
Package ‘RBaM’
January 8, 2026

Type Package

Title Bayesian Modeling: Estimate a Computer Model and Make Uncertain
Predictions

Version 1.1.2

Description An interface to the 'BaM' (Bayesian Modeling) engine,
a 'Fortran'-based executable aimed at estimating a model
with a Bayesian approach and using it for prediction,
with a particular focus on uncertainty quantification.
Classes are defined for the various building blocks of
'BaM' inference (model, data, error models, Markov Chain Monte Carlo (MCMC) samplers, pre-
dictions).
The typical usage is as follows:
(1) specify the model to be estimated;
(2) specify the inference setting (dataset, parameters, error models...);
(3) perform Bayesian-MCMC inference;
(4) read, analyse and use MCMC samples;
(5) perform prediction experiments.
Technical details are available (in French) in
Renard (2017) <https://hal.science/hal-02606929v1>.
Examples of applications include
Mansanarez et al. (2019) <doi:10.1029/2018WR023389>,
Le Coz et al. (2021) <doi:10.1002/hyp.14169>,
Perret et al. (2021) <doi:10.1029/2020WR027745>,
Darienzo et al. (2021) <doi:10.1029/2020WR028607> and
Perret et al. (2023) <doi:10.1061/JHEND8.HYENG-13101>.

License GPL-3

Encoding UTF-8

LazyData true

URL https://github.com/BaM-tools/RBaM

BugReports https://github.com/BaM-tools/RBaM/issues

Depends R (>= 4.0.0)

Imports ggplot2, gridExtra, R.utils, utils, grDevices, stats, rjson,
rlang, tools, tidyr, mvtnorm, progress

1

https://hal.science/hal-02606929v1
https://doi.org/10.1029/2018WR023389
https://doi.org/10.1002/hyp.14169
https://doi.org/10.1029/2020WR027745
https://doi.org/10.1029/2020WR028607
https://doi.org/10.1061/JHEND8.HYENG-13101
https://github.com/BaM-tools/RBaM
https://github.com/BaM-tools/RBaM/issues

2 Contents

Suggests rmarkdown

RoxygenNote 7.3.2

NeedsCompilation no

Author Benjamin Renard [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-8447-5430>),

INRAE [fnd],
Ministère de la Transition Ecologique - SCHAPI [fnd]

Maintainer Benjamin Renard <benjamin.renard@inrae.fr>

Repository CRAN

Date/Publication 2026-01-08 13:40:02 UTC

Contents
BaM . 3
blocDiag . 5
dataset . 5
densityPlot . 7
downloadBaM . 7
getAwPfromBathy . 8
getCatalogue . 9
getInitPar . 9
getNames . 10
getParNames . 11
llfunk_iid_Gaussian . 11
llfunk_iLinear_Gaussian . 12
logLikelihood_BaM . 13
logPosterior_BaM . 14
logPosterior_BaM_wrapped . 16
logPrior_Flat . 18
mcmcCooking . 18
mcmcOptions . 19
mcmcSummary . 20
MCMC_AM . 21
MCMC_OAAT . 23
MeyrasGaugings . 24
model . 25
parameter . 26
parameter_VAR . 27
prediction . 28
readMCMC . 30
remnantErrorModel . 31
residualOptions . 31
runModel . 32
runOptions . 33
SauzeGaugings . 34
setInitPar . 35

https://orcid.org/0000-0001-8447-5430

BaM 3

setPathToBaM . 35
SPD_estimate . 36
SPD_getVARproperties . 38
toString.dataset . 39
toString.mcmcCooking . 40
toString.mcmcOptions . 40
toString.mcmcSummary . 41
toString.model . 41
toString.parameter . 42
toString.parameter_VAR . 42
toString.prediction . 43
toString.remnantErrorModel . 44
toString.residualOptions . 44
toString.runOptions . 45
tracePlot . 45
twoPopulations . 46
violinPlot . 47
writePredInputs . 47
xtraModelInfo . 48

Index 49

BaM Run BaM

Description

Run BaM.exe

Usage

BaM(
workspace,
mod,
data,
remnant = rep(list(remnantErrorModel()), mod$nY),
mcmc = mcmcOptions(),
cook = mcmcCooking(),
summary = mcmcSummary(),
residuals = residualOptions(),
pred = NULL,
doCalib = TRUE,
doPred = FALSE,
na.value = -9999,
run = TRUE,
preClean = FALSE,
dir.exe = .BAM_PATH,
name.exe = "BaM",

4 BaM

predMaster_fname = "Config_Pred_Master.txt",
stout = ""

)

Arguments

workspace Character, directory where config and result files are stored.

mod model object, the model to be calibrated

data dataset object, calibration data

remnant list of remnantErrorModel objects. WARNING: make sure you use a list of
length mod$nY (even if mod$nY=1!)

mcmc mcmcOptions object, MCMC simulation number and options

cook mcmcCooking object, properties of MCMC cooking (burn and slice)

summary mcmcSummary object, properties of MCMC summary

residuals residualOptions object, properties of residual analysis

pred list of prediction objects, properties of prediction experiments

doCalib Logical, do Calibration? (mcmc+cooking+summary+residuals)

doPred Logical, do Prediction?

na.value numeric, value used for NAs when writing the dataset in BaM format

run Logical, run BaM? if FALSE, just write config files.

preClean Logical, start by cleaning up workspace? Be careful, this will delete all files in
the workspace, including old results!

dir.exe Character, directory where BaM executable stands.

name.exe Character, name of the executable without extension (’BaM’ by default).
predMaster_fname

Character, name of configuration file pointing to all prediction experiments.

stout Character string, standard output (see ?system2). In particular, stout="" (de-
fault) shows BaM messages in the console, stout=NULL discards BaM mes-
sages, stout=’log.txt’ saves BaM messages in file "log.txt".

Value

Nothing: just write config files and runs the executable.

Examples

Fitting a rating curve - see https://github.com/BaM-tools/RBaM
workspace=tempdir()
D=dataset(X=SauzeGaugings['H'],Y=SauzeGaugings['Q'],Yu=SauzeGaugings['uQ'],data.dir=workspace)
Parameters of the low flow section control: activation stage k, coefficient a and exponent c
k1=parameter(name='k1',init=-0.5,prior.dist='Uniform',prior.par=c(-1.5,0))
a1=parameter(name='a1',init=50,prior.dist='LogNormal',prior.par=c(log(50),1))
c1=parameter(name='c1',init=1.5,prior.dist='Gaussian',prior.par=c(1.5,0.05))
Parameters of the high flow channel control: activation stage k, coefficient a and exponent c
k2=parameter(name='k2',init=1,prior.dist='Gaussian',prior.par=c(1,1))

blocDiag 5

a2=parameter(name='a2',init=100,prior.dist='LogNormal',prior.par=c(log(100),1))
c2=parameter(name='c2',init=1.67,prior.dist='Gaussian',prior.par=c(1.67,0.05))
Define control matrix: columns are controls, rows are stage ranges.
controlMatrix=rbind(c(1,0),c(0,1))
Stitch it all together into a model object
M=model(ID='BaRatin',

nX=1,nY=1, # number of input/output variables
par=list(k1,a1,c1,k2,a2,c2), # list of model parameters

xtra=xtraModelInfo(object=controlMatrix)) # use xtraModelInfo() to pass the control matrix
Call BaM to write configuration files. To actually run BaM, use run=TRUE,
but BaM executable needs to be downloaded first (use downloadBaM())
BaM(workspace=workspace,mod=M,data=D,run=FALSE)

blocDiag Bloc-diagonal matrix constructor

Description

This function creates a square bloc-diagonal matrix from a list of square blocs.

Usage

blocDiag(blocs)

Arguments

blocs list, each element is a square matrix.

Value

A square matrix.

Examples

blocDiag(list(1,cbind(c(1,2),c(3,4)),25))

dataset dataset object constructor.

Description

Creates a new instance of a ’dataset’ object

6 dataset

Usage

dataset(
X,
Y,
data.dir = getwd(),
data.fname = "CalibrationData.txt",
fname = "Config_Data.txt",
Xu = NULL,
Xb = NULL,
Xb.indx = NULL,
Yu = NULL,
Yb = NULL,
Yb.indx = NULL,
VAR.indx = NULL

)

Arguments

X data frame, observed input variables.
Y data frame, observed output variables (same number of rows as X).
data.dir Character, directory where a copy of the dataset will be written if required.

Default is the current working directory, but you may prefer to use the BaM
workspace.

data.fname Character, data file name.
fname Character, configuration file name.
Xu data frame, random uncertainty in X, expressed as a standard deviation. Same

dimension as X.
Xb data frame, systematic uncertainty in X, expressed as a standard deviation. Same

dimension as X.
Xb.indx data frame, index of systematic errors in X. Same dimension as X.
Yu data frame, random uncertainty in Y, expressed as a standard deviation. Same

dimension as Y.
Yb data frame, systematic uncertainty in Y, expressed as a standard deviation. Same

dimension as Y.
Yb.indx data frame, index of systematic errors in Y. Same dimension as Y.
VAR.indx data frame, indices used for defining how VAR parameters vary.

Value

An object of class ’dataset’.

Examples

X=data.frame(input1=rnorm(100),input2=rnorm(100))
Y=data.frame(output=X$input1+0.8*X$input2+0.1*rnorm(100))
workspace=tempdir()
d <- dataset(X=X,Y=Y,data.dir=workspace)

densityPlot 7

densityPlot densityPlot

Description

returns a histogram+density ggplot (or a list thereof if several columns in sim)

Usage

densityPlot(sim, xlab = "values", col = "black")

Arguments

sim vector or matrix or data frame, MCMC simulations

xlab Character, label of x-axis to be used if sim has no names

col Color

Value

A ggplot (or a list thereof if several columns in sim)

Examples

Create Monte Carlo samples
n=1000
sim=data.frame(p1=rnorm(n),p2=rlnorm(n),p3=runif(n))
create density plot for each component
figures=densityPlot(sim)

downloadBaM BaM downloader

Description

Download BaM executable

Usage

downloadBaM(
destFolder,
url = NULL,
os = Sys.info()["sysname"],
quiet = FALSE,
...

)

8 getAwPfromBathy

Arguments

destFolder character string, folder where BaM executable will be downloaded.

url character string, the url from which BaM should be downloaded. When NULL,
the url is determined automatically by using GitHub API to determine the latest
release and the file corresponding to the OS.

os character string, operating system, e.g. ’Linux’, ’Windows’ or ’Darwin’.

quiet logical, if TRUE, suppress status messages.

... arguments passed to function ‘download.file‘

Value

nothing - just download the file.

Examples

try(downloadBaM(destFolder=tempdir()))

getAwPfromBathy Bathymetry interpreter

Description

Compute Area A(h), width w(h) and wet perimeter P(h) from a bathymetry profile (a,z).

Usage

getAwPfromBathy(
bathy,
hgrid = seq(min(bathy[, 2]), max(bathy[, 2]), diff(range(bathy[, 2]))/1000),
segmentLength = sum(sqrt(apply(apply(bathy, 2, diff)^2, 1, sum)))/1000

)

Arguments

bathy data frame, 2 columns containing abscissa (increasing values) and stage.

hgrid numeric vector, grid of h values where A, w and P are computed. By default
1000 values in the range of bathymetry’s z.

segmentLength numeric, segment length for bathymetry subsampling. By default 1/1000 of the
total bathymetry’s perimeter.

Value

A 4-column dataframe containing h, A(h), w(h) and P(h)

getCatalogue 9

Examples

bathy=data.frame(a=c(0,0,0,1,2,2,4,6,8),h=c(3,2,0,-0.5,0,2,2.0001,2.3,3))
plot(bathy,type='l')
df=getAwPfromBathy(bathy)
plot(dfh,dfA,type='l')
plot(dfh,dfw,type='l')
plot(dfh,dfP,type='l')

getCatalogue BaM catalogue

Description

Distributions and models available in BaM

Usage

getCatalogue(printOnly = FALSE)

Arguments

printOnly Logical, should the catalogue be returned or only printed?

Value

If printOnly==FALSE, a list with the following fields:

distributions available univariate distributions.

models available models.

Examples

catalogue <- getCatalogue()
getCatalogue(printOnly=TRUE)

getInitPar Get initial values

Description

Get the initial values of a list of parameters and return them as a vector.

Usage

getInitPar(parameters)

10 getNames

Arguments

parameters List of parameter objects, parameters whose initial values are sought.

Value

A numeric vector containing the initial values

Examples

ps <- list(parameter(name='par1',init=0),parameter(name='par2',init=1))
getInitPar(ps)

getNames Get object names

Description

getNames from an object or a list of objects having a $name field (e.g. parameters)

Usage

getNames(loo, name = "name")

Arguments

loo List Of Objects

name character, string denoting the name field

Value

A character vector containing names

Examples

pars <- list(parameter(name='par1',init=0),
parameter(name='par2',init=0),
parameter(name='Third parameter',init=0))

getNames(pars)

getParNames 11

getParNames Get parameter names

Description

Get parameter names for a distribution d

Usage

getParNames(d)

Arguments

d Character (possibly vector), distribution (possibly distributions)

Value

A character vector with parameter names.

Examples

parnames <- getParNames('GEV')
npar <- length(getParNames('Gumbel'))

llfunk_iid_Gaussian Log-likelihood function: iid Gaussian

Description

Computes the log-likelihood from model-simulated values, based on a Gaussian iid error model:

• Yobs = Ysim + delta + epsilon

• Measurement errors: delta~ N(0,sdev=Yu)

• Structural errors: epsilon~ N(0,sdev=gamma)

If Yobs/Ysim are multi-variate, this error model is applied independently to each component.

Usage

llfunk_iid_Gaussian(Ysim, Yobs, Yu, gamma)

12 llfunk_iLinear_Gaussian

Arguments

Ysim data frame, model-simulated values.

Yobs data frame, corresponding observed values, same dimensions as Ysim. NAs are
skipped.

Yu data frame, measurement uncertainties (standard deviations), same dimensions
as Ysim and Yobs.

gamma numeric vector, structural error parameters. length(gamma) = number of columns
in Ysim.

Value

A numeric value equal to the log-likelihood.

Examples

Yobs=SauzeGaugings['Q']
Yu=SauzeGaugings['uQ']
Ysim=100*(SauzeGaugings['H']+0.5)^1.6
llfunk_iid_Gaussian(Ysim,Yobs,Yu,gamma=100)

llfunk_iLinear_Gaussian

Log-likelihood function: independent-linear Gaussian

Description

Computes the log-likelihood from model-simulated values based on a Gaussian independent error
model with linearly-varying standard deviation:

• Yobs = Ysim + delta + epsilon

• Measurement errors: delta~ N(0,sdev=Yu)

• Structural errors: epsilon~ N(0,sdev=g1+g2*|Ysim|)

If Yobs/Ysim are multi-variate, this error model is applied independently to each component.

Usage

llfunk_iLinear_Gaussian(Ysim, Yobs, Yu, gamma)

Arguments

Ysim data frame, model-simulated values.

Yobs data frame, corresponding observed values, same dimensions as Ysim. NAs are
skipped.

Yu data frame, measurement uncertainties (standard deviations), same dimensions
as Ysim and Yobs.

logLikelihood_BaM 13

gamma numeric vector, structural error parameters, organized as: gamma=c((g1,g2) for
the 1st component of Ysim,(g1,g2) for the 2nd component of Ysim, etc.) =>
length(gamma) = 2*(number of columns in Ysim).

Value

A numeric value equal to the log-likelihood.

Examples

Yobs=SauzeGaugings['Q']
Yu=SauzeGaugings['uQ']
Ysim=100*(SauzeGaugings['H']+0.5)^1.6
llfunk_iLinear_Gaussian(Ysim,Yobs,Yu,gamma=c(1,0.1))

logLikelihood_BaM BaM log-likelihood

Description

Log-likelihood engine for a model available in BaM. Unlike functions llfunk_***, which compute
the log-likelihood from model-simulated values Ysim (see e.g. llfunk_iid_Gaussian), this function
computes the log-likelihood from (parameters + inputs X + model mod).

Usage

logLikelihood_BaM(
parvector,
X,
Yobs,
Yu,
llfunk,
mod,
Ysim = NULL,
llargs = NULL

)

Arguments

parvector numeric vector, parameter vector, including thetas (model parameters) and gam-
mas (structural errors parameters).

X data frame, model inputs.

Yobs data frame, corresponding observed values.

Yu data frame, measurement uncertainties (standard deviations), same dimensions
as Yobs.

llfunk function, function computing the log-likelihood given Ysim, see e.g. llfunk_iid_Gaussian.

14 logPosterior_BaM

mod model object, the model to be calibrated.

Ysim data frame, model-simulated values. When NULL (default), the model is run
to provide simulations. When a non-NULL data frame is provided, it is used
as pre-computed simulations, and the model is hence not run. This is useful to
speed-up some MCMC strategies.

llargs object, any other arguments to be passed to llfunk.

Value

A list with the following components:

logLikelihood numeric, the log-likelihood.

Ysim data frame, the model-simulated values.

Examples

Single-control rating curve model - see https://github.com/BaM-tools/RBaM
Parameters are activation stage k, coefficient a and exponent c
k=parameter(name='k',init=-0.5)
a=parameter(name='a',init=100)
c=parameter(name='c',init=1.6)
Define control matrix: columns are controls, rows are stage ranges.
controlMatrix=matrix(1,nrow=1,ncol=1)
Stitch it all together into a model object
M=model(ID='BaRatin',

nX=1,nY=1, # number of input/output variables
par=list(k,a,c), # list of model parameters

xtra=xtraModelInfo(object=controlMatrix)) # use xtraModelInfo() to pass the control matrix
Define calibration data
X=SauzeGaugings['H']
Yobs=SauzeGaugings['Q']
Yu=SauzeGaugings['uQ']
Define the parameter vector (model parameters + structural error parameters)
parvector=c(RBaM::getInitPar(M$par),c(1,0.1))
Compute log-likelihood
logLikelihood_BaM(parvector=parvector,X=X,Yobs=Yobs,Yu=Yu,

llfunk=llfunk_iLinear_Gaussian,mod=M)

logPosterior_BaM BaM log-posterior

Description

Log-posterior engine for a model available in BaM.

logPosterior_BaM 15

Usage

logPosterior_BaM(
parvector,
X,
Yobs,
Yu,
lpfunk,
llfunk,
mod,
Ysim = NULL,
logLikelihood_engine = logLikelihood_BaM,
llargs = NULL

)

Arguments

parvector numeric vector, parameter vector, including thetas (model parameters) and gam-
mas (structural errors parameters).

X data frame, model inputs.

Yobs data frame, corresponding observed values.

Yu data frame, measurement uncertainties (standard deviations), same dimensions
as Yobs.

lpfunk function, function computing the log-prior density of parvector.

llfunk function, function computing the log-likelihood given Ysim, see e.g. llfunk_iid_Gaussian.

mod model object, the model to be calibrated.

Ysim data frame, model-simulated values. When NULL (default), the model is run
to provide simulations. When a non-NULL data frame is provided, it is used
as pre-computed simulations, and the model is hence not run. This is useful to
speed-up some MCMC strategies.

logLikelihood_engine

function, engine function used to compute the log-likelihood, see e.g. log-
Likelihood_BaM. Unlike functions llfunk, which computes the log-likelihood
from model-simulated values Ysim (see e.g. llfunk_iid_Gaussian, logLikeli-
hood_engine computes the log-likelihood from (parameters + inputs X + model
mod).

llargs object, any other arguments to be passed to llfunk.

Value

A list with the following components:

logPosterior numeric, the unnormalized posterior log-pdf.

logPrior numeric, the prior log-pdf.

logLikelihood numeric, the log-likelihood.

Ysim data frame, the model-simulated values.

16 logPosterior_BaM_wrapped

Examples

Single-control rating curve model - see https://github.com/BaM-tools/RBaM
Parameters are activation stage k, coefficient a and exponent c
k=parameter(name='k',init=-0.5)
a=parameter(name='a',init=100)
c=parameter(name='c',init=1.6)
Define control matrix: columns are controls, rows are stage ranges.
controlMatrix=matrix(1,nrow=1,ncol=1)
Stitch it all together into a model object
M=model(ID='BaRatin',

nX=1,nY=1, # number of input/output variables
par=list(k,a,c), # list of model parameters

xtra=xtraModelInfo(object=controlMatrix)) # use xtraModelInfo() to pass the control matrix
Define calibration data
X=SauzeGaugings['H']
Yobs=SauzeGaugings['Q']
Yu=SauzeGaugings['uQ']
Define the parameter vector (model parameters + structural error parameters)
parvector=c(RBaM::getInitPar(M$par),c(1,0.1))
Define prior function - here for instance just an informative prior on the third parameter
myPrior <-function(parvector){dnorm(parvector[3],1.6,0.1,log=TRUE)}
Compute log-likelihood
logPosterior_BaM(parvector=parvector,X=X,Yobs=Yobs,Yu=Yu,

lpfunk=myPrior,llfunk=llfunk_iLinear_Gaussian,mod=M)

logPosterior_BaM_wrapped

BaM log-posterior

Description

Log-posterior engine for a model available in BaM. This is a wrapped version of logPosterior_BaM,
returning a single numeric value (the log-posterior). This function can hence be passed to standard
optimization (e.g. optim) or MCMC (e.g. metrop) tools.

Usage

logPosterior_BaM_wrapped(
parvector,
X,
Yobs,
Yu,
lpfunk,
llfunk,
mod,
Ysim = NULL,
logLikelihood_engine = logLikelihood_BaM,
llargs = NULL

)

logPosterior_BaM_wrapped 17

Arguments

parvector numeric vector, parameter vector, including thetas (model parameters) and gam-
mas (structural errors parameters).

X data frame, model inputs.

Yobs data frame, corresponding observed values.

Yu data frame, measurement uncertainties (standard deviations), same dimensions
as Yobs.

lpfunk function, function computing the log-prior density of parvector.

llfunk function, function computing the log-likelihood given Ysim, see e.g. llfunk_iid_Gaussian.

mod model object, the model to be calibrated.

Ysim data frame, model-simulated values. When NULL (default), the model is run
to provide simulations. When a non-NULL data frame is provided, it is used
as pre-computed simulations, and the model is hence not run. This is useful to
speed-up some MCMC strategies.

logLikelihood_engine

function, engine function used to compute the log-likelihood, see e.g. log-
Likelihood_BaM. Unlike functions llfunk, which computes the log-likelihood
from model-simulated values Ysim (see e.g. llfunk_iid_Gaussian, logLikeli-
hood_engine computes the log-likelihood from (parameters + inputs X + model
mod).

llargs object, any other arguments to be passed to llfunk.

Value

the unnormalized posterior log-pdf (numeric).

Examples

Single-control rating curve model - see https://github.com/BaM-tools/RBaM
Parameters are activation stage k, coefficient a and exponent c
k=parameter(name='k',init=-0.5)
a=parameter(name='a',init=100)
c=parameter(name='c',init=1.6)
Define control matrix: columns are controls, rows are stage ranges.
controlMatrix=matrix(1,nrow=1,ncol=1)
Stitch it all together into a model object
M=model(ID='BaRatin',

nX=1,nY=1, # number of input/output variables
par=list(k,a,c), # list of model parameters

xtra=xtraModelInfo(object=controlMatrix)) # use xtraModelInfo() to pass the control matrix
Define calibration data
X=SauzeGaugings['H']
Yobs=SauzeGaugings['Q']
Yu=SauzeGaugings['uQ']
Define the parameter vector (model parameters + structural error parameters)
parvector=c(RBaM::getInitPar(M$par),c(1,0.1))
Define prior function - here for instance just an informative prior on the third parameter

18 mcmcCooking

myPrior <-function(parvector){dnorm(parvector[3],1.6,0.1,log=TRUE)}
Compute log-likelihood
logPosterior_BaM_wrapped(parvector=parvector,X=X,Yobs=Yobs,Yu=Yu,

lpfunk=myPrior,llfunk=llfunk_iLinear_Gaussian,mod=M)

logPrior_Flat Log-prior function: improper flat prior

Description

Computes the log-density of an improper flat prior distribution.

Usage

logPrior_Flat(parvector)

Arguments

parvector numeric vector, parameter vector, including thetas (model parameters) and gam-
mas (structural errors parameters).

Value

A numeric value equal to the prior log-density.

Examples

logPrior_Flat(c(1,1,0.2))

mcmcCooking mcmcCooking constructor.

Description

Creates a new instance of a ’mcmcCooking’ object

Usage

mcmcCooking(
fname = "Config_Cooking.txt",
result.fname = "Results_Cooking.txt",
burn = 0.5,
nSlim = 10

)

mcmcOptions 19

Arguments

fname Character, configuration file name.

result.fname Character, result file name.

burn numeric, burn factor, >=0 and <1. 0.4 means the first 40 percent of MCMC
samples are discarded).

nSlim Integer, slimming period: 10 means only one MCMC sample every 10 is kept
(after burning).

Value

An object of class ’mcmcCooking’.

Examples

m <- mcmcCooking()

mcmcOptions mcmcOptions object constructor.

Description

Creates a new instance of a ’mcmcOptions’ object

Usage

mcmcOptions(
fname = "Config_MCMC.txt",
result.fname = "Results_MCMC.txt",
nAdapt = 100,
nCycles = 100,
minMoveRate = 0.1,
maxMoveRate = 0.5,
downMult = 0.9,
upMult = 1.1,
multFactor = 0.1,
manualMode = FALSE,
thetaStd = 9999,
gammaStd = list(9999)

)

Arguments

fname Character, configuration file name.

result.fname Character, result file name.

nAdapt Integer, adaptation period: jump sizes are increased/decreased every Nadapt it-
erations to comply with the desired moving rates.

20 mcmcSummary

nCycles Integer, number of adaptation cycles (total number of iterations is hence Nadapt
* Ncycles).

minMoveRate Numeric in (0;1), lower bound for the desired move rate interval.

maxMoveRate Numeric in (0;1), upper bound for the desired move rate interval.

downMult Numeric in (0:1), multiplication factor used to decrease jump size when move
rate is too low.

upMult Numeric (>1, avoid 1/dowMult) multiplication factor used to increase jump size
when move rate is too high.

multFactor Numeric >0, multiplicative factor to set initial jump standard deviations to mult-
Factor*|initValue| (AUTO mode).

manualMode logical, should jump standard deviations be entered manually?

thetaStd Numeric vector (>0), jump standard deviations for model parameters theta (MAN-
UAL mode).

gammaStd list of numeric vectors (>0), size = number of output variables of the model.
Jump standard deviations for structural error parameters gamma of each output
variable (MANUAL mode).

Value

An object of class ’mcmcOptions’.

Examples

m <- mcmcOptions()

mcmcSummary mcmcSummary constructor.

Description

Creates a new instance of a ’mcmcSummary’ object

Usage

mcmcSummary(
fname = "Config_Summary.txt",
result.fname = "Results_Summary.txt",
DIC.fname = "Results_DIC.txt",
xtendedMCMC.fname = ""

)

MCMC_AM 21

Arguments

fname Character, configuration file name.

result.fname Character, summary file name.

DIC.fname Character, DIC file name. Not computed if empty string.

xtendedMCMC.fname

Character, xtended MCMC file name. Not written if empty string.

Value

An object of class ’mcmcSummary’.

Examples

m <- mcmcSummary()

MCMC_AM Adaptive Metropolis sampler

Description

An adaptive Metropolis sampler largely inspired by Haario et al. (2001, https://www.jstor.org/
stable/3318737). The jump covariance is adapted using the empirical covariance of previously-
sampled values, and the scaling factor is adapted in order to comply with a specified move rate
interval.

Usage

MCMC_AM(
logPdf,
x0,
C0 = diag((0.01 * (abs(x0) + 0.1))^2),
scaleFactor = 2.4/sqrt(length(x0)),
nAdapt = 50,
nCycles = 20,
minMoveRate = 0.2,
maxMoveRate = 0.5,
downMult = 0.9,
upMult = 1.1,
burnCov = 0.2,
dofCovMin = 10,
nCovMax = 1000,
...

)

https://www.jstor.org/stable/3318737
https://www.jstor.org/stable/3318737

22 MCMC_AM

Arguments

logPdf function, evaluating the log-density of the distribution to sample from (up to
a proportionality constant). logPdf can return either a single numeric value,
interpreted as the target log-pdf, or a list containing components named ’log-
Posterior’, ’logLikelihood’ and ’logPrior’.

x0 numeric vector, starting point

C0 numeric matrix, covariance matrix of the Gaussian jump distribution (up to a
scale factor, see next).

scaleFactor numeric >0, used to scale the jump covariance. The covariance of the jump
distribution is equal to (scaleFactor^2)*C0

nAdapt integer > 1, number of iterations before adapting covariance C and scaleFactor.

nCycles integer > 1, number of adaption cycles. Total number of iterations is hence equal
to nAdapt*nCycles. nCycles=1 leads to the standard non-adaptive Metropolis
sampler.

minMoveRate numeric in (0;1), lower bound for the desired move rate interval.

maxMoveRate numeric in (0;1), upper bound for the desired move rate interval.

downMult numeric in (0;1), multiplicative factor used to decrease scaleFactor when move
rate is too low.

upMult numeric (>1, avoid 1/downMult) multiplicative factor used to increase scaleFac-
tor when move rate is too high.

burnCov numeric in (0;1), fraction of initial values to be discarded before computing
the empirical covariance of sampled vectors, which is used to adapt the jump
covariance.

dofCovMin integer, minimum number of degrees of freedom required to compute the em-
pirical covariance of sampled vectors and hence to adapt the jump covariance.
If D denotes the length of x0, at least dofCovMin*(D+0.5*(D-1)*(D-2)) itera-
tions are required before adapting the jump covariance (i.e. dofCovMin times
the number of unknown elements in the covariance matrix).

nCovMax integer, maximum number of iterations used to compute the empirical covari-
ance. If the number of available iterations is larger than nCovMax, iterations are
’slimmed’ to reach nCovMax.

... other arguments passed to function logPdf

Value

A list with the following components:

samples data frame, MCMC simulations.

components data frame, corresponding values of the log-posterior, the log-prior and the log-
likelihood.

C matrix, the adapted jump covariance matrix.

scaleFactor numeric, the adapted scaling factor.

MCMC_OAAT 23

Examples

Define a 2-dimensional target log-pdf
logPdf <- function(x){

p1=log(0.6*dnorm(x[1],0,1)+0.4*dnorm(x[1],2,0.5))
p2=log(dlnorm(x[2],0,1))
return(p1+p2)

}
Sample from it
mcmc=MCMC_AM(logPdf,c(1,1))
plot(mcmc$samples)

MCMC_OAAT Adaptive One-At-A-Time Metropolis sampler

Description

An adaptive Metropolis sampler that updates the parameter vector one component at a time using a
1-dimensional jump. This allows easily adapting the jump standard deviation for each component
in order to comply with a specified move rate interval.

Usage

MCMC_OAAT(
logPdf,
x0,
s0 = 0.05 * (abs(x0) + 0.1),
nTheta = length(x0),
nAdapt = 50,
nCycles = 20,
minMoveRate = 0.2,
maxMoveRate = 0.5,
downMult = 0.9,
upMult = 1.1,
...

)

Arguments

logPdf function, evaluating the log-density of the distribution to sample from (up to
a proportionality constant). logPdf can return either a single numeric value,
interpreted as the target log-pdf, or a list containing components named ’log-
Posterior’, ’logLikelihood’ and ’logPrior’.

x0 numeric vector, starting point.
s0 numeric vector, starting jump standard deviations.
nTheta integer>0, size of the "theta" part of x0, i.e. components that represent the model

parameters rather than structural errors parameters (gamma). This is used to
speed-up the sampler by avoiding running the model for gamma components.
nTheta=length(x0) (default) implies no attempt at speeding up.

24 MeyrasGaugings

nAdapt integer > 1, number of iterations before adapting the jump standard deviations.

nCycles integer > 1, number of adaption cycles. Total number of iterations is hence equal
to nAdapt*nCycles. nCycles=1 leads to a non-adaptive one-at-a-time Metropo-
lis sampler.

minMoveRate numeric in (0;1), lower bound for the desired move rate interval.

maxMoveRate numeric in (0;1), upper bound for the desired move rate interval.

downMult numeric in (0;1), multiplication factor used to decrease the jump standard devi-
ation when move rate is too low.

upMult numeric (>1, avoid 1/downMult) multiplication factor used to increase the jump
standard deviations when move rate is too high.

... other arguments passed to function logPdf

Value

A list with the following components:

samples data frame, MCMC simulations.

components data frame, corresponding values of the log-posterior, the log-prior and the log-
likelihood.

sjump numeric vector, the adapted jump standard deviations.

Examples

Define a 2-dimensional target log-pdf
logPdf <- function(x){

p1=log(0.6*dnorm(x[1],0,1)+0.4*dnorm(x[1],2,0.5))
p2=log(dlnorm(x[2],0,1))
return(p1+p2)

}
Sample from it
mcmc=MCMC_OAAT(logPdf,c(1,1))
plot(mcmc$samples)

MeyrasGaugings Meyras Gaugings

Description

Stage-discharge gaugings from the hydrometric station ’the Ardèche River at Meyras’. See https://en.wikipedia.org/wiki/Ardèche_(river)
for a description of the river See https://doi.org/10.1029/2018WR023389 for an article using this
dataset

Usage

MeyrasGaugings

model 25

Format

A data frame with 104 rows and 4 variables:

h Stage (m)

Q Discharge (m3/s)

uQ Discharge uncertainty (m3/s) expressed as a standard deviation

Period Stability period on which a single rating curve can be used

model model object constructor.

Description

Creates a new instance of a ’model’ object

Usage

model(
fname = "Config_Model.txt",
ID = "Linear",
nX = 1,
nY = 1,
par = list(parameter("Xeffect", 1, prior.dist = "FlatPrior")),
xtra = xtraModelInfo()

)

Arguments

fname Character, configuration file name.

ID Character, model ID. Type ’getCatalogue()’ for available models.

nX Integer, number of input variables.

nY Integer, number of output variables.

par list of parameter objects, parameters of the model.

xtra xtraModelInfo object.

Value

An object of class ’model’.

26 parameter

Examples

defaut linear regression model Y=aX+b
mod <- model()
BaRatin model for a single-control rating curve Y=a(X-b)^c
mod <- model(ID='BaRatin',nX=1,nY=1,

par=list(parameter('a',10,prior.dist='LogNormal',prior.par=c(log(10),0.1)),
parameter('b',-1,prior.dist='Gaussian',prior.par=c(-1,1)),
parameter('c',5/3,prior.dist='Gaussian',prior.par=c(5/3,0.05))),

xtra=xtraModelInfo(object=matrix(1,nrow=1,ncol=1)))

parameter parameter object constructor.

Description

Creates a new instance of a ’parameter’ object

Usage

parameter(name, init, prior.dist = "FlatPrior", prior.par = NULL)

Arguments

name character, parameter name.

init numeric, initial guess.

prior.dist character, prior distribution.

prior.par numeric vector, prior parameters

Value

An object of class ’parameter’.

Examples

p <- parameter(name='par',init=0,prior.dist='Gaussian',prior.par=c(0,1))

parameter_VAR 27

parameter_VAR Varying parameter object constructor.

Description

Creates a new instance of a ’parameter_VAR’ object

Usage

parameter_VAR(
name,
index,
d,
init,
prior.dist = rep("FlatPrior", length(init)),
prior.par = rep(list(NULL), length(init))

)

Arguments

name character, parameter name.

index character, name of column in VAR.indx (see ?dataset) containing the index for
this varying parameter

d dataset object, the dataset containing (amongst other things) the index above

init numeric vector, initial guesses for each instance of the VAR parameter.

prior.dist character vector, prior distribution for each instance of the VAR parameter.

prior.par list of numeric vectors, prior parameters for each instance of the VAR parameter

Value

An object of class ’parameter_VAR’.

Examples

X=data.frame(input1=rnorm(100),input2=rnorm(100))
Y=data.frame(output=X$input1+0.8*X$input2+0.1*rnorm(100))
VAR.indx=data.frame(indx=c(rep(1,50),rep(2,50)))
workspace=tempdir()
d <- dataset(X=X,Y=Y,data.dir=workspace,VAR.indx=VAR.indx)
p <- parameter_VAR(name='par',index='indx',d=d,

init=c(-1,1,2),
prior.dist=c('Gaussian','FlatPrior','Triangle'),
prior.par=list(c(-1,1),NULL,c(2,0,5)))

28 prediction

prediction prediction object constructor.

Description

Creates a new instance of a ’prediction’ object

Usage

prediction(
X,
spagFiles,
data.dir = getwd(),
data.fnames = paste0("X", 1:length(X), ".pred"),
fname = paste0("Config_Pred_", paste0(sample(c(letters, LETTERS, 0:9), 6), collapse =

""), ".txt"),
doParametric = FALSE,
doStructural = rep(FALSE, length(spagFiles)),
transposeSpag = TRUE,
priorNsim = NULL,
envFiles = paste0(tools::file_path_sans_ext(spagFiles), ".env"),
consoleProgress = TRUE,
spagFiles_state = NULL,
transposeSpag_state = TRUE,
envFiles_state = switch(is.null(spagFiles_state) + 1,
paste0(tools::file_path_sans_ext(spagFiles_state), ".env"), NULL),

parSamples = NULL
)

Arguments

X data frame or list of dataframes / matrices, representing the values taken by the
input variables.

• If X is a dataframe, then each column is interpreted as one input variable,
and consequently inputs are not replicated (=> no input uncertainty).

• If X is a list, then each element of the list is a matrix associated with one
input variable, and the columns of this matrix are replications (=> input
uncertainty is propagated). All matrices in the list should have the same
number of rows, columns are recycled if needed.

spagFiles Character vector (size nY, the number of output variables). Name of the files
containing the spaghettis for each output variable. NOTE: provide file names
only, not full paths. Using a ’.spag’ extension is a good practice.

data.dir Character, directory where a copies of the dataset X will be written if required
(1 file per variable in X). Default is the current working directory, but you may
prefer to use the BaM workspace.

data.fnames Character, data file names.

prediction 29

fname Character, configuration file name.

doParametric Logical, propagate parametric uncertainty? If FALSE, maxpost parameters are
used.

doStructural Logical, propagate structural uncertainty for each output variable? (size nY)

transposeSpag Logical. If FALSE, spaghettis are written horizontally (row-wise), otherwise
they will be transposed so that each spaghetti is a column.

priorNsim Integer, number of samples from the prior distribution for ’prior prediction’ ex-
periments. If negative or NULL (default), posterior samples are used.

envFiles Character vector (size nY, the number of output variables). Name of the files
containing the envelops (e.g. prediction intervals) computed from the spaghettis
for each output variable. By default, same name as spaghetti files but with a
’.env’ extension. If NULL, envelops are not computed.

consoleProgress

Logical, print progress in BaM.exe console?
spagFiles_state

Character vector (size nState, the number of state variables), same as spagFiles
but for states rather than outputs. If NULL, states are not predicted. Note that
only parametric uncertainty is propagated for state variables since they are not
observed. Consequently, structural uncertainty = 0 and total uncertainty = para-
metric uncertainty.

transposeSpag_state

Logical. Same as transposeSpag, but for states rather than outputs.

envFiles_state Character vector (size nState, the number of state variables), same as envFiles,
but for states rather than outputs.

parSamples data frame, parameter samples that will replace the MCMC-generated one for
this prediction.

Value

An object of class ’prediction’.

Examples

#--------------
Example using the twoPopulations dataset, containing 101 values for
3 input variables (time t, temperature at site 1 T1, temperature at site 2 T2)
and 2 output variables (population at site 1 P1, population at site 2 P2).
pred=prediction(X=twoPopulations[,1:3],spagFiles=c('P1.spag','P2.spag'))
#--------------
Alternative example showing how to propagate uncertainty in some of
the input variables (here, temperatures T1 and T2)
Create 100 noisy replicates for T1, representing uncertainty
T1rep=matrix(rnorm(101*100,mean=twoPopulations$T1,sd=0.1),nrow=101,ncol=100)
Same for T2
T2rep=matrix(rnorm(101*100,mean=twoPopulations$T2,sd=0.1),nrow=101,ncol=100)
Create prediction object
pred=prediction(X=list(twoPopulations$t,T1rep,T2rep),spagFiles=c('P1.spag','P2.spag'))

30 readMCMC

readMCMC MCMC Reader

Description

Read raw MCMC samples, return cooked (burnt & sliced) ones

Usage

readMCMC(
file = "Results_Cooking.txt",
burnFactor = 0,
slimFactor = 1,
sep = "",
reportFile = NULL,
panelPerCol = 10,
panelHeight = 3,
panelWidth = 23/panelPerCol

)

Arguments

file Character, full path to MCMC file.

burnFactor Numeric, burn factor. 0.1 means the first 10 are discarded.

slimFactor Integer, slim factor. 10 means that only one iteration every 10 is kept.

sep Character, separator used in MCMC file.

reportFile Character, full path to pdf report file, not created if NULL

panelPerCol Integer, max number of panels per column

panelHeight Numeric, height of each panel

panelWidth Numeric, width of each panel

Value

A data frame containing the cooked mcmc samples.

Examples

Create Monte Carlo samples and write them to file
n=4000
sim=data.frame(p1=rnorm(n),p2=rlnorm(n),p3=runif(n))
workspace=tempdir()
write.table(sim,file=file.path(workspace,'MCMC.txt'),row.names=FALSE)
Read file, burn the first half and keep every other row
M=readMCMC(file=file.path(workspace,'MCMC.txt'),burnFactor=0.5,slimFactor=2)
dim(M)

remnantErrorModel 31

remnantErrorModel remnantErrorModel object constructor.

Description

Creates a new instance of a ’remnantErrorModel’ object

Usage

remnantErrorModel(
fname = "Config_RemnantSigma.txt",
funk = "Linear",
par = list(parameter("g1", 1, prior.dist = "FlatPrior+"), parameter("g2", 0.1,

prior.dist = "FlatPrior+"))
)

Arguments

fname Character, configuration file name.

funk Character, function f used in remnant sdev = f(Ysim). Available: ’Constant’,
’Proportional’, ’Linear’ (default), ’Exponential’, ’Gaussian’.

par list of parameter objects, parameters of the function above. respectively, npar=
1,1,2,3,3

Value

An object of class ’remnantErrorModel’.

Examples

r <- remnantErrorModel()

residualOptions residualOptions constructor.

Description

Creates a new instance of a ’residualOptions’ object

Usage

residualOptions(
fname = "Config_Residuals.txt",
result.fname = "Results_Residuals.txt"

)

32 runModel

Arguments

fname Character, configuration file name.

result.fname Character, result file name.

Value

An object of class ’residualOptions’.

Examples

r <- residualOptions()

runModel Run Model

Description

Perform a single run of a model, using the initial values specified for the model’s parameters.

Usage

runModel(
workspace,
mod,
X,
na.value = -666.666,
run = TRUE,
preClean = FALSE,
dir.exe = .BAM_PATH,
name.exe = "BaM",
stout = "",
Inputs_fname = "Config_Inputs.txt",
X_fname = "X.txt",
Y_fname = "Y.txt"

)

Arguments

workspace Character, directory where config and result files are stored. workspace = tem-
pdir() is recommended.

mod model object, the model to be run.

X data frame, containing the inputs of the model

na.value numeric, value used by BaM to denote impossible runs, that will be changed to
NA in RBaM.

run Logical, run the model? if FALSE, just write config files and returns NULL.

runOptions 33

preClean Logical, start by cleaning up workspace? Be careful, this will delete all files in
the workspace, including old results!

dir.exe Character, directory where BaM executable stands.

name.exe Character, name of the executable without extension (’BaM’ by default).

stout Character string, standard output (see ?system2). In particular, stout="" (de-
fault) shows BaM messages in the console, stout=NULL discards BaM mes-
sages, stout=’log.txt’ saves BaM messages in file "log.txt".

Inputs_fname Character, name of configuration file used to specify the format of X.

X_fname Character, name of file containing a copy of X.

Y_fname Character, name of file where simulations are written.

Value

A data frame containing the outputs simulated by the model.

Examples

Rating curve model - see https://github.com/BaM-tools/RBaM
Parameters of the low flow section control: activation stage k, coefficient a and exponent c
k1=parameter(name='k1',init=-0.5)
a1=parameter(name='a1',init=50)
c1=parameter(name='c1',init=1.5)
Parameters of the high flow channel control: activation stage k, coefficient a and exponent c
k2=parameter(name='k2',init=1)
a2=parameter(name='a2',init=100)
c2=parameter(name='c2',init=1.67)
Define control matrix: columns are controls, rows are stage ranges.
controlMatrix=rbind(c(1,0),c(0,1))
Stitch it all together into a model object
M=model(ID='BaRatin',

nX=1,nY=1, # number of input/output variables
par=list(k1,a1,c1,k2,a2,c2), # list of model parameters

xtra=xtraModelInfo(object=controlMatrix)) # use xtraModelInfo() to pass the control matrix
Define the model input
X=data.frame(stage=seq(-1,7,0.1))
Write the config files used to run the model. To actually run it,
use run=TRUE, but BaM executable needs to be downloaded first (use downloadBaM())
runModel(workspace=tempdir(),mod=M,X=X,run=FALSE)

runOptions runOptions constructor.

Description

Creates a new instance of a ’runOptions’ object

34 SauzeGaugings

Usage

runOptions(
fname = "Config_RunOptions.txt",
doMCMC = TRUE,
doSummary = TRUE,
doResiduals = TRUE,
doPrediction = FALSE

)

Arguments

fname Character, configuration file name.

doMCMC logical, do MCMC sampling?

doSummary logical, do MCMC summarizing?

doResiduals logical, do residuals analysis?

doPrediction logical, do prediction experiments?

Value

An object of class ’runOptions’.

Examples

o <- runOptions()

SauzeGaugings Sauze Gaugings

Description

Stage-discharge gaugings from the hydrometric station ’the Ardèche River at Sauze-St-Martin’. See
https://en.wikipedia.org/wiki/Ardèche_(river) for a description of the river See https://hal.science/hal-
00934237 for an article using this dataset

Usage

SauzeGaugings

Format

A data frame with 38 rows and 3 variables:

H Stage (m)

Q Discharge (m3/s)

uQ Discharge uncertainty (m3/s) expressed as a standard deviation

setInitPar 35

setInitPar Set initial values

Description

Set the initial values of a list of parameters.

Usage

setInitPar(parameters, values)

Arguments

parameters List of parameter objects, parameters whose initial values are to be set.

values Numeric vector, initial values.

Value

a list of parameter objects equal to the input list ’parameters’, except for their initial values.

Examples

ps <- list(parameter(name='par1',init=0),parameter(name='par2',init=1))
ps=setInitPar(ps,c(10,100))
print(ps)

setPathToBaM Path to BaM

Description

Set path to BaM executable

Usage

setPathToBaM(dir.exe, quiet = FALSE)

Arguments

dir.exe character string, folder where BaM executable is located. A NULL value resets
BaM directory to ’unknown’ by removing the config folder where it was stored
on your computer (use ’tools::R_user_dir(package="RBaM",which="config")’
to locate this folder).

quiet logical, if TRUE, suppress status messages.

36 SPD_estimate

Value

nothing - just write a config file.

Examples

setPathToBaM(dir.exe=tempdir())

SPD_estimate Estimation of a BaRatin-SPD model

Description

Run BaM to estimate a BaRatin-SPD model. The following assumptions hold:

• Only parameters b/k’s and a’s can be variable. Exponents c’s are stable.

• Incremental changes affecting parameters b/k’s are additive, while incremental changes af-
fecting parameters a’s are multiplicative.

• The prior distribution for parameters b/k’s and associated incremental changes has to be
’Gaussian’.

• The prior distribution for parameters a’s and associated incremental changes has to be ’Log-
Normal’.

Usage

SPD_estimate(
workspace,
controlMatrix,
pars,
bVAR,
aVAR,
deltaPars,
periods,
H,
Q,
uQ = 0 * Q,
nPeriods = lapply(periods, max),
BaRatinFlavor = "BaRatinBAC",
remnant = remnantErrorModel(funk = "Linear", par = list(parameter("g1", 1, "LogNormal",

c(0, 10)), parameter("g2", 0.1, "LogNormal", c(log(0.1), 10)))),
mcmcOpt = mcmcOptions(),
mcmcCook = mcmcCooking()

)

SPD_estimate 37

Arguments

workspace Character, directory where config and result files are stored.

controlMatrix Integer matrix, control matrix, dimension nControl*nControl.

pars list of parameter objects, parameters of the model. For VAR parameters, they
will be interpreted as the prior for period 1.

bVAR Logical vector, size nControl. bVAR[i]=TRUE means that the b/k parameter of
control i is variable, otherwise it is stable.

aVAR Logical vector, size nControl. aVaR[i]=TRUE means that the a parameter of
control i is variable, otherwise it is stable.

deltaPars list, prior parameters of incremental changes for each VAR parameter. deltaPars
should be a named list, with the names corresponding to the names of the pa-
rameters that have been declared variable. Each element of deltaPars is then a
numeric vector of size 2. For b/k’s, the 2 values are the mean/sd of the Gaus-
sian prior for ADDITIVE incremental changes. For a’s, the 2 parameters are
the meanlog/sdlog of the LogNormal prior for MULTIPLICATIVE incremental
changes.

periods list, period index for each VAR parameter. periods should be a named list as
previously. Each element of the list is an integer vector (starting at 1) with same
length as the calibration data. Periods do not need to be the same for all VAR
parameters.

H numeric vector, gauging stages.

Q numeric vector, gauging discharges.

uQ numeric vector, gauging discharge uncertainties.

nPeriods list, number of periods for each VAR parameter. nPeriods should be a named
list as deltaPars and periods. In general and by default, nPeriods[[i]] is just the
max of periods[[i]], but this is not compulsory: there could be one or several
additional periods with no gaugings.

BaRatinFlavor character, either ’BaRatinBAC’ (default) or ’BaRatin’ (the original k-a-c param-
eterization). It is in general easier to specify priors on changes affecting b’s than
k’s, hence the default choice. However, ’BaRatinBAC’ requires some numerical
resolution and it is hence a bit slower and more prone to failures than ’BaRatin’.

remnant remnantErrorModel object, by default the structural standard deviation varies as
an affine function of simulated discharges, with very wide priors on coefficients
g1 and g2.

mcmcOpt mcmcOptions object, MCMC options passed to BaM.

mcmcCook mcmcCooking object, MCMC cooking options (burn and slice) passed to BaM.

Value

A data frame containing the MCMC simulations performed by BaM.

38 SPD_getVARproperties

Examples

Calibration data
H=MeyrasGaugings$h
Q=MeyrasGaugings$Q
uQ=MeyrasGaugings$uQ
Control matrix
controlMatrix=rbind(c(1,0,0),c(0,1,0),c(0,1,1))
Declare variable parameters.
bVAR=c(TRUE, TRUE, FALSE) # b's for first 2 controls (k1 and k2) are VAR
aVAR=c(TRUE, FALSE, FALSE) # a for first control (a1) is VAR
Define priors.
b1=parameter(name='b1',init=-0.6,prior.dist='Gaussian',prior.par=c(-0.6,0.5))
a1=parameter(name='a1',init=exp(2.65),prior.dist='LogNormal',prior.par=c(2.65,0.35))
c1=parameter(name='c1',init=1.5,prior.dist='Gaussian',prior.par=c(1.5,0.025))
b2=parameter(name='b2',init=0,prior.dist='Gaussian',prior.par=c(-0.6,0.5))
a2=parameter(name='a2',init=exp(3.28),prior.dist='LogNormal',prior.par=c(3.28,0.33))
c2=parameter(name='c2',init=1.67,prior.dist='Gaussian',prior.par=c(1.67,0.025))
b3=parameter(name='b3',init=1.2,prior.dist='Gaussian',prior.par=c(1.2,0.2))
a3=parameter(name='a3',init=exp(3.48),prior.dist='LogNormal',prior.par=c(3.46,0.38))
c3=parameter(name='c3',init=1.67,prior.dist='Gaussian',prior.par=c(1.67,0.025))
pars=list(b1,a1,c1,b2,a2,c2,b3,a3,c3)
Define properties of VAR parameters.
deltaPars=list(b1=c(0,0.25),a1=c(0,0.2),b2=c(0,0.5))
periods=list(b1=MeyrasGaugings$Period,a1=c(rep(1,49),rep(2,55)),b2=MeyrasGaugings$Period)
Run BaM and estimate SPD parameters
mcmcOpt=mcmcOptions(nAdapt=20,nCycles=25) # only few iterations so that the example runs fast.
mcmc=SPD_estimate(workspace=tempdir(),controlMatrix=controlMatrix,pars=pars,

bVAR=bVAR,aVAR=aVAR,deltaPars=deltaPars,periods=periods,
H=H,Q=Q,uQ=uQ,mcmcOpt=mcmcOpt)

SPD_getVARproperties Properties of VAR parameters

Description

This function computes the properties of VAR parameters (prior means, sds and correlation) given
the prior for period 1 and the prior for incremental changes.

Usage

SPD_getVARproperties(p1Par, deltaPar, nPeriod)

Arguments

p1Par numeric vector of length 2, parameters of the prior for period 1.

deltaPar numeric vector of length 2, parameters of the prior for incremental changes.

nPeriod integer, number of periods.

toString.dataset 39

Value

A list with the following components:

mean numeric vector of length nPeriod, prior means.

sd numeric vector of length nPeriod, prior standard deviations.

cor matrix of dim nPeriod*nPeriod, prior correlation matrix.

Examples

res=SPD_getVARproperties(p1Par=c(2,0.1),deltaPar=c(0,0.3),nPeriod=25)
image(res$cor)

toString.dataset dataset to string

Description

Convert an object of class ’dataset’ into a ready-to-write vector of string

Usage

S3 method for class 'dataset'
toString(x, ...)

Arguments

x dataset object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

X=data.frame(input1=rnorm(100),input2=rnorm(100))
Y=data.frame(output=X$input1+0.8*X$input2+0.1*rnorm(100))
workspace=tempdir()
d <- dataset(X=X,Y=Y,data.dir=workspace)
toString(d)

40 toString.mcmcOptions

toString.mcmcCooking mcmcCooking to string

Description

Convert an object of class ’mcmcCooking’ into a ready-to-write vector of string

Usage

S3 method for class 'mcmcCooking'
toString(x, ...)

Arguments

x mcmcCooking object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

toString(mcmcCooking())

toString.mcmcOptions mcmcOptions to string

Description

Convert an object of class ’mcmcOptions’ into a ready-to-write vector of string

Usage

S3 method for class 'mcmcOptions'
toString(x, ...)

Arguments

x mcmcOptions object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

toString.mcmcSummary 41

Examples

toString(mcmcOptions())

toString.mcmcSummary mcmcSummary to string

Description

Convert an object of class ’mcmcSummary’ into a ready-to-write vector of string

Usage

S3 method for class 'mcmcSummary'
toString(x, ...)

Arguments

x mcmcSummary object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

toString(mcmcSummary())

toString.model model to string

Description

Convert an object of class ’model’ into a ready-to-write vector of string

Usage

S3 method for class 'model'
toString(x, ...)

Arguments

x model object, object to be converted.

... Optional arguments.

42 toString.parameter_VAR

Value

A string ready to be printed or written.

Examples

toString(model())

toString.parameter parameter to string

Description

Convert an object of class ’parameter’ into a ready-to-write vector of string

Usage

S3 method for class 'parameter'
toString(x, ...)

Arguments

x parameter object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

p <- parameter(name='par',init=0,prior.dist='Gaussian',prior.par=c(0,1))
toString(p)

toString.parameter_VAR

parameter_VAR to string

Description

Convert an object of class ’parameter_VAR’ into a ready-to-write vector of string

Usage

S3 method for class 'parameter_VAR'
toString(x, ...)

toString.prediction 43

Arguments

x parameter_VAR object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

X=data.frame(input1=rnorm(100),input2=rnorm(100))
Y=data.frame(output=X$input1+0.8*X$input2+0.1*rnorm(100))
VAR.indx=data.frame(indx=c(rep(1,50),rep(2,50)))
workspace=tempdir()
d <- dataset(X=X,Y=Y,data.dir=workspace,VAR.indx=VAR.indx)
p <- parameter_VAR(name='par',index='indx',d=d,

init=c(-1,1,2),
prior.dist=c('Gaussian','FlatPrior','Triangle'),
prior.par=list(c(-1,1),NULL,c(2,0,5)))

toString(p)

toString.prediction prediction to string

Description

Convert an object of class ’prediction’ into a ready-to-write vector of string

Usage

S3 method for class 'prediction'
toString(x, ...)

Arguments

x prediction object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

pred=prediction(X=twoPopulations[,1:3],spagFiles=c('P1.spag','P2.spag'))
toString(pred)

44 toString.residualOptions

toString.remnantErrorModel

remnantErrorModel to string

Description

Convert an object of class ’remnantErrorModel’ into a ready-to-write vector of string

Usage

S3 method for class 'remnantErrorModel'
toString(x, ...)

Arguments

x remnantErrorModel object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

toString(remnantErrorModel())

toString.residualOptions

residualOptions to string

Description

Convert an object of class ’residualOptions’ into a ready-to-write vector of string

Usage

S3 method for class 'residualOptions'
toString(x, ...)

Arguments

x residualOptions object, object to be converted.

... Optional arguments.

toString.runOptions 45

Value

A string ready to be printed or written.

Examples

toString(residualOptions())

toString.runOptions runOptions to string

Description

Convert an object of class ’runOptions’ into a ready-to-write vector of string

Usage

S3 method for class 'runOptions'
toString(x, ...)

Arguments

x runOptions object, object to be converted.

... Optional arguments.

Value

A string ready to be printed or written.

Examples

toString(runOptions())

tracePlot MCMC reporting

Description

2DO (adapt from STooDs): Generate pdf report files summarizing mcmc samples

Usage

tracePlot(sim, ylab = "values", keep = NULL, col = "black", psize = 0.5)

46 twoPopulations

Arguments

sim vector or matrix or data frame, MCMC simulations

ylab Character, label of y-axis to be used if sim has no names

keep Integer vector, indices of samples to be kept in cooked MCMC sample

col Color

psize Numeric, point size

Details

tracePlot

returns a trace plot ggplot (or a list thereof if several columns in sim)

Value

A ggplot (or a list thereof if several columns in sim)

Examples

Create Monte Carlo samples
n=1000
sim=data.frame(p1=rnorm(n),p2=rlnorm(n),p3=runif(n))
create trace plot for each component
figures=tracePlot(sim)

twoPopulations Evolution of two populations

Description

Size of two populations of the same species put in two different environments, as a function of time
and local temperature.

• Input variables: time t, temperature at site 1 T1, temperature at site 2 T2.

• Output variables: population size at site 1 P1, population size at site 2 P2.

• Data are synthetically generated from a logistic model.

Usage

twoPopulations

Format

An object of class data.frame with 101 rows and 5 columns.

violinPlot 47

violinPlot violinPlot

Description

returns a violinplot ggplot

Usage

violinPlot(sim, ylab = "values", col = "black")

Arguments

sim vector or matrix or data frame, MCMC simulations

ylab Character, label of y-axis

col Color

Value

A ggplot

Examples

Create Monte Carlo samples
n=1000
sim=data.frame(p1=rnorm(n),p2=rlnorm(n),p3=runif(n))
create violin plot comparing all components
figure=violinPlot(sim)

writePredInputs Write prediction inputs

Description

Write input data of the prediction into files

Usage

writePredInputs(o)

Arguments

o prediction object

Value

nothing - just write to files.

48 xtraModelInfo

Examples

temp=tempdir()
pred=prediction(X=twoPopulations[,1:3],spagFiles=c('P1.spag','P2.spag'),

data.dir=temp)
writePredInputs(pred)

xtraModelInfo xtraModelInfo constructor.

Description

Creates a new instance of a ’xtraModelInfo’ object containing extra model information

Usage

xtraModelInfo(fname = "Config_Xtra.txt", object = NULL)

Arguments

fname Character, configuration file name.

object any R object containing xtra model info - typically a list of stuff. The content
and meaning of ’object’ is completely model-specific.

Value

An object of class ’xtraModelInfo’.

Examples

x <- xtraModelInfo()

Index

∗ datasets
MeyrasGaugings, 24
SauzeGaugings, 34
twoPopulations, 46

BaM, 3
blocDiag, 5

dataset, 5
densityPlot, 7
downloadBaM, 7

getAwPfromBathy, 8
getCatalogue, 9
getInitPar, 9
getNames, 10
getParNames, 11

llfunk_iid_Gaussian, 11, 13, 15, 17
llfunk_iLinear_Gaussian, 12
logLikelihood_BaM, 13, 15, 17
logPosterior_BaM, 14, 16
logPosterior_BaM_wrapped, 16
logPrior_Flat, 18

MCMC_AM, 21
MCMC_OAAT, 23
mcmcCooking, 18
mcmcOptions, 19
mcmcSummary, 20
metrop, 16
MeyrasGaugings, 24
model, 25

optim, 16

parameter, 26
parameter_VAR, 27
prediction, 28

readMCMC, 30

remnantErrorModel, 31
residualOptions, 31
runModel, 32
runOptions, 33

SauzeGaugings, 34
setInitPar, 35
setPathToBaM, 35
SPD_estimate, 36
SPD_getVARproperties, 38

toString.dataset, 39
toString.mcmcCooking, 40
toString.mcmcOptions, 40
toString.mcmcSummary, 41
toString.model, 41
toString.parameter, 42
toString.parameter_VAR, 42
toString.prediction, 43
toString.remnantErrorModel, 44
toString.residualOptions, 44
toString.runOptions, 45
tracePlot, 45
twoPopulations, 46

violinPlot, 47

writePredInputs, 47

xtraModelInfo, 48

49

	BaM
	blocDiag
	dataset
	densityPlot
	downloadBaM
	getAwPfromBathy
	getCatalogue
	getInitPar
	getNames
	getParNames
	llfunk_iid_Gaussian
	llfunk_iLinear_Gaussian
	logLikelihood_BaM
	logPosterior_BaM
	logPosterior_BaM_wrapped
	logPrior_Flat
	mcmcCooking
	mcmcOptions
	mcmcSummary
	MCMC_AM
	MCMC_OAAT
	MeyrasGaugings
	model
	parameter
	parameter_VAR
	prediction
	readMCMC
	remnantErrorModel
	residualOptions
	runModel
	runOptions
	SauzeGaugings
	setInitPar
	setPathToBaM
	SPD_estimate
	SPD_getVARproperties
	toString.dataset
	toString.mcmcCooking
	toString.mcmcOptions
	toString.mcmcSummary
	toString.model
	toString.parameter
	toString.parameter_VAR
	toString.prediction
	toString.remnantErrorModel
	toString.residualOptions
	toString.runOptions
	tracePlot
	twoPopulations
	violinPlot
	writePredInputs
	xtraModelInfo
	Index

