
an unbiased estimate of the variance using sample slopes and variances

covariate.value

The covariate value is chosen at the sample grand mean if ’covariate.value =
sample.mean’, at the sample grand mean plus or minus one sample standard
deviation if ’covariate.value = SD’, and at a fixed value if ’covariate.value =
fixed’

Value

The function yields the variance of the estimated treatment effect for the specified input values.

Author(s)

Li Li (University of New Mexico; <llis@unm.edu>)
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References

Maxwell, S. E., Delaney, H. D., & Kelley, K. (2018). Designing experiments and analyzing data:
A model comparison perspective. New York: Routledge.

Li, L., McLouth, C. J., and Delaney, H. D. (submitted). Analysis of Covariance with Heterogeneity
of Regression and a Random Covariate: The Variance of the Estimated Treatment Effect at Selected
Covariate Values.

Examples

# Pygmalion in the Classroom: Teacher Expectation and Pupils' Intellectual Development.
# This dataset has been used to illustrate heterogeneity of regression
# by Maxwell, Delaney, and Kelley (2018).
nA <- 64
nB <- 246
muz <- 0
sigma2 <- 175.3251
sigmaz2 <- 348.9099
betaA <- 0.96895
betaB <- 0.77799
var.ete(sigma2=sigma2, sigmaz2=sigmaz2, n1=nA, n2=nB, beta1=betaA, beta2=betaB,
type="sample", covariate.value = "sample.mean")
var.ete(sigma2=sigma2, sigmaz2=sigmaz2, n1=nA, n2=nB, beta1=betaA, beta2=betaB,
type="sample", covariate.value = "SD")
var.ete(sigma2=sigma2, sigmaz2=sigmaz2, n1=nA, n2=nB, beta1=betaA, beta2=betaB,
c = 4.2631, muz=muz, type="sample",covariate.value = "fixed")

Variance.R2 Variance of squared multiple correlation coefficient

Description

Function to determine the variance of the squared multiple correlation coefficient given the popula-
tion squared multiple correlation coefficient, sample size, and the number of predictors.

Usage

Variance.R2(Population.R2, N, p)

Arguments

Population.R2 population squared multiple correlation coefficient

N sample size

p the number of predictor variables

Details

Uses the hypergeometric function as discussed in and section 28 of Stuart, Ord, and Arnold (1999)
in order to obtain the correct value for the variance of the squared multiple correlation coefficient.
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Value

Returns the variance of the of the squared multiple correlation coefficient.

Note

Uses package gsl and its hyperg_2F1 function.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

References

Stuart, A., Ord, J. K., & Arnold, S. (1999). Kendall’s advanced theory of statistics: Classical
inference and the linear model (Volume 2A, 2nd Edition). New York, NY: Oxford University Press.

See Also

Expected.R2, ci.R2, ss.aipe.R2

Examples

# library(gsl)
# Variance.R2(.5, 10, 5)
# Variance.R2(.5, 25, 5)
# Variance.R2(.5, 50, 5)
# Variance.R2(.5, 100, 5)

verify.ss.aipe.R2 Internal MBESS function for verifying the sample size in ss.aipe.R2

Description

Internal function called upon by ss.aipe.R2 when verify.ss=TRUE. This function then calls upon
ss.aipe.R2.sensitivity for the simulation study.

Usage

verify.ss.aipe.R2(Population.R2 = NULL, conf.level = 0.95, width = NULL,
Random.Predictors = TRUE, which.width = "Full", p = NULL, n = NULL,
degree.of.certainty = NULL, g = 500, G = 10000, print.iter=FALSE, ...)
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Arguments

Population.R2 value of the population multiple correlation coefficient
conf.level confidence interval level (e.g., .95, .99, .90); 1-Type I error rate
width width of the confidence interval (see which.width)
Random.Predictors

whether or not the predictor variables are random (set to TRUE) or are fixed (set
to FALSE)

which.width defines the width that width refers to
p the number of predictor variables
n starting sample size (i.e., from ss.aipe.R2)
degree.of.certainty

value with which confidence can be placed that describes the likelihood of ob-
taining a confidence interval less than the value specified (e.g., .80, .90, .95)

g simulations for the preliminary sample size (much smaller than G)
G number of replications for the actual Monte Carlo simulation (should be large)
print.iter specify whether or not the internal iterations should be printed
... additional arguments passed to internal functions

Details

This function is internal to MBESS and is called upon when verify.ss=TRUE in the ss.aipe.R2
function. Although users can use verify.ss.aipe.R2 directly, it is not recommended.

Value

Returns the exact (provided G is large enough) sample size necessary to satisfy the conditions spec-
ified.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>)

vit Visualize individual trajectories

Description

A function to help visualize individual trajectories in a longitudinal (i.e., analysis of change) context.

Usage

vit(id = "", occasion = "", score = "", Data = NULL, group = NULL,
subset.ids = NULL, pct.rand = NULL, number.rand = NULL,
All.in.One = TRUE, ylab = NULL, xlab = NULL, same.scales = TRUE,
plot.points = TRUE, save.pdf = FALSE, save.eps = FALSE,
save.jpg = FALSE, file = "", layout = c(3, 3), col = NULL,
pch = 16, cex = 0.7, ...)
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Arguments

id string variable of the column name of id

occasion string variable of the column name of time variable

score string variable of the column name where the score (i.e., dependent variable) is
located

Data data set with named column variables (see above)

group if plotting parameters should be conditional on group membership

subset.ids id values for a selected subset of individuals

pct.rand percentage of random trajectories to be plotted

number.rand number of random trajectories to be plotted

All.in.One should trajectories be in a single or multiple plots

ylab label for the ordinate (i.e., y-axis; see par)

xlab label for the abscissa (i.e., x-axis; see par)

same.scales should the y-axes have the same scales

plot.points should the points be plotted

save.pdf save a pdf file

save.eps save a postscript file

save.jpg save a jpg file

file file name and file path for the graph(s) to save, if file="" a file would be saved
in the current working directory

layout define the per-page layout when All.in.One=FALSE

col color(s) of the line(s) and points

pch plotting character(s); see par

cex size of the points (1 is the R default; see par)

... optional plotting specifications

Details

This function makes visualizing individual trajectories simple. Data should be in the "univariate
format" (i.e., the same format as lmer and nlme data.)

Value

Returns a plot of individual trajectories with the specifications provided.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>) and Po-Ju Wu (Indiana University)

See Also

par, nlme, vit.fitted,
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Examples

## Not run:
data(Gardner.LD)

# Although many options are possible, a simple call to
# 'vit' is of the form:
# vit(id="ID", occasion= "Trial", score= "Score", Data=Gardner.LD)

# Now color is conditional on group membership.
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# group="Group")

# Now randomly selects 50
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# pct.rand=50, group="Group")

# Specified individuals are plotted (by group)
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# subset.ids=c(1, 4, 8, 13, 17, 21), group="Group")

# Now colors for groups are changed .
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# group="Group",subset.ids=c(1, 4, 8, 13, 17, 21), col=c("Green", "Blue"))

# Now each individual specified is plotted separately.
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# group="Group",subset.ids=c(1, 4, 8, 13, 17, 21), col=c("Green", "Blue"),
# All.in.One=FALSE)

## End(Not run)

vit.fitted Visualize individual trajectories with fitted curve and quality of fit

Description

A function to help visualize individual trajectories in a longitudinal (i.e., analysis of change) context
with fitted curve and quality of fit after analyzing the data with lme, lmer, or nlme function.

Usage

vit.fitted(fit.Model, layout = c(3, 3), ylab = "", xlab = "",
pct.rand = NULL, number.rand = NULL, subset.ids = NULL,
same.scales = TRUE, save.pdf = FALSE, save.eps = FALSE,
save.jpg = FALSE, file = "", ...)
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Arguments

fit.Model lme, nlme object produced by nlme package or lmer object produced by lme4
package

layout define the per-page layout when All.in.One=FALSE

ylab label for the ordinate (i.e., y-axis; see par)

xlab label for the abscissa (i.e., x-axis; see par)

pct.rand percentage of random trajectories to be plotted

number.rand number of random trajectories to be plotted

subset.ids id values for a selected subset of individuals to be plotted

same.scales should the y-axes have the same scales

save.pdf save a pdf file

save.eps save a postscript file

save.jpg save a jpg file

file file name and file path for the graph(s) to save, if file="" a file would be saved
in the current working directory

... optional plotting specifications

Details

This function uses the fitted model from nlme and lme functions in nlme package, and lmer function
in lme4 package. It returns a set of plots of individual observed data, the fitted curves and the quality
of fit.

Author(s)

Ken Kelley (University of Notre Dame; <KKelley@ND.Edu>) and Po-Ju Wu (Indiana University;
<pojwu@indiana.edu>)

See Also

par, nlme, lme4, lme, lmer, vit.fitted

Examples

## Not run:
# Note that the following example works fine in R (<2.7.0), but not in
# the development version of R-2.7.0 (the cause can be either in this
# function or in the R program)

# data(Gardner.LD)
# library(nlme)
# Full.grouped.Gardner.LD <- groupedData(Score ~ Trial|ID, data=Gardner.LD, order.groups=FALSE)

# Examination of the plot reveals that the logistic change model does not adequately describe
# the trajectories of individuals 6 and 19 (a negative exponential change model would be
# more appropriate). Thus we remove these two subjects.
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# grouped.Gardner.LD <- Full.grouped.Gardner.LD[!(Full.grouped.Gardner.LD["ID"]==6 |
# Full.grouped.Gardner.LD["ID"]==19),]

# G.L.nlsList<- nlsList(SSlogis,grouped.Gardner.LD)
# G.L.nlme <- nlme(G.L.nlsList)
# to visualize individual trajectories: vit.fitted(G.L.nlme)
# plot 50 percent random trajectories: vit.fitted(G.L.nlme, pct.rand = 50)

## End(Not run)
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