Package ‘PenCoxFrail’

December 22, 2025

Type Package

Title Regularization in Cox Frailty Models
Version 2.0.1

Date 2025-12-22

Description
Different regularization approaches for Cox Frailty Models by penalization methods are provided.
see Groll et al. (2017) <doi:10.1111/biom.12637> for effects selection.
See also Groll and Hohberg (2024) <doi:10.1002/bimj.202300020> for classical LASSO ap-
proach.

License GPL (>=2)

Imports Rcpp (>= 0.11.6), Matrix, methods, coxme

Depends survival

LinkingTo Rcpp, ReppArmadillo

Suggests mgcv

NeedsCompilation yes

Author Andreas Groll [aut, cre]

Maintainer Andreas Groll <groll@statistik.tu-dortmund.de>
Repository CRAN

Date/Publication 2025-12-22 17:50:11 UTC

Contents
bs.design . . ... e e e e 2
CoXFL . . . . e e e e 3
coxFLControl . . . . . . . . . . e 7
COXIasSO . . . . . . e e 8
coxlassoControl . . . . . . . . .. e e e 12
COXIIAZE . . . . . o o e 14
ev.eoxlasso ... L L e e e e e 18
INLAPPIOX .« « o v o e e e e e e e e e 20
pencoxfrail . . . . ... L 22
pencoxfrailControl . . . . . . . ... 25


https://doi.org/10.1111/biom.12637
https://doi.org/10.1002/bimj.202300020

2 bs.design

Index 28

bs.design Generate a B-spline design matrix

Description
The function generates a B-spline design matrix with equidistant knots for given degree of the
splines and number of basis functions.

Usage

bs.design(x, x1, xr, spline.degree, nbasis, comp = NULL)

Arguments
X the positions where spline to be evaluated.
x1 lower intervall boundary where spline functions are relevant.
Xr upper intervall boundary where spline functions are relevant.

spline.degree (polynomial) degree of the B-splines.
nbasis number of basis functions used.

comp Specify if only specific columns of the B-spline design matrix should be re-
turned. Default is NULL and the whole B-spline design matrix is returned.

Value

The B-spline design matrix is returned.

Author(s)

Andreas Groll <groll@math.lmu.de>

See Also

pencoxfrail

Examples

X <= rnorm(100)
B <- bs.design(x=x, xl=min(x), xr=max(x), spline.degree=3, nbasis=5)
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coxFL

A full likelihood approach for Cox Frailty Models.

Description

A full likelihood approach for Cox Frailty Models based on the full likelihood is provided.

Usage

coxFL(fix=formula, rnd=NULL, vary.coef=NULL, data, control = list())

Arguments

fix

rnd

vary.coef

data

control

Details

atwo-sided linear formula object describing the unpenalized fixed (time-constant)
effects part of the model, with the response on the left of a ~ operator and the
terms, separated by + operators, on the right. The response must be a survival
object as returned by the Surv function.

atwo-sided linear formula object describing the random-effects part of the model,
with the grouping factor on the left of a ~ operator and the random terms, sep-
arated by + operators, on the right.Default is NULL, so no random effects are
present.

a one-sided linear formula object describing the time-varying effects part of the
model, with the time-varying terms, separated by + operators, on the right side
of a ~ operator.Default is NULL, so no time-varying effects are incorporated.

the data frame containing the variables named in the three preceding formula
arguments.

a list of control values for the estimation algorithm to replace the default values
returned by the function coxlassoControl. Defaults to an empty list.

The coxFL algorithm is designed to investigate the effect structure in the Cox frailty model, which
is a widely used model that accounts for heterogeneity in time-to-event data. Since in survival
models one has to account for possible variation of the effect strength over time, some features can
incorporated with time-varying effects.

Package: pencoxfrail
Type: Package
Version: 2.0.0

Date: 2024-07-15

License: GPL-2
LazylLoad: yes

for loading a dataset type data(nameofdataset)



Value

coxFL

Generic functions such as print, predict, plot and summary have methods to show the results of

the fit.

The predict function uses also estimates of random effects for prediction, if possible (i.e. for
known subjects of the grouping factor). Either the survival stepfunction or the baseline hazard (not

cumulative!) can be calculated by specifying one of two possible methods: method=c("hazard”, "survival").

By default, for each new subject in new.data an individual stepfunction is calculated on a pre-
specified time grid, also accounting for covariate changes over time. Alternatively, for new.data a
single vector of a specific (time-constant) covariate combination can be specified.

Usage: predict(coxlasso.obj,new.data,time.grid,method=c("hazard”,"survival”))

The plot function plots all time-varying effects, including the baseline hazard.

call

baseline

time.vary

coefficients

ranef

Q

Delta

Q_long

iter
knots
Phi.big

time.grid

m
m2

Author(s)

a list containing an image of the coxlasso call that produced the object.

a vector containing the estimated B-spline coefficients of the baseline hazard. If
the covariates corresponding to the time-varying effects are centered (and stan-
dardized, see coxlassoControl), the coefficients are transformed back to the
original scale.

a vector containing the estimated B-spline coefficients of all time-varying ef-
fects. If the covariates corresponding to the time-varying effects are standard-
ized (see coxlassoControl) the coefficients are transformed back to the origi-
nal scale.

a vector containing the estimated fixed effects.
a vector containing the estimated random effects.

a scalar or matrix containing the estimates of the random effects standard devi-
ation or variance-covariance parameters, respectively.

a matrix containing the estimates of fixed and random effects (columns) for each
iteration (rows) of the main algorithm (i.e. before the final re-estimation step is
performed, see details).

a list containing the estimates of the random effects variance-covariance param-
eters for each iteration of the main algorithm.

number of iterations until the main algorithm has converged.
vector of knots used in the B-spline representation.

large B-spline design matrix corresponding to the baseline hazard and all time-
varying effects. For the time-varying effects, the B-spline functions (as a func-
tion of time) have already been multiplied with their associated covariates.

the time grid used in when approximating the (Riemann) integral involved in the
model’s full likelihood.

number of metric covariates with time-varying effects.

number of categorical covariates with time-varying effects.

Andreas Groll <groll@statistik.tu-dortmund.de>
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References

Groll, A., T. Hastie and G. Tutz (2016). Regularization in Cox Frailty Models. Ludwig-Maximilians-
University. Technical Report 191.

See Also

coxFLControl, Surv, pbc

Examples

## Not run:
data(lung)

# remove NAs
lung <- lung[!is.na(lung$inst),]

# transform inst into factor variable
lung$inst <- as.factor(lung$inst)

# just for illustration, create factor with only three ph.ecog classes
lung$ph.ecoglis.na(lung$ph.ecog)] <- 2

lung$ph.ecogllung$ph.ecog==3] <- 2

lung$ph.ecog <- as.factor(lung$ph.ecog)

fix.form <- as.formula(”Surv(time, status) ~ 1 + age + ph.ecog + sex")

coxFL.obj <- coxFL(fix=fix.form, data=lung,
control=list(print.iter=TRUE, exact = 1))
coef (coxFL.obj)

# For comparison: coxph
coxph.1 <- coxph(fix.form , data=lung)
coef(coxph.1)

# now add random institutional effect
coxFL.obj2 <- coxFL(fix=fix.form, rnd = list(inst=~1),
data=lung, control=list(print.iter=TRUE, exact = 1))
coef (coxFL.obj2)
# print frailty Std.Dev.
print(coxFL.obj2$Q)
# print frailties
print(coxFL.obj2$ranef)

# For comparison: coxph

fix.form.cox <- update(fix.form, ~ . + frailty(inst, distribution="gaussian"))
coxph.2 <- coxph(fix.form.cox , data=lung)

coef(coxph.2)

# print frailty Std.Dev.
print(sqrt(coxph.2$history[[1]1]1$history[nrow(coxph.2$history[[1]1]1$history), 11))
# print frailties

print(coxph.2%$frail)
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# now fit a time-varying effect for age
fix.form <- as.formula(”Surv(time, status) ~ 1 + ph.ecog + sex")
vary.coef <- as.formula("~ age")

coxFL.obj3 <- coxFL(fix=fix.form,vary.coef=vary.coef,
data=lung, control=list(print.iter=TRUE))
summary (coxFL.obj3)

# show fit
plot(coxFL.obj3)

# predict survival curve of new subject, institution 1 and up to time 300
pred.obj <- predict(coxFL.obj2, newdata=data.frame(inst=1, time=NA, status=NA, age=26,
ph.ecog=2,sex=1), time.grid=seq(0,300,by=1))

# plot predicted hazard function
plot(pred.obj$time.grid,pred.obj$haz,type="1",6xlab="time",ylab="hazard")

# plot predicted survival function
plot(pred.obj$time.grid,pred.obj$survival,type="1",6xlab="time",ylab

—_n

survival")

## specify a larger new data set
new.data <- data.frame(inst=c(1,1,6), time=c(20,40,200),
status=c(NA,NA,NA), age=c(26,26,54), ph.ecog=c(0,0,2),sex=c(1,1,1))

## as here no frailties have been specified, id.var needs to be given!
pred.obj2 <- predict(coxFL.obj3, newdata=new.data,id.var = "inst")

# plot predicted hazard functions (for the available time intervals)

# for individual 1 and 3

plot(pred.obj2$time.grid[!is.na(pred.obj2s$haz[,11)1],
pred.obj2$haz[,1]1[!is.na(pred.obj2$haz[,1]1)],
type="1",xlab="time",ylab="hazard"”,x1lim=c(0,200),
ylim=c(@,max(pred.obj2$haz,na.rm=T)))

lines(pred.obj2$time.grid[!is.na(pred.obj2%$haz[,3])],
pred.obj2$haz[,3]1[!is.na(pred.obj2$haz[,3]1)],
col="red",1ty=2,)

# plot predicted survival functions (for the available time intervals)
# for individual 1 and 3
plot(pred.obj2$time.grid[!is.na(pred.obj2$survivall,1]1)],
pred.obj2$survivall[,1]1[!is.na(pred.obj2$survivall,11)1],
type="1",xlab="time",ylab="hazard",xlim=c(@,200),
ylim=c(@,max(pred.obj2$survival,na.rm=T)))
lines(pred.obj2$time.grid[!is.na(pred.obj2%$survivall,31)1,
pred.obj2$survivall,3][!is.na(pred.obj2$survivall,3]1)],
col="red",1ty=2,)

## End(Not run)
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coxFLControl

Control Values for coxFL fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the control argument to the coxFL function.

Usage

coxFLControl(start = NULL, index=NULL, g_start = NULL, conv.eps = le-3,

Arguments

start

index

g_start

conv.eps

smooth

standardize

center

print.iter

max.iter

standardize = FALSE, center = FALSE,
smooth=list(nbasis = 6, penal = Te+2),
print.iter = FALSE, max.iter = 100,

exact = NULL, xr = NULL, eps = 1e-3, ...)

a vector of suitable length containing starting values for the spline-coefficients
of the baseline hazard and the time-varying effects, followed by the fixed and
random effects. The correct ordering is important. Default is a vector full of
ZEeros.

vector which defines the grouping of the variables. Components sharing the
same number build a group and factor variables get a single number (and are
automatically treated as a group). Non-penalized coefficients are marked with
NA.

a scalar or matrix of suitable dimension, specifying starting values for the random-
effects variance-covariance matrix. Default is a scalar 0.1 or diagonal matrix
with 0.1 in the diagonal, depending on the dimension of the random effects.

controls the speed of convergence. Default is le-3.

a list specifying the number of basis functions nbasis (used for the baseline
hazard and all time-varying effects) and the starting value for the smoothness
penalty parameter penal, which is only applied in the first iteration. Then, in all
following iterations the wiggly components of the smooths are treated as random
effects. The degree of the B-splines is fixed to be three (i.e. cubic splines).

logical. If true, the covariates corresponding to the fixed effects will be scaled
to a variance equal to one. Default is TRUE.

logical. If true, the covariates corresponding to the time-varying effects will
be centered. Default is FALSE (and centering is only recommended if really
necessary; it can also have a strong effect on the baseline hazard, in particular,
if a strong penalty is selected).

logical. Should the number of iterations be printed? Default is FALSE.

the number of iterations for the final Fisher scoring re-estimation procedure.
Default is 200.
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exact controls the exactness of the (Riemann) integral approximations. If not set by
the user to a specific value, it will be automatically chosen such that the time
interval [0,t_max] will be divided in about 1000 equal sized Riemann bars.

Xr maximal time point that is regarded. Default is NULL and the maximal event or
censoring time point in the data is used.

eps Small epsilon that controls which fixed effects are set to zero: parameters with
an absolute value smaller than epsilon are taken to be zero. Default is 1e-3.

Futher arguments to be passed.

Value

a list with components for each of the possible arguments.

Author(s)

Andreas Groll <groll@math.lmu.de>

See Also

coxFL

Examples

# Use different weighting of the two penalty parts
# and lighten the convergence criterion
coxFLControl(c.app = 1e-5, conv.eps=1e-3)

coxlasso A LASSO approach for Cox Frailty Models.

Description

A LASSO approach for Cox Frailty Models based on the Cox full likelihood is provided.

Usage

coxlasso(fix=formula, rnd=NULL, vary.coef=NULL, data, xi,
adaptive.weights = NULL, control = list())

Arguments

fix a two-sided linear formula object describing the LASSO-penalized fixed (time-
constant) effects part of the model, with the response on the left of a ~ operator
and the terms, separated by + operators, on the right. The response must be a
survival object as returned by the Surv function.
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rnd atwo-sided linear formula object describing the random-effects part of the model,
with the grouping factor on the left of a ~ operator and the random terms, sep-
arated by + operators, on the right.Default is NULL, so no random effects are
present.

vary.coef a one-sided linear formula object describing the time-varying effects part of the
model, with the time-varying terms, separated by + operators, on the right side
of a ~ operator.Default is NULL, so no time-varying effects are incorporated.

data the data frame containing the variables named in the three preceding formula
arguments.
xi the LASSO-penalty parameter that controls the strenght of the penalty term. The

optimal penalty parameter is a tuning parameter of the procedure that has to be
determined, e.g. by K-fold cross validation (see cv.coxlasso for details or the
quick demo for an example).
adaptive.weights

for the LASSO-penalized fixed effects a vector of adaptive weights can be passed
to the procedure. If no adaptive weights are specified, an unpenalized model
(i.e. £ = 0) is fitted by the coxFL function and the obtained estimates are used
as adaptive weights (see value section).

control a list of control values for the estimation algorithm to replace the default values
returned by the function coxlassoControl. Defaults to an empty list.

Details

The coxlasso algorithm is designed to investigate the effect structure in the Cox frailty model,
which is a widely used model that accounts for heterogeneity in time-to-event data. Since in survival
models one has to account for possible variation of the effect strength over time, some features can
incorporated with time-varying effects.

The penalty is depending on the LASSO tuning parameter £, which has to be determined by a
suitable technique, e.g. by K-fold cross validation.

Package: pencoxfrail
Type: Package
Version: 2.0.0

Date: 2024-07-15

License: GPL-2
LazylLoad: yes

for loading a dataset type data(nameofdataset)

Value

Generic functions such as print, predict, plot and summary have methods to show the results of
the fit.

The predict function uses also estimates of random effects for prediction, if possible (i.e. for
known subjects of the grouping factor). Either the survival stepfunction or the baseline hazard (not
cumulative!) can be calculated by specifying one of two possible methods: method=c("hazard"”, "survival").
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By default, for each new subject in new.data an individual stepfunction is calculated on a pre-
specified time grid, also accounting for covariate changes over time. Alternatively, for new.data a
single vector of a specific (time-constant) covariate combination can be specified.

Usage: predict(coxlasso.obj,new.data,time.grid,method=c("hazard”,"survival”))

The plot function plots all time-varying effects, including the baseline hazard.

call

baseline

time.vary

coefficients

ranef

Q

Delta

Q_long

iter

a list containing an image of the coxlasso call that produced the object.

a vector containing the estimated B-spline coefficients of the baseline hazard. If
the covariates corresponding to the time-varying effects are centered (and stan-
dardized, see coxlassoControl), the coefficients are transformed back to the
original scale.

a vector containing the estimated B-spline coefficients of all time-varying ef-
fects. If the covariates corresponding to the time-varying effects are standard-
ized (see coxlassoControl) the coefficients are transformed back to the origi-
nal scale.

a vector containing the estimated fixed effects.
a vector containing the estimated random effects.

a scalar or matrix containing the estimates of the random effects standard devi-
ation or variance-covariance parameters, respectively.

a matrix containing the estimates of fixed and random effects (columns) for each
iteration (rows) of the main algorithm (i.e. before the final re-estimation step is
performed, see details).

a list containing the estimates of the random effects variance-covariance param-
eters for each iteration of the main algorithm.

number of iterations until the main algorithm has converged.

adaptive.weights

knots

Phi.big

time.grid

m

m2

Author(s)

if not given as an argument by the user, a two-column matrix of adaptive weights
is calculated by the coxFL function; the first column contains the weights wa ,
the second column the weights vy, from £ - J((, ).

vector of knots used in the B-spline representation.

large B-spline design matrix corresponding to the baseline hazard and all time-
varying effects. For the time-varying effects, the B-spline functions (as a func-
tion of time) have already been multiplied with their associated covariates.

the time grid used in when approximating the (Riemann) integral involved in the
model’s full likelihood.

number of metric covariates with time-varying effects.

number of categorical covariates with time-varying effects.

Andreas Groll <groll@statistik.tu-dortmund.de>
Maike Hohberg <mhohber@uni-goettingen.de>
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References

Groll, A., T. Hastie and G. Tutz (2017). Selection of Effects in Cox Frailty Models by Regulariza-
tion Methods. Biometrics 73(3): 846-856.

See Also

coxlassoControl,cv.coxlasso,coxFL,Surv,pbc

Examples

## Not run:
data(lung)

# remove NAs
lung <- lung[!is.na(lung$inst),]

# transform inst into factor variable
lung$inst <- as.factor(lung$inst)

# just for illustration, create factor with only three ph.ecog classes
lung$ph.ecoglis.na(lung$ph.ecog)] <- 2

lung$ph.ecogllung$ph.ecog==3] <- 2

lung$ph.ecog <- as.factor(lung$ph.ecog)

fix.form <- as.formula(”Surv(time, status) ~ 1 + age + ph.ecog + sex")

lasso.obj <- coxlasso(fix=fix.form, data=lung, xi=10,
control=list(print.iter=TRUE, exact = 1))
coef(lasso.obj)

# now add random institutional effect
lasso.obj2 <- coxlasso(fix=fix.form, rnd = list(inst=~1),
data=lung, xi=10,control=list(print.iter=TRUE, exact = 1))
coef(lasso.obj2)
# print frailty Std.Dev.
print(lasso.obj2$Q)
# print frailties
print(lasso.obj2$ranef)

# now fit a time-varying effect for age
fix.form <- as.formula(”Surv(time, status) ~ 1 + ph.ecog + sex")
vary.coef <- as.formula(”"~ age")

lasso.obj3 <- coxlasso(fix=fix.form,vary.coef=vary.coef,
data=lung, xi=10,control=list(print.iter=TRUE))
summary(lasso.obj3)

# show fit
plot(lasso.obj3)
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# predict survival curve of new subject, institution 1 and up to time 300
pred.obj <- predict(lasso.obj2, newdata=data.frame(inst=1, time=NA, status=NA, age=26,
ph.ecog=2,sex=1), time.grid=seq(0,300,by=1))

# plot predicted hazard function
plot(pred.obj$time.grid,pred.obj$haz, type="1",6xlab="time",ylab="hazard")

# plot predicted survival function
plot(pred.obj$time.grid,pred.obj$survival, type="1",6xlab="time",ylab="survival")

## specify a larger new data set
new.data <- data.frame(inst=c(1,1,6), time=c(20,40,200),
status=c(NA,NA,NA), age=c(26,26,54), ph.ecog=c(0,0,2),sex=c(1,1,1))

## as here no frailties have been specified, id.var needs to be given!
pred.obj2 <- predict(lasso.obj3, newdata=new.data,id.var = "inst")

# plot predicted hazard functions (for the available time intervals)

plot(pred.obj2$time.grid[!is.na(pred.obj2$haz[,11)],
pred.obj2$haz[,1]1[!is.na(pred.obj2$haz[,1]1)],
type="1",xlab="time",ylab="hazard”,xlim=c(0,200),
ylim=c(@,max(pred.obj2$haz,na.rm=T)))

lines(pred.obj2$time.grid[!is.na(pred.obj2%$haz[,3]1)],
pred.obj2$haz[,3]1[!is.na(pred.obj2%$haz[,31)],
col="red",1ty=2,)

# plot predicted survival functions (for the available time intervals)
plot(pred.obj2$time.grid[!is.na(pred.obj2$survivall,1]1)],
pred.obj2$survivall[,1]1[!is.na(pred.obj2$survivall,11)1],
type="1",xlab="time",ylab="hazard"”,x1lim=c(@,200),
ylim=c(@,max(pred.obj2$survival,na.rm=T)))
lines(pred.obj2$time.grid[!is.na(pred.obj2%$survivall,31)1],
pred.obj2$survivall,3]1[!is.na(pred.obj2$survivall,3]1)],
col="red",1ty=2,)

# see also demo("coxlasso-lung")

## End(Not run)

coxlassoControl Control Values for coxlasso fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the control argument to the coxlasso function.
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Usage

coxlassoControl(start = NULL, index=NULL, qg_start = NULL, conv.eps = le-3,
standardize = TRUE, center = FALSE,
smooth=list(nbasis = 6, penal = Te+2),
print.iter = FALSE, max.iter = 100, c.app = le-6,
exact = NULL, xr = NULL, eps = 1e-2, quant.knots = TRUE,...)

Arguments

start a vector of suitable length containing starting values for the spline-coefficients
of the baseline hazard and the time-varying effects, followed by the fixed and
random effects. The correct ordering is important. Default is a vector full of
ZEeros.

index vector which defines the grouping of the variables. Components sharing the
same number build a group and factor variables get a single number (and are
automatically treated as a group). Non-penalized coefficients are marked with
NA.

g_start a scalar or matrix of suitable dimension, specifying starting values for the random-
effects variance-covariance matrix. Default is a scalar 0.1 or diagonal matrix
with 0.1 in the diagonal, depending on the dimension of the random effects.

conv.eps controls the speed of convergence. Default is le-3.

center logical. If true, the covariates corresponding to the time-varying effects will
be centered. Default is FALSE (and centering is only recommended if really
necessary; it can also have a strong effect on the baseline hazard, in particular,
if a strong penalty is selected).

standardize logical. If true, the covariates corresponding to the fixed effects will be scaled
to a variance equal to one. Default is TRUE.

smooth a list specifying the number of basis functions nbasis (used for the baseline haz-
ard and all time-varying effects) and the smoothness penalty parameter penal,
which is only applied to the baseline hazard. All time-varying effects are penal-
ized by the specific double-penalty £ J({, ) (see coxlasso), which is based on
the overall penalty parameter £ (specified in the main function coxlasso) and
on the weighting between the two penalty parts . The degree of the B-splines
is fixed to be three (i.e. cubic splines).

print.iter logical. Should the number of iterations be printed? Default is FALSE.

max.iter the number of iterations for the final Fisher scoring re-estimation procedure.
Default is 200.

c.app The parameter controlling the exactness of the quadratic approximations of the
penalties. Default is le-6.

exact controls the exactness of the (Riemann) integral approximations. If not set by
the user to a specific value, it will be automatically chosen such that the time
interval [0,t_max] will be divided in about 1000 equal sized Riemann bars.

Xr maximal time point that is regarded. Default is NULL and the maximal event or
censoring time point in the data is used.
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eps Small epsilon that controls which fixed effects are set to zero: parameters with
an absolute value smaller than epsilon are taken to be zero. Default is 1e-2.

quant.knots Shall the knots be defined based on quantiles? Default is TRUE.

Futher arguments to be passed.

Value

a list with components for each of the possible arguments.

Author(s)

Andreas Groll <groll@math.lmu.de>

See Also

coxlasso

Examples

# Use different weighting of the two penalty parts
# and lighten the convergence criterion
coxlassoControl(c.app = 1e-5, conv.eps=le-3)

coxridge A ridge approach for Cox Frailty Models.

Description

A ridge regression approach for Cox Frailty Models based on the Cox full likelihood is provided.

Usage

coxridge(fix=formula, rnd=NULL, vary.coef=NULL, xi.ridge, data, control = list())

Arguments
fix a two-sided linear formula object describing the LASSO-penalized fixed (time-
constant) effects part of the model, with the response on the left of a ~ operator
and the terms, separated by + operators, on the right. The response must be a
survival object as returned by the Surv function.
rnd atwo-sided linear formula object describing the random-effects part of the model,

with the grouping factor on the left of a ~ operator and the random terms, sep-
arated by + operators, on the right.Default is NULL, so no random effects are
present.



coxridge 15

vary.coef a one-sided linear formula object describing the time-varying effects part of the
model, with the time-varying terms, separated by + operators, on the right side
of a ~ operator.Default is NULL, so no time-varying effects are incorporated.

xi.ridge the ridge-penalty parameter that controls the strenght of the penalty term. The

optimal penalty parameter is a tuning parameter of the procedure that has to be
determined, e.g. by K-fold cross validation.

data the data frame containing the variables named in the three preceding formula
arguments.
control a list of control values for the estimation algorithm to replace the default values

returned by the function coxlassoControl. Defaults to an empty list.

Details

The coxridge algorithm is designed to investigate the effect structure in the Cox frailty model,
which is a widely used model that accounts for heterogeneity in time-to-event data. Since in survival
models one has to account for possible variation of the effect strength over time, some features can
incorporated with time-varying effects.

The penalty is depending on the ridge tuning parameter £.ridge, which has to be determined by a
suitable technique, e.g. by K-fold cross validation.

Package: pencoxfrail
Type: Package
Version: 2.0.0

Date: 2024-07-15

License: GPL-2
LazyLoad: yes

for loading a dataset type data(nameofdataset)

Value

Generic functions such as print, predict, plot and summary have methods to show the results of
the fit.

The predict function uses also estimates of random effects for prediction, if possible (i.e. for

known subjects of the grouping factor). Either the survival stepfunction or the baseline hazard (not
cumulative!) can be calculated by specifying one of two possible methods: method=c("hazard”, "survival”).
By default, for each new subject in new.data an individual stepfunction is calculated on a pre-

specified time grid, also accounting for covariate changes over time. Alternatively, for new.data a

single vector of a specific (time-constant) covariate combination can be specified.

Usage: predict(coxlasso.obj,new.data,time.grid,method=c("hazard”,"survival”))

The plot function plots all time-varying effects, including the baseline hazard.

call a list containing an image of the coxlasso call that produced the object.

baseline a vector containing the estimated B-spline coefficients of the baseline hazard. If
the covariates corresponding to the time-varying effects are centered (and stan-
dardized, see coxlassoControl), the coefficients are transformed back to the
original scale.
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time.vary

coefficients

ranef

Q

Delta

Q_long

iter

coxridge

a vector containing the estimated B-spline coefficients of all time-varying ef-
fects. If the covariates corresponding to the time-varying effects are standard-
ized (see coxlassoControl) the coefficients are transformed back to the origi-
nal scale.

a vector containing the estimated fixed effects.
a vector containing the estimated random effects.

a scalar or matrix containing the estimates of the random effects standard devi-
ation or variance-covariance parameters, respectively.

a matrix containing the estimates of fixed and random effects (columns) for each
iteration (rows) of the main algorithm (i.e. before the final re-estimation step is
performed, see details).

a list containing the estimates of the random effects variance-covariance param-
eters for each iteration of the main algorithm.

number of iterations until the main algorithm has converged.

adaptive.weights

knots

Phi.big

time.grid

m
m2

Author(s)

if not given as an argument by the user, a two-column matrix of adaptive weights
is calculated by the coxFL function; the first column contains the weights wa .,
the second column the weights vy, from £ - J((, ).

vector of knots used in the B-spline representation.

large B-spline design matrix corresponding to the baseline hazard and all time-
varying effects. For the time-varying effects, the B-spline functions (as a func-
tion of time) have already been multiplied with their associated covariates.

the time grid used in when approximating the (Riemann) integral involved in the
model’s full likelihood.

number of metric covariates with time-varying effects.

number of categorical covariates with time-varying effects.

Andreas Groll <groll@statistik.tu-dortmund.de>
Maike Hohberg <mhohber@uni-goettingen.de>

References

Groll, A., T. Hastie and G. Tutz (2017). Selection of Effects in Cox Frailty Models by Regulariza-
tion Methods. Biometrics 73(3): 846-856.

See Also

coxlassoControl,cv.coxlasso,coxFL,Surv,pbc

Examples

## Not run:
# remove NAs

lung <- lung[!is.na(lung$inst),]



coxridge

# transform inst into factor variable
lung$inst <- as.factor(lung$inst)

# just for illustration, create factor with only three ph.ecog classes
lung$ph.ecoglis.na(lung$ph.ecog)] <- 2

lung$ph.ecogllung$ph.ecog==3] <- 2

lung$ph.ecog <- as.factor(lung$ph.ecog)

fix.form <- as.formula(”Surv(time, status) ~ 1 + age + ph.ecog + sex")

ridge.obj <- coxridge(fix=fix.form, data=lung, xi.ridge=10,
control=list(print.iter=TRUE, exact = 1))
coef(ridge.obj)

# now add random institutional effect
ridge.obj2 <- coxridge(fix=fix.form, rnd = list(inst=~1),
data=lung, xi.ridge=10,control=list(print.iter=TRUE, exact = 1))
coef(ridge.obj2)
# print frailty Std.Dev.
print(ridge.obj2$Q)
# print frailties
print(ridge.obj2$ranef)

# now fit a time-varying effect for age
fix.form <- as.formula(”Surv(time, status) ~ 1 + ph.ecog + sex")
vary.coef <- as.formula("~ age")

ridge.obj3 <- ridgelasso(fix=fix.form,vary.coef=vary.coef,
data=lung, xi.ridge=10,control=list(print.iter=TRUE))
summary(ridge.obj3)

# show fit
plot(ridge.obj3)

# predict survival curve of new subject, institution 1 and up to time 300
pred.obj <- predict(ridge.obj2, newdata=data.frame(inst=1, time=NA, status=NA, age=26,
ph.ecog=2,sex=1), time.grid=seq(9@,300,by=1))

# plot predicted hazard function
plot(pred.obj$time.grid,pred.obj$haz,type="1",6xlab="time",ylab="hazard")

# plot predicted survival function
plot(pred.obj$time.grid,pred.obj$survival,type="1",6xlab="time",ylab="survival")

## specify a larger new data set
new.data <- data.frame(inst=c(1,1,6), time=c(20,40,200),
status=c(NA,NA,NA), age=c(26,26,54), ph.ecog=c(0,0,2),sex=c(1,1,1))

## as here no frailties have been specified, id.var needs to be given!
pred.obj2 <- predict(lasso.obj3, newdata=new.data,id.var = "inst")

17
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# plot predicted hazard functions (for the available time intervals)

plot(pred.obj2$time.grid[!is.na(pred.obj2$haz[,1]1)],
pred.obj2$haz[,1]1[!is.na(pred.obj2$haz[,1]1)],
type="1",xlab="time",ylab="hazard",xlim=c(@,200),
ylim=c(@,max(pred.obj2$haz,na.rm=T)))

lines(pred.obj2$time.grid[!is.na(pred.obj2%$haz[,3]1)],
pred.obj2$haz[,3]1[!is.na(pred.obj2$haz[,3]1)],
col="red",1ty=2,)

# plot predicted survival functions (for the available time intervals)
plot(pred.obj2$time.grid[!is.na(pred.obj2%$survivall,1])],
pred.obj2$survival[,1]1[!is.na(pred.obj2$survivall,1]1)1],
type="1",xlab="time",ylab="hazard",xlim=c(0,200),
ylim=c(@,max(pred.obj2$survival,na.rm=T)))
lines(pred.obj2$time.grid[!is.na(pred.obj2%$survivall,3]1)],
pred.obj2$survivall,3]1[!is.na(pred.obj2$survivall,3])],
col="red", 1ty=2,)

# see also demo("coxlasso-lung")

## End(Not run)

cv.coxlasso Cross-validation for coxlasso

Description

performs k-fold cross-validation for coxlasso, produces a plot, and returns a value for the LASSO
tuning parameter £.

Usage

cv.coxlasso(fix, rnd = NULL, vary.coef = NULL, n.folds = 10, xi = NULL,
data, adaptive.weights = NULL, print.fold = TRUE, print.xi = FALSE,
len.xi =100, 1lgrid = TRUE, ran.seed = 1909, xi.factor = 1.01, min.fold = 4,
pass.on.start = TRUE, control = list(print.iter = FALSE))

Arguments
fix a two-sided linear formula object describing the fixed (time-constant) effects
part of the model, with the response on the left of a ~ operator and the terms,
separated by + operators, on the right. The response must be a survival object as
returned by the Surv function.
rnd atwo-sided linear formula object describing the random-effects part of the model,

with the grouping factor on the left of a ~ operator and the random terms, sep-
arated by + operators, on the right. Default is NULL, so no random effects are
present.
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vary.coef a one-sided linear formula object describing the time-varying effects part of the
model, with the time-varying terms, separated by + operators, on the right side
of a ~ operator. Default is NULL, so no time-varying effects are incorporated.

n.folds number of folds. Default is 10.

xi Optional user-supplied xi sequence; default is NULL, and cv.coxlasso chooses
its own sequence

data the data frame containing the variables named in the three preceding formula
arguments.

adaptive.weights
for the LASSO-penalized fixed effects a vector of adaptive weights can be passed
to the procedure. If no adaptive weights are specified, an unpenalized model
(i.e. £ = 0) is fitted by the coxFL function and the obtained estimates are used
as adaptive weights (see value section).

print.fold Should folds of CV be printed? Default is yes.

print.xi Should current £ value be printed? Default is no.

len.xi Length of ¢ grid. Default is 100.

lgrid Logical; shall a logarithmized grid version for the penalty parameter be used?
Default is TRUE.

ran.seed Random seed number to be set. Default is 1909, the year of birth of Borussia
Dortmund football club.

xi.factor A factor which increases xi.max once again to be sure that xi is large enough on
all sets. Default is 1.01

min.fold Only those xi values are taken into account where at least min.fold folds are not

NA. Default is 4.
pass.on.start Shall starting values be passed onthroughout estimation? Default is TRUE

control a list of control values for the estimation algorithm to replace the default values
returned by the function coxlassoControl. Default is print.iter = FALSE.
Details

The function runs coxlasso over a grid of values ¢ for each training data set with one fold omitted.

For each run, the value for the full likelihood is calculated and the average for each £ on the grid
is computed over the folds. The function choses the ¢ that maximizes this likelihood value as the
optimal tuning parameter value.

Value

The function returns a list "cv.coxlasso” which includes:

cv.error a vector of mean CV error (i.e., negative likelihood) values for each £ on the
grid averaged over the folds.

xi.opt a scalar value of & associated with the smallest CV error.

xi.lse largest value of ¢ such that error is within 1 standard error of the minimum.

The plot function plots the values of ¢ against the corresponding CV error (i.e., negative likelihood)
values.
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Author(s)
Andreas Groll <groll@statistik.tu-dortmund.de>
Maike Hohberg <mhohber@uni-goettingen.de>
References

To appear soon.

See Also

coxlasso, coxlassoControl, coxFL, Surv, pbc

Examples

## Not run:
data(lung)

# remove NAs
lung <- lung[!is.na(lung$inst),]

# transform inst into factor variable
lung$inst <- as.factor(lung$inst)

# just for illustration, create factor with only three ph.ecog classes
lung$ph.ecoglis.na(lung$ph.ecog)] <- 2

lung$ph.ecogllung$ph.ecog==3] <- 2

lung$ph.ecog <- as.factor(lung$ph.ecog)

fix.form <- as.formula(”Surv(time, status) ~ 1 + age + ph.ecog + sex")

# find optimal tuning paramater
cv.coxlasso.obj <- cv.coxlasso(fix = fix.form, data = lung, n.folds = 5)

# estimate coxlasso model with optimal xi
lasso.obj <- coxlasso(fix=fix.form, data=lung, xi=cv.coxlasso.obj$xi.opt,

control=list(print.iter=TRUE))

coef(lasso.obj)

# see also demo("coxlasso-lung")

## End(Not run)

int.approx Approximation of a Cox likelihood intergral
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Description

The function approximates the integral fg exp(uB(s)a)ds) which appears in the (full) Cox likeli-
hood if the covariate u has a time-varying effect 8(¢), which is expanded in B-splines, i.e. 5(t) =
B(t)a.

Usage

int.approx(z,time.grid,B,nbasis,alpha)

Arguments
z a vector which contains at the first component a time point up to which it should
be integrated and the covariates u in the remaining components.
time.grid an equally-spaced time grid on which the B-spline design matrix B has been
generated. The maximal value of the time grid should usually be the maximal
upper integral border that is of interest.
B a B-spline design matrix, which has been created with the function bs.design
on the full time grid time.grid.
nbasis number of basis functions used when the B-spline design matrix B has been
generated.
alpha vector of B-spline coefficients.
Value

The B-spline design matrix is returned.

Author(s)

Andreas Groll <groll@math.lmu.de>

See Also

pencoxfrail

Examples

## generate time grid and corresponding B-spline design matrix
time.grid <- seq(9,200,by=1)
B <- bs.design(x=time.grid, xl=min(time.grid), xr=max(time.grid), spline.degree=3, nbasis=5)

## specify spline coefficients and covariate vector (with upper integral bound as first component)
alpha <- ¢(0.1,0.2,0.05,0.1,0.15)
z <- c(time=100,age=25)

## calculate intergal from @ to 100
int.approx(z=z,time.grid=time.grid,B=B,nbasis=5,alpha=alpha)
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pencoxfrail

pencoxfrail

Regularization in Cox Frailty Models.

Description

A regularization approach for Cox Frailty Models by penalization methods is provided.

Usage

pencoxfrail (fix=formula, rnd=formula, vary.coef=formula, data, xi,

Arguments

fix

rnd

vary.coef

data

xi

adaptive.weights = NULL, control = list())

a two-sided linear formula object describing the unpenalized fixed (time-constant)
effects part of the model, with the response on the left of a ~ operator and the
terms, separated by + operators, on the right. The response must be a survival
object as returned by the Surv function.

atwo-sided linear formula object describing the random-effects part of the model,
with the grouping factor on the left of a ~ operator and the random terms, sepa-
rated by + operators, on the right.

a one-sided linear formula object describing the time-varying effects part of the
model, with the time-varying terms, separated by + operators, on the right side
of a ~ operator.

the data frame containing the variables named in the three preceding formula
arguments.

the overall penalty parameter that controls the strenght of both penalty terms in
¢-J(¢, o) and, hence, controls the overall amount of smoothness (up to constant
effects) and variable selection for a given proportion (. The optimal penalty
parameter is a tuning parameter of the procedure that has to be determined, e.g.
by K-fold cross validation. (See details or the quick demo for an example.)

adaptive.weights

control

Details

a two-column matrix of adaptive weights passed to the procedure; the first
column contains the weights wa , the second column the weights v;, from
¢ - J(¢, a). If no adaptive weights are specified all weights are set to one. The
recommended strategy is to first fit an unpenalized model (i.e. £ = 0) and then
use the obtained adaptive weights (see value section) when fitting the model for
all other combinations of £ and (.

a list of control values for the estimation algorithm to replace the default values
returned by the function pencoxfrailControl. Defaults to an empty list.

The pencoxfrail algorithm is designed to investigate the effect structure in the Cox frailty model,
which is a widely used model that accounts for heterogeneity in survival data. Since in survival
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models one has to account for possible variation of the effect strength over time the selection of
the relevant features distinguishes between the folllowing cases: covariates can have time-varying
effects, can have time-constant effects or be irrelevant. For this purpose, the following specific
penality is applied on the vectors of B-spline coefficients ay, assuming k& = 1,...,r different,
potentially time-varying effects, each expanded in M B-spline basis functions:

§-J(C o) =¢ <CzwwA,k||AMoekllz +( C)Z¢vkllakllz)

k=1 k=1

This penalty is able to distinguish between these types of effects to obtain a sparse representation
that includes the relevant effects in a proper form.

The penalty is depending on two tuning parameters, & and ¢, which have to be determined by a
suitable technique, e.g. by (2-dimensional) K-fold cross validation.

The first term of the penalty controls the smoothness of the time-varying covariate effects, whereby
for values of ¢ and ¢ large enough, all differences (ax; — ag—1),! = 2, ..., M, are removed from
the model, resulting in constant covariate effects. As the B-splines of each variable with varying
coefficients sum up to one, a constant effect is obtained if all spline coefficients are set equal. Hence,
the first penalty term does not affect the spline’s global level. The second term penalizes all spline
coefficients belonging to a single time-varying effect in the way of a group LASSO and, hence,
controls the selection of covariates.

Package: pencoxfrail
Type: Package
Version: 2.0.0

Date: 2024-07-15

License: GPL-2
LazyLoad: yes

for loading a dataset type data(nameofdataset)

Value

Generic functions such as print, predict, plot and summary have methods to show the results of
the fit.

The predict function uses also estimates of random effects for prediction, if possible (i.e. for

known subjects of the grouping factor). Either the survival stepfunction or the baseline hazard (not
cumulative!) can be calculated by specifying one of two possible methods: method=c("hazard"”, "survival").
By default, for each new subject in new.data an individual stepfunction is calculated on a pre-

specified time grid, also accounting for covariate changes over time. Alternatively, for new.data a

single vector of a specific (time-constant) covariate combination can be specified.

Usage: predict(pencoxfrail.obj,new.data,time.grid,method=c("hazard"”,"survival”))

The plot function plots all time-varying effects, including the baseline hazard.

call a list containing an image of the pencoxfrail call that produced the object.



24

baseline

time.vary

coefficients
ranef

Q

Delta

Q_long

iter

pencoxfrail

a vector containing the estimated B-spline coefficients of the baseline hazard. If
the covariates corresponding to the time-varying effects are centered (and stan-
dardized, see pencoxfrailControl), the coefficients are transformed back to
the original scale.

a vector containing the estimated B-spline coefficients of all time-varying ef-
fects. If the covariates corresponding to the time-varying effects are standard-
ized (see pencoxfrailControl) the coefficients are transformed back to the
original scale.

a vector containing the estimated fixed effects.
a vector containing the estimated random effects.

a scalar or matrix containing the estimates of the random effects standard devi-
ation or variance-covariance parameters, respectively.

a matrix containing the estimates of fixed and random effects (columns) for each
iteration (rows) of the main algorithm (i.e. before the final re-estimation step is
performed, see details).

a list containing the estimates of the random effects variance-covariance param-
eters for each iteration of the main algorithm.

number of iterations until the main algorithm has converged.

adaptive.weights

knots

Phi.big

time.grid

m

m2

Author(s)

If ¢ = 0, a two-column matrix of adaptive weights is calculated; the first column
contains the weights wa , the second column the weights vy, from £ - J(C, o).
If £ > 0, the adaptive weights that have been used in the function’s argument
are displayed.

vector of knots used in the B-spline representation.

large B-spline design matrix corresponding to the baseline hazard and all time-
varying effects. For the time-varying effects, the B-spline functions (as a func-
tion of time) have already been multiplied with their associated covariates.

the time grid used in when approximating the (Riemann) integral involved in the
model’s full likelihood.

number of metric covariates with time-varying effects.

number of categorical covariates with time-varying effects.

Andreas Groll <groll@math.lmu.de>

References

Groll, A., T. Hastie and G. Tutz (2017). Selection of Effects in Cox Frailty Models by Regulariza-
tion Methods. Biometrics 73(3): 846-856.

See Also

pencoxfrailControl, Surv,pbc
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Examples

data(lung)

# remove NAs
lung <- lungl!is.na(lung$inst),]

# transform inst into factor variable
lung$inst <- as.factor(lung$inst)

# Random institutional effect
fix.form <- as.formula(”Surv(time, status) ~ 1")
vary.coef <- as.formula(”~ age")

pen.obj <- pencoxfrail(fix=fix.form,vary.coef=vary.coef, rnd = list(inst=~1),
data=lung, xi=10,control=list(print.iter=TRUE))

# show fit
plot(pen.obj)

# predict survival curve of new subject, institution 1 and up to time 500
pred.obj <- predict(pen.obj,newdata=data.frame(inst=1,time=NA,status=NA,age=26),
time.grid=seq(@,500,by=1))

# plot predicted hazard function
plot(pred.obj$time.grid,pred.obj$haz,type="1",xlab="time",ylab="hazard")

# plot predicted survival function
plot(pred.obj$time.grid,pred.obj$survival,type="1",6xlab="time",ylab="survival")

# see also demo("pencoxfrail-pbc")

pencoxfrailControl Control Values for pencoxfrail fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the control argument to the pencoxfrail function.

Usage

pencoxfrailControl(start = NULL, g_start = NULL, conv.eps = le-4,
standardize = FALSE, center = FALSE,
smooth=1list(nbasis = 6, penal = 0.1),
ridge.pen = le-4, print.iter = FALSE,
max.iter = 100, c.app = le-6, zeta = 0.5,
exact = 1e-2, xr = NULL, ...)
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Arguments

start a vector of suitable length containing starting values for the spline-coefficients
of the baseline hazard and the time-varying effects, followed by the fixed and
random effects. The correct ordering is important. Default is a vector full of
ZEeros.

g_start a scalar or matrix of suitable dimension, specifying starting values for the random-
effects variance-covariance matrix. Default is a scalar 0.1 or diagonal matrix
with 0.1 in the diagonal, depending on the dimension of the random effects.

conv.eps controls the speed of convergence. Default is 1e-4.

center logical. If true, the covariates corresponding to the time-varying effects will
be centered. Default is FALSE (and centering is only recommended if really
necessary; it can also have a strong effect on the baseline hazard, in particular,
if a strong penalty is selected).

standardize logical. If true, the the covariates corresponding to the time-varying effects will
be scaled to a variance equal to one (*after* possible centering). Default is
FALSE.

smooth a list specifying the number of basis functions nbasis (used for the baseline haz-
ard and all time-varying effects) and the smoothness penalty parameter penal,
which is only applied to the baseline hazard. All time-varying effects are penal-
ized by the specific double-penalty £-J((, a) (see pencoxfrail), which is based
on the overall penalty parameter £ (specified in the main function pencoxfrail)
and on the weighting between the two penalty parts (. The degree of the B-
splines is fixed to be three (i.e. cubic splines).

ridge.pen On all time-varying effects (except for the baseline hazard) a slight ridge penalty
is applied on the second order differences of the corresponding spline coeffi-
cients to stabilize estimation. Default is 1e-4.

print.iter logical. Should the number of iterations be printed? Default is FALSE.

max.iter the number of iterations for the final Fisher scoring re-estimation procedure.
Default is 200.

c.app The parameter controlling the exactness of the quadratic approximations of the
penalties. Default is le-6.

zeta The parameter controlling the weighting between the two penalty parts in the
specific double-penalty £ - J((, «) (see pencoxfrail). Default is 0.5.

exact controls the exactness of the (Riemann) integral approximations. Default is le-
2.

Xr maximal time point that is regarded. Default is NULL and the maximal event or
censoring time point in the data is used.

Futher arguments to be passed.

Value

a list with components for each of the possible arguments.

Author(s)
Andreas Groll <groll@math.lmu.de>
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See Also

pencoxfrail

Examples

# Use different weighting of the two penalty parts
# and lighten the convergence criterion
pencoxfrailControl(zeta=0.3, conv.eps=le-3)

27
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