Package ‘MicrobiomeStat’

January 9, 2026
Type Package
Title Statistical Methods for Microbiome Compositional Data
Version 1.3
Date 2026-01-05

Author Xianyang Zhang [aut],
Jun Chen [aut, cre],
Huijuan Zhou [ctb],
Linsui Deng [ctb]

Maintainer Jun Chen <chen. jun2@mayo.edu>

Description A suite of methods for powerful and robust microbiome data analysis addressing zero-
inflation, phylogenetic structure and compositional effects. Includes the LinDA method for dif-
ferential abundance analysis (Zhou et al. (2022)<doi:10.1186/s13059-022-02655-
5>), the BMDD (Bimodal Dirichlet Distribution) method for accurate modeling and imputa-
tion of zero-inflated microbiome sequenc-
ing data (Zhou et al. (2025)<doi:10.1371/journal.pcbi.1013124>) and composi-
tional sparse CCA methods for microbiome multi-omics data integra-
tion (Deng et al. (2024) <doi:10.3389/fgene.2024.1489694>).

Depends R (>=3.5.0)

Imports ggplot2, matrixStats, parallel, stats, utils, Matrix, statmod,
MASS, ggrepel, ImerTest, foreach, modeest, dplyr, mirMBO, Rcpp,
ParamHelpers, smoof, lhs, mlr, BBmisc

LinkingTo Rcpp, ReppArmadillo
Suggests DiceKriging, randomForest
NeedsCompilation yes

SystemRequirements NLopt library (optional, for high-performance BMDD
mode)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Repository CRAN

Date/Publication 2026-01-09 00:00:02 UTC

https://doi.org/10.1186/s13059-022-02655-5
https://doi.org/10.1186/s13059-022-02655-5
https://doi.org/10.1371/journal.pcbi.1013124
https://doi.org/10.3389/fgene.2024.1489694

2 bmdd

Contents
bmdd 2
bmddmnlopt 5
CSCCA .+ v v v v e e e e e e e s 6
cscca.CV . s 8
DGP_OC e 10
Linda e e 11
linda.plot 15
linda.wald.test e e 17
SMOKELS . . . o v o o e e e 19

Index 20

bmdd Bimodal Dirichlet Distribution Estimation
Description

Estimates parameters of the bimodal Dirichlet distribution using a variational EM algorithm. Auto-
matically selects the optimal implementation: high-performance C++ (NLopt) when possible, or R

when covariates are needed.

Usage

bmdd(W, type = c("count”, "proportion"),
Z = NULL, formula.Z = NULL, U = NULL, formula.U = NULL,
Z.standardizing = TRUE, U.standardizing = TRUE,
alp.eta = FALSE, alp.kap = FALSE,
pi.xi = FALSE, pi.zeta = FALSE,
para.alp.init = NULL, para.pi.init = NULL, gam.init = NULL,
iterlim = 500, tol = 1e-6, trace = FALSE,
method = c("auto”, "nlopt”, "R"),
inner.loop = TRUE, inner.iterlim = 20, inner.tol = le-6,
alp.iterlim = 100, alp.tol = T1e-6,
alp.min = 1e-3, alp.max = 1e3, ...)

Arguments
W Matrix of observed data (m taxa x n samples)
type Data type: "count" or "proportion"
yA Optional matrix of covariates for alpha (forces R implementation)
formula.Zz Optional formula for Z covariates
u Optional matrix of covariates for pi (forces R implementation)
formula.U Optional formula for U covariates

Z.standardizing
Standardize Z covariates (default TRUE)

bmdd

U.standardizing

alp.eta
alp.kap

pi.xi

pi.zeta
para.alp.init
para.pi.init
gam.init
iterlim

tol

trace

method
inner.loop
inner.iterlim
inner.tol
alp.iterlim
alp.tol
alp.min

alp.max

Details

Standardize U covariates (default TRUE)

Model alphaO as function of Z (default FALSE)
Model alphal as function of Z (default FALSE)
Model pi as function of U (default FALSE)

Model pi variance as function of U (default FALSE)
Initial alpha values

Initial pi values

Initial gamma values

Maximum iterations (default 500)

Convergence tolerance (default 1e-6)

Print progress (default FALSE)

Force method: "auto", "nlopt", or "R" (default "auto")
Use inner loop for NLopt (default TRUE)

Inner loop max iterations (default 20)

Inner loop tolerance (default 1e-6)

Alpha optimization iterations (default 100)

Alpha tolerance (default 1e-6)

Minimum alpha (default 1e-3)

Maximum alpha (default 1e3)

Additional arguments (ignored)

Automatically chooses best implementation:

* NLopt C++: When no covariates. 50-90x faster using L-BFGS-B with analytical gradients.
Scientifically equivalent to R (r > 0.999).

* R: When covariates needed or explicitly requested. Supports full covariate modeling.

Requires NLopt library for high-performance mode:

¢ macOS: brew install nlopt

e Linux: sudo apt-get install libnlopt-dev

Refer to https://github.com/zhouhj1994/BMDD for detailed examples about zero imputation
and posterior sample generation.

https://github.com/zhouhj1994/BMDD

Value

A list containing:

gamma

pi

beta
alphao
alphal
converge
iter

method

References

bmdd

Estimated gamma parameters (bimodality indicators)
Estimated pi parameters (mixing proportions)
Estimated posterior Dirichlet parameters

Estimated alpha0O parameters (mode 0)

Estimated alphal parameters (mode 1)

Logical indicating convergence

Number of iterations

Method used: "nlopt" or "R"

Zhou, H., Chen, J., & Zhang, X. (2025). BMDD: A probabilistic framework for accurate imputation
of zero-inflated microbiome sequencing data. PLoOS Computational Biology, 21(10), e1013124.

Examples

Not run:
Simulate data

m <- 100 # taxa

n <- 50 # samples
W <- matrix(rpois(mxn, 100), m, n)

Auto-select method (uses NLopt for speed)
result <- bmdd(W, type = "count")

Access results
head(result$beta)

Posterior parameters

head(result$gamma) # Bimodality indicators

result$method

Shows which method was used

Force specific method
result_nlopt <- bmdd(W, method = "nlopt”) # Force NLopt
result_r <- bmdd(W, method = "R") # Force R

With covariates (automatically uses R)
Z <- matrix(rnorm(m * 2), m, 2)
result_cov <- bmdd(W, Z = Z, alp.eta = TRUE)

End(Not run)

bmdd.nlopt 5

bmdd.nlopt NLopt C++ Implementation of BMDD

Description

High-performance implementation using NLopt L-BFGS-B optimizer in C++. Provides 50-90x
speedup over R implementation for cases without covariates. This is a low-level function; most
users should use bmdd () instead.

Usage

bmdd.nlopt(W, type = c("count”, "proportion”),
para.alp.init = NULL, para.pi.init = NULL, gam.init = NULL,
iterlim = 500, tol = 1e-6, trace = FALSE,
inner.loop = TRUE, inner.iterlim = 20, inner.tol = 1le-6,
alp.iterlim = 100, alp.tol = 1e-6,
alp.min = 1e-3, alp.max = 1e3)

Arguments
W Matrix of observed data (m taxa x n samples)
type Data type: "count" or "proportion"

para.alp.init Initial alpha values

para.pi.init Initial pi values

gam.init Initial gamma values

iterlim Maximum iterations (default 500)

tol Convergence tolerance (default 1e-6)

trace Print progress (default FALSE)

inner. loop Use inner loop optimization (default TRUE)

inner.iterlim Inner loop max iterations (default 20)
inner.tol Inner loop tolerance (default 1e-6)

alp.iterlim Alpha optimization iterations (default 100)

alp.tol Alpha tolerance (default 1e-6)

alp.min Minimum alpha (default 1e-3)

alp.max Maximum alpha (default 1e3)
Details

This function provides direct access to the NLopt C++ implementation. Most users should use
bmdd () instead, which automatically selects the optimal implementation.

Does not support covariates. For covariate modeling, use bmdd () with method="R".

6 cscca

Value

A list containing estimated parameters (same as bmdd)

References

Zhou, H., Chen, J., & Zhang, X. (2025). BMDD: A probabilistic framework for accurate imputation
of zero-inflated microbiome sequencing data. PLoOS Computational Biology, 21(10), e1013124.

See Also

bmdd for the main user interface

Examples

Not run:

Simulate data

m <- 100

n <- 50

W <- matrix(rpois(mxn, 100), m, n)

Direct NLopt usage (advanced)
result <- bmdd.nlopt(W, type = "count")

Recommended: use bmdd() instead
result <- bmdd(W, type = "count”) # auto-selects NLopt

End(Not run)

cscca Compositional Sparse Canonical Correlation Analysis

Description

A compositional sparse canonical correlation analysis (csCCA) framework for integrating micro-
biome data with other high-dimensional omics data.

Usage

cscca(
Y,
View.ind,
lambda. seq,
a.old = NULL,
View.type = NULL,
eps.stop = 1e-04,
max.step = 30,
eps = le-04,
T.step =1

cscca 7

Arguments
Y a n*(K*p) matrix representing the observations.
View.ind a (K*p) integer vector indicating the classes of features. The features with the
same View.ind is in the same class.
lambda. seq a K vector consisting of hyper-parameters.
a.old Optional initial value for the coefficient vector a.new.
View. type a K vector encoding the structure type of each feature class. There are two
choices: "O" (Omics Data),"C" (Compositional Data).
eps.stop a numerical value controlling the convergence.
max.step an integer controlling the maximum step for interaction.
eps a numerical value controlling the convergence.
T.step an integer controlling the maximum step for interaction.
Value

a.new the estimated coefficient vector.

References

1. Deng, L., Tang, Y., Zhang, X., et al. (2024). Structure-adaptive canonical correlation analysis
for microbiome multi-omics data. Frontiers in Genetics, 15, 1489694

2. Chen, J., Bushman, F. D., Lewis, J. D., et al. (2013). Structure-constrained sparse canonical
correlation analysis with an application to microbiome data analysis. Biostatistics, 14(2), 244-258.

Examples

Not run:
library(dplyr)

n <- 200

p <- q <- 100

sigma.nu <- 5

sigma.eps <- 1

omega_X <- 0.85%c(rep(1/10,9),-9/10,rep(0,p-10))

omega_Y <- 0.85*c(seq(0.08,0.12,1length = 10),rep(0,9-10))

Datal <- DGP_OC(seed=10,n,p,q,sigma.nu,sigma.eps,omega_X,omega_Y)

library(mlrMBO)

Res.sCCA.CV <- cscca.CV(Y=Datal1$Y,View.ind=Datal$View.ind,
View. type=c("0","0"),
show.info = TRUE)

Res.CsCCA.CV <- cscca.CV(Y=Datal$Y,View.ind=Datal$View.ind,
View.type=c("0","C"),
show.info = TRUE)

Res.sCCA <- cscca(Y=Datal$Y,View.ind=Datal$View.ind,

8 cscca.CV

lambda.seg=Res.sCCA.CV$lam.opt.trgt,
View. type=c("0","0"))

Res.CsCCA <- cscca(Y=Datal$Y,View.ind=Datal$View.ind,
lambda.seg=Res.CsCCA.CV$lam.opt.trgt,
View. type=c("0","C"))

End(Not run)

cscca.Cv Compositional Sparse Canonical Correlation Analysis (Cross Valica-
tion Version)

Description

The cross validation version of a compositional sparse canonical correlation analysis (sSCCA) frame-
work for integrating microbiome data with other high-dimensional omics data.

Usage
cscca.CV(
Y,
View.ind,

View.type = NULL,
eps.stop = 1e-04,
max.step = 30,

eps = le-04,
T.step = 10,
n_fold = 5,

seed.sam.ind = NULL,
show.info = FALSE,
hp.lower = NULL,

hp.upper = NULL,
hp.eta.lower = NULL,
hp.eta.upper = NULL,
eta.warm.stat.mat = NULL,
opt_n_design = 30,
opt_n_iter = 20,
Criterion = "cov",
des.init = NULL,

is.refit = F,
is.refix.eta = T,
opt_n_design.eta_warm = 30,
opt_n_iter.eta_warm = 20,
is.opt.hyper = TRUE,
hyper_n_grid = 20,

cscca.CV

Arguments

Y

View.ind

View. type

eps.stop
max.step

eps

T.step
n_fold
seed.sam.ind

show. info

hp.lower
hp.upper
hp.eta.lower

hp.eta.upper

a n*(K*p) matrix representing the observations.

a (K*p) integer vector indicating the classes of features. The features with the
same View.ind is in the same class.

a K vector encoding the structure type of each feature class. There are two
choices: "O" (Omics Data),"C" (Compositional Data).

a numerical value controlling the convergence.

an integer controlling the maximum step for interaction.

a numerical value controlling the convergence.

an integer controlling the maximum step for interaction.

an integer representing the number of folds for cross validation.
a vector of the seeds for sampling.

a bool suggesting whether to show information through the hyperparameter op-
timization.

anumerical value or K vector specifying the lower bound of the hyper-parameter.
anumerical value or K vector specifying the upper bound of the hyper-parameter.

anumerical value or K vector specifying the lower bound of the hyper-parameter
for eta.

anumerical value or K vector specifying the upper bound of the hyper-parameter
for eta.

eta.warm.stat.mat

opt_n_design

opt_n_iter

Criterion
des.init
is.refit
is.refix.eta

a matrix providing statistics for warm start of eta.

an integer controlling the number of design points in the hyperparameter opti-
mization.

an integer controlling the number of iterations in the hyperparameter optimiza-
tion.

a character indicating the criterion we choose for cross validation.
an initial design for hyperparameter optimization.
a bool suggesting whether to refit the model using the optimal hyper-parameters.

a bool suggesting whether eta is fixed during refitting.

opt_n_design.eta_warm

an integer controlling the number of design points for eta warm-start optimiza-
tion.

opt_n_iter.eta_warm

is.opt.hyper
hyper_n_grid

Value

an integer controlling the number of iterations for eta warm-start optimization.
a bool suggesting whether to optimize the hyper-parameters.

an integer controlling the grid size for hyperparameter search.

additional arguments passed to the internal optimization procedures.

A list containing the following elements: (1) a.hat.opt.trgt: The coefficient vector estimated
with the optimal hyper-parameter vector; (2) lam.opt. trgt: The optimal hyper-parameter vector.

10 DGP_OC

References

1. Deng, L., Tang, Y., Zhang, X., et al. (2024). Structure-adaptive canonical correlation analysis
for microbiome multi-omics data. Frontiers in Genetics, 15, 1489694.

2. Chen, J., Bushman, F. D., Lewis, J. D., et al. (2013). Structure-constrained sparse canonical
correlation analysis with an application to microbiome data analysis. Biostatistics, 14(2), 244-258.

Examples

Not run:
library(dplyr)

n <- 200

p <-q<-100

sigma.nu <- 5

sigma.eps <- 1

omega_X <- 0.85%c(rep(1/10,9),-9/10,rep(0,p-10))

omega_Y <- 0.85*c(seq(0.08,0.12,1length = 10),rep(0,9-10))

Datal <- DGP_OC(seed=10,n,p,q,sigma.nu,sigma.eps,omega_X,omega_Y)

library(mlrMBO)

Res.sCCA.CV <- cscca.CV(Y=Datal1$Y,View.ind=Datal$View.ind,
View. type=c("0","0"),
show.info = TRUE)

Res.CsCCA.CV <- cscca.CV(Y=Datal$Y,View.ind=Datal$View.ind,
View. type=c("0","C"),
show.info = TRUE)

Res.sCCA <- cscca(Y=Datal1$Y,View.ind=Datal$View.ind,
lambda.seg=Res.sCCA.CV$lam.opt.trgt,
View. type=c("0","0"))

Res.CsCCA <- cscca(Y=Datal$Y,View.ind=Datal$View.ind,
lambda.seq=Res.CsCCA.CV$lam.opt.trgt,
View. type=c("0","C"))

print(Res.sCCA.CV$Cri.opt.trgt)

print(Res.CsCCA.CV$Cri.opt.trgt)

End(Not run)

DGP_0OC Data Generating Process (Omics Data versus Compositional data)

Description

Data Generating Process (Omics Data versus Compositional data)

Usage
DGP_OC(seed = 10, n, p, g, sigma.nu, sigma.eps, omega_X, omega_Y)

linda 11

Arguments
seed an integer for the initial seed.
n an integer representing the sample size.
p an integer representing the feature size of the omics dataset.
q an integer representing the feature size of the compositional dataset.
sigma.nu a numerial value representing the strength of correlation.
sigma.eps a numerical value representing the strength of noise.
omega_X a p vector representing the coefficient for the omics data.
omega_Y a q vector representing the coefficient for the compositional data.
Value

A list containing the following elements: (a) Y: a n*(2p) matrix representing the full observations;
(b) View.ind: a 2p integer vector indicating the classes of features. The features with the same
View.ind is in the same class; (c) omega a 2p vector representing the true coefficients.

Examples
library(dplyr)
n <- 200
p <- g <- 100

sigma.nu <- 5

sigma.eps <- 1

omega_X <- 0.85*c(rep(1/10,9),-9/10,rep(0,p-10))

omega_Y <- 0.85*c(seq(0.08,0.12,1length = 10),rep(0,q-10))

Datal <- DGP_OC(seed=10,n,p,q,sigma.nu,sigma.eps,omega_X,omega_Y)

linda Linear (Lin) Model for Differential Abundance (DA) Analysis of High-
dimensional Compositional Data

Description

The function implements a simple, robust and highly scalable approach to tackle the compositional
effects in differential abundance analysis of high-dimensional compositional data. It fits linear
regression models on the centered log2-ratio transformed data, identifies a bias term due to the
transformation and compositional effect, and corrects the bias using the mode of the regression
coefficients. It could fit mixed-effect models for analysis of correlated data.

Usage

linda(
feature.dat,
meta.dat,
formula,

12 linda

feature.dat.type = c('count', 'proportion'),
prev.filter = 0,

mean.abund.filter = 0,

max.abund.filter = 0,

is.winsor = TRUE,

outlier.pct = 0.03,

adaptive = TRUE,

zero.handling = c('pseudo-count', 'imputation'),
pseudo.cnt = 0.5,

corr.cut = 0.1

’

p.adj.method "BH",
alpha = 0.05,
n.cores = 1,
verbose = TRUE
)
Arguments
feature.dat a matrix of counts/proportions, row - features (OTUs, genes, etc) , column -
samples.
meta.dat a data frame containing the sample meta data. If there are NAs, the correspond-
ing samples will be removed in the analysis.
formula a character string for the formula. The formula should conform to that used

by 1m (independent data) or 1mer (correlated data). For example: formula =

"~xT1xx2+x3+(1]1id)'. Atleast one fixed effect is required.
feature.dat. type

the type of the feature data. It could be "count" or "proportion".

prev.filter the prevalence (percentage of non-zeros) cutoff, under which the features will
be filtered. The default is 0.

mean.abund.filter
the mean relative abundance cutoff, under which the features will be filtered.
The default is 0.

max.abund.filter
the max relative abundance cutoff, under which the features will be filtered. The

default is O.

is.winsor a logical value indicating whether winsorization should be performed to replace
outliers (high values). The default is TRUE.

outlier.pct the expected percentage of outliers. These outliers will be winsorized. The
default is 0.03.

adaptive a logical value indicating whether the approach to handle zeros (pseudo-count or

imputation) will be determined based on the correlations between the log(sequencing
depth) and the explanatory variables in formula when feature.dat is ’count’.

If TRUE and the correlation p-value for any explanatory variable is smaller
than or equal to corr.cut, the imputation approach will be used; otherwise,

the pseudo-count approach will be used.

linda

zero.handling

pseudo.cnt

corr.cut

p.adj.method

alpha

n.cores

verbose

Value

13

a character string of ’pseudo-count’ or ’imputation’ indicating the zero handling
method used when feature.dat is 'count’. If ’pseudo-count’, apseudo.cnt
will be added to each value in feature.dat. If ’imputation’, then we use the im-
putation approach using the formula in the referenced paper. Basically, zeros are
imputed with values proportional to the sequencing depth. When feature.dat
is ’proportion’, this parameter will be ignored and zeros will be imputed by half
of the minimum for each feature.

a positive numeric value for the pseudo-count to be added if zero.handling is
"pseudo-count’. Default is 0.5.

a numerical value between 0 and 1, indicating the significance level used for
determining the zero-handling approach when adaptive is TRUE. Default is
0.1.

a character string indicating the p-value adjustment approach for addressing
multiple testing. See R function p.adjust. Defaultis "BH’.

a numerical value between 0 and 1 indicating the significance level for declaring
differential features. Default is 0.05.

a positive integer. If n.cores >1 and formula is in a form of mixed-effect
model, n. cores parallels will be conducted. Default is 1.

a logical value indicating whether the trace information should be printed out.

A list with the elements

variables

bias

output

A vector of variable names of all fixed effects in formula. For example: formula
= '~x1xx2+x3+(1]1id)". Suppose x1 and x2 are numerical, and x3 is a categor-
ical variable of three levels: a, b and c. Then the elements of variables would
be ('x1', 'x2', 'x3b', 'x3c', 'x1:x2").

numeric vector; each element corresponds to one variable in variables; the
estimated bias of the regression coefficients due to the compositional effect.
alist of data frames with columns *baseMean’, ’log2FoldChange’, '1fcSE’, ’stat’,
pvalue’, ’padj’, ‘reject’, *df’; names(output) is equal to variables; the rows
of the data frame corresponds to taxa. Note: if there are taxa being excluded due
to prev.cut, the number of the rows of the output data frame will be not equal
to the number of the rows of otu.tab. Taxa are identified by the rownames.
If the rownames of otu. tab are NULL, then 1 : nrow(otu. tab) is set as the
rownames of otu. tab.

baseMean: 2 to the power of the intercept coefficients (normalized by one mil-
lion)

log2FoldChange: bias-corrected coefficients

IfcSE: standard errors of the coefficients

stat: log2FoldChange / 1fcSE

pvalue: 2 * pt(-abs(stat), df)

padj: p.adjust(pvalue, method =p.adj.method)

reject: padj <=alpha

14

covariance

otu.tab.use

meta.use

wald

Author(s)

linda

df: degrees of freedom. The number of samples minus the number of explana-
tory variables (intercept included) for fixed-effect models; estimates from R
package 1merTest with Satterthwaite method of approximation for mixed-
effect models.

alist of data frames; the data frame records the covariances between a regression
coefficient with other coefficients; names(covariance) is equal to variables;
the rows of the data frame corresponds to taxa. If the length of variables is
equal to 1, then the covariance is NULL.

the OTU table used in the abundance analysis (the otu.tab after the prepro-
cessing: samples that have NAs in the variables in formula or have less than
lib.cut read counts are removed; taxa with prevalence less than prev.cut
are removed and data is winsorized if !is.null(winsor.quan); and zeros are
treated, i.e., imputed or pseudo-count added).

the meta data used in the abundance analysis (only variables in formula are
stored; samples that have NAs or have less than 1ib.cut read counts are re-
moved; numerical variables are scaled).

a list for use in Wald test. If the fitting model is a linear model, then it includes

beta: a matrix of the biased regression coefficients including intercept and all
fixed effects; the culumns correspond to taxa

sig: the standard errors; the elements corresponding to taxa

X: the design matrix of the fitting model

bias: the estimated biases of the regression coefficients including intercept and
all fixed effects

If the fitting model is a linear mixed-effect model, then it includes

beta: a matrix of the biased regression coefficients including intercept and all
fixed effects; the culumns correspond to taxa

beta.cov: a list of covariance matrices of beta; the elements corresponding to
taxa

rand.cov: a list with covariance matrices of variance parameters of random ef-
fects; the elements corresponding to taxa; see more details in the paper of
"ImerTest’

Joc.beta.cov.rand: alist of alist of Jacobian matrices of beta. cov with respect
to the variance parameters; the elements corresponding to taxa

bias: the estimated biases of the regression coefficients including intercept and
all fixed effects

Huijuan Zhou, Jun Chen, Xianyang Zhang

References

Zhou, H., He, K., Chen, J., Zhang, X. (2022). LinDA: linear models for differential abundance
analysis of microbiome compositional data. Genome biology, 23(1), 95.

linda.plot

Examples

data(smokers)

ind <- smokers$meta$AIRWAYSITE == 'Throat'
otu.tab <- as.data.frame(smokers$otul, ind])
depth <- colSums(otu.tab)
meta <- cbind.data.frame(Smoke = factor(smokers$meta$SMOKER[ind]),
Sex = factor(smokers$meta$SEX[ind]),
Site = factor(smokers$meta$SIDEOFBODY[ind]),
SubjectID = factor(smokers$meta$HOST_SUBJECT_ID[ind]))

Differential abundance analysis using the left throat data

ind1 <- meta$Site == 'Left' & depth >= 1000
linda.obj <- linda(otu.tab[, ind1], metalind1, 1, formula = '~Smoke+Sex',
feature.dat.type = 'count',

prev.filter = 0.1, is.winsor = TRUE, outlier.pct = 0.03,
p.adj.method = "BH", alpha = 0.1)

linda.plot(linda.obj, c('Smokey', 'Sexmale'),
titles = c('Smoke: n v.s. y', 'Sex: female v.s. male'),
alpha = 0.1, 1fc.cut = 1, legend = TRUE, directory = NULL,
width = 11, height = 8)

rownames(linda.obj $output[[1]1])[which(linda.obj $output[[1]1]1$reject)]

Differential abundance analysis pooling both the left and right throat data
Mixed effects model is used

ind <- depth >= 1000

linda.obj <- linda(otu.tab[, ind], metalind,], formula = '~Smoke+Sex+(1|SubjectID)"',
feature.dat.type = 'count',
prev.filter = 0.1, is.winsor = TRUE, outlier.pct = 0.03,
p.adj.method = "BH", alpha = 0.1)

For proportion data
otu.tab.p <- t(t(otu.tab) / colSums(otu.tab))

indl <- meta$Site == 'Left' & depth >= 1000
lind.obj <- linda(otu.tab[, ind1], metal[ind1, 1, formula = '~Smoke+Sex',
feature.dat.type = 'proportion',

prev.filter = 0.1, is.winsor = TRUE, outlier.pct = 0.03,
p.adj.method = "BH", alpha = 0.1)

linda.plot Plot LinDA Results

16 linda.plot

Description

The function produces the effect size plot of the differential features and volcano plot based on the
output from linda.

Usage

linda.plot(
linda.obj,
variables.plot,
titles = NULL,
alpha = 0.05,
1fc.cut =1,
legend = FALSE,
directory = NULL,

width = 11,
height = 8
)
Arguments
linda.obj return from function linda.

variables.plot vector; variables whose results are to be plotted. For example, suppose the return
value variablesisequalto ('x1', 'x2"', 'x3b", 'x3c"', 'x1:x2"), then one
could set variables.plot =c('x3b"', 'x1:x2").

titles vector; titles of the effect size plot and volcano plot for each variable in variables.plot.
Default is NULL. If NULL, the titles will be set as variables.plot.

alpha a numerical value between 0 and 1; cutoff for padj.

1fc.cut a positive numerical value; cutoff for log2FoldChange.

legend TRUE or FALSE; whether to show the legends of the effect size plot and volcano
plot.

directory character; the directory to save the figures, e.g., getwd(). Default is NULL. If
NULL, figures will not be saved.

width the width of the graphics region in inches. See R function pdf.

height the height of the graphics region in inches. See R function pdf.

Value

A list of ggplot2 objects.

plot.1lfc a list of effect size plots. Each plot corresponds to one variable in variables.plot.

plot.volcano alistof volcano plots. Each plot corresponds to one variable in variables.plot.

Author(s)

Huijuan Zhou, Jun Chen, Xianyang Zhang

linda.wald.test 17

References

Zhou, H., He, K., Chen, J., Zhang, X. (2022). LinDA: linear models for differential abundance
analysis of microbiome compositional data. Genome biology, 23(1), 95.

Examples

data(smokers)
ind <- smokers$meta$AIRWAYSITE == 'Throat' & smokers$meta$SIDEOFBODY == 'Left'
otu.tab <- as.data.frame(smokers$otul, ind])
depth <- colSums(otu.tab)
meta <- cbind.data.frame(Smoke = factor(smokers$meta$SMOKER[ind]),
Sex = factor(smokers$meta$SEX[ind]))

ind <- depth >= 1000

linda.obj <- linda(otu.tab[, ind], metalind,], formula = '~Smoke+Sex',
feature.dat.type = 'count',
prev.filter = 0.1, is.winsor = TRUE, outlier.pct = 0.03,
p.adj.method = "BH", alpha = 0.1)

linda.plot(linda.obj, c('Smokey', 'Sexmale'),
titles = c('Smoke: n v.s. y', 'Sex: female v.s. male'),
alpha = 0.1, 1fc.cut = 1, legend = TRUE, directory = NULL,
width = 11, height = 8)

linda.wald. test Wald test for bias-corrected regression coefficients

Description

The function implements Wald test for bias-corrected regression coefficients generated from the
linda function. One can utilize the function to perform ANOVA-type analyses. For example, if
you have a cateogrical variable with three levels, you can test whether all levels have the same

effect.
Usage
linda.wald. test(
linda.obj,
L,
model = c("LM", "LMM"),
alpha = 0.05,
p.adj.method = "BH"
)
Arguments

linda.obj return from the 1inda function.

18 linda.wald.test

L A matrix for testing Lb =@, where b includes the intercept and all fixed ef-
fects from runing linda. Thus the number of columns of L must be equal to
length(variables)+1, where variables is from linda.obj, which does not
include the intercept.

model 'LM" or 'LMM' indicating the model fitted in {linda} is linear model or linear
mixed-effect model.

alpha significance level for testing Lb = 0.

p.adj.method P-value adjustment approach. See R function p.adjust. The default is "BH’.

Value

A data frame with columns

Fstat Wald statistics for each taxon
df1 The numerator degrees of freedom
df2 The denominator degrees of freedom
pvalue 1 - pf(Fstat, df1, df2)
padj p.adjust(pvalue, method = p.adj.method)
reject padj <= alpha
Author(s)

Huijuan Zhou <huijuanzhou2019@gmail . com> Jun Chen <Chen. Jun2@mayo . edu> Xianyang Zhang
<zhangxiany@stat.tamu.edu>

References

Zhou, H., He, K., Chen, J., Zhang, X. (2022). LinDA: linear models for differential abundance
analysis of microbiome compositional data. Genome biology, 23(1), 95.

Examples

data(smokers)

ind <- smokers$meta$AIRWAYSITE == 'Throat'
otu.tab <- as.data.frame(smokers$otul, ind])
depth <- colSums(otu.tab)
meta <- cbind.data.frame(Smoke = factor(smokers$meta$SMOKER[ind]),
Sex = factor(smokers$meta$SEX[ind]),
Site = factor(smokers$meta$SIDEOFBODY[ind]),
SubjectID = factor(smokers$meta$HOST_SUBJECT_ID[ind]))
ind <- depth >= 1000
linda.obj <- linda(otu.tab[, ind], metalind,], formula = '~Smoke+Sex+(1|SubjectID)"',
feature.dat.type = 'count',
prev.filter = 0.1, is.winsor = TRUE, outlier.pct = 0.03,
p.adj.method = "BH", alpha = 0.1)
L matrix (2x3) is designed to test the second (Smoke) and the third (Sex) coefficient to be 0.
For a categorical variable > two levels, similar L can be designed to do ANOVA-type test.

smokers 19

L <- matrix(c(e, 1, @, @, @, 1), nrow = 2, byrow = TRUE)
result <- linda.wald.test(linda.obj, L, 'LMM', alpha = 0.1)

smokers Microbiome data from the human upper respiratory tract (left and
right throat)

Description

non non

A dataset containing "otu", "tax", meta", "genus", family"

Usage

data(smokers)

Format

A list with elements

otu otu table, 2156 taxa by 290 samples

tax taxonomy table, 2156 taxa by 7 taxonomic ranks
meta meta table, 290 samples by 53 sample variables
genus 304 by 290

family 113 by 290

Source

https://qgiita.ucsd.edu/ study ID:524 Reference: Charlson ES, Chen J, Custers-Allen R, Bit-
tinger K, Li H, et al. (2010) Disordered Microbial Communities in the Upper Respiratory Tract of
Cigarette Smokers. PLoS ONE 5(12): e15216.

https://qiita.ucsd.edu/

Index

x datasets
smokers, 19

bmdd, 2, 6
bmdd.nlopt, 5

cscca, 6
cscca.CV, 8

DGP_OC, 10

linda, 11
linda.plot, 15
linda.wald. test, 17

smokers, 19

20

	bmdd
	bmdd.nlopt
	cscca
	cscca.CV
	DGP_OC
	linda
	linda.plot
	linda.wald.test
	smokers
	Index

