Package ‘NNS’

January 10, 2026
Type Package
Title Nonlinear Nonparametric Statistics
Version 11.6.4
Date 2026-01-09
Maintainer Fred Viole <ovvo.open.source@gmail . com>

Description
NNS (Nonlinear Nonparametric Statistics) leverages partial moments — the fundamental ele-
ments of variance that asymptotically approximate the area under f(x) — to provide a robust foun-
dation for nonlinear analysis while maintaining linear equivalences. NNS delivers a comprehen-
sive suite of advanced statistical techniques, including: Numerical integration, Numerical differ-
entiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classifi-
cation, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Ad-
vanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Non-
linear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).

License GPL-3

BugReports https://github.com/0OVVO-Financial/NNS/issues
Depends R (>=3.6.0)

Imports data.table, doParallel, foreach, quantmod, Rcpp, ReppParallel,
Rfast, rgl, xts, zoo

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

LinkingTo Rcpp, ReppParallel
SystemRequirements GNU make
Config/testthat/edition 3

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation yes

Author Fred Viole [aut, cre],
Roberto Spadim [ctb]

Repository CRAN
Date/Publication 2026-01-10 07:52:30 UTC

https://github.com/OVVO-Financial/NNS/issues

2 Contents

Contents
Co.LPM e 3
CoLPM_nD e 4
Co.UPM e e 4
Co.UPM_nD e 5
D.LPM . . e e e 6
D.UPM . . . e e e 7
DPM_nD e e e e 8
dydx . . . e 8
dy.d_ . . . e 9
LPM . . e 11
LPMuratio o e e e 12
LPM.VaR e 13
NNS.ANOVA . . . e e e e e 14
NNS.ARMA . . . e 16
NNS.ARMA.OPtiM o e 19
NNS.boost e e 21
NNS.caus e e e 24
NNS.CDF e e 25
NNS.copula o 27
NNS.dep. o e e 28
NNS.diff . . . e e e e e e 29
NNS.istance e e e e 30
NNS.ESD . . . e 31
NNS.FSD.uni e 32
NNS.gravity o o e e 33
NNS.MC . . e e e e 33
NNS.meboot e e e e 35
NNS.mode e e e 38
NNS.moments e e e e e 39
NNS.norm e e e e 40
NNS.nowcast e e e 41
NNSpart . . . o o e 44
NNSHEZ . . . o o o 46
NNSurescale e e e e 50
NNS.SD.cluster e e e e e e e e 52
NNS.SD.efficient.set e 53
NNS.seas e e e e 54
NNS.SSD . . . e 55
NNS.SSD.uuni e 56
NNS.stack e 57
NNS.term.matriX ot e e e e e e e 60
NNS.TSD e e e e 61
NNS.TSDauni o e e 62
NNS. VAR . . . e 63
PMmatrix e e e 66

Co.LPM 3

UPMuratio o o e e e 68
UPM.VaR e 69
Index 70
Co.LPM Co-Lower Partial Moment
Description

Computes the co-lower partial moment (lower-left quadrant 4) between two equal-length numeric
vectors at any degree and target.

Usage

Co.LPM(degree_lpm, x, y, target_x, target_y)

Arguments
degree_lpm numeric; degree = 0 gives frequency, degree = 1 gives area.
X numeric vector of observations.
y numeric vector of the same length as x.
target_x numeric vector; thresholds for x (defaults to mean(x)).
target_y numeric vector; thresholds for y (defaults to mean(y)).
Value

Numeric vector of co-LPM values.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. & Nawrocki, D. (2013) *Nonlinear Nonparametric Statistics: Using Partial Moments*
(ISBN:1490523995)

Examples

set.seed(123)
X <= rnorm(100); y <- rnorm(100)
Co.LPM(Q, x, y, mean(x), mean(y))

4 Co.UPM

Co.LPM_nD Co-Lower Partial Moment nD

Description

This function generates an n-dimensional co-lower partial moment (n >= 2) for any degree or target.

Usage

Co.LPM_nD(data, target, degree = @, norm = TRUE)

Arguments
data A numeric matrix with observations in rows and variables in columns.
target A numeric vector, length equal to ncol(data).
degree numeric; degree for lower deviations (0 = frequency, 1 = area).
norm logical; if TRUE (default) normalize to the maximum observed value (— [0,1]),
otherwise return the raw moment.
Value

Numeric; the n-dimensional co-lower partial moment.

Examples

Not run:
mat <- matrix(rnorm(200), ncol = 4)
Co.LPM_nD(mat, rep(@, ncol(mat)), degree = 1, norm = FALSE)

End(Not run)

Co.UPM Co-Upper Partial Moment

Description
Computes the co-upper partial moment (upper-right quadrant 1) between two equal-length numeric
vectors at any degree and target.

Usage

Co.UPM(degree_upm, x, y, target_x, target_y)

Co.UPM_nD 5

Arguments
degree_upm numeric; degree = 0 gives frequency, degree = 1 gives area.
X numeric vector of observations.
y numeric vector of the same length as x.
target_x numeric vector; thresholds for x (defaults to mean(x)).
target_y numeric vector; thresholds for y (defaults to mean(y)).
Value

Numeric vector of co-UPM values.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. & Nawrocki, D. (2013) *Nonlinear Nonparametric Statistics: Using Partial Moments*
(ISBN:1490523995)

Examples

set.seed(123)
X <= rnorm(100); y <- rnorm(100)
Co.UPM(@, x, y, mean(x), mean(y))

Co.UPM_nD Co-Upper Partial Moment nD

Description

This function generates an n-dimensional co-upper partial moment (n >= 2) for any degree or target.

Usage

Co.UPM_nD(data, target, degree = @, norm = TRUE)

Arguments
data A numeric matrix with observations in rows and variables in columns.
target A numeric vector, length equal to ncol(data).
degree numeric; degree for upper deviations (0 = frequency, 1 = area).
norm logical; if TRUE (default) normalize to the maximum observed value (— [0,1]),

otherwise return the raw moment.

6 D.LPM

Value

Numeric; the n-dimensional co-upper partial moment.

Examples

Not run:
mat <- matrix(rnorm(200), ncol = 4)
Co.UPM_nD(mat, rep(@, ncol(mat)), degree = 1, norm = FALSE)

End(Not run)

D.LPM Divergent-Lower Partial Moment

Description
Computes the divergent lower partial moment (lower-right quadrant 3) between two equal-length
numeric vectors.

Usage

D.LPM(degree_lpm, degree_upm, x, y, target_x, target_y)

Arguments
degree_lpm numeric; LPM degree = 0 gives frequency, = 1 gives area.
degree_upm numeric; UPM degree = 0 gives frequency, = 1 gives area.
X numeric vector of observations.
y numeric vector of the same length as x.
target_x numeric vector; thresholds for x (defaults to mean(x)).
target_y numeric vector; thresholds for y (defaults to mean(y)).
Value

Numeric vector of divergent LPM values.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. & Nawrocki, D. (2013) *Nonlinear Nonparametric Statistics: Using Partial Moments*
(ISBN:1490523995)

D.UPM 7

Examples

set.seed(123)
X <= rnorm(100); y <- rnorm(100)
D.LPM(0@, 0, x, y, mean(x), mean(y))

D.UPM Divergent-Upper Partial Moment

Description
Computes the divergent upper partial moment (upper-left quadrant 2) between two equal-length
numeric vectors.

Usage

D.UPM(degree_lpm, degree_upm, x, y, target_x, target_y)

Arguments
degree_lpm numeric; LPM degree = 0 gives frequency, = 1 gives area.
degree_upm numeric; UPM degree = 0 gives frequency, = 1 gives area.
X numeric vector of observations.
y numeric vector of the same length as x.
target_x numeric vector; thresholds for x (defaults to mean(x)).
target_y numeric vector; thresholds for y (defaults to mean(y)).
Value

Numeric vector of divergent UPM values.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. & Nawrocki, D. (2013) *Nonlinear Nonparametric Statistics: Using Partial Moments*
(ISBN:1490523995)

Examples

set.seed(123)
X <= rnorm(100); y <- rnorm(100)
D.UPM(0Q, @, x, y, mean(x), mean(y))

8 dy.dx

DPM_nD Divergent Partial Moment nD

Description
This function generates the aggregate n-dimensional divergent partial moment (n >= 2) for any
degree or target.

Usage

DPM_nD(data, target, degree = @, norm = TRUE)

Arguments
data A numeric matrix with observations in rows and variables in columns.
target A numeric vector, length equal to ncol(data).
degree numeric; degree for upper deviations (0 = frequency, 1 = area).
norm logical; if TRUE (default) normalize to the maximum observed value (— [0,1]),
otherwise return the raw moment.
Value

Numeric; the n-dimensional co-upper partial moment.

Examples

Not run:
mat <- matrix(rnorm(200), ncol = 4)
DPM_nD(mat, rep(@, ncol(mat)), degree = 1, norm = FALSE)

End(Not run)

dy.dx Partial Derivative dy/dx

Description

Returns the numerical partial derivative of y wrt x for a point of interest.

Usage

dy.dx(x, y, eval.point = NULL)

dy.d 9

Arguments
X a numeric vector.
y a numeric vector.
eval.point numeric or ("overall"); x point to be evaluated, must be provided. Defaults
to (eval.point =NULL). Set to (eval.point = "overall"”) to find an overall
partial derivative estimate (1st derivative only).
Value

Returns a data. table of eval.point along with both 1st and 2nd derivative.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Vinod, H. and Viole, F. (2017) "Nonparametric Regression Using Clusters" doi:10.1007/s10614-
01797135

Examples

Not run:
x <- seq(@, 2 *x pi, pi / 100) ; y <- sin(x)
dy.dx(x, y, eval.point = 1.75)

First derivative
dy.dx(x, y, eval.point = 1.75)[, first.derivativel

Second derivative
dy.dx(x, y, eval.point = 1.75)[, second.derivative]

Vector of derivatives
dy.dx(x, y, eval.point = c(1.75, 2.5))

End(Not run)

dy.d_ Partial Derivative dy/d_[wrt]

Description

Returns the numerical partial derivative of y with respect to [wrt] any regressor for a point of interest.
Finite difference method is used with NNS.reg estimates as f(x + h) and f(x - h) values.

https://doi.org/10.1007/s10614-017-9713-5
https://doi.org/10.1007/s10614-017-9713-5

10 dy.d_
Usage
dy.d_(x, y, wrt, eval.points = "obs"”, mixed = FALSE, messages = TRUE)
Arguments
X a numeric matrix or data frame.
y a numeric vector with compatible dimensions to x.
wrt integer; Selects the regressor to differentiate with respect to (vectorized).
eval.points numeric or options: ("obs", "apd", "mean", "median", "last"); Regressor points
to be evaluated.

* Numeric values must be in matrix or data.frame form to be evaluated for
each regressor, otherwise, a vector of points will evaluate only at the wrt
regressor. See examples for use cases.

e Setto (eval.points = "obs") (default) to find the average partial deriva-
tive at every observation of the variable with respect to for specific tuples of
given observations.

e Setto (eval.points = "apd") to find the average partial derivative at ev-
ery observation of the variable with respect to over the entire distribution
of other regressors.

» Set to (eval.points = "mean") to find the partial derivative at the mean
of value of every variable.

e Set to (eval.points = "median”) to find the partial derivative at the me-
dian value of every variable.

» Setto (eval.points = "last") to find the partial derivative at the last ob-
servation of every value (relevant for time-series data).

mixed logical; FALSE (default) If mixed derivative is to be evaluated, set (mixed =
TRUE).
messages logical; TRUE (default) Prints status messages.
Value

Returns column-wise matrix of wrt regressors:

e dy.d_(...)[, wrtl$First the Ist derivative
e dy.d_(...)[, wrt]$Second the 2nd derivative

e dy.d_(...)[, wrtl$Mixed the mixed derivative (for two independent variables only).

Note

For binary regressors, it is suggested to use eval.points = seq(@, 1, .05) for a better resolution

around the midpoint.

Author(s)

Fred Viole, OVVO Financial Systems

LPM 11

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Vinod, H. and Viole, F. (2020) "Comparing Old and New Partial Derivative Estimates from Nonlin-
ear Nonparametric Regressions" doi:10.2139/ssrn.3681104

Examples

Not run:
set.seed(123) ; x_1 <- runif(1000) ; x_2 <- runif(1000) ; y <- x_1 * 2 *x x_2 * 2
B <- cbind(x_1, x_2)

To find derivatives of y wrt 1st regressor for specific points of both regressors
dy.d_(B, y, wrt = 1, eval.points = t(c(.5, 1)))

To find average partial derivative of y wrt 1st regressor,
only supply 1 value in [eval.points], or a vector of [eval.points]:
dy.d_(B, y, wrt = 1, eval.points = .5)

dy.d_(B, y, wrt = 1, eval.points = fivenum(B[,1]))

To find average partial derivative of y wrt 1st regressor,
for every observation of 1st regressor:

apd <- dy.d_(B, y, wrt = 1, eval.points = "apd")

plot(B[,1], apd[,1]$First)

95% Confidence Interval to test if @ is within
Lower CI
LPM.VaR(.025, @, apd[,1]$First)

Upper CI
UPM.VaR(.025, @, apd[,1]1$First)

End(Not run)

LPM Lower Partial Moment

Description

This function generates a univariate lower partial moment for any degree or target.

Usage

LPM(degree, target, variable, excess_ret = FALSE)

https://doi.org/10.2139/ssrn.3681104

12 LPM.ratio

Arguments
degree numeric; (degree = @) is frequency, (degree = 1) is area.
target numeric; Set to target = mean(variable) for classical equivalences, but does
not have to be. (Vectorized)
variable a numeric vector. data.frame or list type objects are not permissible.
excess_ret logical; FALSE (default)
Value
LPM of variable
Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

set.seed(123)
X <= rnorm(100)
LPM(@, mean(x), x)

LPM.ratio Lower Partial Moment Ratio

Description
This function generates a standardized univariate lower partial moment of any non-negative degree
for a given target.

Usage

LPM.ratio(degree, target, variable)

Arguments
degree numeric; degree = 0 gives frequency (CDF), degree = 1 gives area.
target numeric vector; threshold(s). Defaults to mean(variable).
variable numeric vector or data-frame column to evaluate.

Value

Numeric vector of standardized lower partial moments.

LPM.VaR 13

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. & Nawrocki, D. (2013) *Nonlinear Nonparametric Statistics: Using Partial Moments*
(ISBN:1490523995)

Viole, F. (2017) Continuous CDFs and ANOVA with NNS. doi:10.2139/ssrn.3007373

Examples

set.seed(123)
X <= rnorm(100)
LPM.ratio(@, mean(x), x)
Not run:
plot(sort(x), LPM.ratio(@, sort(x), x))
plot(sort(x), LPM.ratio(1, sort(x), x))

End(Not run)

LPM.VaR LPM VaR

Description

Generates a value at risk (VaR) quantile based on the Lower Partial Moment ratio.

Usage

LPM.VaR(percentile, degree, x)

Arguments
percentile numeric [0, 1]; The percentile for left-tail VaR (vectorized).
degree integer; (degree =) for discrete distributions, (degree =1) for continuous
distributions.
X a numeric vector.
Value

Returns a numeric value representing the point at which "percentile” of the area of x is below.

Author(s)
Fred Viole, OVVO Financial Systems

https://doi.org/10.2139/ssrn.3007373

14 NNS.ANOVA

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

Not run:
set.seed(123)
X <= rnorm(100)

For 5th percentile, left-tail
LPM.VaR(@.05, @, x)

End(Not run)

NNS . ANOVA NNS ANOVA: Nonparametric Analysis of Variance

Description

Performs a distribution-free ANOVA using partial-moment statistics to assess differences between
control and treatment groups. Depending on the setting of means.only, the procedure tests either
differences in central tendency (means or medians) or differences across the full empirical distribu-
tions.

Usage

NNS . ANOVA(
control,
treatment,
means.only = FALSE,
medians = FALSE,
confidence.interval = 0.95,
tails = "Both",
pairwise = FALSE,

plot = TRUE,
robust = FALSE
)
Arguments
control Numeric vector of control group observations
treatment Numeric vector of treatment group observations
means.only Logical; FALSE (default) uses full distribution analysis. Set TRUE for mean-only

comparison

medians Logical; FALSE (default) uses means. Set TRUE for median-based analysis

NNS.ANOVA 15

confidence.interval
Numeric [0,1]; confidence level for effect size bounds (e.g., 0.95)

tails Character; specifies CI tail(s): "both", "left", or "right"

pairwise logical; FALSE (default) Returns pairwise certainty tests when set to pairwise
= TRUE.

plot Logical; TRUE (default) generates distribution plot

robust logical; FALSE (default) Generates 100 independent random permutations to test

results, and returns / plots 95 percent confidence intervals along with robust
central tendency of all results for pairwise analysis only.

Details

The key output is the Certainty metric, a calibrated probability in [0, 1] representing the likelihood
that the groups being compared are the *same* with respect to the chosen comparison mode:

e If means.only = TRUE: Certainty is the probability that the group means (or medians, if
medians = TRUE) are the same.
* If means.only = FALSE: Certainty is the probability that the two entire distributions are the

same.

This makes Certainty the conceptual inverse of a classical p-value. A *low* Certainty (e.g.,
< 0.10) indicates strong evidence of difference, while a *high* Certainty (e.g., > 0.90) indicates
strong evidence of similarity.

Value
Returns a list containing:

* Control_Statistic: Mean/median of control group

* Treatment_Statistic: Mean/median of treatment group
e Grand_Statistic: Grand mean/median

* Control_CDF: CDF value at grand statistic (control)

* Treatment_CDF: CDF value at grand statistic (treatment)

* Certainty: Probability that the groups are the same (means-only or full distribution depend-
ing on means.only).

* Effect_Size_LB: Lower bound of treatment effect (if CI requested)
* Effect_Size_UB: Upper bound of treatment effect (if CI requested)
* Confidence_Level: Confidence level used (if CI requested)

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Viole, F. (2017) "Continuous CDFs and ANOVA with NNS" doi:10.2139/ssrn.3007373

https://doi.org/10.2139/ssrn.3007373

16 NNS.ARMA

Examples

Not run:

Binary analysis and effect size
set.seed(123)

x <= rnorm(100) ; y <- rnorm(100)
NNS.ANOVA(control = x, treatment = y)

Two variable analysis with no control variable
A <= cbind(x, y)
NNS . ANOVA(A)

Medians test
NNS.ANOVA(A, means.only = TRUE, medians = TRUE)

Multiple variable analysis with no control variable
set.seed(123)

X <= rnorm(100) ; y <- rnorm(100) ; z <- rnorm(100)

A <= cbind(x, y, z)

NNS . ANOVA (A)

Different length vectors used in a list

x <= rnorm(30) ; y <- rnorm(40) ; z <- rnorm(50)
A <- list(x, y, z)

NNS.ANOVA(A)

End(Not run)

NNS . ARMA NNS ARMA

Description

Autoregressive model incorporating nonlinear regressions of component series.

Usage

NNS . ARMA (
variable,
h =1,
training.set = NULL,
seasonal.factor = TRUE,
weights = NULL,
best.periods = 1,
modulo = NULL,
mod.only = TRUE,
negative.values = FALSE,
method = "nonlin”,
dynamic = FALSE,
shrink = FALSE,

NNS.ARMA 17

plot = TRUE,
seasonal.plot = TRUE,
pred.int = NULL

)
Arguments
variable a numeric vector.
h integer; 1 (default) Number of periods to forecast.

training.set numeric; NULL (default) Sets the number of variable observations

(variable[1 : training.set]) to monitor performance of forecast over in-
sample range.
seasonal. factor

logical or integer(s); TRUE (default) Automatically selects the best seasonal lag
from the seasonality test. To use weighted average of all seasonal lags set to
(seasonal.factor = FALSE). Otherwise, directly input known frequency inte-
ger lag to use, i.e. (seasonal.factor =12) for monthly data. Multiple fre-
quency integers can also be used, i.e. (seasonal.factor =c(12, 24, 36))

weights numeric or "equal”; NULL (default) sets the weights of the seasonal. factor
vector when specified as integers. If (weights = NULL) each seasonal.factor
is weighted on its NNS.seas result and number of observations it contains, else
an "equal” weight is used.

best.periods integer; [2] (default) used in conjunction with (seasonal.factor = FALSE),
uses the best.periods number of detected seasonal lags instead of ALL lags
when (seasonal.factor = FALSE, best.periods = NULL).

modulo integer(s); NULL (default) Used to find the nearest multiple(s) in the reported
seasonal period.

mod.only logical; TRUE (default) Limits the number of seasonal periods returned to the
specified modulo.

negative.values
logical; FALSE (default) If the variable can be negative, set to (negative.values
= TRUE). If there are negative values within the variable, negative.values will
automatically be detected.

method options: ("lin", "nonlin", "both", "means"); "nonlin” (default) To select the
regression type of the component series, select (method = "both”) where both
linear and nonlinear estimates are generated. To use a nonlinear regression, set
to (method = "nonlin"); to use a linear regression set to (method = "1in").
Means for each subset are returned with (method = "means”).

dynamic logical; FALSE (default) To update the seasonal factor with each forecast point,
set to (dynamic = TRUE). The default is (dynamic = FALSE) to retain the origi-
nal seasonal factor from the inputted variable for all ensuing h.

shrink logical; FALSE (default) Ensembles forecasts with method = "means”.

plot logical; TRUE (default) Returns the plot of all periods exhibiting seasonality and
the variable level reference in upper panel. Lower panel returns original data
and forecast.

18 NNS.ARMA

seasonal.plot logical; TRUE (default) Adds the seasonality plot above the forecast. Will be set
to FALSE if no seasonality is detected or seasonal.factor is set to an integer
value.

pred.int numeric [0, 1]; NULL (default) Plots and returns the associated prediction inter-
vals for the final estimate. Constructed using the maximum entropy bootstrap
NNS.meboot on the final estimates.

Value

Returns a vector of forecasts of length (h) if no pred. int specified. Else, returns a data.table
with the forecasts as well as lower and upper prediction intervals per forecast point.

Note

For monthly data series, increased accuracy may be realized from forcing seasonal factors to multi-
ples of 12. For example, if the best periods reported are: {37, 47, 71, 73} use (seasonal.factor
= c(36, 48, 72)).

(seasonal.factor = FALSE) can be a very computationally expensive exercise due to the number
of seasonal periods detected.

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Viole, F. (2019) "Forecasting Using NNS" doi:10.2139/ssrn.3382300

Examples

Nonlinear NNS.ARMA using AirPassengers monthly data and 12 period lag
Not run:
NNS.ARMA(AirPassengers, h = 45, training.set = 100, seasonal.factor = 12, method = "nonlin")

Linear NNS.ARMA using AirPassengers monthly data and 12, 24, and 36 period lags
NNS.ARMA(AirPassengers, h = 45, training.set = 120, seasonal.factor = c(12, 24, 36), method = "1in")

Nonlinear NNS.ARMA using AirPassengers monthly data and 2 best periods lag
NNS.ARMA(AirPassengers, h = 45, training.set = 120, seasonal.factor = FALSE, best.periods = 2)

End(Not run)

https://doi.org/10.2139/ssrn.3382300

NNS.ARMA.optim 19

NNS.ARMA.optim NNS ARMA Optimizer

Description

Wrapper function for optimizing any combination of a given seasonal. factor vectorin NNS.ARMA.
Minimum sum of squared errors (forecast-actual) is used to determine optimum across all NNS.ARMA
methods.

Usage

NNS.ARMA.optim(
variable,
h = NULL,
training.set = NULL,
seasonal.factor,
lin.only = FALSE,
negative.values = FALSE,
obj.fn = expression(mean((predicted - actual)”2)/(NNS::Co.LPM(1, predicted, actual,
target_x = mean(predicted), target_y = mean(actual)) + NNS::Co.UPM(1, predicted,
actual, target_x = mean(predicted), target_y = mean(actual)))),
objective = "min",
linear.approximation = TRUE,
ncores = NULL,
pred.int = 0.95,
print.trace = TRUE,

plot = FALSE
)
Arguments
variable a numeric vector.
h integer; NULL (default) Number of periods to forecast out of sample. If NULL, h

= length(variable) - training.set.

training.set integer; NULL (default) Sets the number of variable observations as the training
set. See Note below for recommended uses.

seasonal. factor
integers; Multiple frequency integers considered for NNS.ARMA model, i.e.
(seasonal.factor =c(12, 24, 36)).

lin.only logical; FALSE (default) For fast optimization of the linear regression method.
More robust than 1in.only = TRUE.

negative.values
logical; FALSE (default) If the variable can be negative, set to (negative.values

= TRUE). It will automatically select (negative.values = TRUE) if the mini-
mum value of the variable is negative.

20

obj.fn

objective

NNS.ARMA . .optim

expression; expression(cor(predicted, actual, method = "spearman”) /
sum((predicted - actual)*2)) (default) Rank correlation / sum of squared
errors is the default objective function. Any expression(...) using the spe-
cific terms predicted and actual can be used.

non

options: ("min", "max") "max" (default) Select whether to minimize or maxi-
mize the objective function obj. fn.

linear.approximation

ncores

pred

.int

print.trace

plot

Value

logical; TRUE (default) Uses the best linear output from NNS.reg to generate a
nonlinear and mixture regression for comparison. FALSE is a more exhaustive
search over the objective space.

integer; value specifying the number of cores to be used in the parallelized pro-
cedure. If NULL (default), the number of cores to be used is equal to the number
of cores of the machine - 1.

numeric [0, 1]; 0.95 (default) Returns the associated prediction intervals for the
final estimate. Constructed using the maximum entropy bootstrap NNS.meboot
on the final estimates.

logical; TRUE (default) Prints current iteration information. Suggested as backup
in case of error, best parameters to that point still known and copyable!

logical; FALSE (default)

Returns a list containing:

Note

$period a vector of optimal seasonal periods

$weights the optimal weights of each seasonal period between an equal weight or NULL

weighting

$obj. fn the objective function value

$method the method identifying which NNS.ARMA method was used.
$shrink whether to use the shrink parameter in NNS.ARMA.

$nns. regress whether to smooth the variable via NNS.reg before forecasting.

$bias.shift a numerical result of the overall bias of the optimum objective function result.
To be added to the final result when using the NNS.ARMA with the derived parameters.

$errors a vector of model errors from internal calibration.

$results a vector of length h.

$lower.pred. int a vector of lower prediction intervals per forecast point.

$upper.pred. int a vector of upper prediction intervals per forecast point.

Typically, (training.set =0.8 * length(variable)) is used for optimization. Smaller
samples could use (training.set =0.9 * length(variable)) (or larger) in order to pre-
serve information.

The number of combinations will grow prohibitively large, they should be kept as small as
possible. seasonal.factor containing an element too large will result in an error. Please
reduce the maximum seasonal. factor.

Set (ncores = 1) if routine is used within a parallel architecture.

NNS.boost 21

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

Nonlinear NNS.ARMA period optimization using 2 yearly lags on AirPassengers monthly data
Not run:

nns.optims <- NNS.ARMA.optim(AirPassengers[1:132], training.set = 120,

seasonal.factor = seq(12, 24, 6))

To predict out of sample using best parameters:
NNS.ARMA.optim(AirPassengers[1:132], h = 12, seasonal.factor = seq(12, 24, 6))

Incorporate any objective function from external packages (such as \code{Metrics: :mape})
NNS.ARMA.optim(AirPassengers[1:132], h = 12, seasonal.factor = seq(12, 24, 6),

obj.fn = expression(Metrics::mape(actual, predicted)), objective = "min")

End(Not run)

NNS.boost NNS Boost

Description

Ensemble method for classification using the NNS multivariate regression NNS.reg as the base
learner instead of trees.

Usage

NNS . boost (
IVs.train,
DV.train,
IVs.test = NULL,
type = NULL,
depth = NULL,
learner.trials = 100,
epochs = NULL,

CV.size = NULL,
balance = FALSE,
ts.test = NULL,
folds = 5,
threshold = NULL,

22 NNS.boost

obj.fn = expression(sum((predicted - actual)*2)),
objective = "min",

extreme = FALSE,

features.only = FALSE,

feature.importance = TRUE,

pred.int = NULL,

status = TRUE

)
Arguments
IVs.train a matrix or data frame of variables of numeric or factor data types.
DV.train a numeric or factor vector with compatible dimensions to (IVs.train).
IVs.test a matrix or data frame of variables of numeric or factor data types with compat-
ible dimensions to (IVs.train). If NULL, will use (IVs.train) as default.
type NULL (default). To perform a classification of discrete integer classes from factor

target variable (DV. train) with a base category of 1, set to (type = "CLASS"),
else for continuous (DV.train) set to (type = NULL).

depth options: (integer, NULL, "max"); (depth = NULL)(default) Specifies the order
parameter in the NNS.reg routine, assigning a number of splits in the regressors,
analogous to tree depth.

learner.trials integer; 100 (default) Sets the number of trials to obtain an accuracy threshold
level. If the number of all possible feature combinations is less than selected
value, the minimum of the two values will be used.

epochs integer; 2*length(DV.train) (default) Total number of feature combinations
to run.

CV.size numeric [0, 1]; NULL (default) Sets the cross-validation size. Defaults to a ran-
dom value between 0.2 and 0.33 for a random sampling of the training set.

balance logical; FALSE (default) Uses both up and down sampling to balance the classes.
type="CLASS" required.

ts.test integer; NULL (default) Sets the length of the test set for time-series data; typ-
ically 2xh parameter value from NNS.ARMA or double known periods to fore-
cast.

folds integer; 5 (default) Sets the number of folds in the NNS.stack procedure for
optimal n.best parameter.

threshold numeric; NULL (default) Sets the obj. fn threshold to keep feature combinations.

obj.fn expression; expression(sum((predicted - actual)*2)) (default) Sum of

squared errors is the default objective function. Any expression(...) using
the specific terms predicted and actual can be used. Automatically selects an
accuracy measure when (type = "CLASS").

non

objective options: ("min", "max") "max" (default) Select whether to minimize or maxi-
mize the objective function obj. fn.

extreme logical; FALSE (default) Uses the maximum (minimum) threshold obtained
from the learner. trials, rather than the upper (lower) quintile level for max-
imization (minimization) objective.

NNS.boost 23

features.only logical; FALSE (default) Returns only the final feature loadings along with the
final feature frequencies.

feature.importance
logical; TRUE (default) Plots the frequency of features used in the final estimate.

pred.int numeric [0,1]; NULL (default) Returns the associated prediction intervals for the
final estimate.

status logical; TRUE (default) Prints status update message in console.

Value

Returns a vector of fitted values for the dependent variable test set $results, prediction intervals
$pred. int, and the final feature loadings $feature.weights, along with final feature frequencies
$feature. frequency.

Note

* Like a logistic regression, the (type = "CLASS") setting is not necessary for target variable
of two classes e.g. [0, 1]. The response variable base category should be 1 for classification
problems.

* Incorporate any objective function from external packages (such asMetrics: :mape) viaNNS.boost(. . .,
obj.fn =expression(Metrics: :mape(actual, predicted)), objective = "min")

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. (2016) "Classification Using NNS Clustering Analysis" doi:10.2139/ssrn.2864711

Examples

Using 'iris' dataset where test set [IVs.test] is 'iris' rows 141:150.
Not run:

a <- NNS.boost(iris[1:140, 1:4], iris[1:140, 5],

IVs.test = iris[141:150, 1:4],

epochs = 100, learner.trials = 100,

type = "CLASS", depth = NULL, balance = TRUE)

Test accuracy
mean(a$results == as.numeric(iris[141:150, 51))

End(Not run)

https://doi.org/10.2139/ssrn.2864711

24

NNS.caus

NNS. caus

NNS Causation

Description

Returns the causality from observational data between two variables.

factor.2.dummy = FALSE,

permute = c("y"”, "x", "both"),

a numeric vector, matrix or data frame.

Usage
NNS. caus(
X y
y = NULL,
tau = 0,
plot = FALSE,
p.value = FALSE,
nperm = 100L,
seed = NULL,
conf.int = 0.95
)
Arguments
X
y

factor.2.dummy

tau

plot

p.value

nperm

permute

seed

conf.int

NULL (default) or a numeric vector with compatible dimensions to x.

logical; FALSE (default) Automatically augments variable matrix with numerical
dummy variables based on the levels of factors. Includes dependent variable y.

options: ("cs", "ts", integer); O (default) Number of lagged observations to con-
sider (for time series data). Otherwise, set (tau = "cs") for cross-sectional data.
(tau = "ts") automatically selects the lag of the time series data, while (tau =
[integer]) specifies a time series lag.

logical; FALSE (default) Plots the raw variables, tau normalized, and cross-
normalized variables.

logical; FALSE (default) If TRUE, runs a permutation test to compute empirical
p-values for the signed causation from x ->y.

integer; number of permutations to use when p.value = TRUE. Default 100.

one of "both", "y", or "x"; which variable(s) to shuffle when constructing the
null distribution.

optional integer seed for reproducibility of the permutation test.

numeric; 0.95 (default) confidence level for the partial-moment based interval
computed on the permutation null distribution.

NNS.CDF 25

Value

If p. value=FALSE returns the original causation vector of length 3 (directional given/received and
net), named either "C(x—>y)" or "C(y—>x)" in the third slot. If p.value=TRUE returns a list with
components: * causation: the original causation vector as above. * p.value: a list with empiri-
cal two-sided and one-sided p-values (x_causes_y, y_causes_x), the null distribution, the observed
signed statistic, and metadata (permute, nperm). If p. value=TRUE for a matrix, the function returns
a list with components: * causality: the causality matrix. * lower_CI: matrix of lower confidence
bounds (partial-moment based). * upper_CI: matrix of upper confidence bounds (partial-moment
based). * p.value: matrix of empirical two-sided p-values.

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

Not run:

x causes y...
set.seed(123)

X <= rnorm(1000) ; y <- x * 2
NNS.caus(x, y, tau = "cs")

Causal matrix without per factor causation
NNS.caus(iris, tau = 0)

Causal matrix with per factor causation
NNS.caus(iris, factor.2.dummy = TRUE, tau = @)

End(Not run)

NNS . CDF NNS CDF

Description
This function generates an empirical CDF using partial moment ratios LPM.ratio, and resulting
survival, hazard and cumulative hazard functions.

Usage

NNS.CDF(variable, degree = @, target = NULL, type = "CDF", plot = TRUE)

26

Arguments

variable
degree
target
type

plot

Value

Returns:

NNS.CDF

a numeric vector or data.frame of >= 2 variables for joint CDF.
numeric; (degree = @) (default) is frequency, (degree = 1) is area.
numeric; NULL (default) Must lie within support of each variable.

options("CDF", "survival", "hazard", "cumulative hazard"); "CDF" (default) Se-
lects type of function to return for bi-variate analysis. Multivariate analysis is
restricted to "CDF".

logical; plots CDF.

* "Function” a data.table containing the observations and resulting CDF of the variable.

* "target.value" value from the target argument.

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Viole, F. (2017) "Continuous CDFs and ANOVA with NNS" doi:10.2139/ssrn.3007373

Examples

Not run:
set.seed(123)

X <= rnorm(100)
NNS. CDF (x)

Empirical CDF (degree = 0)
NNS. CDF (x)

Continuous CDF (degree = 1)
NNS.CDF (x, 1)

Joint CDF

X <= rnorm(5000) ; y <- rnorm(5000)
A <= cbind(x,y)

NNS.CDF (A, @)

Joint CDF with target
NNS.CDF (A, @, target = rep(@, ncol(A)))

End(Not run)

https://doi.org/10.2139/ssrn.3007373

NNS.copula 27

NNS. copula NNS Co-Partial Moments Higher Dimension Dependence

Description

Determines higher dimension dependence coefficients based on co-partial moment matrices ratios.

Usage

NNS. copula(
X,
target = NULL,
continuous = TRUE,

plot = FALSE,
independence.overlay = FALSE
)
Arguments
X a numeric matrix or data frame.
target numeric; Typically the mean of Variable X for classical statistics equivalences,
but does not have to be. (Vectorized) (target = NULL) (default) will set the
target as the mean of every variable.
continuous logical; TRUE (default) Generates a continuous measure using degree 1 PM.matrix,
while discrete FALSE uses degree 0 PM.matrix.
plot logical; FALSE (default) Generates a 3d scatter plot with regression points.

independence.overlay
logical; FALSE (default) Creates and overlays independent Co.LPM and Co.UPM
regions to visually reference the difference in dependence from the data.frame
of variables being analyzed. Under independence, the light green and red shaded
areas would be occupied by green and red data points respectively.

Value

Returns a multivariate dependence value [0,1].

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. (2016) "Beyond Correlation: Using the Elements of Variance for Conditional Means and
Probabilities" doi:10.2139/ssrn.2745308.

https://doi.org/10.2139/ssrn.2745308

28 NNS.dep

Examples

Not run:

set.seed(123)

X <= rnorm(1000) ; y <- rnorm(1000) ; z <- rnorm(1000)

A <- data.frame(x, y, z)

NNS.copula(A, target = colMeans(A), plot = TRUE, independence.overlay = TRUE)

Target 0
NNS.copula(A, target = rep(@, ncol(A)), plot = TRUE, independence.overlay = TRUE)

End(Not run)

NNS. dep NNS Dependence

Description

Returns the dependence and nonlinear correlation between two variables based on higher order
partial moment matrices measured by frequency or area.

Usage
NNS.dep(x, y = NULL, asym = FALSE, p.value = FALSE, print.map = FALSE)

Arguments
X a numeric vector, matrix or data frame.
y NULL (default) or a numeric vector with compatible dimensions to x.
asym logical; FALSE (default) Allows for asymmetrical dependencies.
p.value logical; FALSE (default) Generates 100 independent random permutations to test
results against and plots 95 percent confidence intervals along with all results.
print.map logical; FALSE (default) Plots quadrant means, or p-value replicates.
Value

Returns the bi-variate "Correlation” and "Dependence” or correlation / dependence matrix for
matrix input.

Note
For asymmetrical (asym = TRUE) matrices, directional dependence is returned as ([column variable]
—> [row variable]).

Author(s)
Fred Viole, OVVO Financial Systems

NNS.diff 29

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

Not run:

set.seed(123)

x <= rnorm(100) ; y <- rnorm(100)
NNS.dep(x, y)

Correlation / Dependence Matrix

X <= rnorm(100) ; y <- rnorm(100) ; z <- rnorm(100)
B <- cbind(x, y, z)

NNS. dep(B)

End(Not run)

NNS.diff NNS Numerical Differentiation

Description
Determines numerical derivative of a given univariate function using projected secant lines on the
y-axis. These projected points infer finite steps h, in the finite step method.

Usage

NNS.diff(f, point, h = 0.1, tol = 1e-10, digits = 12, print.trace = FALSE)

Arguments
f an expression or call or a formula with no lhs.
point numeric; Point to be evaluated for derivative of a given function f.
h numeric [0, ...]; Initial step for secant projection. Defaults to (h=0.1).
tol numeric; Sets the tolerance for the stopping condition of the inferred h. Defaults
to (tol =1e-10).
digits numeric; Sets the number of digits specification of the output. Defaults to

(digits =12).
print.trace logical; FALSE (default) Displays each iteration, lower y-intercept, upper y-
intercept and inferred h.
Value

Returns a matrix of values, intercepts, derivatives, inferred step sizes for multiple methods of esti-
mation.

30 NNS.distance

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples
Not run:

f <- function(x) sin(x) / x
NNS.diff(f, 4.1)

End(Not run)

NNS.distance NNS Distance

Description

Internal kernel function for NNS multivariate regression NNS.reg parallel instances.

Usage

NNS.distance(rpm, dist.estimate, k = "all”, class = NULL)

Arguments

rpm REGRESSION.POINT.MATRIX from NNS.reg

dist.estimate Vector to generate distances from.

k n.best from NNS.reg
class if classification problem.
Value

Returns sum of weighted distances.

NNS.FSD 31

NNS.FSD NNS FSD Test

Description

Bi-directional test of first degree stochastic dominance using lower partial moments.

Usage

NNS.FSD(x, y, type = "discrete”, plot = TRUE)

Arguments
X a numeric vector.
y a numeric vector.
type options: ("discrete", "continuous"); "discrete” (default) selects the type of
CDFE.
plot logical; TRUE (default) plots the FSD test.
Value

Returns one of the following FSD results: "X FSD Y", "Y FSD X", or "NO FSD EXISTS".

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012.

Viole, F. (2017) "A Note on Stochastic Dominance." doi:10.2139/ssrn.3002675.

Examples

Not run:

set.seed(123)

X <= rnorm(100) ; y <- rnorm(100)
NNS.FSD(x, y)

End(Not run)

https://doi.org/10.4236/jmf.2016.61012
https://doi.org/10.2139/ssrn.3002675

32 NNS.FSD.uni

NNS.FSD.uni NNS FSD Test uni-directional

Description
Uni-directional test of first degree stochastic dominance using lower partial moments used in SD
Efficient Set routine.

Usage

NNS.FSD.uni(x, y, type = "discrete")

Arguments
X a numeric vector.
y a numeric vector.
type options: ("discrete", "continuous"); "discrete” (default) selects the type of
CDEF.
Value

Returns (1) if "X FSD Y", else (0).

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012

Viole, F. (2017) "A Note on Stochastic Dominance." doi:10.2139/ssrn.3002675

Examples

Not run:

set.seed(123)

X <= rnorm(100) ; y <- rnorm(100)
NNS.FSD.uni(x, y)

End(Not run)

https://doi.org/10.4236/jmf.2016.61012
https://doi.org/10.2139/ssrn.3002675

NNS.gravity 33

NNS.gravity NNS gravity

Description

Alternative central tendency measure more robust to outliers.

Usage

NNS.gravity(x, discrete = FALSE)

Arguments

X vector of data.

discrete logical; FALSE (default) for discrete distributions.
Value

Returns a numeric value representing the central tendency of the distribution.

Author(s)

Fred Viole, OVVO Financial Systems

Examples

Not run:
set.seed(123)
X <= rnorm(100)
NNS.gravity(x)

End(Not run)

NNS.MC NNS Monte Carlo Sampling

Description

Monte Carlo sampling from the maximum entropy bootstrap routine NNS.meboot, ensuring the
replicates are sampled from the full [-1,1] correlation space.

34 NNS.MC
Usage
NNS . MC(
X,
reps = 30,
lower_rho = -1,
upper_rho = 1,
by = .01,
exp =1,
type = "spearman”,
drift = TRUE,
target_drift = NULL,
target_drift_scale = NULL,
xmin = NULL,
xmax = NULL,
)
Arguments
X vector of data.
reps numeric; number of replicates to generate, 3@ default.
lower_rho numeric [-1,1]; .01 default will set the from argument in seq(from, to, by).
upper_rho numeric [-1,1]; .01 default will set the to argument in seq(from, to, by).
by numeric; .01 default will set the by argument in seq(-1, 1, step).
exp numeric; 1 default will exponentially weight maximum rho value if exp > 1.
Shrinks values towards upper_rho.
type options("spearman”, "pearson"”, "NNScor", "NNSdep"); type = "spearman” (default)
dependence metric desired.
drift logical; drift = TRUE (default) preserves the drift of the original series.
target_drift numerical; target_drift = NULL (default) Specifies the desired drift when drift
= TRUE, i.e. a risk-free rate of return.
target_drift_scale
numerical; instead of calculating a target_drift, provide a scalar to the exist-
ing drift when drift = TRUE.
xmin numeric; the lower limit for the left tail.
Xmax numeric; the upper limit for the right tail.
possible additional arguments to be passed to NNS.meboot.
Value

* ensemble average observation over all replicates as a vector.

* replicates maximum entropy bootstrap replicates as a list for each rho.

NNS.meboot 35

References

Vinod, H.D. and Viole, F. (2020) Arbitrary Spearman’s Rank Correlations in Maximum Entropy
Bootstrap and Improved Monte Carlo Simulations. doi:10.2139/ssrn.3621614

Examples

Not run:
To generate a set of MC sampled time-series to AirPassengers
MC_samples <- NNS.MC(AirPassengers, reps = 10, lower_rho = -1, upper_rho =1, by = .5, xmin = Q)

End(Not run)

NNS . meboot NNS meboot

Description

Adapted maximum entropy bootstrap routine from meboot https://cran.r-project.org/package=

meboot.
Usage

NNS . meboot (
X,
reps = 999,
rho = NULL,
type = "spearman”,
drift = TRUE,

target_drift = NULL,
target_drift_scale = NULL,

trim = 0.1,
xmin = NULL,
xmax = NULL,

reachbnd = TRUE,
expand.sd = TRUE,
force.clt = TRUE,
scl.adjustment = FALSE,

sym = FALSE,
elaps = FALSE,
digits = 6,
colsubj,
coldata,
coltimes,

https://doi.org/10.2139/ssrn.3621614
https://cran.r-project.org/package=meboot
https://cran.r-project.org/package=meboot

36

Arguments

X
reps

rho

type

drift
target_drift

NNS.meboot

vector of data.
numeric; number of replicates to generate.

numeric [-1,1] (vectorized); A rho must be provided, otherwise a blank list will
be returned.

options("spearman", "pearson”, "NNScor", "NNSdep"); type = "spearman”(default)
dependence metric desired.

logical; drift = TRUE (default) preserves the drift of the original series.

numerical; target_drift = NULL (default) Specifies the desired drift whendrift
= TRUE, i.e. a risk-free rate of return.

target_drift_scale

trim
Xxmin
Xmax
reachbnd
expand. sd
force.clt

scl.adjustment
sym

elaps

digits

colsubj

coldata

coltimes

Value

numerical; instead of calculating a target_drift, provide a scalar to the exist-
ing drift when drift = TRUE.

numeric [0,1]; The mean trimming proportion, defaults to trim=0.1.
numeric; the lower limit for the left tail.
numeric; the upper limit for the right tail.

logical; If TRUE potentially reached bounds (xmin = smallest value - trimmed
mean and xmax = largest value + trimmed mean) are given when the random
draw happens to be equal to 0 and 1, respectively.

logical; If TRUE the standard deviation in the ensemble is expanded. See expand. sd
in meboot: :meboot.

logical; If TRUE the ensemble is forced to satisfy the central limit theorem. See
force.clt in meboot: :meboot.

logical; If TRUE scale adjustment is performed to ensure that the population vari-
ance of the transformed series equals the variance of the data.

logical; If TRUE an adjustment is performed to ensure that the ME density is
symmetric.

logical; If TRUE elapsed time during computations is displayed.
integer; 6 (default) number of digits to round output to.

numeric; the column in x that contains the individual index. It is ignored if the
input data x is not a pdata. frame object.

numeric; the column in x that contains the data of the variable to create the
ensemble. It is ignored if the input data x is not a pdata. frame object.

numeric; an optional argument indicating the column that contains the times at
which the observations for each individual are observed. It is ignored if the input
data x is not a pdata. frame object.

possible argument fiv to be passed to expand. sd.

Returns the following row names in a matrix:

* x original data provided as input.

NNS.meboot 37

* replicates maximum entropy bootstrap replicates.

* ensemble average observation over all replicates.

¢ xx sorted order stats (xx[1] is minimum value).

* 7 class intervals limits.

 dv deviations of consecutive data values.

* dvtrim trimmed mean of dv.

e xmin data minimum for ensemble=xx[1]-dvtrim.

¢ xmax data x maximum for ensemble=xx[n]+dvtrim.
¢ desintxb desired interval means.

* ordxx ordered x values.

* kappa scale adjustment to the variance of ME density.

* elaps elapsed time.

Note

Vectorized rho and drift parameters will not vectorize both simultaneously. Also, do not specify
target_drift = NULL.

References
* Vinod, H.D. and Viole, F. (2020) Arbitrary Spearman’s Rank Correlations in Maximum En-
tropy Bootstrap and Improved Monte Carlo Simulations. doi:10.2139/ssrn.3621614

* Vinod, H.D. (2013), Maximum Entropy Bootstrap Algorithm Enhancements. doi:10.2139/
ssrn.2285041

* Vinod, H.D. (2006), Maximum Entropy Ensembles for Time Series Inference in Economics,
Journal of Asian Economics, 17(6), pp. 955-978.

* Vinod, H.D. (2004), Ranking mutual funds using unconventional utility theory and stochastic
dominance, Journal of Empirical Finance, 11(3), pp. 353-377.

Examples

Not run:
To generate an orthogonal rank correlated time-series to AirPassengers
boots <- NNS.meboot(AirPassengers, reps = 100, rho = @, xmin = Q)

Verify correlation of replicates ensemble to original
cor(boots["ensemble”,]$ensemble, AirPassengers, method = "spearman")

Plot all replicates
matplot(boots["replicates”,]$replicates , type = 'l")

Plot ensemble
lines(boots["ensemble"”, J$ensemble, 1lwd = 3)

Plot original
lines(1:1length(AirPassengers), AirPassengers, lwd = 3, col = "red")

https://doi.org/10.2139/ssrn.3621614
https://doi.org/10.2139/ssrn.2285041
https://doi.org/10.2139/ssrn.2285041

38 NNS.mode

Vectorized drift with a single rho

boots <- NNS.meboot(AirPassengers, reps = 10, rho = @, xmin = @, target_drift = c(1,7))
matplot(do.call(cbind, boots["replicates”, 1), type = "1")
lines(1:1length(AirPassengers), AirPassengers, lwd = 3, col = "red")

Vectorized rho with a single target drift

boots <- NNS.meboot(AirPassengers, reps = 10, rho = c(0, .5, 1), xmin = @, target_drift = 3)
matplot(do.call(cbind, boots["replicates”, 1), type = "1")
lines(1:1length(AirPassengers), AirPassengers, lwd = 3, col = "red")

Vectorized rho with a single target drift scale

boots <- NNS.meboot (AirPassengers, reps = 10, rho = c(0, .5, 1), xmin = @, target_drift_scale =0.5)
matplot(do.call(cbind, boots["replicates”, 1), type = "1")

lines(1:1length(AirPassengers), AirPassengers, lwd = 3, col = "red")

End(Not run)

NNS . mode NNS mode

Description

Mode of a distribution, either continuous or discrete.

Usage

NNS.mode(x, discrete = FALSE, multi = TRUE)

Arguments
X vector of data.
discrete logical; FALSE (default) for discrete distributions.
multi logical; TRUE (default) returns multiple mode values.
Value

Returns a numeric value representing the mode of the distribution.

Author(s)

Fred Viole, OVVO Financial Systems

NNS.moments 39

Examples

Not run:
set.seed(123)

X <= rnorm(100)
NNS . mode (x)

End(Not run)

NNS.moments NNS moments

Description

This function returns the first 4 moments of the distribution.

Usage

NNS.moments(x, population = TRUE)

Arguments
X a numeric vector.
population logical; TRUE (default) Performs the population adjustment. Otherwise returns
the sample statistic.
Value
Returns:

e "$mean” mean of the distribution.
e "$variance” variance of the distribution.
* "$skewness” skewness of the distribution.

e "$kurtosis” excess kurtosis of the distribution.

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

40 NNS.norm

Examples

Not run:
set.seed(123)
X <= rnorm(100)
NNS . moments (x)

End(Not run)

NNS.norm NNS Normalization

Description

Normalizes a matrix of variables based on nonlinear scaling normalization method.

Usage

NNS.norm(X, linear = FALSE, chart.type = NULL, location = "topleft")

Arguments
X a numeric matrix or data frame, or a list.
linear logical; FALSE (default) Performs a linear scaling normalization, resulting in
equal means for all variables.
chart.type options: ("1", "b"); NULL (default). Set (chart.type = "1") forline, (chart. type
="b") for boxplot.
location Sets the legend location within the plot, per the x and y co-ordinates used in base
graphics legend.
Value

Returns a data.frame of normalized values.

Note

Unequal vectors provided in a list will only generate 1inear=TRUE normalized values.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

NNS.nowcast 41

Examples

Not run:

set.seed(123)

x <= rnorm(100) ; y <- rnorm(100)
A <= cbind(x, y)

NNS.norm(A)

Normalize list of unequal vector lengths
vecl <- c(1, 2, 3, 4, 5, 6, 7)
vec2 <- c(10, 20, 30, 40, 50, 60)

vec3 <- c(0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3)

vec_list <- list(vecl, vec2, vec3)
NNS.norm(vec_list)

End(Not run)

NNS . nowcast NNS Nowcast

Description

Wrapper function for NNS nowcasting method using the nonparametric vector autoregression NNS.VAR,
and Federal Reserve Nowcasting variables.

Usage

NNS . nowcast (
h =1,
additional.regressors = NULL,
additional.sources = NULL,
naive.weights = FALSE,
specific.regressors = NULL,
start.date = "2000-01-03",
keep.data = FALSE,
status = TRUE,
ncores = NULL

Arguments

h integer; (h = 1) (default) Number of periods to forecast. (h = @) will return just
the interpolated and extrapolated values up to the current month.
additional.regressors
character; NULL (default) add more regressors to the base model. The format
must utilize the getSymbols format for FRED data, else specify the source.

42 NNS.nowcast

additional.sources
character; NULL (default) specify the source argument per getSymbols for each
additional.regressors specified.

naive.weights logical; TRUE Equal weights applied to univariate and multivariate outputs in
ensemble. FALSE (default) will apply weights based on the number of relevant
variables detected.

specific.regressors
integer; NULL (default) Select individual regressors from the base model per Vi-
ole (2020) listed in the Note below.

start.date character; "2000-01-03" (default) Starting date for all data series download.
keep.data logical; FALSE (default) Keeps downloaded variables in a new environment NNSdata.
status logical; TRUE (default) Prints status update message in console.

ncores integer; value specifying the number of cores to be used in the parallelized sub-

routine NNS.ARMA.optim. If NULL (default), the number of cores to be used
is equal to the number of cores of the machine - 1.

Value
Returns the following matrices of forecasted variables:

* "interpolated_and_extrapolated” Returns a data.frame of the linear interpolated and
NNS.ARMA extrapolated values to replace NA values in the original variables argument.
This is required for working with variables containing different frequencies, e.g. where NA
would be reported for intra-quarterly data when indexed with monthly periods.

* "relevant_variables” Returns the relevant variables from the dimension reduction step.
* "univariate"” Returns the univariate NNS.ARMA forecasts.
* "multivariate” Returns the multi-variate NNS.reg forecasts.

e "ensemble” Returns the ensemble of both "univariate” and "multivariate” forecasts.

Note
Specific regressors include:

PAYEMS — Payroll Employment
JTSJOL — Job Openings
CPIAUCSL — Consumer Price Index
DGORDER — Durable Goods Orders
RSAFS — Retail Sales

UNRATE — Unemployment Rate
HOUST — Housing Starts

INDPRO — Industrial Production
DSPIC96 — Personal Income
BOPTEXP — Exports

. BOPTIMP — Imports

e A o

—_ =
—_ O

NNS.nowcast 43

12. TTLCONS — Construction Spending

13. IR —Import Price Index

14. CPILFESL — Core Consumer Price Index

15. PCEPILFE — Core PCE Price Index

16. PCEPI — PCE Price Index

17. PERMIT — Building Permits

18. TCU — Capacity Utilization Rate

19. BUSINV — Business Inventories

20. ULCNFB — Unit Labor Cost

21. IQ - Export Price Index

22. GACDISA@66MSFRBNY — Empire State Mfg Index
23. GACDFSA@66MSFRBPHI — Philadelphia Fed Mfg Index
24. PCEC96 — Real Consumption Spending

25. GDPC1 — Real Gross Domestic Product

26. ICSA — Weekly Unemployment Claims

27. DGS10 — 10-year Treasury rates

28. T10Y2Y — 2-10 year Treasury rate spread

29. WALCL — Total Assets

30. PALLFNFINDEXM — Global Price Index of All Commodities
31. FEDFUNDS — Federal Funds Effective Rate

32. PPIACO — Producer Price Index All Commodities
33. CIVPART — Labor Force Participation Rate

34. M2NS — M2 Money Supply

35. ADPMNUSNERNSA — ADP Payrolls

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Viole, F. (2019) "Multi-variate Time-Series Forecasting: Nonparametric Vector Autoregression Us-
ing NNS" doi:10.2139/ssrn.3489550

Viole, F. (2020) "NOWCASTING with NNS" doi:10.2139/ssrn.3589816

https://doi.org/10.2139/ssrn.3489550
https://doi.org/10.2139/ssrn.3589816

44 NNS.part

Examples

Not run:
Interpolates / Extrapolates all variables to current month
NNS.nowcast(h = @)

Additional regressors and sources specified
NNS.nowcast(h = @, additional.regressors = c("SPY", "US0"),
additional.sources = c("yahoo", "yahoo"))

PREDICTION INTERVALS
Store NNS.nowcast output
nns_estimates <- NNS.nowcast(h = 12)

Create bootstrap replicates using NNS.meboot (GDP Variable)
gdp_replicates <- NNS.meboot(nns_estimates$ensemble$GDPC1,
rho = seq(0,1,.25),
reps = 100)["replicates”,]

replicates <- do.call(cbind, gdp_replicates)

Apply UPM.VaR and LPM.VaR for desired prediction interval...95 percent illustrated
Tail percentage used in first argument per {LPM.VaR} and {UPM.VaR} functions
lower_GDP_CIs <- apply(replicates, 1, function(z) LPM.VaR(@.025, 0, z))
upper_GDP_CIs <- apply(replicates, 1, function(z) UPM.VaR(0.025, 0, z))

View results
cbind(nns_estimates$ensemble$GDPC1, lower_GDP_CIs, upper_GDP_CIs)

End(Not run)

NNS.part NNS Partition Map

Description

Creates partitions based on partial moment quadrant centroids, iteratively assigning identifica-
tions to observations based on those quadrants (unsupervised partitional and hierarchical clustering
method). Basis for correlation, dependence NNS.dep, regression NNS.reg routines.

Usage
NNS.part(
X’
y’
Voronoi = FALSE,
type = NULL,

order = NULL,

NNS.part 45

obs.req = 8,
min.obs.stop = TRUE,
noise.reduction = "off"
)
Arguments
X a numeric vector.
y a numeric vector with compatible dimensions to x.
Voronoi logical; FALSE (default) Displays a Voronoi type diagram using partial moment
quadrants.
type NULL (default) Controls the partitioning basis. Set to (type = "XONLY") for X-
axis based partitioning. Defaults to NULL for both X and Y-axis partitioning.
order integer; Number of partial moment quadrants to be generated. (order = "max")
will institute a perfect fit.
obs.req integer; (8 default) Required observations per cluster where quadrants will not

be further partitioned if observations are not greater than the entered value.
Reduces minimum number of necessary observations in a quadrant to 1 when
(obs.req=1).

min.obs.stop logical; TRUE (default) Stopping condition where quadrants will not be further
partitioned if a single cluster contains less than the entered value of obs.req.

noise.reduction
the method of determining regression points options for the dependent vari-
able y: ("mean", "median", "mode", "off"); (noise.reduction = "mean") uses
means for partitions. (noise.reduction = "median"”) uses medians instead
of means for partitions, while (noise.reduction = "mode") uses modes in-
stead of means for partitions. Defaults to (noise.reduction = "off") where
an overall central tendency measure is used, which is the default for the inde-
pendent variable x.

Value

Returns:

* "dt" adata.table of x and y observations with their partition assignment "quadrant” in the
3rd column and their prior partition assignment "prior.quadrant” in the 4th column.

* "regression.points” the data. table of regression points for that given (order = ...).

* "order” the order of the final partition given "min.obs.stop"” stopping condition.

Note
min.obs.stop = FALSE will not generate regression points due to unequal partitioning of quadrants
from individual cluster observations.

Author(s)
Fred Viole, OVVO Financial Systems

46 NNS.reg

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

Not run:

set.seed(123)

X <= rnorm(100) ; y <- rnorm(100)
NNS.part(x, y)

Data.table of observations and partitions
NNS.part(x, y, order = 1)$%$dt

Regression points
NNS.part(x, y, order = 1)$regression.points

Voronoi style plot
NNS.part(x, y, Voronoi = TRUE)

Examine final counts by quadrant
DT <- NNS.part(x, y)$dt

DTL , counts := .N, by = quadrant]
DT

End(Not run)

NNS.reg NNS Regression

Description

Generates a nonlinear regression based on partial moment quadrant means.

Usage
NNS. reg(

X,
Y,
factor.2.dummy = TRUE,
order = NULL,
dim.red.method = NULL,
tau = NULL,
type = NULL,
point.est = NULL,
location = "top”,

return.values = TRUE,
plot = TRUE,

NNS.reg

plot.regions

47

= FALSE,

residual.plot = TRUE,
confidence.interval = NULL,

threshold = @

’

n.best = NULL,
smooth = FALSE,
noise.reduction = "off",

dist = "L2",

ncores = NULL,
point.only = FALSE,
multivariate.call = FALSE

Arguments
X

y

factor.2.dummy

order

dim.red.method

tau

type

point.est

location

return.values

plot

a vector, matrix or data frame of variables of numeric or factor data types.
a numeric or factor vector with compatible dimensions to x.

logical; TRUE (default) Automatically augments variable matrix with numerical
dummy variables based on the levels of factors.

integer; Controls the number of partial moment quadrant means. Users are en-
couraged to try different (order = .. .) integer settings with (noise.reduction
="off"). (order = "max") will force a limit condition perfect fit.

options: ("cor", "NNS.dep", "NNS.caus", "all", "equal”, numeric vector, NULL)
method for determining synthetic X* coefficients (per Dana and Dawes (2004)).
Selection of a method automatically engages the dimension reduction regres-

sion. The default is NULL for full multivariate regression. (dim.red.method =
"NNS.dep") uses NNS.dep for nonlinear dependence weights, while (dim. red.method
= "NNS.caus") uses NNS.caus for causal weights. (dim.red.method = "cor™)

uses standard linear correlation for weights. (dim.red.method = "all") aver-

ages all methods for further feature engineering. (dim.red.method = "equal”)

uses unit weights. Alternatively, user can specify a numeric vector of coeffi-
cients.

options("ts", NULL); NULL(default) To be used in conjunction with (dim.red.method
= "NNS.caus"”) or (dim.red.method = "all"). If the regression is using time-
series data, set (tau = "ts") for more accurate causal analysis.

NULL (default). To perform a classification, set to (type = "CLASS"). Like a
logistic regression, it is not necessary for target variable of two classes e.g. [0,
1].

a numeric or factor vector with compatible dimensions to x. Returns the fitted
value y . hat for any value of x.

Sets the legend location within the plot, per the x and y co-ordinates used in base
graphics legend.

logical; TRUE (default), set to FALSE in order to only display a regression plot
and call values as needed.

logical; TRUE (default) To plot regression.

48 NNS.reg

plot.regions logical; FALSE (default). Generates 3d regions associated with each regression
point for multivariate regressions. Note, adds significant time to routine.

residual.plot logical; TRUE (default) To ploty.hat and Y.
confidence.interval
numeric [0, 1]; NULL (default) Plots the associated confidence interval with the

estimate and reports the standard error for each individual segment. Also applies
the same level for the prediction intervals.

threshold numeric [0, 1]; (threshold = @) (default) Sets the threshold for dimension re-
duction of independent variables when (dim.red.method) is not NULL.

n.best integer; NULL (default) Sets the number of nearest regression points to use in
weighting for multivariate regression at sqrt(# of regressors). (n.best =
"all") will select and weight all generated regression points. Analogous to k in
a k Nearest Neighbors algorithm. Different values of n.best are tested using
cross-validation in NNS.stack.

smooth logical; FALSE (default) Applies a smoothing spline instead of local linear fit to
regression points.

noise.reduction
the method of determining regression points options: ("mean", "median", "mode",
"off"); In low signal:noise situations,(noise.reduction = "mean") uses means
for NNS.dep restricted partitions, (noise.reduction = "median”) uses medi-
ans instead of means for NNS.dep restricted partitions, while (noise.reduction
= "mode") uses modes instead of means for NNS.dep restricted partitions. (noise.reduction
= "off") uses an overall central tendency measure for partitions.

dist options:("L1", "L2", "FACTOR") the method of distance calculation; Selects the
distance calculation used. dist = "L2" (default) selects the Euclidean distance
and (dist ="L1") selects the Manhattan distance; (dist = "FACTOR") uses a
frequency.

ncores integer; value specifying the number of cores to be used in the parallelized pro-
cedure. If NULL (default), the number of cores to be used is equal to the number
of cores of the machine - 1.

point.only Internal argument for abbreviated output.
multivariate.call
Internal argument for multivariate regressions.

Value

UNIVARIATE REGRESSION RETURNS THE FOLLOWING VALUES:

* "R2" provides the goodness of fit;
e "SE" returns the overall standard error of the estimate between y and y . hat;

e "Prediction.Accuracy” returns the correct rounded "Point.est"” used in classifications
versus the categorical y;

» "derivative"” for the coefficient of the x and its applicable range;

* "Point.est" for the predicted value generated;

NNS.reg 49

e "pred.int” lower and upper prediction intervals for the "Point.est” returned using the
"confidence.interval” provided;

* "regression.points” provides the points used in the regression equation for the given order
of partitions;

e "Fitted.xy" returns a data.table of x, y, y.hat, resid, NNS.ID, gradient;
MULTIVARIATE REGRESSION RETURNS THE FOLLOWING VALUES:

* "R2" provides the goodness of fit;

* "equation” returns the numerator of the synthetic X* dimension reduction equation as a
data.table consisting of regressor and its coefficient. Denominator is simply the length of
all coefficients > 0, returned in last row of equation data. table.

* "x.star" returns the synthetic X* as a vector;
* "rhs.partitions” returns the partition points for each regressor x;

e "RPM" provides the Regression Point Matrix, the points for each x used in the regression
equation for the given order of partitions;

* "Point.est" returns the predicted value generated;

* "pred.int” lower and upper prediction intervals for the "Point.est"” returned using the
"confidence.interval” provided;

e "Fitted.xy" returns a data. table of x,y, y.hat, gradient, and NNS. ID.

Note
* Please ensure point.est is of compatible dimensions to x, error message will ensue if not
compatible.
* Like a logistic regression, the (type = "CLASS") setting is not necessary for target variable
of two classes e.g. [0, 1]. The response variable base category should be 1 for classification
problems.
* For low signal:noise instances, increasing the dimension may yield better results using NNS. stack (cbind(x, x),
y, method=1, ...).
Author(s)

Fred Viole, OVVO Financial Systems

References
Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Vinod, H. and Viole, F. (2017) "Nonparametric Regression Using Clusters" doi:10.1007/s10614-
01797135

Vinod, H. and Viole, F. (2018) "Clustering and Curve Fitting by Line Segments" doi:10.20944/
preprints201801.0090.v1

Viole, F. (2020) "Partitional Estimation Using Partial Moments" doi:10.2139/ssrn.3592491

Dana, J., and Dawes, R. M. (2004). The Superiority of Simple Alternatives to Regression for Social
Science Predictions. Journal of Educational and Behavioral Statistics, 29(3), 317-331.

https://doi.org/10.1007/s10614-017-9713-5
https://doi.org/10.1007/s10614-017-9713-5
https://doi.org/10.20944/preprints201801.0090.v1
https://doi.org/10.20944/preprints201801.0090.v1
https://doi.org/10.2139/ssrn.3592491

50 NNS.rescale

Examples

Not run:

set.seed(123)

x <= rnorm(100) ; y <- rnorm(100)
NNS.reg(x, y)

Manual {order} selection
NNS.reg(x, y, order = 2)

Maximum {order} selection
NNS.reg(x, y, order = "max"

x-only paritioning (Univariate only)
NNS.reg(x, y, type = "XONLY")

For Multiple Regression:
x <= cbind(rnorm(100), rnorm(100), rnorm(10@)) ; y <- rnorm(100)
NNS.reg(x, y, point.est = c(.25, .5, .75))

For Multiple Regression based on Synthetic X* (Dimension Reduction):
x <= cbind(rnorm(100), rnorm(100), rnorm(100)) ; y <- rnorm(100)
NNS.reg(x, y, point.est = c(.25, .5, .75), dim.red.method = "cor”, ncores = 1)

IRIS dataset examples:
Dimension Reduction:
NNS.reg(iris[,1:4], iris[,5], dim.red.method = "cor

”

, order = 5, ncores = 1)

Dimension Reduction using causal weights:
NNS.reg(iris[,1:4], iris[,5], dim.red.method

"NNS.caus"”, order = 5, ncores = 1)

Multiple Regression:
NNS.reg(iris[,1:4]1, iris[,5], order = 2, noise.reduction = "off")

Classification:
NNS.reg(iris[,1:4], iris[,5], point.est = iris[1:10, 1:4], type = "CLASS")$Point.est

To call fitted values:
X <= rnorm(100) ; y <- rnorm(100)

NNS.reg(x, y)$Fitted

To call partial derivative (univariate regression only):
NNS.reg(x, y)$derivative

End(Not run)

NNS.rescale NNS rescale

Description

Rescale a vector using either min-max scaling or risk-neutral adjustment.

NNS.rescale 51

Usage

NNS.rescale(x, a, b, method = "minmax", T = NULL, type = "Terminal"”)

Arguments

X numeric vector; data to rescale (e.g., terminal prices for risk-neutral method).

a numeric; defines the scaling target: - For method = "minmax": the lower limit of
the output range (e.g., 5 to scale to [5, b]). - For method = "riskneutral”: the
initial price \(S_0\) (must be positive, e.g., 100), used to set the target mean.

b numeric; defines the scaling range or rate: - For method = "minmax”: the up-
per limit of the output range (e.g., 10 to scale to [a, 10]). - For method =
"riskneutral”: the risk-free rate \(r\) (e.g., 0.05), used with \(T \) to ad-
just the mean.

method character; scaling method: "minmax” (default) for min-max scaling, or "riskneutral”
for risk-neutral adjustment.

T numeric; time to maturity in years (required for method = "riskneutral”, ig-
nored otherwise; e.g., 1). Default is NULL.

type character; for method = "riskneutral”: "Terminal” (default) or "Discounted”
(mean =\(S_0\)).

Value

Returns a rescaled distribution: - For "minmax": values scaled linearly to the range [a, b]. - For
"riskneutral”: values scaled multiplicatively to a risk-neutral mean (\(S_0 e*(rT)) if type =
"Terminal”, or \(S_0\) if type = "Discounted”).

Author(s)
Fred Viole, OVVO Financial Systems

Examples

Not run:

set.seed(123)

Min-max scaling: a = lower limit, b = upper limit

X <= rnorm(100)

NNS.rescale(x, a = 5, b = 10, method = "minmax"”) # Scales to [5, 10]

Risk-neutral scaling (Terminal): a = S_@, b = r # Mean approx 105.13
prices <- 100 * exp(cumsum(rnorm(100, 0.001, 0.02)))
NNS.rescale(prices, a = 100, b = 0.05, method = "riskneutral”, T = 1, type = "Terminal”)

Risk-neutral scaling (Discounted): a = S_@, b = r # Mean approx 100
NNS.rescale(prices, a = 100, b = 0.05, method = "riskneutral”, T = 1, type = "Discounted")

End(Not run)

52 NNS.SD.cluster

NNS.SD.cluster NNS SD-based Clustering

Description

Clusters a set of variables by iteratively extracting Stochastic Dominance (SD)-efficient sets, subject
to a minimum cluster size.

Usage
NNS.SD.cluster(
data,
degree = 1,

type = "discrete”,
min_cluster = 1,
dendrogram = FALSE

)
Arguments
data A numeric matrix or data frame of variables to be clustered.
degree Numeric options: (1, 2, 3). Degree of stochastic dominance test.
type Character, either "discrete” (default) or "continuous"; specifies the type of
CDE.
min_cluster Integer. The minimum number of elements required for a valid cluster.
dendrogram Logical; FALSE (default). If TRUE, a dendrogram is produced based on a simple
"distance" measure between clusters.
Details

The function applies NNS.SD.efficient.set iteratively, peeling off the SD-efficient set at each
step if it meets or exceeds min_cluster in size, until no more subsets can be extracted or all vari-
ables are exhausted. Variables in each SD-efficient set form a cluster, with any remaining variables
aggregated into the final cluster if it meets the min_cluster threshold.

Value

A list with the following components:

e Clusters: A named list of cluster memberships where each element is the set of variable
names belonging to that cluster.

* Dendrogram (optional): If dendrogram = TRUE, an hclust object is also returned.

Author(s)
Fred Viole, OVVO Financial Systems

NNS.SD.efficient.set 53

References

Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012.

Viole, F. (2017) "A Note on Stochastic Dominance." doi:10.2139/ssrn.3002675

Examples

Not run:
set.seed(123)

X <= rnorm(100)

y <= rnorm(100)

z <- rnorm(100)

A <= cbind(x, y, z)

Perform SD-based clustering (degree 1), requiring at least 2 elements per cluster
results <- NNS.SD.cluster(data = A, degree = 1, min_cluster = 2)

print(results$Clusters)

Produce a dendrogram as well
results_with_dendro <- NNS.SD.cluster(data = A, degree = 1, min_cluster = 2, dendrogram = TRUE)

End(Not run)

NNS.SD.efficient.set NNS SD Efficient Set

Description

Determines the set of stochastic dominant variables for various degrees.

Usage

NNS.SD.efficient.set(x, degree, type = "discrete”, status = TRUE)

Arguments
X a numeric matrix or data frame.
degree numeric options: (1, 2, 3); Degree of stochastic dominance test from (1, 2 or 3).
type options: ("discrete", "continuous"); "discrete” (default) selects the type of
CDF.
status logical; TRUE (default) Prints status update message in console.
Value

Returns set of stochastic dominant variable names.

https://doi.org/10.4236/jmf.2016.61012
https://doi.org/10.2139/ssrn.3002675

54 NNS.seas

Author(s)
Fred Viole, OVVO Financial Systems

References
Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012.
Viole, F. (2017) "A Note on Stochastic Dominance." doi:10.2139/ssrn.3002675

Examples

Not run:

set.seed(123)

X <= rnorm(100) ; y<-rnorm(100) ; z<-rnorm(100)
A <= cbind(x, vy, z)

NNS.SD.efficient.set(A, 1)

End(Not run)

NNS. seas NNS Seasonality Test

Description
Seasonality test based on the coefficient of variation for the variable and lagged component series.
A result of 1 signifies no seasonality present.

Usage

NNS.seas(variable, modulo = NULL, mod.only = TRUE, plot = TRUE)

Arguments
variable a numeric vector.
modulo integer(s); NULL (default) Used to find the nearest multiple(s) in the reported
seasonal period.
mod.only logical; TRUE (default) Limits the number of seasonal periods returned to the
specified modulo.
plot logical; TRUE (default) Returns the plot of all periods exhibiting seasonality and
the variable level reference.
Value

Returns a matrix of all periods exhibiting less coefficient of variation than the variable with "all.periods”;
and the single period exhibiting the least coefficient of variation versus the variable with "best.period”;

as well as a vector of "periods” for easy call into NNS.ARMA.optim. If no seasonality is detected,

NNS. seas will return ("No Seasonality Detected").

https://doi.org/10.4236/jmf.2016.61012
https://doi.org/10.2139/ssrn.3002675

NNS.SSD 55

Author(s)
Fred Viole, OVVO Financial Systems

References

"

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments
(ISBN: 1490523995)

Examples

Not run:
set.seed(123)
X <= rnorm(100)

To call strongest period based on coefficient of variation:
NNS.seas(x, plot = FALSE)$best.period

Using modulos for logical seasonal inference:
NNS.seas(x, modulo = c(2,3,5,7), plot = FALSE)

End(Not run)

NNS.SSD NNS SSD Test

Description

Bi-directional test of second degree stochastic dominance using lower partial moments.

Usage

NNS.SSD(x, y, plot = TRUE)

Arguments

X a numeric vector.

y a numeric vector.

plot logical; TRUE (default) plots the SSD test.
Value

Returns one of the following SSD results: "X SSD Y", "Y SSD X", or "NO SSD EXISTS".

Author(s)
Fred Viole, OVVO Financial Systems

56 NNS.SSD.uni

References

Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012.

Examples

Not run:

set.seed(123)

X <= rnorm(100) ; y <- rnorm(100)
NNS.SSD(x, y)

End(Not run)

NNS.SSD.uni NNS SSD Test uni-directional

Description
Uni-directional test of second degree stochastic dominance using lower partial moments used in SD
Efficient Set routine.

Usage

NNS.SSD.uni(x, y)

Arguments
X a numeric vector.
y a numeric vector.
Value

Returns (1) if "X SSD Y", else (0).

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012.

https://doi.org/10.4236/jmf.2016.61012
https://doi.org/10.4236/jmf.2016.61012

NNS.stack 57

Examples

Not run:

set.seed(123)

x <= rnorm(100) ; y <- rnorm(100)
NNS.SSD.uni(x, y)

End(Not run)

NNS. stack NNS Stack

Description

Prediction model using the predictions of the NNS base models NNS.reg as features (i.e. meta-
features) for the stacked model.

Usage

NNS. stack(
IVs.train,
DV.train,
IVs.test = NULL,
type = NULL,
obj.fn = expression(sum((predicted - actual)*2)),
objective = "min",
optimize.threshold = TRUE,
dist = "L2",
CV.size = NULL,
balance = FALSE,
ts.test = NULL,

folds = 5,

order = NULL,

method = c(1, 2),

stack = TRUE,
dim.red.method = "cor”,

pred.int = NULL,
status = TRUE,
ncores = NULL

)

Arguments
IVs.train a vector, matrix or data frame of variables of numeric or factor data types.
DV.train a numeric or factor vector with compatible dimensions to (IVs.train).
IVs.test a vector, matrix or data frame of variables of numeric or factor data types with

compatible dimensions to (IVs.train). If NULL, will use (IVs.train) as
default.

58

type

obj.fn

objective

NNS.stack

NULL (default). To perform a classification of discrete integer classes from factor
target variable (DV. train) with a base category of 1, set to (type = "CLASS"),
else for continuous (DV.train) setto (type = NULL). Like a logistic regression,
this setting is not necessary for target variable of two classes e.g. [0, 1].

expression; expression(sum((predicted - actual)*2)) (default) Sum of squared

errors is the default objective function. Any expression() using the specific
terms predicted and actual can be used.

non

options: ("min", "max") "min" (default) Select whether to minimize or maxi-
mize the objective function obj. fn.

optimize.threshold

dist

CV.size

balance

ts.test

folds

order

method

stack

dim.red.method

pred.int

status

logical; TRUE (default) Will optimize the probability threshold value for round-
ing in classification problems. If FALSE, returns 0.5.

options:("L1", "L2", "DTW", "FACTOR") the method of distance calculation;
Selects the distance calculation used. dist = "L2" (default) selects the Eu-
clidean distance and (dist ="L1") selects the Manhattan distance; (dist =
"DTW") selects the dynamic time warping distance; (dist = "FACTOR") uses a
frequency.

numeric [0, 1]; NULL (default) Sets the cross-validation size if (IVs.test =
NULL). Defaults to a random value between 0.2 and 0.33 for a random sampling
of the training set.

logical; FALSE (default) Uses both up and down sampling to balance the classes.
type="CLASS" required.

integer; NULL (default) Sets the length of the test set for time-series data; typ-
ically 2xh parameter value from NNS.ARMA or double known periods to fore-
cast.

integer; folds = 5 (default) Select the number of cross-validation folds.

options: (integer, "max", NULL); NULL (default) Sets the order for NNS.reg,
where (order = "max") is the k-nearest neighbors equivalent, which is sug-
gested for mixed continuous and discrete (unordered, ordered) data.

numeric options: (1, 2); Select the NNS method to include in stack. (method =
1) selects NNS.reg; (method = 2) selects NNS.reg dimension reduction regres-
sion. Defaults to method = ¢(1, 2), which will reduce the dimension first, then
find the optimal n.best.

logical; TRUE (default) Uses dimension reduction output in n. best optimization,
otherwise performs both analyses independently.

options: ("cor", "NNS.dep", "NNS.caus", "equal”, "all") method for determining
synthetic X* coefficients. (dim.red.method = "cor") uses standard linear cor-
relation for weights. (dim.red.method = "NNS.dep”) (default) uses NNS.dep
for nonlinear dependence weights, while (dim.red.method = "NNS. caus") uses
NNS.caus for causal weights. (dim.red.method = "all") averages all meth-
ods for further feature engineering.

numeric [0,1]; NULL (default) Returns the associated prediction intervals with
each method.

logical; TRUE (default) Prints status update message in console.

NNS.stack 59

ncores integer; value specifying the number of cores to be used in the parallelized sub-
routine NNS.reg. If NULL (default), the number of cores to be used is equal to
the number of cores of the machine - 1.

Value

Returns a vector of fitted values for the dependent variable test set for all models.
* "NNS.reg.n.best"” returns the optimum "n.best” parameter for the NNS.reg multivariate
regression. "SSE.reg" returns the SSE for the NNS.reg multivariate regression.
e "OBJfn.reg" returns the obj. fn for the NNS.reg regression.

* "NNS.dim.red.threshold" returns the optimum "threshold” from the NNS.reg dimension
reduction regression.

e "OBJfn.dim.red" returns the obj. fn for the NNS.reg dimension reduction regression.

e "probability.threshold” returns the optimum probability threshold for classification, else
0.5 when set to FALSE.

* "reg" returns NNS.reg output.
* "reg.pred.int” returns the prediction intervals for the regression output.
e "dim.red" returns NNS.reg dimension reduction regression output.

e "dim.red.pred.int" returns the prediction intervals for the dimension reduction regression
output.

* "stack"” returns the output of the stacked model.

* "pred.int” returns the prediction intervals for the stacked model.

Note

* Incorporate any objective function from external packages (such as Metrics: :mape) viaNNS. stack(.. .,
obj.fn =expression(Metrics: :mape(actual, predicted)), objective = "min”

* Like a logistic regression, the (type = "CLASS") setting is not necessary for target variable
of two classes e.g. [0, 1]. The response variable base category should be 1 for multiple class
problems.

» Missing data should be handled prior as well using na.omit or complete.cases on the full
dataset.

If error received:
"Error in is.data.frame(x) : object 'RP' not found”

reduce the CV.size.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. (2016) "Classification Using NNS Clustering Analysis" doi:10.2139/ssrn.2864711

https://doi.org/10.2139/ssrn.2864711

60 NNS.term.matrix

Examples

Using 'iris' dataset where test set [IVs.test] is 'iris' rows 141:150.

Not run:

NNS.stack(iris[1:140, 1:4], iris[1:140, 5], IVs.test = iris[141:150, 1:4], type = "CLASS",
balance = TRUE)

Using 'iris' dataset to determine [n.best] and [threshold] with no test set.
NNS.stack(iris[, 1:41, iris[, 5], type = "CLASS")

End(Not run)

NNS.term.matrix NNS Term Matrix

Description

Generates a term matrix for text classification use in NNS.reg.

Usage

NNS.term.matrix(x, oos = NULL)

Arguments
X mixed data.frame; character/numeric; A two column dataset should be used.
Concatenate text from original sources to comply with format. Also note the
possibility of factors in "DV", so "as.numeric(as.character(...))" isused
to avoid issues.
00s mixed data.frame; character/numeric; Out-of-sample text dataset to be classi-
fied.
Value

Returns the text as independent variables "IV" and the classification as the dependent variable "DV".
Out-of-sample independent variables are returned with "00S".

References
Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

Not run:
x <- data.frame(cbind(c("sunny”, "rainy"), c(1, -1)))
NNS. term.matrix(x)

Concatenate Text with space separator, cbind with "DV”

NNS.TSD 61

x <- data.frame(cbind(c("sunny”, "rainy"), c("windy”, "cloudy"”), c(1, -1)))
x <- data.frame(cbind(paste(x[, 11, x[, 21, sep=""), as.numeric(as.character(x[, 31))))
NNS.term.matrix(x)

NYT Example
require(RTextTools)
data(NYTimes)

Concatenate Columns 3 and 4 containing text, with column 5 as DV

NYT <- data.frame(cbind(paste(NYTimes[, 3], NYTimes[, 4], sep = " "),
as.numeric(as.character(NYTimes[, 51))))

NNS. term.matrix (NYT)

End(Not run)

NNS.TSD NNS TSD Test

Description

Bi-directional test of third degree stochastic dominance using lower partial moments.

Usage

NNS.TSD(x, y, plot = TRUE)

Arguments

X a numeric vector.

y a numeric vector.

plot logical; TRUE (default) plots the TSD test.
Value

Returns one of the following TSD results: "X TSD Y”, "Y TSD X", or "NO TSD EXISTS".

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012.

https://doi.org/10.4236/jmf.2016.61012

62 NNS.TSD.uni

Examples

Not run:

set.seed(123)

X <= rnorm(100) ; y <- rnorm(100)
NNS.TSD(X, y)

End(Not run)

NNS.TSD.uni NNS TSD Test uni-directional

Description
Uni-directional test of third degree stochastic dominance using lower partial moments used in SD
Efficient Set routine.

Usage

NNS.TSD.uni(x, y)

Arguments
X a numeric vector.
y a numeric vector.
Value

Returns (1) if "X TSD Y", else (0).

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2016) "LPM Density Functions for the Computation of the SD Efficient
Set." Journal of Mathematical Finance, 6, 105-126. doi:10.4236/jmf.2016.61012.

Examples

Not run:

set.seed(123)

x <= rnorm(100) ; y <- rnorm(100)
NNS.TSD.uni(x, y)

End(Not run)

https://doi.org/10.4236/jmf.2016.61012

NNS.VAR

63

NNS. VAR

NNS VAR

Description

Nonparametric vector autoregressive model incorporating NNS.ARMA estimates of variables into
NNS.reg for a multi-variate time-series forecast.

Usage

NNS. VAR (
variables,
h,
tau = 1,

dim.red.method = "cor”,

naive.weights

= TRUE,

obj.fn = expression(mean((predicted - actual)”2)/(NNS::Co.LPM(1, predicted, actual,
target_x = mean(predicted), target_y = mean(actual)) + NNS::Co.UPM(1, predicted,
actual, target_x = mean(predicted), target_y = mean(actual)))),
objective = "min",
status = TRUE,
ncores = NULL,
nowcast = FALSE

Arguments

variables
h

tau

dim.red.method

naive.weights

obj.fn

a numeric matrix or data.frame of contemporaneous time-series to forecast.

integer; 1 (default) Number of periods to forecast. (h = @) will return just the
interpolated and extrapolated values.

positive integer [> 0]; 1 (default) Number of lagged observations to consider
for the time-series data. Vector for single lag for each respective variable or list
for multiple lags per each variable.

options: ("cor", "NNS.dep", "NNS.caus", "all") method for reducing regressors

via NNS.stack. (dim.red.method = "cor") (default) uses standard linear cor-

relation for dimension reduction in the lagged variable matrix. (dim.red.method

= "NNS.dep") uses NNS.dep for nonlinear dependence weights, while (dim.red.method
= "NNS. caus") uses NNS.caus for causal weights. (dim.red.method = "all")

averages all methods for further feature engineering.

logical; TRUE (default) Equal weights applied to univariate and multivariate out-
puts in ensemble. FALSE will apply weights based on the number of relevant
variables detected.

expression; expression(mean((predicted - actual)*2)) / (Sumof NNS Co-partial
moments) (default) MSE / co-movements is the default objective function. Any
expression(. . .) using the specific terms predicted and actual can be used.

64

objective

status

ncores

nowcast

Value

NNS.VAR

non

options: ("min", "max") "min" (default) Select whether to minimize or maxi-
mize the objective function obj. fn.
logical; TRUE (default) Prints status update message in console.

integer; value specifying the number of cores to be used in the parallelized sub-
routine NNS.ARMA.optim. If NULL (default), the number of cores to be used
is equal to the number of cores of the machine - 1.

logical; FALSE (default) internal call for NNS.nowcast.

Returns the following matrices of forecasted variables:

* "interpolated_and_extrapolated” Returns a data.frame of the linear interpolated and
NNS.ARMA extrapolated values to replace NA values in the original variables argument.
This is required for working with variables containing different frequencies, e.g. where NA
would be reported for intra-quarterly data when indexed with monthly periods.

* "relevant_variables” Returns the relevant variables from the dimension reduction step.

e "univariate” Returns the univariate NNS.ARMA forecasts.

* "multivariate” Returns the multi-variate NNS.reg forecasts.

e "ensemble” Returns the ensemble of both "univariate” and "multivariate” forecasts.

Note

e "Error in { : task xx failed -}" should be re-run with NNS.VAR(..., ncores=1).

* Not recommended for factor variables, even after transformed to numeric. NNS.reg is better
suited for factor or binary regressor extrapolation.

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Viole, F. (2019) "Multi-variate Time-Series Forecasting: Nonparametric Vector Autoregression Us-
ing NNS" doi:10.2139/ssrn.3489550

Viole, F. (2020) "NOWCASTING with NNS" doi:10.2139/ssrn.3589816
Viole, F. (2019) "Forecasting Using NNS" doi:10.2139/ssrn.3382300
Vinod, H. and Viole, F. (2017) "Nonparametric Regression Using Clusters" doi:10.1007/s10614-

01797135

Vinod, H. and Viole, F. (2018) "Clustering and Curve Fitting by Line Segments" doi:10.20944/
preprints201801.0090.v1

https://doi.org/10.2139/ssrn.3489550
https://doi.org/10.2139/ssrn.3589816
https://doi.org/10.2139/ssrn.3382300
https://doi.org/10.1007/s10614-017-9713-5
https://doi.org/10.1007/s10614-017-9713-5
https://doi.org/10.20944/preprints201801.0090.v1
https://doi.org/10.20944/preprints201801.0090.v1

NNS.VAR 65

Examples

Not run:

S HHHEHHEEHAHEEA SRR R RS AR EHRE R
Standard Nonparametric Vector Autoregression #i#
HHHHEHHAEEE A

set.seed(123)
X <= rnorm(100) ; y <- rnorm(100) ; z <- rnorm(100)
A <- cbind(x = x, y =y, z =2)

Using lags 1:4 for each variable
NNS.VAR(A, h = 12, tau = 4, status = TRUE)

Using lag 1 for variable 1, lag 3 for variable 2 and lag 3 for variable 3
NNS.VAR(A, h = 12, tau = c¢(1,3,3), status = TRUE)

Using lags c(1,2,3) for variables 1 and 3, while using lags c(4,5,6) for variable 2
NNS.VAR(A, h = 12, tau = list(c(1,2,3), c(4,5,6), c(1,2,3)), status = TRUE)

PREDICTION INTERVALS
Store NNS.VAR output
nns_estimate <- NNS.VAR(A, h = 12, tau = 4, status = TRUE)

Create bootstrap replicates using NNS.meboot
replicates <- NNS.meboot(nns_estimate$ensemble[,1], rho = seq(-1,1,.25))["replicates”,]
replicates <- do.call(chind, replicates)

Apply UPM.VaR and LPM.VaR for desired prediction interval...95 percent illustrated
Tail percentage used in first argument per {LPM.VaR} and {UPM.VaR} functions
lower_CIs <- apply(replicates, 1, function(z) LPM.VaR(@.025, @, z))

upper_CIs <- apply(replicates, 1, function(z) UPM.VaR(0.025, 0, z))

View results
cbind(nns_estimate$ensemble[,1], lower_CIs, upper_CIs)

AR A
NOWCASTING with Mixed Frequencies #i#
HHHHHH A

library(Quandl)

econ_variables <- Quandl(c("FRED/GDPC1", "FRED/UNRATE", "FRED/CPIAUCSL"),type = 'ts',
order = "asc"”, collapse = "monthly”, start_date = "2000-01-01")

Note the missing values that need to be imputed

head(econ_variables)

tail(econ_variables)

NNS.VAR(econ_variables, h = 12, tau = 12, status = TRUE)

End(Not run)

66 PM.matrix

PM.matrix Partial Moment Matrix

Description

Builds a list containing CUPM, DUPM, DLPM, CLPM and the overall covariance matrix.

Usage

PM.matrix(LPM_degree, UPM_degree, target, variable, pop_adj, norm = FALSE)

Arguments
LPM_degree numeric; lower partial moment degree (0 = freq, 1 = area).
UPM_degree numeric; upper partial moment degree (0 = freq, 1 = area).
target numeric vector; thresholds for each column (defaults to colMeans).
variable numeric matrix or data.frame.
pop_adj logical; TRUE adjusts population vs. sample moments.
norm logical; default FALSE. If TRUE, each quadrant matrix is cell-wise normalized
so their sum is 1 at each (i,j).
Details

Partial Moment Matrix

Value

A list: $cupm, $dupm, $dlpm, $clpm, $cov.matrix.

Examples

set.seed(123)

A <= cbind(rnorm(100), rnorm(100), rnorm(100))

PM.matrix(1, 1, NULL, A, TRUE) # uses norm = FALSE by default
PM.matrix(1, 1, NULL, A, TRUE, TRUE) # enable normalization

UPM 67

UPM Upper Partial Moment

Description

This function generates a univariate upper partial moment for any degree or target.

Usage

UPM(degree, target, variable, excess_ret = FALSE)

Arguments
degree numeric; (degree = @) is frequency, (degree = 1) is area.
target numeric; Set to target = mean(variable) for classical equivalences, but does
not have to be. (Vectorized)#’ @param variable a numeric vector. data.frame or
list type objects are not permissible.
variable a numeric vector. data.frame or list type objects are not permissible.
excess_ret logical; FALSE (default)
Value
UPM of variable
Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

set.seed(123)
X <= rnorm(100)
UPM(@, mean(x), x)

68 UPM .ratio

UPM.ratio Upper Partial Moment Ratio

Description

This function generates a standardized univariate upper partial moment of any non-negative degree
for a given target.

Usage

UPM.ratio(degree, target, variable)

Arguments
degree numeric; degree = 0 gives frequency, degree = 1 gives area.
target numeric vector; threshold(s). Defaults to mean(variable).
variable numeric vector or data-frame column to evaluate.

Value

Numeric vector of standardized upper partial moments.

Author(s)

Fred Viole, OVVO Financial Systems

References

Viole, F. & Nawrocki, D. (2013) *Nonlinear Nonparametric Statistics: Using Partial Moments*
(ISBN:1490523995)

Examples

set.seed(123)
X <= rnorm(100)
UPM.ratio(@, mean(x), x)
Not run:
plot3d(x, y, Co.UPM(@, sort(x), sort(y), X, y), ...)

End(Not run)

UPM.VaR 69

UPM.VaR UPM VaR

Description

Generates an upside value at risk (VaR) quantile based on the Upper Partial Moment ratio

Usage
UPM.VaR(percentile, degree, x)

Arguments
percentile numeric [0, 1]; The percentile for right-tail VaR (vectorized).
degree integer; (degree =) for discrete distributions, (degree = 1) for continuous
distributions.
X a numeric vector.
Value

Returns a numeric value representing the point at which "percentile” of the area of x is above.

Author(s)
Fred Viole, OVVO Financial Systems

References

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
(ISBN: 1490523995)

Examples

set.seed(123)
X <= rnorm(100)

For 5th percentile, right-tail
UPM.VaR(0.05, 0, x)

Index

Co.LPM, 3,27
Co.LPM_nD, 4
Co.UPM, 4, 27
Co.UPM_nD, 5
complete.cases, 59

D.LPM, 6
D.UPM, 7
data.frame, 12, 40, 67
DPM_nD, 8
dy.d_,9
dy.dx, 8

getSymbols, 41, 42

legend, 40, 47
list, 12,67

LPM, 11
LPM.ratio, 12, 25
LPM.VaR, 13

na.omit, 59

NNS . ANOVA, 14
NNS.ARMA, 16, 19, 20, 22, 42, 58, 63, 64
NNS.ARMA.optim, 19, 42, 54, 64
NNS.boost, 21
NNS.caus, 24, 47, 58, 63
NNS.CDF, 25

NNS. copula, 27

NNS . dep, 28, 44, 47, 48, 58, 63
NNS.diff, 29
NNS.distance, 30

NNS.FSD, 31

NNS.FSD.uni, 32
NNS.gravity, 33

NNS.MC, 33
NNS.meboot, 18, 20, 33, 34, 35
NNS . mode, 38

NNS.moments, 39

NNS. norm, 40

NNS.nowcast, 41, 64

NNS.part, 44

NNS.reg, 9, 20-22, 30, 42, 44, 46, 57-60, 63,
64

NNS.rescale, 50

NNS.SD.cluster, 52

NNS.SD.efficient.set, 52, 53

NNS.seas, 17, 54

NNS.SSD, 55

NNS.SSD.uni, 56

NNS.stack, 22, 48, 57, 63

NNS. term.matrix, 60

NNS.TSD, 61

NNS.TSD.uni, 62

NNS.VAR, 41, 63

PM.matrix, 27, 66

UPM, 67
UPM.ratio, 68
UPM.VaR, 69

	Co.LPM
	Co.LPM_nD
	Co.UPM
	Co.UPM_nD
	D.LPM
	D.UPM
	DPM_nD
	dy.dx
	dy.d_
	LPM
	LPM.ratio
	LPM.VaR
	NNS.ANOVA
	NNS.ARMA
	NNS.ARMA.optim
	NNS.boost
	NNS.caus
	NNS.CDF
	NNS.copula
	NNS.dep
	NNS.diff
	NNS.distance
	NNS.FSD
	NNS.FSD.uni
	NNS.gravity
	NNS.MC
	NNS.meboot
	NNS.mode
	NNS.moments
	NNS.norm
	NNS.nowcast
	NNS.part
	NNS.reg
	NNS.rescale
	NNS.SD.cluster
	NNS.SD.efficient.set
	NNS.seas
	NNS.SSD
	NNS.SSD.uni
	NNS.stack
	NNS.term.matrix
	NNS.TSD
	NNS.TSD.uni
	NNS.VAR
	PM.matrix
	UPM
	UPM.ratio
	UPM.VaR
	Index

