
Package ‘RProtoBuf’
January 11, 2026

Version 0.4.25

Date 2026-01-11

Title R Interface to the 'Protocol Buffers' 'API' (Version 2 or 3)

Description Protocol Buffers are a way of encoding structured data in an
efficient yet extensible format. Google uses Protocol Buffers for almost all
of its internal 'RPC' protocols and file formats. Additional documentation
is available in two included vignettes one of which corresponds to our 'JSS'
paper (2016, <doi:10.18637/jss.v071.i02>. A sufficiently recent version of
'Protocol Buffers' library is required; currently version 3.3.0 from 2017
is the stated minimum.

Depends R (>= 3.0.0), methods

Imports utils, stats, tools, Rcpp

LinkingTo Rcpp

Suggests tinytest

SystemRequirements ProtoBuf libraries and compiler version 3.3.0 or
later; On Debian/Ubuntu these can be installed as
libprotoc-dev, libprotobuf-dev and protobuf-compiler, while on
Fedora/CentOS protobuf-devel and protobuf-compiler are needed.
A modern compiler is required as well.

BugReports https://github.com/eddelbuettel/rprotobuf/issues

URL https://github.com/eddelbuettel/rprotobuf,

https://dirk.eddelbuettel.com/code/rprotobuf.html

License GPL (>= 2)

VignetteBuilder Rcpp

NeedsCompilation yes

Author Romain Francois [aut] (ORCID: <https://orcid.org/0000-0002-2444-4226>),
Dirk Eddelbuettel [aut, cre] (ORCID:

<https://orcid.org/0000-0001-6419-907X>),
Murray Stokely [aut] (ORCID: <https://orcid.org/0009-0008-3390-1338>),
Jeroen Ooms [aut] (ORCID: <https://orcid.org/0000-0002-4035-0289>)

1

https://doi.org/10.18637/jss.v071.i02
https://github.com/eddelbuettel/rprotobuf/issues
https://github.com/eddelbuettel/rprotobuf
https://dirk.eddelbuettel.com/code/rprotobuf.html
https://orcid.org/0000-0002-2444-4226
https://orcid.org/0000-0001-6419-907X
https://orcid.org/0009-0008-3390-1338
https://orcid.org/0000-0002-4035-0289

2 Contents

Maintainer Dirk Eddelbuettel <edd@debian.org>

Repository CRAN

Date/Publication 2026-01-11 16:30:02 UTC

Contents
RProtoBuf-package . 3
add-methods . 4
ArrayInputStream-class . 4
ArrayInputStream-methods . 5
ArrayOutputStream-class . 6
ArrayOutputStream-methods . 7
as.list.Message . 7
asMessage . 8
BackUp-methods . 9
ByteCount-methods . 9
bytesize-methods . 10
clear-methods . 10
clone-methods . 11
completion . 12
ConnectionInputStream-class . 13
ConnectionInputStream-methods . 14
ConnectionOutputStream-class . 14
ConnectionOutputStream-methods . 15
containing_type-methods . 15
Descriptor-class . 15
descriptor-methods . 17
EnumDescriptor-class . 17
EnumValueDescriptor-class . 19
enum_type-methods . 20
enum_type_count-methods . 21
fetch-methods . 21
field-methods . 21
FieldDescriptor-class . 22
field_count-methods . 24
FileDescriptor-class . 25
fileDescriptor-methods . 26
FileInputStream-class . 26
FileInputStream-methods . 27
FileOutputStream-class . 28
FileOutputStream-methods . 29
GetErrno-methods . 29
has-methods . 29
isInitialized-methods . 30
is_extension-methods . 31
label-methods . 31
merge-methods . 32

RProtoBuf-package 3

Message-class . 32
MethodDescriptor-class . 35
name . 36
nested_type-methods . 36
nested_type_count-methods . 36
Next-methods . 37
number-methods . 37
P . 38
read-methods . 38
readASCII-methods . 39
readJSON-methods . 40
readProtoFiles . 41
serialize_pb . 42
ServiceDescriptor-class . 43
set-methods . 44
SetCloseOnDelete-methods . 44
size-methods . 44
sizegets . 45
Skip-methods . 45
swap-methods . 46
type-methods . 46
with.Message . 47
ZeroCopyInputStream-class . 48
ZeroCopyOutputStream-class . 49

Index 51

RProtoBuf-package R Interface to the Protocol Buffers API

Description

Protocol Buffers are a way of encoding structured data in an efficient yet extensible format. Google
uses Protocol Buffers for almost all of its internal RPC protocols and file formats.

This package provides R API to create, manipulate, parse and serialize protocol buffer messages
from R

Author(s)

Romain Francois, Dirk Eddelbuettel, Murray Stokely and Jeroen Ooms.

References

https://github.com/eddelbuettel/rprotobuf

See Also

Message for some examples

https://github.com/eddelbuettel/rprotobuf

4 ArrayInputStream-class

Examples

Not run:
an example proto file
system.file("proto", "addressbook.proto", package = "RProtoBuf")

create a message of type AddressBook, defined in the example proto file
demo("addressbook", package = "RProtoBuf")

using R binary connections and files to read and write messages
demo("io", package = "RProtoBuf")

more documentation in the vignette
vignette("RProtoBuf", package = "RProtoBuf")

End(Not run)

add-methods add elements of a repeated field of a message

Description

Add elements to a repeated field of a message.

Methods

signature(object = "Message") add elements to a repeated field of a message

Examples

unitest.proto.file <- system.file("tinytest", "data", "unittest.proto",
package = "RProtoBuf")

readProtoFiles(file = unitest.proto.file)

test <- new(protobuf_unittest.TestAllTypes)
test$add("repeated_int32", 1)
test$add("repeated_int32", 2:10)
test$repeated_int32

ArrayInputStream-class

Class "ArrayInputStream"

Description

A ZeroCopyInputStream backed by an in-memory array of bytes

ArrayInputStream-methods 5

Objects from the Class

Objects can be created by the ArrayInputStream function

Slots

pointer: External pointer to the google::protobuf::io::ArrayInputStream C++ object

Extends

Class "ZeroCopyInputStream", directly.

Methods

See ZeroCopyInputStream

Author(s)

Romain Francois <francoisromain@free.fr>

References

The ArrayInputStream class from the protobuf C++ library.

See Also

ZeroCopyInputStream for methods

Examples

stream <- ArrayInputStream(as.raw(0:10))
stream$ReadRaw(5)

stringsstream <- ArrayInputStream(as.raw(c(0x74, 0x65, 0x73, 0x74, 0x69, 0x6e, 0x67)))
stringsstream$ReadString(7)

intstream <- ArrayInputStream(as.raw(c(0x9e, 0xa7, 0x05)))
intstream$ReadVarint32()

ArrayInputStream-methods

Creates an ArrayInputStream

Description

Constructor for ArrayInputStream objects

6 ArrayOutputStream-class

Methods

signature(payload = "raw", block_size = "missing") Creates a ArrayInputStream using the
raw vector as the payload of the stream

signature(payload = "raw", block_size = "integer") Creates a ArrayInputStream ... same
with block size.

signature(payload = "raw", block_size = "numeric") Creates a ArrayInputStream ... same
with block size.

ArrayOutputStream-class

Class "ArrayOutputStream"

Description

A ZeroCopyOutputStream backed by an in-memory array of bytes

Objects from the Class

Objects can be created by the ArrayOutputStream function

Slots

pointer: External pointer to the google::protobuf::io::ArrayOutputStream C++ object

Extends

Class "ZeroCopyOutputStream", directly.

Methods

See ZeroCopyOutputStream

Author(s)

Romain Francois <francoisromain@free.fr>

References

The ArrayOutputStream class from the protobuf C++ library.

See Also

ZeroCopyOutputStream for methods

ArrayOutputStream-methods 7

ArrayOutputStream-methods

Creates an ArrayOutputStream

Description

Constructor for ArrayOutputStream objects

Methods

signature(size = "integer", block_size = "missing") Creates a ArrayOutputStream using
of the given size

signature(size = "integer", block_size = "integer") Creates a ArrayOutputStream ... same
with block size.

signature(size = "integer", block_size = "numeric") Creates a ArrayOutputStream ... same
with block size.

signature(size = "numeric", block_size = "missing") Creates a ArrayOutputStream using
of the given size

signature(size = "numeric", block_size = "integer") Creates a ArrayOutputStream ... same
with block size.

signature(size = "numeric", block_size = "numeric") Creates a ArrayOutputStream ... same
with block size.

as.list.Message Grab the protocol buffer message as an R list

Description

Utility to grab the protocol buffer message as an R list, with one item per field.

Usage

S3 method for class 'Message'
as.list(x, ...)
S3 method for class 'Descriptor'
as.list(x, ...)
S3 method for class 'EnumDescriptor'
as.list(x, ...)
S3 method for class 'FileDescriptor'
as.list(x, ...)
S3 method for class 'ServiceDescriptor'
as.list(x, ...)

8 asMessage

Arguments

x A protocol buffer message, instance of Message, or a protocol message descrip-
tor, instance of Descriptor

... ignored

Value

For messages, a list of the content of the fields is returned.

For message type descriptors, a list containing nested type descriptors (Descriptor objects), enum
type descriptors (EnumDescriptor objects), then field descriptors (FieldDescriptor objects) in that
order.

For enum descriptors, a named list of the enumerated values.

For file descriptors, a named list of descriptors defined in the specified file descriptor.

For service descriptors, ...

Author(s)

Romain Francois <francoisromain@free.fr>

Examples

Person <- P("tutorial.Person")
romain <- new(Person, email = "francoisromain@free.fr", id = 1)
as.list(romain)
as.list(Person)
as.list(Person$PhoneType)

asMessage coerce an object to a protobuf message

Description

coerce an object to the Message class. This is a short-hand to the as method with the Class argument
set to "Message"

Usage

asMessage(x, ...)

Arguments

x object to coerce to a protobuf message

... Passed to as

Value

a Message object

BackUp-methods 9

Author(s)

Romain Francois <francoisromain@free.fr>

Examples

coerce a message type descriptor to a message
asMessage(tutorial.Person)

coerce a enum descriptor
asMessage(tutorial.Person.PhoneType)

coerce a field descriptor
asMessage(tutorial.Person$email)

coerce a file descriptor
asMessage(fileDescriptor(tutorial.Person))

BackUp-methods Backs up a number of bytes from a stream

Description

Backs up a number of bytes from a stream

See Also

ZeroCopyInputStream implements BackUp.

ByteCount-methods The number of bytes read/written since the object was created

Description

The number of bytes read/written since the object was created

See Also

ZeroCopyInputStream implements ByteCount.

10 clear-methods

bytesize-methods The number of bytes taken by a message

Description

The number of bytes taken by a Message

Methods

signature(object = "Message") The number of bytes the message would take when serialized

Examples

message <- new(tutorial.Person, name = "dddd", email = "eeeeeee", id = 1)
bytesize(message)

clear-methods Clear a field or all fields of the message and set them to their default
values

Description

Clear one field or all fields of the message and set them to their default values

Methods

signature(object = "Message", field = "missing") Clear all fields of the message and set
them to their default values

signature(object = "Message", field = "character") Clear the field identified by its name

signature(object = "Message", field = "integer") Clear the field identified by its tag num-
ber

signature(object = "Message", field = "numeric") Clear the field identified by its tag num-
ber

signature(object = "Message", field = "raw") Clear the field identified by its tag number

Examples

message <- new(tutorial.Person, name = "dddd", email = "eeeeeee", id = 1)
writeLines(as.character(message))
clear(message)
clear works also as a pseudo method :
message$clear()

writeLines(as.character(message))

clone-methods 11

clear single fields
message <- new(tutorial.Person, name = "dddd", email = "eeeeeee", id = 1)
message$clear("name")
writeLines(as.character(message))

clone-methods Clone protocol buffer messages

Description

Generic "clone" function and associated method for Message objects

Methods

signature(object = "Message") clone the message

Examples

Not run:
example proto file supplied with this package
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")

reading a proto file and creating the descriptor
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

creating a prototype message from the descriptor
sheep <- new(Person, email = "francoisromain@free.fr", id = 2)

cloning the sheep
newsheep <- clone(sheep)

clone and update at once
newsheep <- clone(sheep, id = 3)

this can also be used as a pseudo method
sheep$clone()
sheep$clone(id = 3)

12 completion

completion Completion support for protocol buffer messages and descriptors

Description

These functions support completion of protocol buffer messages and descriptors.

Usage

S3 method for class 'Message'
.DollarNames(x, pattern = "")
S3 method for class 'Descriptor'
.DollarNames(x, pattern = "")
S3 method for class 'EnumDescriptor'
.DollarNames(x, pattern = "")
S3 method for class 'FieldDescriptor'
.DollarNames(x, pattern = "")
S3 method for class 'FileDescriptor'
.DollarNames(x, pattern = "")
S3 method for class 'ServiceDescriptor'
.DollarNames(x, pattern = "")
S3 method for class 'MethodDescriptor'
.DollarNames(x, pattern = "")
S3 method for class 'ZeroCopyInputStream'
.DollarNames(x, pattern = "")
S3 method for class 'ZeroCopyOutputStream'
.DollarNames(x, pattern = "")

Arguments

x message (Message) or descriptor (Descriptor)

pattern filter

Value

Character vector containing potential completions.

For Message objects, completions are the fields of the message and a set of pseudo methods ("has")

For EnumDescriptor objects, completions are the names of the possible constants

For Descriptor objects, completions are the names of the fields, enum types and nested message
types defined in the associated message type.

For FileDescriptor objects, completions are the names of the top-level descriptors (message, enum
or service) contained in the associated file, or pseudo methods.

Author(s)

Romain Francois <francoisromain@free.fr>

ConnectionInputStream-class 13

Examples

creating a prototype message from the descriptor
p <- new(tutorial.Person)

.DollarNames(p)

.DollarNames(tutorial.Person)
but this is usually used with the <TAB> expansion on the command line
<TAB> means "press the TAB key"
p$<TAB>
Person$<TAB>

ConnectionInputStream-class

Class "ConnectionInputStream"

Description

A ZeroCopyInputStream reading from a binary R connection

Objects from the Class

Objects can be created by the ConnectionInputStream function

Slots

pointer: External pointer to the rprotobuf::ConnectionInputStream C++ object

Extends

Class "ZeroCopyInputStream", directly.

Methods

See ZeroCopyInputStream

Author(s)

Romain Francois <francoisromain@free.fr>

References

The internal C++ class ConnectionInputStream

See Also

ZeroCopyInputStream for methods

14 ConnectionOutputStream-class

ConnectionInputStream-methods

Creates an ConnectionInputStream

Description

Constructor for ConnectionInputStream objects

Methods

signature(object="connection") Creates a ConnectionInputStream reading from the given R
binary connection.

ConnectionOutputStream-class

Class "ConnectionOutputStream"

Description

A ZeroCopyOutputStream writing to a binary R connection

Objects from the Class

Objects can be created by the ConnectionOutputStream function

Slots

pointer: External pointer to the rprotobuf::ConnectionOutputStream C++ object

Extends

Class "ZeroCopyOutputStream", directly.

Methods

See ZeroCopyOutputStream

Author(s)

Romain Francois <francoisromain@free.fr>

References

The internal C++ class ConnectionOutputStream

See Also

ZeroCopyOutputStream for methods

ConnectionOutputStream-methods 15

ConnectionOutputStream-methods

Creates an ConnectionOutputStream

Description

Constructor for ConnectionOutputStream objects

Methods

signature(object="connection") Creates a ConnectionOutputStream writing to the given R
binary connection.

containing_type-methods

Gets the message type descriptor that contains a descriptor

Description

Gets a Descriptor describing the message type that contains the descriptor.

See Also

The method is implemented for these classes : Descriptor, EnumDescriptor, FieldDescriptor

Examples

Containing type of a field is the message descriptor
tutorial.Personidcontaining_type()

No containing type for the top-level message descriptor.
tutorial.Person$containing_type()

Descriptor-class Class "Descriptor"

Description

full descriptive information about a protocol buffer message type. This is a thin wrapper around the
C++ class Descriptor

Objects from the Class

Objects are usually created by calls to the P function.

16 Descriptor-class

Slots

pointer: external pointer holding a Descriptor object
type: full name of the corresponding message type

Methods

as.character signature(x = "Descriptor"): returns the debug string of the descriptor. This is
retrieved by a call to the DebugString method of the Descriptor object.

toString signature(x = "Descriptor"): same as as.character
$ signature(x = "Descriptor"): retrieves a descriptor for a member of the message type. This

can either be another "Descriptor" instance describing a nested type, or a EnumDescriptor
object describing an enum type, or a FieldDescriptor object describing a field of the message

new signature(Class = "Descriptor"): creates a prototype message (Message) of this descrip-
tor

show signature(object = "Descriptor"): simple information
containing_type signature(object = "Descriptor") : returns a descriptor of the message type

that contains this message descriptor, or NULL if this is a top-level message type.
field_count signature(object = "Descriptor") : The number of fields of this message type.
nested_type_count signature(object = "Descriptor") : The number of nested types of this

message type.
enum_type_count signature(object = "Descriptor") : The number of enum types of this

message type.
field signature(object = "Descriptor") : extract a field descriptor from a descriptor. Exactly

one argument of index, number or name has to be used. If index is used, the field descriptor
is retrieved by position, using the field method of the google::protobuf::Descriptor
C++ class. If number is used, the field descriptor is retrieved using the tag number, with the
FindFieldByNumber C++ method. If name is used, the field descriptor is retrieved by name
using the FindFieldByName

nested_type signature(object = "Descriptor") : extracts a message type descriptor that is
nested in this descriptor. Exactly one argument of index of name has to be used. If index
is used, the nested type will be retrieved using its position with the nested_type method of
the google::protobuf::Descriptor C++ class. If name is used, the nested type will be
retrieved using its name, with the FindNestedTypeByName C++ method

enum_type signature(object = "Descriptor") : extracts an enum type descriptor that is con-
tained in this descriptor. Exactly one argument of index of name has to be used. If index
is used, the enum type will be retrieved using its position with the enum_type method of the
google::protobuf::Descriptor C++ class. If name is used, the enum type will be retrieved
using its name, with the FindEnumTypeByName C++ method

[[signature(x = "Descriptor"): extracts a field identified by its name or declared tag number
names signature(x = "Descriptor") : extracts names of this descriptor
length signature(x = "Descriptor") : extracts length of this descriptor

Author(s)

Romain Francois <francoisromain@free.fr>

descriptor-methods 17

See Also

the P function creates "Descriptor" messages.

Examples

Not run:
example proto file supplied with this package
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")
reading a proto file and creating the descriptor
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

enum type
Person$PhoneType

nested type
Person$PhoneNumber

field
Person$email

use this descriptor to create a message
new(Person)

descriptor-methods Get the descriptor of a message

Description

Get the Descriptor associated with a Message

Methods

signature(object = "Message") Get the descriptor of the message, as a Descriptor instance

EnumDescriptor-class Class "EnumDescriptor"

Description

R representation of an enum descriptor. This is a thin wrapper around the EnumDescriptor c++
class.

18 EnumDescriptor-class

Objects from the Class

Objects of this class are typically retrieved as members of Descriptor objects

Slots

pointer: external pointer to the EnumDescriptor instance

name: simple name of the enum

full_name: fully qualified name

type: fully qualified name of the type that contains this enumeration

Methods

show signature(object = "EnumDescriptor"): small information

as.character signature(x = "EnumDescriptor"): returns the debug string of the enum descrip-
tor. This is retrieved by a call to the DebugString method of the EnumDescriptor object.

toString signature(x = "EnumDescriptor"): same as as.character

$ signature(x = "EnumDescriptor"): get the number associated with the name

has signature(object = "EnumDescriptor"): indicate if the given name is a constant present in
this enum.

containing_type signature(object = "EnumDescriptor") : returns a Descriptor of the message
type that contains this enum descriptor, or NULL if this is a top level enum descriptor.

length signature(x = "EnumDescriptor") : number of constants in this enum.

value_count signature(object = "EnumDescriptor") : number of constants in this enum.

value signature(object = "EnumDescriptor") : extracts an EnumValueDescriptor. Exactly
one argument of index, number or name has to be used. If index is used, the enum value
descriptor is retrieved by position, using the value method of the C++ class. If number
is used, the enum value descriptor is retrieved using the value of the constant, using the
FindValueByNumber C++ method. If name is used, the enum value descriptor is retrieved
using the name of the constant, using the FindValueByName C++ method.

[[signature(x = "EnumDescriptor"): extracts field identified by its name or declared tag num-
ber

names signature(x = "EnumDescriptor") : extracts names of this enum

Author(s)

Romain Francois <francoisromain@free.fr>

References

The EnumDescriptor C++ class

See Also

The Descriptor class

EnumValueDescriptor-class 19

Examples

Not run:
example proto file supplied with this package
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")

reading a proto file and creating the descriptor
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

enum type
Person$PhoneType

has(Person$PhoneType, "MOBILE")
has(Person$PhoneType, "HOME")
has(Person$PhoneType, "WORK")

has(Person$PhoneType, "FOOBAR")

length(Person$PhoneType)

EnumValueDescriptor-class

Class "EnumValueDescriptor"

Description

R representation of an enum value descriptor. This is a thin wrapper around the EnumValueDescriptor
c++ class.

Objects from the Class

Objects of this class are typically retrieved with the value method of the EnumDescriptor class

Slots

pointer: external pointer to the EnumValueDescriptor instance

name: simple name of the enum

full_name: fully qualified name

Methods

show signature(object = "EnumValueDescriptor"): small information

as.character signature(x = "EnumValueDescriptor"): returns the debug string of the enum de-
scriptor. This is retrieved by a call to the DebugString method of the EnumDescriptor object.

toString signature(x = "EnumValueDescriptor"): same as as.character

$ signature(x = "EnumValueDescriptor"): invoke pseudo methods

20 enum_type-methods

name signature(object = "EnumValueDescriptor", full = "logical"): return the name of
this enum constant.

number signature(object = "EnumValueDescriptor"): return the numeric value of this enum
constant.

enum_type signature(object = "EnumDescriptor") : retrieves the EnumDescriptor related to
this value descriptor.

Author(s)

Romain Francois <francoisromain@free.fr>

Examples

Not run:
example proto file supplied with this package
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")
reading a proto file and creating the descriptor
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

enum type
Person$PhoneType

enum value type
value(Person$PhoneType, 1)

name(value(Person$PhoneType, 1))
name(value(Person$PhoneType, 1), TRUE)

number(value(Person$PhoneType, number=1))

enum_type(value(Person$PhoneType, number=1))

enum_type-methods Extract an enum type descriptor for a nested type

Description

Extract a EnumDescriptor contained in a Descriptor

See Also

The method is implemented for the Descriptor class

enum_type_count-methods 21

enum_type_count-methods

The number of enum types

Description

The number of enum types

See Also

The method is implemented for the Descriptor class

fetch-methods Fetch content of a repeated field

Description

Fetch content of a repeated field of a message

Methods

signature(object = "Message") Fetch content of a message repeated field

field-methods Extract a field descriptor

Description

Extract a FieldDescriptor from a Descriptor

See Also

The method is implemented for the Descriptor class

22 FieldDescriptor-class

FieldDescriptor-class Class "FieldDescriptor"

Description

R representation of message type field descriptor. This is a thin wrapper around the C++ class
FieldDescriptor

Objects from the Class

Objects typically are retrieved from FieldDescriptor

Slots

pointer: external pointer to the FieldDescriptor c++ object
name: name of the field within the message type
full_name: Fully qualified name of the field
type: Fully qualified name of the type that contains this field

Methods

show signature(object = "FieldDescriptor"): small description
as.character signature(x = "FieldDescriptor"): returns the debug string of the field descrip-

tor. This is retrieved by a call to the DebugString method of the FieldDescriptor object.
toString signature(x = "FieldDescriptor"): same as as.character
$ signature(x = "FieldDescriptor"): used to invoke pseudo methods
containing_type signature(object = "FieldDescriptor") : returns a Descriptor of the mes-

sage type that contains this field descriptor.
is_extension signature(object = "FieldDescriptor") : indicates if this is an extension.
number signature(object = "FieldDescriptor") : gets the declared tag number of this field.
type signature(object = "FieldDescriptor") : type of this field.
cpp_type signature(object = "FieldDescriptor") : c++ type of this field.
label signature(object = "FieldDescriptor") : label of this field.
is_required signature(object = "FieldDescriptor") : is this field required.
is_optional signature(object = "FieldDescriptor") : is this field optional.
is_repeated signature(object = "FieldDescriptor") : is this field repeated.
has_default_value signature(object = "FieldDescriptor") : indicates if this field has a de-

fault value.
default_value signature(object = "FieldDescriptor") : the default value of this field.
message_type signature(object = "FieldDescriptor") : the Descriptor for the associated mes-

sage type. Generates an error if this field is not a message type field.
enum_type signature(object = "FieldDescriptor") : the EnumDescriptor for the associated

enum type.Generates an error if this field is not an enum type field

FieldDescriptor-class 23

Author(s)

Romain Francois <francoisromain@free.fr>

References

The FieldDescriptor C++ class

See Also

Descriptor

Examples

Not run:
example proto file supplied with this package
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")

reading a proto file and creating the descriptor
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

field descriptor object
Person$email

debug string
as.character(Person$email)

or as a pseudo method
Person$email$as.character()

Person$email$is_required()
Person$email$is_optional()
Person$email$is_repeated()

Person$email$has_default_value()
Person$email$default_value()

Person$email$is_extension()

Get the default values
has_default_value(Person$id)
has_default_value(Person$email)
has_default_value(Person$phone)
default_value(Person$id)
default_value(Person$email)
default_value(Person$phone)

Get the types of field descriptors
type(Person$id)
type(Person$id, as.string=TRUE)

24 field_count-methods

cpp_type(Person$email)
cpp_type(Person$email, TRUE)

Get the label of a field descriptor
label(Person$id)
label(Person$email)
label(Person$phone)
label(Person$id, TRUE)
label(Person$email, TRUE)
label(Person$phone, TRUE)
LABEL_OPTIONAL
LABEL_REQUIRED
LABEL_REPEATED

Test if a field is optional
is_optional(Person$id)
is_optional(Person$email)
is_optional(Person$phone)

Test if a field is repeated
is_repeated(Person$id)
is_repeated(Person$email)
is_repeated(Person$phone)

Test if a field is required
is_required(Person$id)
is_required(Person$email)
is_required(Person$phone)

Return the class of a message field
message_type(Person$phone)

field_count-methods The number of fields

Description

The number of fields

See Also

The method is implemented for the Descriptor class

FileDescriptor-class 25

FileDescriptor-class Class "FileDescriptor"

Description

Class "FileDescriptor"

Objects from the Class

Objects are usually created using the fileDescriptor method

Slots

pointer: external pointer to a google::protobuf::FileDescriptor C++ object

package: the package name defined in the file, e.g. ’tutorial’.

filename: the filename of this FileDescriptor

Methods

$ signature(x = "FileDescriptor"): used to invoke a pseudo method of the file descriptor or
get a top level message, enum or service descriptor

toString signature(x = "FileDescriptor") : gets the debug string

as.character signature(x = "FileDescriptor") : gets the debug string

show signature(x = "FileDescriptor") : prints small text

name signature(object = "FileDescriptor") : name of the file

Author(s)

Romain Francois <francoisromain@free.fr>

See Also

Descriptor

Examples

example proto file supplied with this package
desc <- P("tutorial.Person")
person <- new(desc)

person$fileDescriptor()
name(person$fileDescriptor())
[1] "addressbook.proto"
as.character(person$fileDescriptor())

26 FileInputStream-class

fileDescriptor-methods

gets the file descriptor of an object

Description

Gets the file descriptor of an object

Methods

signature(object = "Descriptor") retrieves the file descriptor associated with this descriptor

signature(object = "Message") retrieves the file descriptor associated with the descriptor of this
message

signature(object = "EnumDescriptor") retrieves the file descriptor associated with the enum
descriptor

signature(object = "FieldDescriptor") retrieves the file descriptor associated with the field
descriptor

signature(object = "ServiceDescriptor") retrieves the file descriptor associated with the ser-
vice descriptor

signature(object = "MethodDescriptor") retrieves the file descriptor associated with the method
descriptor

FileInputStream-class Class "FileInputStream"

Description

A ZeroCopyInputStream reading from a file

Objects from the Class

Objects can be created by the FileInputStream function

Slots

pointer: External pointer to the google::protobuf::io::FileInputStream C++ object

Extends

Class "ZeroCopyInputStream", directly.

FileInputStream-methods 27

Methods

close signature(con="FileInputStream"): Flushes any buffers and closes the underlying file.
Returns false if an error occurs during the process; use GetErrno to examine the error

GetErrno signature(object="FileInputStream"): If an I/O error has occurred on this file
descriptor, this is the errno from that error. Otherwise, this is zero. Once an error occurs, the
stream is broken and all subsequent operations will fail.

SetCloseOnDelete signature(object="FileInputStream"): set the close on delete behavior.

See ZeroCopyInputStream for inherited methods

Author(s)

Romain Francois <francoisromain@free.fr>

References

The FileInputStream class from the protobuf C++ library.

See Also

ZeroCopyInputStream for methods

FileInputStream-methods

Creates an FileInputStream

Description

Constructor for FileInputStream objects

Methods

signature(filename = "character", block_size = "logical", close.on.delete = "logical")
Creates a FileInputStream reading from the given file.

28 FileOutputStream-class

FileOutputStream-class

Class "FileOutputStream"

Description

A ZeroCopyOutputStream reading from a file

Objects from the Class

Objects can be created by the FileOutputStream function

Slots

pointer: External pointer to the google::protobuf::io::FileOutputStream C++ object

Extends

Class "ZeroCopyOutputStream", directly.

Methods

close signature(con="FileOutputStream"): Flushes any buffers and closes the underlying file.
Returns false if an error occurs during the process; use GetErrno to examine the error

flush signature(con="FileOutputStream"): Flushes FileOutputStream’s buffers but does not
close the underlying file

GetErrno signature(object="FileInputStream"): If an I/O error has occurred on this file
descriptor, this is the errno from that error. Otherwise, this is zero. Once an error occurs, the
stream is broken and all subsequent operations will fail.

SetCloseOnDelete signature(object="FileOutputStream"): set the close on delete behavior.

See ZeroCopyOutputStream for inherited methods

Author(s)

Romain Francois <francoisromain@free.fr>

References

The FileOutputStream class from the protobuf C++ library.

See Also

ZeroCopyOutputStream for methods

FileOutputStream-methods 29

FileOutputStream-methods

Creates an FileOutputStream

Description

Constructor for FileOutputStream objects

Methods

signature(filename = "character", block_size = "logical", close.on.delete = "logical")
Creates a FileOutputStream writing to the given file.

GetErrno-methods Get the error number for an I/O error

Description

If an I/O error has occurred on this file descriptor, this is the errno from that error

Methods

See classes FileInputStream and FileOutputStream for implementations.

has-methods Indicates if an object has the given field set

Description

This generic method, currently implemented for Message and EnumDescriptor indicates if the mes-
sage or enum descriptor has the given field set.

For messages and non-repeated fields, a call to the HasField method of the corresponding Message
is issued.

For messages and repeated fields, a call to the FieldSize method is issued, and the message is
declared to have the field if the size is greater than 0.

NULL is returned if the descriptor for the message does not contain the given field at all.

For EnumDescriptors, a boolean value indicates if the given name is present in the enum definition.

Methods

has signature(object = "Message"): Indicates if the message has a given field.

has signature(object = "EnumDescriptor"): Indicates if the EnumDescriptor has a given named
element.

30 isInitialized-methods

Examples

unitest.proto.file <- system.file("tinytest", "data", "unittest.proto",
package = "RProtoBuf")

readProtoFiles(file = unitest.proto.file)

test <- new(protobuf_unittest.TestAllTypes)
test$has("optional_int32")
FALSE
test$add("repeated_int32", 1:10)
test$has("repeated_int32")
TRUE
test$has("nonexistant")
NULL

has(protobuf_unittest.TestAllTypes$NestedEnum, "FOO")
has(protobuf_unittest.TestAllTypes$NestedEnum, "BAR")
has(protobuf_unittest.TestAllTypes$NestedEnum, "XXX")

isInitialized-methods Indicates if a protocol buffer message is initialized

Description

Indicates if a Message is initialized. A message is initialized if all its required fields are set.

Methods

signature(object = "Message") is the message initialized

Examples

message <- new(tutorial.Person, name = "")
isInitialized(message) # FALSE (id is not set)
message$isInitialized() # FALSE

message <- new(tutorial.Person, name = "", id = 2)
isInitialized(message) # TRUE
message$isInitialized() # TRUE

is_extension-methods 31

is_extension-methods Indicates if a field descriptor is an extension

Description

Indicates if a field descriptor is an extension

See Also

The method is implemented for the FieldDescriptor class

Examples

Person <- P("tutorial.Person")
is_extension(Person$id)

label-methods Gets the label of a field

Description

Gets the label of a field (optional, required, or repeated).

Arguments

object A FieldDescriptor object.

as.string If true, print a string representation of the type.

See Also

The method is implemented for the FieldDescriptor class

Examples

Not run:
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

label(Person$id)
label(Person$email)
label(Person$phone)
label(Person$id, TRUE)
label(Person$email, TRUE)
label(Person$phone, TRUE)

32 Message-class

LABEL_OPTIONAL
LABEL_REQUIRED
LABEL_REPEATED

merge-methods Merge two messages of the same type

Description

Merge two Message objects of the same type.

Methods

signature(x = "Message", y = "Message") merge two messages of the same type

Errors

An error of class "IncompatibleType" is thrown if the two messages are not of the same message
type.

Examples

m1 <- new(tutorial.Person, email = "francoisromain@free.fr")
m2 <- new(tutorial.Person, id = 5)
m3 <- merge(m1, m2)
writeLines(as.character(m1))
writeLines(as.character(m2))
writeLines(as.character(m3))

Message-class Class "Message"

Description

R representation of protocol buffer messages. This is a thin wrapper around the Message c++ class
that holds the actual message as an external pointer.

Objects from the Class

Objects are typically created by the new function invoked on a Descriptor object.

Slots

pointer: external pointer to the c++ Message object

type: fully qualified name of the message type

Message-class 33

Methods

as.character signature(x = "Message"): returns the debug string of the message. This is built
from a call to the DebugString method of the Message object

toString signature(x = "Message"): same as as.character

toTextFormat signature(x = "Message"): returns the TextFormat of the message. This is built
from a call to TextFormat::PrintToString with the Message object

toDebugString signature(x = "Message"): same as as.character

toJSON signature(x = "Message"): returns the JSON representation of the message. This is
built from a call to the google::protobuf::util::MessageToJsonString method and ac-
cepts two arguments preserve_proto_field_names - if FALSE (the default) convert field
names to camelCase always_print_primitive_fields - whether to return the default value
for missing primitive fields (default false)

$<- signature(x = "Message"): set the value of a field of the message.

$ signature(x = "Message"): gets the value of a field. Primitive types are brought back to R
as R objects of the closest matching R type. Messages are brought back as instances of the
Message class.

[[signature(x = "Message"): extracts a field identified by its name or declared tag number

[[<- signature(x = "Message"): replace the value of a field identified by its name or declared tag
number

serialize signature(object = "Message"): serialize a message. If the "connection" argument is
NULL, the payload of the message is returned as a raw vector, if the "connection" argument is
a binary writable connection, the payload is written into the connection. If "connection" is a
character vector, the message is sent to the file (in binary format).

show signature(object = "Message"): displays a short text about the message

update signature(object = "Message"): set several fields of the message at once

length signature(x = "Message"): The number of fields actually contained in the message. A
field counts in these two situations: the field is repeated and the field size is greater than 0, the
field is not repeated and the message has the field.

setExtension signature(object = "Message"): set an extension field of the Message.

getExtension signature(object = "Message"): get the value of an extension field of the Mes-
sage.

str signature(object = "Message"): displays the structure of the message

identical signature(x = "Message", y = "Message"): Test if two messages are exactly identical

== signature(e1 = "Message", e2 = "Message"): Same as identical

!= signature(e1 = "Message", e2 = "Message"): Negation of identical

all.equal signature(e1 = "Message", e2 = "Message"): Test near equality

names signature(x = "Message"): extracts the names of the message.

Author(s)

Romain Francois <francoisromain@free.fr>

34 Message-class

References

The Message class from the C++ proto library.

See Also

P creates objects of class Descriptor that can be used to create messages.

Examples

Not run:
example proto file supplied with this package
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")

reading a proto file and creating the descriptor
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

PhoneNumber <- P("tutorial.Person.PhoneNumber")

creating a prototype message from the descriptor
p <- new(Person)
p$email # not set, returns default value
p$id # not set, returns default value
as.character(p) # empty
has(p, "email") # is the "email" field set
has(p, "phone") # is the "email" field set
length(p) # number of fields actually set

update several fields at once
romain <- update(new(Person),
email = "francoisromain@free.fr",
id = 1,
name = "Romain Francois",
phone = new(PhoneNumber , number = "+33(0)...", type = "MOBILE")
)

supply parameters to the constructor
dirk <- new(Person,
email = "edd@debian.org",
id = 2,
name = "Dirk Eddelbuettel")
update the phone repeated field with a list of PhoneNumber messages
dirk$phone <- list(
new(PhoneNumber , number = "+01...", type = "MOBILE"),
new(PhoneNumber , number = "+01...", type = "HOME"))

with/within style
saptarshi <- within(new(Person), {
id <- 3
name <- "Saptarshi Guha"

MethodDescriptor-class 35

email <- "saptarshi.guha@gmail.com"
})

make an addressbook
book <- new(tutorial.AddressBook, person = list(romain, dirk, saptarshi))

serialize the message to a file
tf <- tempfile()
serialize(book, tf)

the payload of the message
serialize(book, NULL)

read the file into a new message
m <- tutorial.AddressBook$read(tf)
writeLines(as.character(m))
sapply(m$person, function(p) p$name)

MethodDescriptor-class

Class "MethodDescriptor"

Description

R representation of Service Descriptors

Objects from the Class

TODO

Slots

pointer: External pointer to a google::protobuf::MethodDescriptor C++ object

name: fully qualified name of the method

service: fully qualified name of the service that defines this method

Methods

as.character signature(x = "MethodDescriptor"): debug string of the method

toString signature(x = "MethodDescriptor"): debug string of the method

$ signature(x = "MethodDescriptor"): ...

$<- signature(x = "MethodDescriptor"): ...

input_type signature(object = "MethodDescriptor"): the Descriptor of the input type of the
method

output_type signature(object = "MethodDescriptor"): the Descriptor of the output type of
the method

36 nested_type_count-methods

Author(s)

Romain Francois <francoisromain@free.fr>

name Name or full name of a descriptor

Description

name or full name of a descriptor

Methods

signature(object = "Descriptor") ...

signature(object = "FieldDescriptor") ...

signature(object = "EnumDescriptor") ...

signature(object = "ServiceDescriptor") ...

signature(object = "MethodDescriptor") ...

nested_type-methods Extract a message type descriptor for a nested type

Description

Extract a Descriptor nested in another Descriptor

See Also

The method is implemented for the Descriptor class

nested_type_count-methods

The number of fields

Description

The number of fields

See Also

The method is implemented for the Descriptor class

Next-methods 37

Next-methods Obtains a chunk of data from the stream

Description

Obtains a chunk of data from the stream

See Also

ZeroCopyInputStream implements Next.

number-methods Gets the declared tag number of a field

Description

Gets the declared tag number of a field

See Also

The method is implemented for FieldDescriptor and EnumValueDescriptor classes.

Examples

Not run:
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

number(Person$id)
number(Person$email)
as.character(Person)

number(value(tutorial.Person$PhoneType, name="HOME"))

38 read-methods

P Protocol Buffer descriptor importer

Description

The P function searches for a protocol message descriptor in the descriptor pool.

Usage

P(type, file)

Arguments

type Fully qualified type name of the protocol buffer or extension

file optional proto file. If given, the definition contained in the file is first registered
with the pool of message descriptors

Value

An object of class Descriptor for message types or FieldDescriptor for extensions. An error is
generated otherwise.

Author(s)

Romain Francois <francoisromain@free.fr>

Examples

Not run:
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

cat(as.character(Person))

read-methods Read a protocol buffer message from a connection

Description

Read a Message from a connection using its associated Descriptor

readASCII-methods 39

Methods

signature(descriptor = "Descriptor", input = "character") Read the message from a file

signature(descriptor = "Descriptor") Read from a binary connection.

signature(descriptor = "Descriptor", input = "raw") Read the message from a raw vector

Examples

example file that contains a "tutorial.AddressBook" message
book <- system.file("examples", "addressbook.pb", package = "RProtoBuf")

read the message
message <- read(tutorial.AddressBook, book)

or using the pseudo method
message <- tutorial.AddressBook$read(book)

write its debug string
writeLines(as.character(message))

grab the name of each person
sapply(message$person, function(p) p$name)

read from a binary file connection
f <- file(book, open = "rb")
message2 <- read(tutorial.AddressBook, f)
close(f)

read from a message payload (raw vector)
payload <- readBin(book, raw(0), 5000)
message3 <- tutorial.AddressBook$read(payload)

readASCII-methods read a message in ASCII format

Description

Method to read a Message in ASCII format

Methods

signature(descriptor = "Descriptor", input = "ANY") Read the message from a connection
(file, etc ...)

signature(descriptor = "Descriptor", input = "character") Read the message directly from
the character string

40 readJSON-methods

Examples

Not run:
example file that contains a "tutorial.AddressBook" message
book <- system.file("examples", "addressbook.pb", package = "RProtoBuf")

read the message
message <- read(tutorial.AddressBook, book)

Output in text format to a temporary file
out.file <- tempfile()
writeLines(as.character(message), file(out.file))

Verify that we can read back in the message from a text file.
message2 <- readASCII(tutorial.AddressBook, file(out.file, "rb"))

Verify that we can read back in the message from an unopened file.
message3 <- readASCII(tutorial.AddressBook, file(out.file))

\dontshow{
stopifnot(identical(message, message2))
}

End(Not run)

readJSON-methods read a message in JSON format

Description

Method to read a Message in JSON format

Methods

signature(descriptor = "Descriptor", input = "ANY") Read the message from a connection
(file, etc ...)

signature(descriptor = "Descriptor", input = "character") Read the message directly from
the character string

Examples

Not run:
example file that contains a "tutorial.AddressBook" message
book <- system.file("examples", "addressbook.pb", package = "RProtoBuf")

read the message
message <- read(tutorial.AddressBook, book)

Output in text format to a temporary file
out.file <- tempfile()

readProtoFiles 41

writeLines(message$toJSON(), file(out.file))

Verify that we can read back in the message from a text file.
message2 <- readJSON(tutorial.AddressBook, file(out.file, "rb"))

Verify that we can read back in the message from an unopened file.
message3 <- readJSON(tutorial.AddressBook, file(out.file))

\dontshow{
stopifnot(identical(message, message2))
}

End(Not run)

readProtoFiles protocol buffer descriptor importer

Description

Imports proto files into the descriptor pool that is then used by the P function to resolve message
type names.

Usage

readProtoFiles(files, dir, package="RProtoBuf", pattern="\\.proto$", lib.loc=NULL)
readProtoFiles2(files, dir=".", pattern="\\.proto$", recursive=FALSE, protoPath=getwd())
resetDescriptorPool()

Arguments

files Proto files
dir Directory. If files is not specified, files with the "proto" extension in the dir

directory are imported
package R package name. If files and dir are missing, "proto" files in the "proto"

directory of the package tree are imported.
pattern A filename pattern to match proto files when using dir.
recursive Whether to descend recursively into dir.
lib.loc Library location.
protoPath Search path for proto file imports.

Details

readProtoFiles2 is different from readProtoFiles to be consistent with the behavior of protoc
command line tool in being explicit about the search path for proto import statements. In addition,
we also require that both files and dir arguments are interpreted relative to protoPath, so that
there is consistency in future imports of the same files through import statements of other proto
files.

resetDescriptorPool clears all imported proto definitions.

42 serialize_pb

Value

NULL, invisibly.

Author(s)

Romain Francois <francoisromain@free.fr>

See Also

P

Examples

Not run:
from a package
readProtoFiles(package = "RProtoBuf")

from a directory
proto.dir <- system.file("proto", package = "RProtoBuf")
readProtoFiles(dir = proto.dir)

set of files
proto.files <- list.files(proto.dir, full.names = TRUE)
readProtoFiles(proto.files)

End(Not run)

serialize_pb Serialize R object to Protocol Buffer Message.

Description

Serializes R objects to a general purpose protobuf message using the same rexp.proto descriptor
and mapping between R objects and protobuf mesages as RHIPE.

Usage

serialize_pb(object, connection, ...)

Arguments

object R object to serialize

connection passed on to serialize

... additional arguments passed on to serialize

ServiceDescriptor-class 43

Details

Clients need both the message and the rexp.proto descriptor to parse serialized R objects. The lat-
ter is included in the the package installation proto directory: system.file(package="RProtoBuf",
"proto/rexp.proto")

The following storage types are natively supported by the descriptor: character, raw, double,
complex, integer, list, and NULL. Objects with other storage types, such as functions, environ-
ments, S4 classes, etc, are serialized using base R serialize and stored in the proto native type.
Missing values, attributes and numeric precision will be preserved.

Examples

msg <- tempfile();
serialize_pb(iris, msg);
obj <- unserialize_pb(msg);
identical(iris, obj);

ServiceDescriptor-class

Class "ServiceDescriptor"

Description

R representation of Service Descriptors

Objects from the Class

TODO

Slots

pointer: External pointer to a google::protobuf::ServiceDescriptor C++ object

name: fully qualified name of the service

Methods

as.character signature(x = "ServiceDescriptor"): debug string of the service

toString signature(x = "ServiceDescriptor"): debug string of the service

show signature(x = "ServiceDescriptor"): ...

$ signature(x = "ServiceDescriptor"): invoke pseudo methods or retrieve method descriptors
contained in this service descriptor.

[[signature(x = "ServiceDescriptor"): extracts methods descriptors contained in this service
descriptor

length signature(x = "ServiceDescriptor"): number of MethodDescriptor

method_count signature(x = "ServiceDescriptor"): number of MethodDescriptor

method signature(x = "ServiceDescriptor"): retrieves a MethodDescriptor

44 size-methods

Author(s)

Romain Francois <francoisromain@free.fr>

set-methods set a subset of values of a repeated field of a message

Description

set a subset of values of a repeated field of a message

Methods

signature(object = "Message") set a subset of values of a repeated field of a message

SetCloseOnDelete-methods

set the close on delete behavior

Description

By default, the file descriptor is not closed when a stream is destroyed, use SetCloseOnDelete(
stream, TRUE) to change that.

Methods

See classes FileInputStream and FileOutputStream for implementations.

size-methods Size of a message field

Description

The number of object currently in a given field of a protocol buffer message.

For non repeated fields, the size is 1 if the message has the field, 0 otherwise.

For repeated fields, the size is the number of objects in the array.

For repeated fields, the size can also be assigned to in order to shrink or grow the vector. Numeric
types are given a default value of 0 when the new size is greater than the existing size. Character
types are given a default value of "". Growing a repeated field in this way is not supported for
message, group, and enum types.

Methods

signature(object = "Message") Number of objects in a message field

sizegets 45

Examples

unitest.proto.file <- system.file("tinytest", "data", "unittest.proto",
package = "RProtoBuf")

readProtoFiles(file = unitest.proto.file)

test <- new(protobuf_unittest.TestAllTypes)
test$size("optional_int32")

test$add("repeated_int32", 1:10)
test$size("repeated_int32")
test$repeated_int32

size(test, "repeated_int32") <- 5
test$repeated_int32

size(test, "repeated_int32") <- 15
test$repeated_int32

sizegets Set the size of a field

Description

Sets the size of a repeated field.

Methods

signature(object = "Message") sets the size of a message field

Skip-methods Skips a number of bytes

Description

Skips a number of bytes

46 type-methods

swap-methods swap elements of a repeated field of a message

Description

swap elements of a repeated field of a message.

Methods

signature(object = "Message") swap elements of a repeated field of a message

References

See the SwapElements of the Reflection class, part of the protobuf library.

type-methods Gets the type or the C++ type of a field

Description

Gets the type or the C++ type of a field

Arguments

object A FieldDescriptor object.

as.string If true, print a string representation of the type.

See Also

The method is implemented for the FieldDescriptor class

Examples

Not run:
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

type(Person$id)
type(Person$id, as.string=TRUE)
cpp_type(Person$email)
cpp_type(Person$email, TRUE)

with.Message 47

with.Message with and within methods for protocol buffer messages

Description

Convenience wrapper that allow getting and setting fields of protocol buffer messages from within
the object

Usage

S3 method for class 'Message'
with(data, expr, ...)
S3 method for class 'Message'
within(data, expr, ...)

Arguments

data A protocol buffer message, instance of Message

expr R expression to evaluate

... ignored

Details

The expression is evaluated in an environment that allows to set and get fields of the message

The fields of the message are mapped to active bindings (see makeActiveBinding) so that they can
be accessed and modified from within the environment.

Value

with returns the value of the expression and within returns the data argument.

Author(s)

Romain Francois <francoisromain@free.fr>

Examples

Not run:
proto.file <- system.file("proto", "addressbook.proto", package = "RProtoBuf")
Person <- P("tutorial.Person", file = proto.file)

End(Not run)

romain <- within(new(Person), {
email <- "francoisromain@free.fr"
id <- 10L
})

48 ZeroCopyInputStream-class

ZeroCopyInputStream-class

Virtual Class "ZeroCopyInputStream"

Description

R wrapper for the ZeroCopyInputStream c++ class

Objects from the Class

This is a virtual class

Slots

pointer: external pointer to the google::protobuf::io::ZeroCopyInputStream object

Methods

$ signature(x="ZeroCopyInputStream"): invokes a method

Next signature(object="ZeroCopyInputStream"): Get a number of bytes from the stream as
a raw vector.

Skip signature(object="ZeroCopyInputStream"): skip a number of bytes

BackUp signature(object="ZeroCopyInputStream"): Backs up a number of bytes, so that the
next call to Next returns data again that was already returned by the last call to Next.

ByteCount signature(object="ZeroCopyInputStream"): Returns the total number of bytes
read since this object was created.

ReadRaw signature(object="ZeroCopyInputStream", size = "integer"): read raw bytes
from the stream

ReadRaw signature(object="ZeroCopyInputStream", size = "numeric"): read raw bytes
from the stream

ReadString signature(object="ZeroCopyInputStream", size = "integer"): same as ReadRaw
but formats the result as a string

ReadString signature(object="ZeroCopyInputStream", size = "numeric"): same as ReadRaw
but formats the result as a string

ReadVarint32 signature(object="ZeroCopyInputStream"): Read an unsigned integer with
Varint encoding, truncating to 32 bits.

ReadLittleEndian32 signature(object="ZeroCopyInputStream"): Read a 32-bit little-endian
integer.

ReadLittleEndian64 signature(object="ZeroCopyInputStream"): Read a 64-bit little-endian
integer. In R the value is stored as a double which looses some precision (no other way)

ReadVarint64 signature(object="ZeroCopyInputStream"): Read a 64-bit integer with varint
encoding. In R the value is stored as a double which looses some precision (no other way)

ZeroCopyOutputStream-class 49

Author(s)

Romain Francois <francoisromain@free.fr>

References

The google::protobuf::io::ZeroCopyInputStream C++ class.

See Also

TODO: add classes that extend

ZeroCopyOutputStream-class

Virtual Class "ZeroCopyOutputStream"

Description

R wrapper for the ZeroCopyOutputStream c++ class

Objects from the Class

This is a virtual class

Slots

pointer: external pointer to the google::protobuf::io::ZeroCopyOutputStream object

Methods

$ signature(x="ZeroCopyOutputStream"): invokes a method

Next signature(object="ZeroCopyOutputStream", payload = "raw"): push the raw vector
into the stream. Returns the number of bytes actually written.

BackUp signature(object="ZeroCopyOutputStream"): Backs up a number of bytes, so that
the end of the last buffer returned by Next is not actually written.

ByteCount signature(object="ZeroCopyOutputStream"): Returns the total number of bytes
written since this object was created.

WriteRaw signature(object="ZeroCopyOuputStream"), payload = "raw": write the raw bytes
to the stream

Author(s)

Romain Francois <francoisromain@free.fr>

References

The google::protobuf::io::ZeroCopyOutputStream C++ class.

50 ZeroCopyOutputStream-class

See Also

TODO: add classes that extend

Index

!=,Message,Message-method
(Message-class), 32

∗ classes
ArrayInputStream-class, 4
ArrayOutputStream-class, 6
ConnectionInputStream-class, 13
ConnectionOutputStream-class, 14
Descriptor-class, 15
EnumDescriptor-class, 17
EnumValueDescriptor-class, 19
FieldDescriptor-class, 22
FileDescriptor-class, 25
FileInputStream-class, 26
FileOutputStream-class, 28
Message-class, 32
MethodDescriptor-class, 35
ServiceDescriptor-class, 43
with.Message, 47
ZeroCopyInputStream-class, 48
ZeroCopyOutputStream-class, 49

∗ interface
P, 38

∗ methods
add-methods, 4
ArrayInputStream-methods, 5
ArrayOutputStream-methods, 7
BackUp-methods, 9
ByteCount-methods, 9
bytesize-methods, 10
clear-methods, 10
clone-methods, 11
ConnectionInputStream-methods, 14
ConnectionOutputStream-methods, 15
containing_type-methods, 15
descriptor-methods, 17
enum_type-methods, 20
enum_type_count-methods, 21
fetch-methods, 21
field-methods, 21

field_count-methods, 24
fileDescriptor-methods, 26
FileInputStream-methods, 27
FileOutputStream-methods, 29
GetErrno-methods, 29
has-methods, 29
is_extension-methods, 31
isInitialized-methods, 30
label-methods, 31
merge-methods, 32
name, 36
nested_type-methods, 36
nested_type_count-methods, 36
Next-methods, 37
number-methods, 37
read-methods, 38
readASCII-methods, 39
readJSON-methods, 40
set-methods, 44
SetCloseOnDelete-methods, 44
size-methods, 44
sizegets, 45
Skip-methods, 45
swap-methods, 46
type-methods, 46

∗ package
RProtoBuf-package, 3

∗ programming
as.list.Message, 7
asMessage, 8
completion, 12
readProtoFiles, 41

.DollarNames.Descriptor (completion), 12

.DollarNames.EnumDescriptor
(completion), 12

.DollarNames.FieldDescriptor
(completion), 12

.DollarNames.FileDescriptor
(completion), 12

51

52 INDEX

.DollarNames.Message (completion), 12

.DollarNames.MethodDescriptor
(completion), 12

.DollarNames.ServiceDescriptor
(completion), 12

.DollarNames.ZeroCopyInputStream
(completion), 12

.DollarNames.ZeroCopyOutputStream
(completion), 12

==,Message,Message-method
(Message-class), 32

[[,Descriptor-method
(Descriptor-class), 15

[[,EnumDescriptor-method
(EnumDescriptor-class), 17

[[,Message-method (Message-class), 32
[[,ServiceDescriptor-method

(ServiceDescriptor-class), 43
[[<-,Message-method (Message-class), 32
$,Descriptor-method (Descriptor-class),

15
$,EnumDescriptor-method

(EnumDescriptor-class), 17
$,EnumValueDescriptor-method

(EnumValueDescriptor-class), 19
$,FieldDescriptor-method

(FieldDescriptor-class), 22
$,FileDescriptor-method

(FileDescriptor-class), 25
$,Message-method (Message-class), 32
$,MethodDescriptor-method

(MethodDescriptor-class), 35
$,ServiceDescriptor-method

(ServiceDescriptor-class), 43
$,ZeroCopyInputStream-method

(ZeroCopyInputStream-class), 48
$,ZeroCopyOutputStream-method

(ZeroCopyOutputStream-class),
49

$<-,Descriptor-method
(Descriptor-class), 15

$<-,Message-method (Message-class), 32
$<-,MethodDescriptor-method

(MethodDescriptor-class), 35

add (add-methods), 4
add,Message-method (add-methods), 4
add-methods, 4

all.equal,Message,Message-method
(Message-class), 32

ArrayInputStream, 5, 6
ArrayInputStream

(ArrayInputStream-methods), 5
ArrayInputStream,raw,integer-method

(ArrayInputStream-methods), 5
ArrayInputStream,raw,missing-method

(ArrayInputStream-methods), 5
ArrayInputStream,raw,numeric-method

(ArrayInputStream-methods), 5
ArrayInputStream-class, 4
ArrayInputStream-methods, 5
ArrayOutputStream, 6, 7
ArrayOutputStream

(ArrayOutputStream-methods), 7
ArrayOutputStream,integer,integer-method

(ArrayOutputStream-methods), 7
ArrayOutputStream,integer,missing-method

(ArrayOutputStream-methods), 7
ArrayOutputStream,integer,numeric-method

(ArrayOutputStream-methods), 7
ArrayOutputStream,numeric,integer-method

(ArrayOutputStream-methods), 7
ArrayOutputStream,numeric,missing-method

(ArrayOutputStream-methods), 7
ArrayOutputStream,numeric,numeric-method

(ArrayOutputStream-methods), 7
ArrayOutputStream-class, 6
ArrayOutputStream-methods, 7
as, 8
as.character,Descriptor-method

(Descriptor-class), 15
as.character,EnumDescriptor-method

(EnumDescriptor-class), 17
as.character,EnumValueDescriptor-method

(EnumValueDescriptor-class), 19
as.character,FieldDescriptor-method

(FieldDescriptor-class), 22
as.character,FileDescriptor-method

(FileDescriptor-class), 25
as.character,Message-method

(Message-class), 32
as.character,MethodDescriptor-method

(MethodDescriptor-class), 35
as.character,ServiceDescriptor-method

(ServiceDescriptor-class), 43
as.list.Descriptor (as.list.Message), 7

INDEX 53

as.list.EnumDescriptor
(as.list.Message), 7

as.list.FileDescriptor
(as.list.Message), 7

as.list.Message, 7
as.list.ServiceDescriptor

(as.list.Message), 7
asMessage, 8

BackUp (BackUp-methods), 9
BackUp,ZeroCopyInputStream-method

(ZeroCopyInputStream-class), 48
BackUp,ZeroCopyOutputStream-method

(ZeroCopyOutputStream-class),
49

BackUp-methods, 9
ByteCount (ByteCount-methods), 9
ByteCount,ZeroCopyInputStream-method

(ZeroCopyInputStream-class), 48
ByteCount,ZeroCopyOutputStream-method

(ZeroCopyOutputStream-class),
49

ByteCount-methods, 9
bytesize (bytesize-methods), 10
bytesize,Message-method

(bytesize-methods), 10
bytesize-methods, 10

can_serialize_pb (serialize_pb), 42
clear (clear-methods), 10
clear,Message,character-method

(clear-methods), 10
clear,Message,integer-method

(clear-methods), 10
clear,Message,missing-method

(clear-methods), 10
clear,Message,numeric-method

(clear-methods), 10
clear,Message,raw-method

(clear-methods), 10
clear-methods, 10
clone (clone-methods), 11
clone,Message-method (clone-methods), 11
clone-methods, 11
close,FileInputStream-method

(FileInputStream-class), 26
close,FileOutputStream-method

(FileOutputStream-class), 28
completion, 12

ConnectionInputStream, 13, 14
ConnectionInputStream

(ConnectionInputStream-methods),
14

ConnectionInputStream,connection-method
(ConnectionInputStream-methods),
14

ConnectionInputStream-class, 13
ConnectionInputStream-methods, 14
ConnectionOutputStream, 14, 15
ConnectionOutputStream

(ConnectionOutputStream-methods),
15

ConnectionOutputStream,connection-method
(ConnectionOutputStream-methods),
15

ConnectionOutputStream-class, 14
ConnectionOutputStream-methods, 15
containing_type

(containing_type-methods), 15
containing_type,Descriptor-method

(Descriptor-class), 15
containing_type,EnumDescriptor-method

(EnumDescriptor-class), 17
containing_type,FieldDescriptor-method

(FieldDescriptor-class), 22
containing_type-methods, 15
cpp_type (type-methods), 46
cpp_type,FieldDescriptor-method

(FieldDescriptor-class), 22
cpp_type-methods (type-methods), 46
CPPTYPE_BOOL (type-methods), 46
CPPTYPE_DOUBLE (type-methods), 46
CPPTYPE_ENUM (type-methods), 46
CPPTYPE_FLOAT (type-methods), 46
CPPTYPE_INT32 (type-methods), 46
CPPTYPE_INT64 (type-methods), 46
CPPTYPE_MESSAGE (type-methods), 46
CPPTYPE_STRING (type-methods), 46
CPPTYPE_UINT32 (type-methods), 46
CPPTYPE_UINT64 (type-methods), 46

default_value (FieldDescriptor-class),
22

default_value,FieldDescriptor-method
(FieldDescriptor-class), 22

default_value-methods
(FieldDescriptor-class), 22

54 INDEX

Descriptor, 8, 12, 15, 17, 18, 20–25, 32,
34–36, 38

descriptor (descriptor-methods), 17
descriptor,Message-method

(descriptor-methods), 17
Descriptor-class, 15
descriptor-methods, 17

enum_type (enum_type-methods), 20
enum_type,Descriptor,ANY,ANY-method

(Descriptor-class), 15
enum_type,EnumValueDescriptor,missing,missing-method

(EnumValueDescriptor-class), 19
enum_type,FieldDescriptor,missing,missing-method

(FieldDescriptor-class), 22
enum_type-methods, 20
enum_type_count

(enum_type_count-methods), 21
enum_type_count,Descriptor-method

(Descriptor-class), 15
enum_type_count-methods, 21
EnumDescriptor, 8, 12, 15, 16, 19, 20, 22, 29
EnumDescriptor-class, 17
EnumValueDescriptor, 18, 37
EnumValueDescriptor-class, 19

fetch (fetch-methods), 21
fetch,Message-method (fetch-methods), 21
fetch-methods, 21
field (field-methods), 21
field,Descriptor-method

(Descriptor-class), 15
field-methods, 21
field_count (field_count-methods), 24
field_count,Descriptor-method

(Descriptor-class), 15
field_count-methods, 24
FieldDescriptor, 8, 15, 16, 21, 22, 31, 37,

38, 46
FieldDescriptor-class, 22
FileDescriptor, 12
fileDescriptor, 25
fileDescriptor

(fileDescriptor-methods), 26
fileDescriptor,Descriptor-method

(fileDescriptor-methods), 26
fileDescriptor,EnumDescriptor-method

(fileDescriptor-methods), 26

fileDescriptor,FieldDescriptor-method
(fileDescriptor-methods), 26

fileDescriptor,Message-method
(fileDescriptor-methods), 26

fileDescriptor,MethodDescriptor-method
(fileDescriptor-methods), 26

fileDescriptor,ServiceDescriptor-method
(fileDescriptor-methods), 26

FileDescriptor-class, 25
fileDescriptor-methods, 26
FileInputStream, 26, 27, 29, 44
FileInputStream

(FileInputStream-methods), 27
FileInputStream,character,integer,logical-method

(FileInputStream-methods), 27
FileInputStream-class, 26
FileInputStream-methods, 27
FileOutputStream, 28, 29, 44
FileOutputStream

(FileOutputStream-methods), 29
FileOutputStream,character,integer,logical-method

(FileOutputStream-methods), 29
FileOutputStream-class, 28
FileOutputStream-methods, 29
flush,FileOutputStream-method

(FileOutputStream-class), 28

GetErrno (GetErrno-methods), 29
GetErrno,FileInputStream-method

(FileInputStream-class), 26
GetErrno,FileOutputStream-method

(FileOutputStream-class), 28
GetErrno-methods, 29
getExtension (Message-class), 32
getExtension,Message-method

(Message-class), 32

has (has-methods), 29
has,EnumDescriptor-method

(EnumDescriptor-class), 17
has,Message-method (has-methods), 29
has-methods, 29
has_default_value

(FieldDescriptor-class), 22
has_default_value,FieldDescriptor-method

(FieldDescriptor-class), 22
has_default_value-methods

(FieldDescriptor-class), 22

INDEX 55

identical,Message,Message-method
(Message-class), 32

input_type (MethodDescriptor-class), 35
input_type,MethodDescriptor-method

(MethodDescriptor-class), 35
input_type-methods

(MethodDescriptor-class), 35
is_extension (is_extension-methods), 31
is_extension,FieldDescriptor-method

(FieldDescriptor-class), 22
is_extension-methods, 31
is_optional (FieldDescriptor-class), 22
is_optional,FieldDescriptor-method

(FieldDescriptor-class), 22
is_optional-methods

(FieldDescriptor-class), 22
is_repeated (FieldDescriptor-class), 22
is_repeated,FieldDescriptor-method

(FieldDescriptor-class), 22
is_repeated-methods

(FieldDescriptor-class), 22
is_required (FieldDescriptor-class), 22
is_required,FieldDescriptor-method

(FieldDescriptor-class), 22
is_required-methods

(FieldDescriptor-class), 22
isInitialized (isInitialized-methods),

30
isInitialized,Message-method

(isInitialized-methods), 30
isInitialized-methods, 30

label (label-methods), 31
label,FieldDescriptor-method

(FieldDescriptor-class), 22
label-methods, 31
LABEL_OPTIONAL (label-methods), 31
LABEL_REPEATED (label-methods), 31
LABEL_REQUIRED (label-methods), 31
length,Descriptor-method

(Descriptor-class), 15
length,EnumDescriptor-method

(EnumDescriptor-class), 17
length,Message-method (Message-class),

32
length,ServiceDescriptor-method

(ServiceDescriptor-class), 43

makeActiveBinding, 47

merge,Message,Message-method
(merge-methods), 32

merge-methods, 32
Message, 3, 8, 10–12, 16, 17, 29, 30, 32, 38, 47
Message-class, 32
message_type (FieldDescriptor-class), 22
message_type,FieldDescriptor-method

(FieldDescriptor-class), 22
message_type-methods

(FieldDescriptor-class), 22
method (ServiceDescriptor-class), 43
method,ServiceDescriptor-method

(ServiceDescriptor-class), 43
method-methods

(ServiceDescriptor-class), 43
method_count (ServiceDescriptor-class),

43
method_count,ServiceDescriptor-method

(ServiceDescriptor-class), 43
method_count-methods

(ServiceDescriptor-class), 43
MethodDescriptor, 43
MethodDescriptor-class, 35

name, 36
name,Descriptor-method (name), 36
name,EnumDescriptor-method (name), 36
name,EnumValueDescriptor-method

(EnumValueDescriptor-class), 19
name,FieldDescriptor-method (name), 36
name,FileDescriptor-method

(FileDescriptor-class), 25
name,MethodDescriptor-method (name), 36
name,ServiceDescriptor-method (name), 36
name-methods (name), 36
names,Descriptor-method

(Descriptor-class), 15
names,EnumDescriptor-method

(EnumDescriptor-class), 17
names,Message-method (Message-class), 32
nested_type (nested_type-methods), 36
nested_type,Descriptor-method

(Descriptor-class), 15
nested_type-methods, 36
nested_type_count

(nested_type_count-methods), 36
nested_type_count,Descriptor-method

(Descriptor-class), 15
nested_type_count-methods, 36

56 INDEX

new,Descriptor-method
(Descriptor-class), 15

Next (Next-methods), 37
Next,ZeroCopyInputStream,missing-method

(ZeroCopyInputStream-class), 48
Next,ZeroCopyOutputStream,raw-method

(ZeroCopyOutputStream-class),
49

Next-methods, 37
number (number-methods), 37
number,EnumValueDescriptor-method

(EnumValueDescriptor-class), 19
number,FieldDescriptor-method

(FieldDescriptor-class), 22
number-methods, 37

output_type (MethodDescriptor-class), 35
output_type,MethodDescriptor-method

(MethodDescriptor-class), 35
output_type-methods

(MethodDescriptor-class), 35

P, 15, 17, 34, 38, 42

read (read-methods), 38
read,Descriptor,ANY-method

(read-methods), 38
read,Descriptor,character-method

(read-methods), 38
read,Descriptor,raw-method

(read-methods), 38
read-methods, 38
readASCII (readASCII-methods), 39
readASCII,Descriptor,ANY-method

(readASCII-methods), 39
readASCII,Descriptor,character-method

(readASCII-methods), 39
readASCII-methods, 39
readJSON (readJSON-methods), 40
readJSON,Descriptor,ANY-method

(readJSON-methods), 40
readJSON,Descriptor,character-method

(readJSON-methods), 40
readJSON-methods, 40
ReadLittleEndian32

(ZeroCopyInputStream-class), 48
ReadLittleEndian32,ZeroCopyInputStream-method

(ZeroCopyInputStream-class), 48

ReadLittleEndian32-methods
(ZeroCopyInputStream-class), 48

ReadLittleEndian64
(ZeroCopyInputStream-class), 48

ReadLittleEndian64,ZeroCopyInputStream-method
(ZeroCopyInputStream-class), 48

ReadLittleEndian64-methods
(ZeroCopyInputStream-class), 48

readProtoFiles, 41
readProtoFiles2 (readProtoFiles), 41
ReadRaw (ZeroCopyInputStream-class), 48
ReadRaw,ZeroCopyInputStream,integer-method

(ZeroCopyInputStream-class), 48
ReadRaw,ZeroCopyInputStream,numeric-method

(ZeroCopyInputStream-class), 48
ReadRaw-methods

(ZeroCopyInputStream-class), 48
ReadString (ZeroCopyInputStream-class),

48
ReadString,ZeroCopyInputStream,integer-method

(ZeroCopyInputStream-class), 48
ReadString,ZeroCopyInputStream,numeric-method

(ZeroCopyInputStream-class), 48
ReadString-methods

(ZeroCopyInputStream-class), 48
ReadVarint32

(ZeroCopyInputStream-class), 48
ReadVarint32,ZeroCopyInputStream-method

(ZeroCopyInputStream-class), 48
ReadVarint32-methods

(ZeroCopyInputStream-class), 48
ReadVarint64

(ZeroCopyInputStream-class), 48
ReadVarint64,ZeroCopyInputStream-method

(ZeroCopyInputStream-class), 48
ReadVarint64-methods

(ZeroCopyInputStream-class), 48
resetDescriptorPool (readProtoFiles), 41
RProtoBuf (RProtoBuf-package), 3
RProtoBuf-package, 3

serialize, 42, 43
serialize,Message-method

(Message-class), 32
serialize_pb, 42
ServiceDescriptor-class, 43
set (set-methods), 44
set,Message-method (set-methods), 44
set-methods, 44

INDEX 57

SetCloseOnDelete
(SetCloseOnDelete-methods), 44

SetCloseOnDelete,FileInputStream-method
(FileInputStream-class), 26

SetCloseOnDelete,FileOutputStream-method
(FileOutputStream-class), 28

SetCloseOnDelete-methods, 44
setExtension (Message-class), 32
setExtension,Message-method

(Message-class), 32
show,Descriptor-method

(Descriptor-class), 15
show,EnumDescriptor-method

(EnumDescriptor-class), 17
show,EnumValueDescriptor-method

(EnumValueDescriptor-class), 19
show,FieldDescriptor-method

(FieldDescriptor-class), 22
show,FileDescriptor-method

(FileDescriptor-class), 25
show,Message-method (Message-class), 32
show,ServiceDescriptor-method

(ServiceDescriptor-class), 43
size (size-methods), 44
size,Message-method (size-methods), 44
size-methods, 44
size<- (sizegets), 45
size<-,Message-method (sizegets), 45
size<--methods (sizegets), 45
sizegets, 45
Skip (Skip-methods), 45
Skip,ZeroCopyInputStream-method

(ZeroCopyInputStream-class), 48
Skip-methods, 45
str,Message-method (Message-class), 32
swap (swap-methods), 46
swap,Message-method (swap-methods), 46
swap-methods, 46

toJSON (Message-class), 32
toJSON,Message-method (Message-class),

32
toString,Descriptor-method

(Descriptor-class), 15
toString,EnumDescriptor-method

(EnumDescriptor-class), 17
toString,EnumValueDescriptor-method

(EnumValueDescriptor-class), 19

toString,FieldDescriptor-method
(FieldDescriptor-class), 22

toString,FileDescriptor-method
(FileDescriptor-class), 25

toString,Message-method
(Message-class), 32

toString,MethodDescriptor-method
(MethodDescriptor-class), 35

toString,ServiceDescriptor-method
(ServiceDescriptor-class), 43

type (type-methods), 46
type,FieldDescriptor-method

(FieldDescriptor-class), 22
type-methods, 46
TYPE_BOOL (type-methods), 46
TYPE_BYTES (type-methods), 46
TYPE_DOUBLE (type-methods), 46
TYPE_ENUM (type-methods), 46
TYPE_FIXED32 (type-methods), 46
TYPE_FIXED64 (type-methods), 46
TYPE_FLOAT (type-methods), 46
TYPE_GROUP (type-methods), 46
TYPE_INT32 (type-methods), 46
TYPE_INT64 (type-methods), 46
TYPE_MESSAGE (type-methods), 46
TYPE_SFIXED32 (type-methods), 46
TYPE_SFIXED64 (type-methods), 46
TYPE_SINT32 (type-methods), 46
TYPE_SINT64 (type-methods), 46
TYPE_STRING (type-methods), 46
TYPE_UINT32 (type-methods), 46
TYPE_UINT64 (type-methods), 46

unserialize_pb (serialize_pb), 42
update,Message-method (Message-class),

32

value (EnumDescriptor-class), 17
value,EnumDescriptor-method

(EnumDescriptor-class), 17
value-methods (EnumDescriptor-class), 17
value_count (EnumDescriptor-class), 17
value_count,EnumDescriptor-method

(EnumDescriptor-class), 17
value_count-methods

(EnumDescriptor-class), 17

with.Message, 47
within.Message (with.Message), 47

58 INDEX

WriteLittleEndian32
(ZeroCopyOutputStream-class),
49

WriteLittleEndian32,ZeroCopyOutputStream,integer-method
(ZeroCopyOutputStream-class),
49

WriteLittleEndian32,ZeroCopyOutputStream,numeric-method
(ZeroCopyOutputStream-class),
49

WriteLittleEndian32,ZeroCopyOutputStream,raw-method
(ZeroCopyOutputStream-class),
49

WriteLittleEndian32-methods
(ZeroCopyOutputStream-class),
49

WriteLittleEndian64
(ZeroCopyOutputStream-class),
49

WriteLittleEndian64,ZeroCopyOutputStream,integer-method
(ZeroCopyOutputStream-class),
49

WriteLittleEndian64,ZeroCopyOutputStream,numeric-method
(ZeroCopyOutputStream-class),
49

WriteLittleEndian64,ZeroCopyOutputStream,raw-method
(ZeroCopyOutputStream-class),
49

WriteLittleEndian64-methods
(ZeroCopyOutputStream-class),
49

WriteRaw (ZeroCopyOutputStream-class),
49

WriteRaw,ZeroCopyOutputStream,raw-method
(ZeroCopyOutputStream-class),
49

WriteRaw-methods
(ZeroCopyOutputStream-class),
49

WriteString
(ZeroCopyOutputStream-class),
49

WriteString,ZeroCopyOutputStream,character-method
(ZeroCopyOutputStream-class),
49

WriteString-methods
(ZeroCopyOutputStream-class),
49

WriteVarint32

(ZeroCopyOutputStream-class),
49

WriteVarint32,ZeroCopyOutputStream,integer-method
(ZeroCopyOutputStream-class),
49

WriteVarint32,ZeroCopyOutputStream,numeric-method
(ZeroCopyOutputStream-class),
49

WriteVarint32,ZeroCopyOutputStream,raw-method
(ZeroCopyOutputStream-class),
49

WriteVarint32-methods
(ZeroCopyOutputStream-class),
49

WriteVarint64
(ZeroCopyOutputStream-class),
49

WriteVarint64,ZeroCopyOutputStream,integer-method
(ZeroCopyOutputStream-class),
49

WriteVarint64,ZeroCopyOutputStream,numeric-method
(ZeroCopyOutputStream-class),
49

WriteVarint64,ZeroCopyOutputStream,raw-method
(ZeroCopyOutputStream-class),
49

WriteVarint64-methods
(ZeroCopyOutputStream-class),
49

ZeroCopyInputStream, 4, 5, 9, 13, 26, 27, 37
ZeroCopyInputStream-class, 48
ZeroCopyOutputStream, 6, 14, 28
ZeroCopyOutputStream-class, 49

	RProtoBuf-package
	add-methods
	ArrayInputStream-class
	ArrayInputStream-methods
	ArrayOutputStream-class
	ArrayOutputStream-methods
	as.list.Message
	asMessage
	BackUp-methods
	ByteCount-methods
	bytesize-methods
	clear-methods
	clone-methods
	completion
	ConnectionInputStream-class
	ConnectionInputStream-methods
	ConnectionOutputStream-class
	ConnectionOutputStream-methods
	containing_type-methods
	Descriptor-class
	descriptor-methods
	EnumDescriptor-class
	EnumValueDescriptor-class
	enum_type-methods
	enum_type_count-methods
	fetch-methods
	field-methods
	FieldDescriptor-class
	field_count-methods
	FileDescriptor-class
	fileDescriptor-methods
	FileInputStream-class
	FileInputStream-methods
	FileOutputStream-class
	FileOutputStream-methods
	GetErrno-methods
	has-methods
	isInitialized-methods
	is_extension-methods
	label-methods
	merge-methods
	Message-class
	MethodDescriptor-class
	name
	nested_type-methods
	nested_type_count-methods
	Next-methods
	number-methods
	P
	read-methods
	readASCII-methods
	readJSON-methods
	readProtoFiles
	serialize_pb
	ServiceDescriptor-class
	set-methods
	SetCloseOnDelete-methods
	size-methods
	sizegets
	Skip-methods
	swap-methods
	type-methods
	with.Message
	ZeroCopyInputStream-class
	ZeroCopyOutputStream-class
	Index

