Risk and Performance Estimators Standard
Errors (RPESE)

Anthony Christidis, Doug Martin, Xin Chen
2025-12-28

Abstract

The Risk and Performance Estimators Standard Errors package (RPESE) implements a new
method for computing accurate standard errors of risk and performance estimators when
returns are serially correlated as well as when they are uncorrelated. The new method makes
use of the representation of a risk or performance estimator as a summation of a time series of
influence-function (IF) transformed returns, and computes estimator standard errors using a
sophisticated method of estimating the spectral density at frequency zero of the time series of
IF transformed returns. The RPESE package allows users to compute accurate standard errors
for six risk estimators, including the standard deviation, semi-standard deviation, value-at risk
and expected shortfall, and eight performance estimators, including the Sharpe ratio, Sortino
ratio, and expected shortfall ratio. This vignette provides basic instruction on how to use the
RPESE package.

1 Introduction

The current finance industry practice in reporting risk and performance estimates for individual
assets and portfolios seldom includes reporting estimate standard errors (SEs). For this reason,
consumers of such reports have no way of knowing the statistical accuracy of the estimates. As
a leading example, one seldom sees SE’s reported for Sharpe ratios, and consequently cannot
tell whether or not two Sharpe ratios for two different portfolio products are significantly
different.

This motivated us to develop a Risk and Performance Estimator Standard Errors (RPESE)
package for computing risk and performance estimator SE’s that are accurate: (1) when
returns are serially correlated as well as when they are uncorrelated, and (2) account for
fat-tailed and skewed non-normality of returns distributions. RPESE uses a new method for
computing risk and performance estimators standard errors due to Chen and Martin [2018],
henceforth (CM).

RPESE supports computing SEs for the six risk estimators shown in Table 1, and the eight
performance estimators shown in Table 2. For each of the names in the Name column of the
two tables, there is a corresponding R function with a similar name in RPESE, except for LPM1
and LPM2 in Table 1 there is a single function with an optional argument to choose between
these two risk estimators, and for SoR. and SoR.c in Table 2 there is a single function with
an optional argument to choose between these two performance estimators.

Table 1: Risk Estimator Names and Descriptions

Name Estimator Description

SD Sample standard deviation

SemiSD Semi-standard deviation

LPM1 Lower partial moment of order 1
LPM2 Lower partial moment of order 2

ES Expected shortfall with tail probability
VaR Value-at-risk with tail probability

Table 2: Performance Estimator Names and Descriptions

Name Estimator Description

Mean Sample mean

robMean Robust sample mean

SR Sharpe ratio

DSR Downside Sharpe ratio

SoR Sortino ratio with threshold a constant or mean
ESratio Mean excess return to ES ratio with tail probability
VaRratio Mean excess return to VaR ratio with tail probability
RachRatio Rachev ratio with lower upper tail probabilities and

OmegaRatio Omega ratio with threshold c

The main function of RPESE is to compute the standard errors of the point estimates listed
in Tables 1 and 2, using the new method that we now briefly describe.

The New Method

The basic elements of the new method are as follows. For a given risk or performance es-
timator, the time series of returns used to compute the estimate are transformed using the
influence function (IF) of the estimator. For an introduction to influence functions for risk
and performance estimators, and derivations of the influence functions of the estimators in
Tables 1 and 2, see Zhang et al. [2019]. It turns out that risk and performance estimators

can be represented as the sample mean of the time series of influence-function transformed
returns. It is well-known that an appropriately standardized (with respect to sample size) sum
of a stationary time series has a variance that is approximated by the spectral density of the
time series at zero frequency, with the approximation becoming exact as the sample size tends
to infinity. Thus, computing the standard error of a risk or performance estimator reduces
to estimating the spectral density at zero frequency of a standardized sum of the influence-
function transformed returns. CM developed an effective method of doing so based on first
computing the periodogram of the influence-function transformed returns, and then using a
regularized general linear model (GLM) method for exponential and gamma distributions to
fit a polynomial to the periodogram values. The regularization method used is an elastic net
(EN) method that encourages sparsity of coefficients and is well-known in the machine learning
literature. The intercept of such GLM fitting provides the an estimate of the spectral density
at zero frequency, and hence a risk or performance estimator standard error. The interested
reader can find the details in the CM paper.

2 RPESE Component Packages

The overall structure of RPESE, depicted in Figure 1, shows that RPESE makes use of the
following two new packages:

o RPEIF (Influence Functions of risk and performance estimators)
o RPEGLMEN (Generalized Linear Model fitting with Elastic Net, for exponential and
gamma distributions)

The purpose of RPEIF is to provide the analytic formulas of influence functions in support of
computing the IF transformed returns for the risk and performance estimators. For each risk
and performance estimator in Tables 1 and 2, the RPEGLMEN package fits an EN regularized
GLM polynomial fit to the periodogram of the time series of IF-transformed returns, using a
GLM for exponential distributions or Gamma distributions. Figure 1 shows the relationship
between the above two packages and the overall RPESE package.

RPEIF

RPESE

PerformanceAnalytics

v

A4

RPEGLMEN

Figure 1: Packages Relations between RPEIF, RPEGLMEN, RPESE and PerformanceAnalytics.

3 How to Use RPESE
In the following sections, we show how to use the functions in RPESE to compute standard

errors of risk and performance estimators using time series of monthly hedge fund returns
contained in the PerformanceAnalytics package.

3.1 Installing and Loading RPESE and Loading an Examples Data Set
In order to use RPESE, you don’t need to manually install any dependent packages as they
will be installed automatically when RPESE is installed. You can install RPESE from CRAN

as follows:

install.packages("RPESE")

To load RPESE, use the code line:

library (RPESE)

We will use the xts data set edhec of hedge fund returns, contained in PerformanceAnalytics,
to demonstrate the functionality of RPESE. The following code loads the edhec data, confirms
the object’s class, lists the names of the hedge funds, and displays the range of dates of the
data.

data(edhec, package = "PerformanceAnalytics")
class(edhec)

[1] "yts" "zoo"

names (edhec)

[1] "Convertible Arbitrage" "CTA Global" "Distressed Securities"
[4] "Emerging Markets" "Equity Market Neutral" "Event Driven"

[7] "Fixed Income Arbitrage" "Global Macro" "Long/Short Equity"
[10] "Merger Arbitrage" "Relative Value" "Short Selling"

[13] "Funds of Funds"

library(xts)

Warning: package 'xts' was built under R version 4.4.2

Loading required package: zoo

Warning: package 'zoo' was built under R version 4.4.3

Attaching package: 'zoo'
The following objects are masked from 'package:base':

as.Date, as.Date.numeric

range (index (edhec))

[1] "1997-01-31" "2021-05-31"

Since the hedge fund names are too long for convenient display, the following code is used to
create shorter two or three letter names:

names(edhec) <- C("CA", "CTA", “DIS", “EM", ”EMN", "ED", IIFIAII,
||GMII’ IILS"’ IIMAII’ IIRVII’ IISSII’ IIFOFII)
3.2 Functions in RPESE

To see what functions are contained in the RPESE package, use the code line:

1s("package :RPESE")

(1] "DSR.SE" "ES.SE" "ESratio.SE" "EstimatorSE"

(5] "LPM.SE" "Mean.SE" "OmegaRatio.SE" "printSE"

[9] "RachevRatio.SE" "robMean.SE" "SD.SE" "SemiSD.SE"
[13] "SoR.SE" "SR.SE" "VaR.SE" "VaRratio.SE"

The twelve functions whose function name ends in .SE compute the standard error of the
estimator corresponding to the first part of the function name. Note that there are only five
risk estimators instead of the six in Table 1, which is because LPM. SE uses an optional argument
to choose computing LPM1 or LPM2, and similarly there are only seven performance estimators
instead of the eight in Table 2 because SoR.SE uses an optional argument to choose computing
SoR.c or SoR. .

The function printSE is a utility function whose use is demonstrated below, and the function
EstimatorSE is another utility function whose use is illustrated in an example in the function’s
help file.

3.3 Basic Functionality

The arguments of the twelve standard error computation functions are all similar, and are
illustrated below for the cases of the SD.SE and SR.SE functions using the args function:

args (SD.SE)

function (data, se.method = c("IFiid", "IFcor", "IFcorAdapt",
"IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5,
freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPWw") [1],
return.coef = FALSE, ...)

NULL

args (SR.SE)

function (data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt",
"IFcorPW", "BOOTiid", "BOOTcor") [c(1, 4)], cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5,
freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPw") [1],
return.coef = FALSE, ...)

NULL

The only argument that is required for the standard error computing functions is the data
argument, and if only the data argument is supplied then the function uses the defaults of
the other arguments. However the se.method argument is particularly important, and the
standard error computation methods for the various choices for this argument are as follows:

o “IFiid”: This results in an influence function (IF) method based computation of a
standard error assuming i.i.d. returns

e “IFcor”: This is the basic IF method computation of a standard error that takes into
account serial correlation in the returns

o “IFcorAdapt”: This IF based method adaptively interpolates between IFcor and
IFcorPW to better account for serial correlation in the returns than with either IFcor or
IFcorPW alone

o “IFcorPW?”: This IF based method uses pre-whitening of the IF transformed returns
and is useful when serial correlation is large

e “BOQOTiid”: This choice results in computing a bootstrap standard error assuming
i.i.d. returns

e “BOOTcor”: This choice uses a block bootstrap method to compute a standard error
that takes into account serial correlation of returns

Our two default choices of methods are:

e IFiid and IFcor for risk estimators, and for performance estimators when returns serial
correlation are known to be small

e IFiid and IFcorPW for performance estimators when returns correlations are unknown
and may be large

Note how these choices are made in the se.method arguments for the SD.SE and SR.SE func-
tions above.

The value of including IFiid, along with IFcor and IFcorPW is that it allows the user to see
whether or not serial correlation results in a difference in the standard error that assumes i.i.d.
returns and the standard error that takes into account serial correlation. If there is no serial
correlation there will not be much difference, but if there is serial correlation the difference
can be considerable.

The BO0OTiid and BOOTcor methods are provided for users who want to see how these bootstrap
methods of computing standard errors compare with the IF based methods. Our experience
to date indicates that BOOTiid generally agrees quite well with IFiid, but that BOOTcor is
not as consistent in giving values similar to those of IFcor.

As a simple example of using an SE function, the following code computes the standard error
(SE) of the standard deviation estimator for the convertible arbitrage (CA) hedge fund, using
the IFiid and IFcor methods:

Standard deviation SE computation for a single hedge fund
SD.SE(edhec[, "CA"]1)

$SD
[1] 0.01676221

$IFiid
$IFiid$se
[1] 0.002214769

$IFiid$coef

NULL

$IFcor
$IFcor$se

[1] 0.003344193

$IFcor$coef
NULL

We note that the result returned by an SE function is a list, and so the result is printed using
the default print method for a list. A more compact display of the results, with rounding to
three digits by default, can be obtained using the printSE function, whose arguments are:

args (printSE)

function (SE.data, round.digit = 3, round.out = TRUE)
NULL

For example:

SdSE <- SD.SE(edhec[, "CA"])
printSE(sdSE)

SD IFiid IFcor
[1,] 0.017 0.002 0.003

Of course if you want to compute any subset of the four IF based SE’s and the two bootstrap
SE’s, you can do so. For example, you can obtain all six of those standard error estimates as
follows:

Sharpe Ratio SE computation for single hedge fund
Sharpe.out <- SR.SE(edhec[, "CA"],
se.method = c("IFiid", "IFcor",
"IFcorAdapt", "IFcorPW",
"BOOTiid", "BOOTcor"))
Print output
printSE(Sharpe.out)

SR IFiid IFcor IFcorAdapt IFcorPW BOOTiid BOOTcor
[1,] 0.346 0.092 0.113 0.141 0.17 0.095 0.127

The risk and performance estimator functions allow you to return the standard errors for
more than one asset or portfolio, e.g. a portfolio of assets, at the same time. The following
code results in standard errors for all thirteen of the edhec hedge funds, using the first three
methods in the set of six methods.

Sharpe Ratio SE computation for all hedge funds in data set
Sharpe.out <- SR.SE(edhec,

se.method = c("IFiid", "IFcor", "IFcorPW"))
printSE(Sharpe.out)

SR IFiid IFcor IFcorPW
CA 0.346 0.092 0.113 0.170
CTA 0.189 0.058 0.055 0.056
DIS 0.376 0.082 0.105 0.116
EM 0.206 0.067 0.081 0.087
EMN 0.528 0.101 0.109 0.116
ED 0.350 0.083 0.098 0.103
FIA 0.387 0.109 0.129 0.171
GM 0.383 0.053 0.056 0.057
LS 0.321 0.065 0.077 0.082
MA 0.486 0.095 0.098 0.101
RV 0.483 0.096 0.113 0.143
SS -0.028 0.059 0.070 0.070
FOF 0.280 0.066 0.081 0.088

Help files for the functions in RPESE are available in the usual ways. For example, you can get
the help file for Sharpe Ratio in both of the following ways:

?SR.SE

starting httpd help server ... done

help(SR.SE)

3.4 Outlier Cleaning

There is also the outlier cleaning functionality in the RPEIF package that is fully described in
Section 7 of CM, and is available in RPESE. Here we illustrate the use of the outlier cleaning
facility in terms of the influence function transformed returns for the sample mean estimator.

It is shown in Section 2 of CM that the influence function for the sample mean estimator is
IF(r;u) = r — p. Thus the IF transformed returns time series, computed with the function
IF .Mean is just r, — u, where p would be replaced by the sample mean in applications.

The function IF.Mean is made accessible by loading the package RPEIF. The following code
produces Figure 2, which illustrates the effect of outlier cleaning relative to no outlier cleaning
for the FIA hedge fund returns.

library (RPEIF)

IFout <- IF.Mean(returns = edhec[,"FIA"], cleanOutliers = F, IFprint = T)
IFout.clean <- IF.Mean(returns = edhec[,"FIA"], cleanOutliers = T,
IFprint = T)

par (mfrow = c(2,1))

ylim = c(-.1,.035)

plot.zoo(IFout,type = "b",

ylab = expression(paste("Returns - ",mu)),

main = "FIA Returns", pch = 20, lwd = .8, cex = .9,

ylim = ylim)

plot.zoo(IFout.clean,type = "b", ylab = expression(paste("Returns - ",mu)),

main = "FIA Outlier Cleaned Returns", pch = 20, 1lwd = .8, cex = .9,
ylim = ylim)

10

FIA Returns

-
= I ° ° © ° ®
M’ v/ % e g0)
Uy AR -\,-‘ A M\a\,’*
c o
- | — o e N
>
g .1 | 1
F! | °
? I I I I I
2000 2005 2010 2015 2020
Index
FIA Outlier Cleaned Returns
=3] ‘ a ° ® ‘.. ’. ° %
(In 8' : ‘e * .‘0 lI‘.’ .o ° ihb . tvo“
c o
5 T
40—5 —
04 o -
|
? I I I I I
2000 2005 2010 2015 2020
Index

par (mfrow = c(1,1))

You can use the following code to compare Sharpe ratio SE’s without and with outlier clean-

ing.

IFcorAdapt SE results with outliers present and with outliers cleaned
SR <- SR.SE(edhec,se.method = "IFcorPW", cleanOutliers = F)

SRcl.out <- SR.SE(edhec,se.method = "IFcorPW", cleanOutliers = T)
clean.compare <- data.frame(SR$IFcorPW$se, SRcl.out$IFcorPW$se)

11

names(clean.compare) <- c("With Outliers", "Outliers Cleaned")
row.names (clean.compare) <- names(edhec)
round(clean.compare, 3)

With Outliers Outliers Cleaned

CA 0.170 0.107
CTA 0.056 0.056
DIS 0.116 0.113
EM 0.087 0.081
EMN 0.116 0.092
ED 0.103 0.094
FIA 0.171 0.101
GM 0.057 0.061
LS 0.082 0.078
MA 0.101 0.083
RV 0.143 0.101
SS 0.070 0.071
FOF 0.087 0.079

It is not surprising that the SE’s of the Sharpe ratio are smaller with outlier cleaning than
with the outliers in the returns, as outliers generally inflate estimator variability.

3.5 Robust M-Estimator of Mean

As an alternative to the outlier cleaning method described in Section 3.4, a standard error
of the robust M-estimator of location (mean) based on the influence function approach is
available in RPESE. A rigorous treatment of the influence function of location M-estimators
can be found in Maronna et al. [2019].

We illustrate the effect of using a robust estimator for the mean of serially correlated returns.
The following code computes, and plots in Figure 3, the IF.Mean transformed FIA returns,
and the IF.robMean transformed FIA returns.

retFIA <- edhec$FIA

iftrFIA <- IF.Mean(returns=retFIA,IFprint=T)

iftrFIArob <- IF.robMean(returns=retFIA,

family=c("mopt", "opt", "bisquare")[1], eff=0.95,

IFprint=T)

par (mfrow=c(2,1))

plot (iftrFIA, main="IF.Mean Transformed FIA Returns",lwd=.8)

plot (iftrFIArob, main="IF.robMean Tranformed FIA Returns", lwd=.8)

12

IF.Mean Transformed FIA Return 1997-01-31/2021-05-31

0.02 0.02
0.00 0.00
-0.02 -0.02
-0.04 -0.04
-0.06 -0.06
-0.08 -0.08

Jan 1997 Jan 2001 Jan 2005 Jan 2009 Jan 2013 Jan 2017 Jan 2021
IF.robMean Tranformed FIA Returns 1997-01-31/2021-05-31

0.010 0.010
0.005 0.005
0.000 0.000
—-0.005 ‘ —-0.005
-0.010 -0.010

Jan 1997 Jan 2001 Jan 2005 Jan 2009 Jan 2013 Jan 2017 Jan 2021
par (mfrow=c(1,1))

In RPESE, the families of ¢ functions for M-estimators of location and their influence functions
are the same ones available in the package RobStatTM, namely mOpt, opt and bisquare. The
default is the mOpt family, where

x lz| <1

Umopt (%) = o
Opt SHs (2= SGN(2) 5%) Ule — |2]) 2| > 1

where ¢(z) is the standard normal density function, U(z) is the unit step function, and the
constants a and ¢ depend on the desired normal distribution efficiency. These constants are
computed internally in RPESE for a desired efficiency. The following code shows an example on
how to compute the standard error of robust M-estimators of location, specifying the family
and eff function arguments.

Robust Location

robMean.out <- robMean.SE(edhec, se.method=c("IFiid", "IFcorPW"),
family = c("mopt", "opt", "bisquare")[1], eff = 0.95)
printSE(robMean.out, round.digit = 3)

13

robMean IFiid IFcorPW

CA 0.007 0.001 0.001
CTA 0.004 0.001 0.001
DIS 0.008 0.001 0.002
EM 0.009 0.002 0.002
EMN 0.005 0.000 0.001
ED 0.009 0.001 0.001
FIA 0.005 0.000 0.001
GM 0.004 0.001 0.001
LS 0.008 0.001 0.001
MA 0.006 0.001 0.001
RV 0.007 0.001 0.001
SS -0.003 0.002 0.003
FOF 0.005 0.001 0.001

3.6 Correlations of Returns and Influence Function Transformed Returns

Note that you can also return the (lag-1) correlations of the returns time series, as well as the
influence function transformed returns as part of the output using the corOut argument. The
available options are retCor, retIFCor and retIFCorPW, as shown in the example below.

Sharpe Ratio SE computation for all hedge funds in data set

with output of correlations of returns and IF transformed returns
Sharpe.retCor <- SR.SE(edhec,
se.method=c("IFiid","IFcor","IFcorPW"),

corOut=c("retCor", "retIFCor"))

printSE(Sharpe.retCor)

SR IFiid IFcor IFcorPW retCor retIFCor
CA 0.346 0.092 0.113 0.158 0.503 0.493
CTA 0.189 0.058 0.055 0.056 -0.007 -0.038
DIS 0.376 0.082 0.105 0.116 0.435 0.347
EM 0.206 0.067 0.082 0.087 0.277 0.257
EMN 0.528 0.101 0.109 0.116 0.276 0.163
ED 0.350 0.083 0.098 0.103 0.278 0.220
FIA 0.387 0.109 0.129 0.171 0.477 0.420
GM 0.383 0.053 0.056 0.057 0.064 0.069
LS 0.321 0.065 0.077 0.082 0.196 0.223
MA 0.486 0.095 0.098 0.101 0.195 0.074
RV 0.483 0.096 0.113 0.143 0.379 0.381
SS -0.028 0.059 0.070 0.070 0.158 0.158
FOF 0.280 0.066 0.081 0.087 0.271 0.272

14

3.7 Exponential and Gamma Distributions

The RPEGLMEN package used in the fitting of the elastic net penalized GLM model to the
periodogram of the IF transformed return series was developed and tested for exponential
distribution GLM models. However some initial work was done for that type of GLM model
fitting for the family of Gamma distribution. And initial results for the Gamma distribution,
reported in CM, indicates that the Gamma distribution GLM often results in a more parsimo-
nious polynomial model fit to the periodogram. By way of example, the following code, which
is very slow, computes standard errors of Sharpe ratio estimators for exponential and Gamma
distributions.

Sharpe Ratio SE computation for edhec hedge funds using Gamma distribution
Clean.out <- SR.SE(edhec,

se.method=c("IFiid","IFcor","IFcorPW"),

cleanQutliers = T)

GammaClean.out <- SR.SE(edhec,
se.method=c("IFiid","IFcor","IFcorPW"),
cleanQutliers = T, fitting.method = "Gamma")

GammaExp.comparison <- cbind(printSE(Clean.out)[,4],

printSE(GammaClean.out) [,4])

colnames (GammaExp.comparison) <- c("IFcorPW", "IFcorPW-Gamma")

rownames (GammaExp.comparison) <- names(edhec)

GammaExp.comparison

We regard the Gamma family code implemented in RPEGLMEN, used for the above computation,
to be quite experimental at this stage, and anticipate further development of the code in C++
at a future date.

3.8 Decimation and Truncation of Frequencies of Discrete Fourier Transform

There is an option in the SE functions to use a decimated or truncated percentage of the
frequencies of the discrete Fourier transforms for the periodogram in the fitting of the Expo-
nential or Gamma distributions. Decimation implies that only certain frequencies are used,
and they will be equally spaced selections from the frequencies. Truncation implies that only
a certain percentage of the frequencies (i.e. only the first frequencies until a certain point) will
be used.

By default, the SE functions use all the frequencies. If the argument freq.include is set
to Decimate or Truncate a value of 0.5 is used for the freq.par argument: every second
frequency is used in the decimation case, and only the first half of the frequencies are used in
the truncation case. Below is some sample code demonstration for this usage.

15

Sharpe Ratio SE using all, decimating, or truncating the frequencies
SE.all <- SR.SE(edhec,
se.method = c("IFiid", "IFcor", "IFcorPW"),
cleanOutliers = TRUE,
freq.include = "A11l")

SE.decimate <- SR.SE(edhec,
se.method = c("IFiid", "IFcor", "IFcorPW"),
cleanOutliers = TRUE,
freq.include = "Decimate",
freq.par = 0.5)

SE.truncate <- SR.SE(edhec,
se.method = c("IFiid", "IFcor", "IFcorPWw"),
cleanOutliers = TRUE,
freq.include = "Truncate",
freq.par = 0.5)

frequency.comparison <- cbind(printSE(SE.all) [, 4],
printSE(SE.decimate) [, 4],
printSE(SE.truncate) [, 4])

colnames (frequency.comparison) <- c("IFcorPW-All",
"IFcorPW-Decimate",

"IFcorPW-Truncate")

rownames (frequency.comparison) <- names(edhec)
frequency.comparison

IFcorPW-All IFcorPW-Decimate IFcorPW-Truncate

CA 0.107 0.119 0.106
CTA 0.056 0.051 0.055
DIS 0.113 0.124 0.114
EM 0.081 0.088 0.081
EMN 0.092 0.095 0.094
ED 0.094 0.098 0.096
FIA 0.101 0.104 0.101
GM 0.061 0.064 0.062
LS 0.078 0.085 0.079
MA 0.083 0.079 0.083
RV 0.101 0.107 0.099
SS 0.071 0.074 0.070

16

FOF 0.079 0.087 0.082

References
Chen, X. and Martin, R. D. (2018). “Standard errors of risk and performance measure esti-
mators for serially correlated returns.” URL https://www.ssrn.com/abstract=3085672.

Maronna, R. A., Martin, R. D., Yohai, V. J., and Salibian-Barrera, M. (2019). “Robust
statistics: Theory and methods (with R) Wiley.” Hoboken, NJ, USA.

Zhang, S., Martin, R. D., and Christidis, A. A. (2019). “Influence functions for risk and
performance estimators.” Working paper.

17

	Abstract
	1 Introduction
	The New Method

	2 RPESE Component Packages
	3 How to Use RPESE
	3.1 Installing and Loading RPESE and Loading an Examples Data Set
	3.2 Functions in RPESE
	3.3 Basic Functionality
	3.4 Outlier Cleaning
	3.5 Robust M-Estimator of Mean
	3.6 Correlations of Returns and Influence Function Transformed Returns
	3.7 Exponential and Gamma Distributions
	3.8 Decimation and Truncation of Frequencies of Discrete Fourier Transform

	References

