RProtoBuf: An R API for Protocol Buffers

Dirk Eddelbuettel®, Romain Francois®, and Murray Stokely®

2http:/dirk.eddelbuettel.com; bhttps://github.com/romainfrancois; Chttps:/github.com/murraystokely

This version was compiled on January 11, 2026

Protocol Buffers is a software project by Google that is used extensively internally and also released under an Open Source license. It provides a way of
encoding structured data in an efficient yet extensible format. Google formally supports APIs for C++, Java and Python. This vignette describes version
the RProtoBuf package which brings support for Protocol Buffer messages to R.

Contents
1 Protocol Buffers 3
2 Basic use: Protocol Buffers and R 3
2.1 Importing proto files dynamically e e 3
2.2 CreatiNng @mMEeSSAZE . « ¢ v ¢ v v e v e v et e 4
2.3 Access and modify fields of amessage i e e 4
2.4 DisSplay MESSAZES « & v v v v v e 5
2.5 Serializing MeSSAES i i e e e e e e e e e e e 5
2.6 Parsing MeSSAZES . .« vt v v i i e 6
2.7 Classes, Methods and Pseudo Methods i i e e e 7
2.8 MESSAZES « . v i e 7
2.8.1 Retrieve fields o oo e 7
2.8.2 Modify fields e e e e e 8
2.8.3 Message$Shasmethod i e e e e 9
2.8.4 Message$clone method e 10
2.8.5 Message$isInitialized method L e 10
2.8.6 Message$serialize method L e e e e 10
2.8.7 Message$clear method e e e e 11
2.8.8 Message$size method e e e e e 11
2.8.9 Message$bytesize method e 12
2.8.10 Message$swap method o e e e e e e 12
2.8.11 Message$set method it i e e e e e e e 13
2.8.12 Message$fetch method e e 13
2.8.13 Message$setExtension method e 13
2.8.14 Message$getExtension method L e 14
2.8.15 Message$add method e e e e 14
2.8.16 MessageSstrmethod e e 14
2.8.17 Message$as.character method e 14
2.8.18 Message$toString method L e e e e e e 15
2.8.19 MessageS$as.listmethod L e 15
2.8.20 Message$update method e e e 15
2.8.21 Message$descriptor method L 16
2.8.22 Message$fileDescriptor method o . e e e 16
2.9 Message desCriPtorS. . . v v v v vt e 16
2.9.1 Extracting desCriptors o v v v it it e e e e e e e e e e e e e e e e e e 16
2.9.2 Thenewmethod e e e 17
2.9.3 Thereadmethod e 18
2.9.4 ThereadASCIImethod i e e e e e e e e e et 18
2.9.5 ThetoStringmethod 18
2.9.6 The as.character method i e 18
2.9.7 Theaslistmethod e 20
2.9.8 The asMessage method e 20

https://cran.r-project.org/package=RProtoBuf

RProtoBuf Vignette | January 11,2026 | 1-40

http://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://github.com/murraystokely
https://cran.r-project.org/package=RProtoBuf

2.9.9 The fileDescriptor method e 20

2.9.10 Thename method e e e 20
2.9.11 The containing type method. e 21
2.9.12 The field countmethod e 21
2.9.13 The field method e 21
2.9.14 The nested_type countmethod e 21
2.9.15 Thenested typemethod e 21
2.9.16 The enum _type countmethod 21
2.9.17 Theenum typemethod e e 22
2.10 Field descriptors} . . . v v v vttt e e e e e e e e e e 22
2.10.1 The as.character method e 22
2.10.2 The toString method e 22
2.10.3 The asMessage method ittt e e e e e e 23
2.10.4 The name method e e 23
2.10.5 The fileDescriptor method e 23
2.10.6 The containing type method. e 23
2.10.7 Theis_extension method e 24
2.10.8 The number method e e 24
2.10.9 Thetypemethod e 24
2.10.10The cpp typemethod e 24
2.10.11The label method e 25
2.10.12The is_repeated method e 25
2.10.13Theis required method L 25
2.10.14Theis_optional method 25
2.10.15The has_default value methodt 26
2.10.16The default value method e 26
2.10.17The message typemethod o i i e 26
2.10.18The enum _typemethod i e e 26
2.11 Eenum deSCriPLtOrS . . . v v v v ittt e 27
2.11.1 ExXtracting desCriptors . . . v v v v v e et e 27
2.11.2 The asdist method e 27
2.11.3 The as.character method e 28
2.11.4 The toString method e 28
2.11.5 The asMessage method e 28
2.11.6 Thename methodt e e e e e 28
2.11.7 The fileDescriptor method it it e e e e e e 28
2.11.8 The containing type method L .. e e 29
2.11.9 Thelengthmethod e 29
2.11.10The has method e 29
2.11.11The value countmethod e 29
2.11.12The value method e 30
2.12 Enum value desCriptors v ittt e e e e e e e e e e e e 30
2.12.1 Thenumber method e 30
2.12.2 Thename method e e 30
2.12.3 Theenum typemethod e 31
2.12.4 The as.character method e e 31
2.12.5 The toString method o e e e e e e 31
2.12.6 The asMessage method ittt it i e e e e e e 31
2. 13 File desCriptors . « v v v v v o e 31
2.13.1 The as.character method i e e 32
2.13.2 The toString method o e e e e e e 33
2.13.3 The asMessage method ittt it e e e e e e e 33
2.13.4 The as.list method e e e 35
2.13.5 Thename method e e e 35
2.13.6 The package method it e e e e e e 36
2.14 Service desCriPLtOrS . . . o v v i i it e 36

2 | https:/cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

2.14.1 The method descriptors method e 36

3 Utilities 36
3.1 Ccoercing ObJeCtS t0 MESSAZES . » v v v v v v v e e e e e et e e et e e e e e e e e 36
3.2 CompPletion vt e e e e e e e e e e e e e e e 37
3.3 withand withino L 37
34 INETZE . ¢ v o v e 38
3. S P e e e e e e e e e e e e e 38

4 Advanced Features 38
4.1 EXeNSIONS . ¢ v vt ittt it e 38
4.2 Descriptor IoOKUP o v e e e e e e e e e e e 39
4.3 64-Dit INtEZET ISSUES . . v v v v it e e e e e e e e e e e e e e e e e 39
4.4 Deprecated Feature: Protocol Buffer Groups.o 39

5 Other approaches 39

6 Plans for future releases 40

7 Acknowedgements 40

1. Protocol Buffers

Protocol Buffers are a language-neutral, platform-neutral, extensible way of serializing structured data for use in communi-
cations protocols, data storage, and more.

Protocol Buffers offer key features such as an efficient data interchange format that is both language- and operating
system-agnostic yet uses a lightweight and highly performant encoding, object serialization and de-serialization as well
data and configuration management. Protocol Buffers are also forward compatible: updates to the proto files do not break
programs built against the previous specification.

While benchmarks are not available, Google states on the project page that in comparison to XML, Protocol Buffers are
at the same time simpler, between three to ten times smaller, between twenty and one hundred times faster, as well as less
ambiguous and easier to program.

The Protocol Buffers code is released under an open-source (BSD) license. The Protocol Buffer project (https://protobuf.dev)
contains a C++ library and a set of runtime libraries and compilers for C++, Java and Python.

With these languages, the workflow follows standard practice of so-called Interface Description Languages (IDL) (c.f.
Wikipedia on IDL). This consists of compiling a Protocol Buffer description file (ending in .proto) into language specific
classes that can be used to create, read, write and manipulate Protocol Buffer messages. In other words, given the ‘proto’
description file, code is automatically generated for the chosen target language(s). The project page contains a tutorial for
each of these officially supported languages: https:/protobuf.dev/getting-started/

Besides the officially supported C++, Java and Python implementations, several projects have been created to support
Protocol Buffers for many languages. The list of known languages to support protocol buffers is compiled as part of the
project page: https:/github.com/protocolbuffers/protobuf/blob/main/docs/third_party.md

The Protocol Buffer project page contains a comprehensive description of the language: https:/protobuf.dev/programming-guides/
proto/.

2. Basic use: Protocol Buffers and R

This section describes how to use the R API to create and manipulate protocol buffer messages in R, and how to read and
write the binary payload of the messages to files and arbitrary binary R connections.

2.1. Importing proto files dynamically. In contrast to the other languages (Java, C++, Python) that are officially supported
by Google, the implementation used by the RProtoBuf package does not rely on the protoc compiler (with the exception
of the two functions discussed in the previous section). This means that no initial step of statically compiling the proto file
into C++ code that is then accessed by R code is necessary. Instead, proto files are parsed and processed at runtime by the
protobuf C++ library—which is much more appropriate for a dynamic language.

The readProtoFiles function allows importing proto files in several ways.

Eddelbuettel, Frangois and Stokely RProtoBuf Vignette | January 11,2026 | 3

https://protobuf.dev
https://en.wikipedia.org/wiki/Interface_description_language
https://protobuf.dev/getting-started/
https://github.com/protocolbuffers/protobuf/blob/main/docs/third_party.md
https://protobuf.dev/programming-guides/proto/
https://protobuf.dev/programming-guides/proto/

args (readProtoFiles)

function (files, dir, package = "RProtoBuf", pattern = "\\.proto$",
lib.loc = NULL)
NULL

Using the file argument, one can specify one or several file paths that ought to be proto files.

pdir <- system.file("proto", "RProtoBuf")
pfile <- file.path(pdir, "addressbook.proto")
readProtoFiles(pfile)

With the dir argument, which is ignored if the file is supplied, all files matching the . proto extension will be imported.

dir(pdir, "\\.proto$", TRUE)
readProtoFiles(pdir)

Finally, with the package argument (ignored if file or dir is supplied), the function will import all . proto files that
are located in the proto sub-directory of the given package. A typical use for this argument is in the .onLoad function of a
package.

readProtoFiles("RProtoBuf")

Once the proto files are imported, all message descriptors are available in the R search path in the RProtoBuf :DescriptorPool
special environment. The underlying mechanism used here is described in more detail in section~4.2.

1s("RProtoBuf :DescriptorPool")

[1] "rexp.CMPLX" "rexp.REXP"

[3] "rexp.STRING" "rprotobuf .HelloWorldRequest"
[5] "rprotobuf.HelloWorldResponse" "tutorial.AddressBook"

[7] "tutorial.Person"

H H H H

2.2. Creating a message. The objects contained in the special environment are descriptors for their associated message
types. Descriptors will be discussed in detail in another part of this document, but for the purpose of this section, descriptors
are just used with the new function to create messages.

p <- new(tutorial.Person, "Romain", 1)

2.3. Access and modify fields of a message. Once the message is created, its fields can be queried and modified using the
dollar operator of R, making protocol buffer messages seem like lists.

p$name

[1] "Romain"

p$id

[1] 1

4 | https:/cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

p¥email <- "francoisromain@free.fr"

However, as opposed to R lists, no partial matching is performed and the name must be given entirely.
The [[operator can also be used to query and set fields of a message, supplying either their name or their tag number :

pl["name"]] <- "Romain Francois"

pll 2 1] <- 3
pll "email" 1]

[1] "francoisromain@free.fr"

Protocol buffers include a 64-bit integer type, but R lacks native 64-bit integer support. A workaround is available and
described in Section~4.3 for working with large integer values.

2.4. Display messages. Protocol buffer messages and descriptors implement show methods that provide basic information
about the message :

P

message of type 'tutorial.Person' with 3 fields set

For additional information, such as for debugging purposes, the as. character method provides a more complete ASCII
representation of the contents of a message.

cat(as.character(p))
name: "Romain Francois"

id: 3
email: "francoisromain@free.fr"

2.5. Serializing messages. However, the main focus of protocol buffer messages is efficiency. Therefore, messages are
transported as a sequence of bytes. The serialize method is implemented for protocol buffer messages to serialize a
message into the sequence of bytes (raw vector in R speech) that represents the message.

serialize(p, NULL)

[1] 0a Of 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 la 16 66 72 61 6e 63 6f 69
[29] 73 72 6f 6d 61 69 6e 40 66 72 65 65 2e 66 72

The same method can also be used to serialize messages to files :
tfl <- tempfile()
tf1

[1] "/tmp/r/RtmpQeVIyH/file2fea9326e061e"

serialize(p, tfl)
readBin(tf1l, raw(0), 500)

Eddelbuettel, Frangois and Stokely RProtoBuf Vignette | January 11,2026 | 5

[1] 0a 0f 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 la 16 66 72 61 6e 63 6f 69
[29] 73 72 6f 6d 61 69 6e 40 66 72 65 65 2e 66 72

Or to arbitrary binary connections:

tf2 <- tempfile()

con <- file(tf2, "wb")
serialize(p, con)

close(con)

readBin(tf2, raw(0), 500)

[1] Oa 0f 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 la 16 66 72 61 6e 63 6f 69
[29] 73 72 6f 64 61 69 6e 40 66 72 65 65 2e 66 72

serialize can also be used in a more traditional object oriented fashion using the dollar operator :

serialize to a file

pdserialize(tfl)

serialize to a binary connection
con <- file(tf2, "wb")
p$serialize(con)

close(con)

2.6. Parsing messages. The RProtoBuf package defines the read function to read messages from files, raw vector (the
message payload) and arbitrary binary connections.

args(read)

function (descriptor, input)
NULL

The binary representation of the message (often called the payload) does not contain information that can be used to
dynamically infer the message type, so we have to provide this information to the read function in the form of a descriptor :

message <- read(tutorial.Person, tfl)
cat(as.character (message))

mname: "Romain Francois"
id: 3
email: "francoisromain®@free.fr"

The input argument of read can also be a binary readable R connection, such as a binary file connection:

con <- file(tf2, "rb")
message <- read(tutorial.Person, con)
close(con)

cat(as.character (message))

mname: "Romain Francois"
id: 3
email: "francoisromain®@free.fr"

Finally, the payload of the message can be used :

6 | https:/cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

reading the raw vector payload of the message
payload <- readBin(tfl, raw(0), 5000)
message <- read(tutorial.Person, payload)

read can also be used as a pseudo method of the descriptor object :

reading from a file

message <- tutorial.Person$read(tfl)

reading from a binary connection

con <- file(tf2, D™)

message <- tutorial.Person$read(con)
close(con)

read from the payload

message <- tutorial.Person$read(payload)

2.7. Classes, Methods and Pseudo Methods. The RProtoBuf package uses the S4 system to store information about
descriptors and messages, but the information stored in the R object is very minimal and mainly consists of an external
pointer to a C++ variable that is managed by the proto C++ library.

str(p)

Using the S4 system allows the RProtoBuf package to dispatch methods that are not generic in the S3 sense, such as

new and serialize.
The RProtoBuf package combines the R typical dispatch of the form method(object, arguments) and the more

traditional object oriented notation object$method (arguments).

2.8. Messages. Messages are represented in R using the Message S4 class. The class contains the slots pointer and type
as described on the Table~1.

slot description
pointer external pointer to the Message object of the C++ proto library. Documentation for the Message
class is available from the protocol buffer project page: https://protobuf.dev/reference/cpp/api-docs/
google.protobuf.message/
type fully qualified path of the message. For example a Person message has its type slot set to
tutorial.Person
Table 1. Description of slots for the Message S4 class

Although the RProtoBuf package uses the S4 system, the @ operator is very rarely used. Fields of the message are
retrieved or modified using the $ or [[operators as seen on the previous section, and pseudo-methods can also be called
using the $ operator. Table~2 describes the methods defined for the Message class :

2.8.1. Retrieve fields. The $ and [[operators allow extraction of a field data.

message <- new(tutorial.Person,

"foo", "foo@bar.com", 2,
list(new(tutorial.Person.PhoneNumber,
"+33(0)...", "HOME") ,
new(tutorial.Person.PhoneNumber,
"+33(0) ###", "MOBILE")
)

message$name

Eddelbuettel, Francois and Stokely

RProtoBuf Vignette | January 11, 2026

7

https://protobuf.dev/reference/cpp/api-docs/google.protobuf.message/
https://protobuf.dev/reference/cpp/api-docs/google.protobuf.message/

method section description

has 2.8.3 Indicates if a message has a given field.
clone 2.8.4 Creates a clone of the message
isInitialized 2.8.5 Indicates if a message has all its required fields set
serialize 2.8.6 serialize a message to a file or a binary connection or retrieve the message
payload as a raw vector
clear 2.8.7 Clear one or several fields of a message, or the entire message
size 2.8.8 The number of elements in a message field
bytesize 2.8.9 The number of bytes the message would take once serialized
swap 2.8.10 swap elements of a repeated field of a message
set 2.8.11 set elements of a repeated field
fetch 2.8.12 fetch elements of a repeated field
setExtension 2.8.13 set an extension of a message
getExtension 2.8.14 get the value of an extension of a message
add 2.8.15 add elements to a repeated field
str 2.8.16 the R structure of the message
as.character 2.8.17 character representation of a message
toString 2.8.18 character representation of a message (same as as.character)
as.list 2.8.19 converts message to a named R list
update 2.8.20 updates several fields of a message at once
descriptor 2.8.21 get the descriptor of the message type of this message
fileDescriptor 2.8.22 get the file descriptor of this message’s descriptor

Table 2. Description of methods for the Message S4 class

[1] "foo"

message$email

[1] "foo@bar.com"

message [["phone"]]

[[11]

message of type 'tutorial.Person.PhoneNumber' with 2 fields set

[[2]1]

message of type 'tutorial.Person.PhoneNumber' with 2 fields set

H H OH R H

using the tag number
message[[2]] # id

[1] 2

Neither $ nor [[support partial matching of names. The $ is also used to call methods on the message, and the [[
operator can use the tag number of the field.
Table~3 details correspondence between the field type and the type of data that is retrieved by $ and [[.

2.8.2. Modify fields. The $<- and [[<- operators are implemented for Message objects to set the value of a field. The R data
is coerced to match the type of the message field.

message <- new(tutorial.Person, "foo", 2)
message$email <- "foo@bar.com"
message[["id"]] <- 42

8 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

field type | R type (non repeated) R type (repeated)

double double vector double vector
float double vector double vector
uint32 double vector double vector
fixed32 double vector double vector
int32 integer vector integer vector
sint32 integer vector integer vector
sfixed32 integer vector integer vector
int64 integer or character vector ! integer or character vector
uint6é4 integer or character vector integer or character vector
sint64 integer or character vector integer or character vector
fixed64 integer or character vector integer or character vector
sfixed64 integer or character vector integer or character vector
bool logical vector logical vector
string character vector character vector
bytes character vector character vector
enum integer vector integer vector
message S4 object of class Message list of S4 objects of class Message

Table 3. Correspondence between field type and R type retrieved by the extractors. 1. R lacks native 64-bit integers, so the
RProtoBuf.int64AsString option is available to return large integers as characters to avoid losing precision. This option is described in Sec-
tion 4.3. R also lacks an unsigned integer type.

message[[1]] <- "foobar"
cat (message$as.character())

name: "foobar"
id: 42
email: "foo®@bar.com"

Table~4 describes the R types that are allowed in the right hand side depending on the target type of the field.

| internal type | allowed R types |

double, float integer, raw, double, logical

int32, int64, uint32, uint64, sint32, | integer, raw, double, logical, character
sint64, fixed32, fixed64, sfixed32,

sfixed64

bool integer, raw, double, logical

bytes, string character

enum integer, double, raw, character

message, group S4, of class Message of the appropriate message type, or a 1ist of

S4 objects of class Message of the appropriate message type.
Table 4. Allowed R types depending on internal field types.

2.8.3. Message$has method. The has method indicates if a field of a message is set. For repeated fields, the field is considered
set if there is at least on object in the array. For non-repeated fields, the field is considered set if it has been initialized.

The has method is a thin wrapper around the HasField and FieldSize methods of the google: :protobuf: :Reflection
C++ class.

message <- new(tutorial.Person, "foo")
message$has ("name"

[1] TRUE

Eddelbuettel, Francois and Stokely RProtoBuf Vignette | January 11, 2026

9

message$has("id")

[1] FALSE
message$has ("phone")
[1] FALSE

2.8.4. Message$clone method. The clone function creates a new message that is a clone of the message. This function is a
wrapper around the methods New and CopyFrom of the google: :protobuf : :Message C++ class.

ml <- new(tutorial.Person, "foo")
m2 <- mi$clone()

m2$email <- "foo@bar.com"
cat(as.character(ml))

mname: "foo"

cat (as.character(m2))

mname: "foo"

email: "foo@bar.com"

2.8.5. Message$isinitialized method. The isInitialized method quickly checks if all required fields have values set. This is a
thin wrapper around the IsInitialized method of the google: :protobuf : :Message C++ class.

message <- new(tutorial.Person, "foo")
message$isInitialized()

[1] FALSE

message$id <- 2
message$isInitialized()

[1] TRUE

2.8.6. Message$serialize method. The serialize method can be used to serialize the message as a sequence of bytes into a
file or a binary connection.

message <- new(tutorial.Person,

"foo", "foo@bar.com", 2)
tfl <- tempfile()
tfl
[1] "/tmp/r/RtmpQeVIyH/file2fea97ef28dc"

10 | https:/cran.r-project.org/package=RProtoBuf

Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

message$serialize(tfl)
tf2 <- tempfile()
tf2

[1] "/tmp/r/RtmpQeVIyH/file2fea95b1a33bb"

con <- file(tf2, "wb")
message$serialize(con)
close(con)

The (temporary) files tf1 and t£2 both contain the message payload as a sequence of bytes. The readBin function can
be used to read the files as a raw vector in R:

readBin(tf1, raw(0), 500)

[1] 0a 03 66 6f 6f 10 02 1la Ob 66 6f 6f 40 62 61 72 2e 63 6f 6d

readBin(tf2, raw(0), 500)

[1] 0a 03 66 6f 6f 10 02 1la Ob 66 6f 6f 40 62 61 72 2e 63 6f 6d

The serialize method can also be used to directly retrieve the payload of the message as a raw vector:

message$serialize (NULL)

[1] 0a 03 66 6f 6f 10 02 1la Ob 66 6f 6f 40 62 61 72 2e 63 6f 6d

2.8.7. Message$clear method. The clear method can be used to clear all fields of a message when used with no argument, or
a given field.

message <- new(tutorial.Person, "foo",

"foo@bar.com", 2)
cat(as.character (message))

mname: "foo"
id: 2
email: "foo@bar.com"

message$clear ()
cat(as.character (message))

message <-— new(tutorial.Person, "foo",
message$clear("id")
cat(as.character (message))

"foo@bar.com", 2)

mname: "foo"
email: "foo®@bar.com"

The clear method is a thin wrapper around the Clear method of the google: :protobuf: : Message C++ class.

2.8.8. Message$size method. The size method is used to query the number of objects in a repeated field of a message :

Eddelbuettel, Francois and Stokely RProtoBuf Vignette | January 11,2026 | 11

12

message <- new(tutorial.Person, "foo",

list (new(tutorial.Person.PhoneNumber,

"+33(0)...", "HOME") ,
new (tutorial.Person.PhoneNumber,
"+33(0) ###", "MOBILE")

)

message$size ("phone")

[1] 2

size(message, "phone')

[1] 2

The size method is a thin wrapper around the FieldSize method of the google: :protobuf: :Reflection C++ class.

2.8.9. Message$bytesize method. The bytesize method retrieves the number of bytes the message would take once serialized.
This is a thin wrapper around the ByteSize method of the google: :protobuf : :Message C++ class.

message <- new(tutorial.Person, "foo",
message$bytesize ()

[1] 20
bytesize (message)
[1] 20

length(message$serialize (NULL))

[1] 20

2.8.10. Message$swap method. The swap method can be used to swap elements of a repeated field.

message <- new(tutorial.Person, "foo",
list(new(tutorial.Person.PhoneNumber,
"+33(0)...", "HOME"),
new(tutorial.Person.PhoneNumber,
"+33(0) ###", "MOBILE")))

message$swap ("phone", 1, 2)
cat(as.character (message$phone[[1]]))

number: "+33(0)###"
type: MOBILE

https://cran.r-project.org/package=RProtoBuf

"foo@bar.com", 2)

Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

cat(as.character (message$phone[[2]]))

number: "+33(0)..."
type: HOME

swap (message, "phone", 1, 2)
cat(as.character (message$phone[[1]1]))

number: "+33(0)..."
type: HOME

cat(as.character (message$phone[[2]1]))

number: "+33(0)###"
type: MOBILE

2.8.11. Message$set method. The set method can be used to set values of a repeated field.

message <- new(tutorial.Person, "foo",
list(new(tutorial.Person.PhoneNumber,
"+33(0)...", "HOME"),
new(tutorial.Person.PhoneNumber,
"+33(0) ###", "MOBILE")))
number <- new(tutorial.Person.PhoneNumber, "+33(0)---", "WORK")

message$set ("phone", 1, number)
cat(as.character(message))

name: "foo"

phone {
number: "+33(0)---"
type: WORK

}

phone {
number: "+33(0)###"
type: MOBILE

}

H OH H HHHHHEHR

2.8.12. Message$fetch method. The fetch method can be used to get values of a repeated field.

message <- new(tutorial.Person, "foo",
list (new(tutorial.Person.PhoneNumber,
"+33(0)...", "HOME") ,
new(tutorial.Person.PhoneNumber,
"+33(0) #H##", "MOBILE")))

message$fetch("phone", 1)

[[1]1]

message of type 'tutorial.Person.PhoneNumber' with 2 fields set

2.8.13. Message$setExtension method. The setExtension method can be used to set an extension field of the Message.

Eddelbuettel, Frangois and Stokely RProtoBuf Vignette | January 11,2026 |

13

if (lexists("protobuf_unittest.TestAllTypes", "RProtoBuf:DescriptorPool")) {
unittest.proto.file <- system.file("tinytest", "data", "unittest.proto",
"RProtoBuf")
readProtoFiles(unittest.proto.file)

}

Test setting a singular extensions.
test <- new(protobuf_unittest.TestAllExtensions)
test$setExtension(protobuf_unittest.optional_int32_extension, as.integer (1))

2.8.14. Message$getExtension method. The getExtension method can be used to get values of an extension.

test$getExtension(protobuf _unittest.optional_int32_extension)

[11 1

2.8.15. Message$add method. The add method can be used to add values to a repeated field.

message <- new(tutorial.Person, "foo")

phone <- new(tutorial.Person.PhoneNumber, "+33(0)...", "HOME")
message$add ("phone", phone)

cat (message$toString())

name: "foo"

phone {
number: "+33(0)..."
type: HOME

}

H H H OH H

2.8.16. Message$str method. The str method gives the R structure of the message. This is rarely useful.

message <- new(tutorial.Person, "foo", "foo@bar.com", 2)
message$str ()

TFormal class 'Message' [package "RProtoBuf"] with 2 slots

..Q@ pointer:<externalptr>
..Q type : chr "tutorial.Person"
str (message)

Formal class 'Message' [package "RProtoBuf"] with 2 slots
..Q pointer:<externalptr>
..Q@ type : chr "tutorial.Person"

2.8.17. Message$as.character method. The as.character method gives the debug string of the message.

message <- new(tutorial .Person, "foo", "foo@bar.com", 2)
cat (message$as.character())

14 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

mname: "foo"
id: 2
email: "foo®@bar.com"

cat(as.character (message))

mname: "foo"
id: 2
email: "foo®@bar.com"

2.8.18. Message$toString method. toString currently is an alias to the as. character function.
message <- new(tutorial.Person, "foo", "foo@bar.com", 2)

cat (message$toString())

mname: "foo"
id: 2
email: "foo®@bar.com"

cat(toString(message))

mname: "foo"
id: 2
email: "foo@bar.com"

2.8.19. Message$as.list method. The as.list method converts the message to a named R list.
message <- new(tutorial.Person, "foo", "foo@bar.com", 2)
as.list(message)

$name

[1] "foo

$id
[1] 2

$email
[1] "foo@bar.com"

$phone
list ()

H OH HF HHHEHHEHRHER

The names of the list are the names of the declared fields of the message type, and the content is the same as can be
extracted with the $ operator described in section~2.8.1.

2.8.20. Message$update method. The update method can be used to update several fields of a message at once.

message <- new(tutorial.Person)
update (message, "foo", 2, "foo@bar.com")

Eddelbuettel, Francois and Stokely RProtoBuf Vignette | January 11,2026 | 15

16

message of type 'tutorial.Person' with 3 fields set
cat (message$as.character())

mname: "foo"
id: 2
email: "foo@bar.com"

2.8.21. Message$descriptor method. The descriptor method retrieves the descriptor of a message. See section~2.9 for more
information about message type descriptors.

message <- new(tutorial.Person)
message$descriptor ()

descriptor for type 'tutorial.Person'
descriptor (message)

descriptor for type 'tutorial.Person'

2.8.22. Message$fileDescriptor method. The fileDescriptor method retrieves the file descriptor of the descriptor associated
with a message. See section~2.13 for more information about file descriptors.

message <- new(tutorial.Person)
message$fileDescriptor ()

file descriptor for package tutorial (addressbook.proto)
fileDescriptor (message)

file descriptor for package tutorial (addressbook.proto)

2.9. Message descriptors. Message descriptors are represented in R with the Descriptor S4 class. The class contains the
slots pointer and type :

slot description

pointer external pointer to the Descriptor object of the C++ proto library. Documentation for the
Descriptor class is available from the protocol buffer project page: https:/protobuf.dev/reference/
cpp/api-docs/google.protobuf.descriptor/

type fully qualified path of the message type.
Table 5. Description of slots for the Descriptor S4 class

Similarly to messages, the $ operator can be used to extract information from the descriptor, or invoke pseudo-methods.
Table~6 describes the methods defined for the Descriptor class :

2.9.1. Extracting descriptors. The $ operator, when used on a descriptor object retrieves descriptors that are contained in the
descriptor.

This can be a field descriptor (see section~2.10), an enum descriptor (see section~2.11) or a descriptor for a nested
type

https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://protobuf.dev/reference/cpp/api-docs/google.protobuf.descriptor/
https://protobuf.dev/reference/cpp/api-docs/google.protobuf.descriptor/
https://cran.r-project.org/package=RProtoBuf

Method Section Description

new 29.2 Creates a prototype of a message described by this descriptor.
read 293 Reads a message from a file or binary connection.
readASCII 294 Read a message in ASCII format from a file or text connection.
name 2.9.10 Retrieve the name of the message type associated with this descriptor.
as.character 2.9.6 character representation of a descriptor
toString 2.9.5 character representation of a descriptor (same as as.character)
as.list 2.9.7 return a named list of the field, enum, and nested descriptors included in this
descriptor.
asMessage 2.9.8 return DescriptorProto message.
fileDescriptor 2.9.9 Retrieve the file descriptor of this descriptor.
containing_type 2.9.11 Retrieve the descriptor describing the message type containing this descriptor.
field_count 2.9.12 Return the number of fields in this descriptor.
field 2.9.13 Return the descriptor for the specified field in this descriptor.
nested_type_count 2.9.14 The number of nested types in this descriptor.
nested_type 2.9.15 Return the descriptor for the specified nested type in this descriptor.
enum_type_count 2.9.16 The number of enum types in this descriptor.
enum_type 2.9.17 Return the descriptor for the specified enum type in this descriptor.

Table 6. Description of methods for the Descriptor S4 class

field descriptor
tutorial.Person$email

descriptor for field 'email' of type 'tutorial.Person'

enum descriptor
tutorial.Person$PhoneType

descriptor for enum 'PhoneType' with 3 values

nested type descriptor
tutorial.Person$PhoneNumber

descriptor for type 'tutorial.Person.PhoneNumber'

same as
tutorial.Person.PhoneNumber

descriptor for type 'tutorial.Person.PhoneNumber'

2.9.2. The new method. The new method creates a prototype of a message described by the descriptor.

tutorial.Person$new()

message of type 'tutorial.Person' with O fields set

new(tutorial.Person)

Eddelbuettel, Francois and Stokely RProtoBuf Vignette

January 11, 2026

17

18

message of type 'tutorial.Person' with O fields set

Passing additional arguments to the method allows directly setting the fields of the message at construction time.

tutorial.Person$new("foo@bar.com")

message of type 'tutorial.Person' with 1 field set

same as
update (tutorial.Person$new(), "foo@bar.com")

message of type 'tutorial.Person' with 1 field set

2.9.3. The read method. The read method is used to read a message from a file or a binary connection.

start by serializing a message
message <- new(tutorial.Person.PhoneNumber,
"HOME", "+33(0)....")
tf <- tempfile()
serialize(message, tf)

now read back the message
m <- tutorial.Person.PhoneNumber$read(tf)
cat(as.character(m))

number: "+33(0)...."
type: HOME

m <- read(tutorial.Person.PhoneNumber, tf)
cat(as.character(m))

number: "+33(0)...."
type: HOME

2.9.4. The readASCII method. The readASCII method is used to read a message from a text file or a character vector.

start by generating the ASCII representation of a message
text <- as.character(new(tutorial.Person, 1, "Murray"))
text

[1] "name: \"Murray\"\nid: 1\n"

Then read the ascii representation in as a nmew message object.
msg <- tutorial.Person$readASCII(text)
2.9.5. The toString method. toString currently is an alias to the as.character function.

2.9.6. The as.character method. as . character prints the text representation of the descriptor as it would be specified in the
.proto file.

https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

desc <- tutorial.Person
cat(desc$toString())

message Person {
message PhoneNumber {
required string number = 1;
optional .tutorial.Person.PhoneType type = 2 [default = HOME];
b
enum PhoneType {
MOBILE = O;
HOME = 1;
WORK = 2;
b
required string name = 1;
required int32 id = 2;
optional string email = 3;
repeated .tutorial.Person.PhoneNumber phone = 4;
extensions 100 to 199;

H OH HF HHHEHHEHHEHHHEHRHER

cat (toString(desc))

message Person {
message PhoneNumber {
required string number = 1;
optional .tutorial.Person.PhoneType type = 2 [default = HOME];
X
enum PhoneType {
MOBILE = O;
HOME = 1;
WORK = 2;
X
required string name = 1;
required int32 id = 2;
optional string email = 3;
repeated .tutorial.Person.PhoneNumber phone = 4;
extensions 100 to 199;

H OH H HHHEHHEHHEHEHHEHRHER

cat(as.character(tutorial.Person))

message Person {
message PhoneNumber {
required string number = 1;
optional .tutorial.Person.PhoneType type = 2 [default = HOME];
X
enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;
X
required string name = 1;
required int32 id = 2;

H OH H HHHEHHEHHEHH

Eddelbuettel, Francois and Stokely RProtoBuf Vignette | January 11,2026 | 19

optional string email = 3;

repeated .tutorial.Person.PhoneNumber phone = 4;
extensions 100 to 199;

#

}

2.9.7. The as.list method. The as.list method returns a named list of the field, enum, and nested descriptors included in
this descriptor.

tutorial.Person$as.list()

$name
descriptor for field 'name' of type 'tutorial.Person'

$id
descriptor for field 'id' of type 'tutorial.Person'

$email
descriptor for field 'email' of type 'tutorial.Person'

$phone
descriptor for field 'phone' of type 'tutorial.Person'

$PhoneNumber
descriptor for type 'tutorial.Person.PhoneNumber'

$PhoneType
descriptor for enum 'PhoneType' with 3 values

HOH H H HH HEHHEHHEHHEHHEHHE

2.9.8. The asMessage method. The asMessage method returns a message of type google.protobuf.DescriptorProto of
the Descriptor.

tutorial.Person$asMessage ()
message of type 'google.protobuf.DescriptorProto' with 5 fields set

2.9.9. The fileDescriptor method. The fileDescriptor method retrieves the file descriptor of the descriptor. See section~2.13
for more information about file descriptors.

desc <- tutorial.Person
desc$fileDescriptor()

file descriptor for package tutorial (addressbook.proto)

fileDescriptor(desc)

file descriptor for package tutorial (addressbook.proto)

2.9.10. The name method. The name method can be used to retrieve the name of the message type associated with the
descriptor.

20 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

simple mame
tutorial.Person$name ()

[1] "Person"

name including scope
tutorial.Person$name (TRUE)

[1] "tutorial.Person"

2.9.11. The containing_type method. The containing_type method retrieves the descriptor describing the message type
containing this descriptor.

tutorial.Person$containing_type ()

NULL

tutorial.Person$PhoneNumber$containing_type ()

descriptor for type 'tutorial.Person'

2.9.12. The field_count method. The field_count method retrieves the number of fields in this descriptor.

tutorial.Person$field_count ()

[1] 4

2.9.13. The field method. The field method returns the descriptor for the specified field in this descriptor.

tutorial.Person$field (1)

descriptor for field 'name' of type 'tutorial.Person'

2.9.14. The nested_type_count method. The nested_type_count method returns the number of nested types in this descriptor.
tutorial.Person$nested_type_count ()

[1]1 1

2.9.15. The nested_type method. The nested_type method returns the descriptor for the specified nested type in this descriptor.

tutorial.Person$nested_type(1)

descriptor for type 'tutorial.Person.PhoneNumber'

2.9.16. The enum_type_count method. The enum_type_count method returns the number of enum types in this descriptor.

Eddelbuettel, Frangois and Stokely RProtoBuf Vignette | January 11, 2026

21

tutorial.Person$enum_type_count ()

[1]1 1

2.9.17. The enum_type method. The enum_type method returns the descriptor for the specified enum type in this descriptor.

tutorial.Person$enum_type (1)

descriptor for enum 'PhoneType' with 3 values

2.10. Field descriptors}. The class FieldDescriptor represents field descriptor in R. This is a wrapper S4 class around the
google: :protobuf: :FieldDescriptor C++ class. Table~8 describes the methods defined for the FieldDescriptor

class.
slot description
pointer External pointer to the FieldDescriptor C++ variable
name simple name of the field

full_name fully qualified name of the field

type name of the message type where the field is declared

Table 7. Description of slots for the FieldDescriptor S4 class

method section description
as.character 2.10.1 character representation of a descriptor
toString 2.10.2 character representation of a descriptor (same as as.character)
asMessage 2.10.3 return FieldDescriptorProto message.
name 2.10.4 Return the name of the field descriptor.
fileDescriptor 2.10.5 Return the fileDescriptor where this field is defined.
containing_type 2.10.6 Return the containing descriptor of this field.
is_extension 2.10.7 Return TRUE if this field is an extension.
number 2.10.8 Gets the declared tag number of the field.
type 2.10.9 Gets the type of the field.
cpp_type 2.10.10 Gets the C++ type of the field.
label 2.10.11 Gets the label of a field (optional, required, or repeated).
is_repeated 2.10.12 Return TRUE if this field is repeated.
is_required 2.10.13 Return TRUE if this field is required.
is_optional 2.10.14 Return TRUE if this field is optional.
has_default_value 2.10.15 Return TRUE if this field has a default value.
default_value 2.10.16 Return the default value.
message_type 2.10.17 Return the message type if this is a message type field.
enum_type 2.10.18 Return the enum type if this is an enum type field.

Table 8. Description of methods for the FieldDescriptor S4 class

2.10.1. The as.character method. The as.character method gives the debug string of the field descriptor.

cat(as.character(tutorial.Person$PhoneNumber))

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];
)

2.10.2. The toString method. toString is an alias of as.character.

22 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

cat(tutorial.Person.PhoneNumber$toString())

message PhoneNumber {
required string number = 1;

#
#
optional .tutorial.Person.PhoneType type = 2 [default = HOME];
}

2.10.3. The asMessage method. The asMessage method returns a message of type google . protobuf .FieldDescriptorProto
of the FieldDescriptor.

tutorial.PersonidasMessage ()

message of type 'google.protobuf.FieldDescriptorProto' with 4 fields set
cat(as.character(tutorial.PersonidasMessage()))

name: "id"

number: 2

label: LABEL_REQUIRED
type: TYPE_INT32

H H H

2.10.4. The name method. The name method can be used to retrieve the name of the field descriptor.

simple name.
name (tutorial.Person$id)

[1] Ilidll

name including scope.
name (tutorial.Person$id, TRUE)

[1] "tutorial.Person.id"

2.10.5. The fileDescriptor method. The fileDescriptor method can be used to retrieve the file descriptor of the field descriptor.

fileDescriptor(tutorial.Person$id)
file descriptor for package tutorial (addressbook.proto)

tutorial.PersonidfileDescriptor ()

file descriptor for package tutorial (addressbook.proto)

2.10.6. The containing_type method. The containing_type method can be used to retrieve the descriptor for the message
type that contains this descriptor.

Eddelbuettel, Francois and Stokely RProtoBuf Vignette | January 11,2026 | 23

24

containing_type(tutorial.Person$id)

descriptor for type 'tutorial.Person'

tutorial.Personidcontaining_ type()

descriptor for type 'tutorial.Person'

2.10.7. The is_extension method. The is_extension method returns TRUE if this field is an extension.

is_extension(tutorial.Person$id)

[1] FALSE

tutorial.Personidis_extension()

[1] FALSE

2.10.8. The number method. The number method returns the declared tag number of this field.

number (tutorial.Person$id)

[1] 2

tutorial.Personidnumber ()

[1] 2

2.10.9. The type method. The type method can be used to retrieve the type of the field descriptor.

type(tutorial.Person$id)

[1]1 5

tutorial.Personidtype)

[1]1 5

2.10.10. The cpp_type method. The cpp_type method can be used to retrieve the C++ type of the field descriptor.

cpp_type(tutorial.Person$id)

https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

[11 1

tutorial.Personidcpp_type)

[1]1 1

2.10.11. The label method. Gets the label of a field (optional, required, or repeated). The 1abel method returns the label of a
field (optional, required, or repeated). By default it returns a number value, but the optional as.string argument can be
provided to return a human readable string representation.

label (tutorial.Person$id)

[1] 2

label (tutorial.Person$id, TRUE)

[1] "LABEL_REQUIRED"

tutorial.Personidlabel (TRUE)

[1] "LABEL_REQUIRED"

2.10.12. The is_repeated method. The is_repeated method returns TRUE if this field is repeated.

is_repeated(tutorial.Person$id)

[1] FALSE

tutorial.Personidis_repeated()

[1] FALSE

2.10.13. The is_required method. The is_required method returns TRUE if this field is required.

is_required(tutorial.Person$id)

[1] TRUE

tutorial.Personidis_required()

[1] TRUE

2.10.14. The is_optional method. The is_optional method returns TRUE if this field is optional.

Eddelbuettel, Francois and Stokely RProtoBuf Vignette | January 11,2026 | 25

is_optional(tutorial.Person$id)
[1] FALSE
tutorial.Personidis_optional ()

[1] FALSE

2.10.15. The has_default_value method. The has_default_value method returns TRUE if this field has a default value.

has_default_value(tutorial.Person$PhoneNumber$type)

[1] TRUE

has_default_value(tutorial.Person$PhoneNumber$number)

[1] FALSE

2.10.16. The default_value method. The default_value method returns the default value of a field.

default_value(tutorial.Person$PhoneNumber$type)
[11 1
default_value(tutorial.Person$PhoneNumber$number)

[1] nn

2.10.17. The message_type method. The message_type method returns the message type if this is a message type field.

message_type (tutorial.Person$phone)
descriptor for type 'tutorial.Person.PhoneNumber'
tutorial.Person$phone$message_type()

descriptor for type 'tutorial.Person.PhoneNumber'

2.10.18. The enum_type method. The enum_type method returns the enum type if this is an enum type field.

enum_type (tutorial.Person$PhoneNumber$type)

26 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

descriptor for enum 'PhoneType' with 3 values

2.11. Eenum descriptors. The class EnumDescriptor is an R wrapper class around the C++ class google: : protobuf : : EnumDescriptor.
Table~10 describes the methods defined for the EnumDescriptor class.

slot description
pointer External pointer to the EnumDescriptor C++ variable
name simple name of the enum
full_name fully qualified name of the enum
type name of the message type where the enum is declared
Table 9. Description of slots for the EnumDescriptor S4 class
method section description
as.list 211.2 return a named integer vector with the values of the enum and their names.
as.character 2.11.3 character representation of a descriptor
toString 2114 character representation of a descriptor (same as as.character)
asMessage 2.11.5 return EnumDescriptorProto message.
name 2116 Return the name of the enum descriptor.
fileDescriptor 2.11.7 Return the fileDescriptor where this field is defined.
containing_type 2.11.8 Return the containing descriptor of this field.
length 2.11.9 Return the number of constants in this enum.
has 2.11.10 Return TRUE if this enum contains the specified named constant string.
value_count 2.11.11 Return the number of constants in this enum (same as length).
value 2.11.12 Return the EnumValueDescriptor of an enum value of specified index, name, or

number.

Table 10. Description of methods for the EnumDescriptor S4 class

2.11.1. Extracting descriptors. The $ operator, when used on a EnumDescriptor object retrieves EnumValueDescriptors that
are contained in the descriptor.

tutorial.Person$PhoneType$WORK

[11 2

name (tutorial .Person$PhoneType$value(

[1] "WORK"

2))

2.11.2. The as.list method. The as.list method creates a named R integer vector that captures the values of the enum and

their names.

as.list(tutorial.Person$PhoneType)

$MOBILE
[1]1 ©

$HOME
[1] 1

$WORK
(11 2

H OH H HHHEHH

Eddelbuettel, Francois and Stokely

RProtoBuf Vignette | January 11,2026 | 27

2.11.3. The as.character method. The as.character method gives the debug string of the enum type.

cat(as.character(tutorial.Person$PhoneType))

enum PhoneType {
MOBILE = O;
HOME = 1;
WORK 2;

H H OH OH H

3

2.11.4. The toString method. The toString method gives the debug string of the enum type.
{ tostringmethod3} cat(toString(tutorial.Person$PhoneType))

2.11.5. The asMessage method. The asMessage method returns a message of type google . protobuf . EnumDescriptorProto
of the EnumDescriptor.

tutorial.Person$PhoneType$asMessage ()

message of type 'google.protobuf.EnumDescriptorProto' with 2 fields set

cat (as.character(tutorial.Person$PhoneType$asMessage()))

mname: "PhoneType"
value {

name: "MOBILE"
number: 0

)

value {

name: "HOME"

number: 1

}

value {

name: "WORK"

number: 2

7

2.11.6. The name method. The name method can be used to retrieve the name of the enum descriptor.

simple name.
name(tutorial.Person$PhoneType)

[1] "PhoneType"

name including scope.
name (tutorial.Person$PhoneType, TRUE)

[1] "tutorial.Person.PhoneType"

2.11.7. The fileDescriptor method. The fileDescriptor method can be used to retrieve the file descriptor of the enum
descriptor.

28 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

fileDescriptor (tutorial.Person$PhoneType)

file descriptor for package tutorial (addressbook.proto)

tutorial.Person$PhoneType$fileDescriptor ()

file descriptor for package tutorial (addressbook.proto)

2.11.8. The containing_type method. The containing_type method can be used to retrieve the descriptor for the message
type that contains this enum descriptor.

tutorial.Person$PhoneType$containing type()

descriptor for type 'tutorial.Person'

2.11.9. The length method. The length method returns the number of constants in this enum.

length(tutorial.Person$PhoneType)

[11 3

tutorial.Person$PhoneType$length()

[1]1 3

2.11.10. The has method. The has method returns TRUE if this enum contains the specified named constant string.

tutorial.Person$PhoneType$has ("WORK")

[1] TRUE

tutorial.Person$PhoneType$has ("nonexistant")

[1] FALSE

2.11.11. The value_count method. The value_count method returns the number of constants in this enum.

value_count (tutorial.Person$PhoneType)

[1]1 3

tutorial.Person$PhoneType$value_count ()

Eddelbuettel, Frangois and Stokely RProtoBuf Vignette | January 11, 2026

29

[11 3

2.11.12. The value method. The value method extracts an EnumValueDescriptor. Exactly one argument of ‘index’, ‘number’,
or ‘name’ must be specified to identify which constant is desired.

tutorial.Person$PhoneType$value (1)

enum value descriptor tutorial.Person.MOBILE
tutorial.Person$PhoneType$value ("HOME")

enum value descriptor tutorial.Person.HOME
tutorial.Person$PhoneType$value (1)

enum value descriptor tutorial.Person.HOME

2.12. Enum value descriptors. The class EnumValueDescriptor is an R wrapper class around the C++ class google: : protobuf
Table~12 describes the methods defined for the EnumValueDescriptor class.

slot description
pointer External pointer to the EnumValueDescriptor C++ variable
name simple name of the enum value
full_name fully qualified name of the enum value

Table 11. Description of slots for the EnumValueDescriptor S4 class

method section description
number 21241 return the number of this EnumValueDescriptor.
name 2122 Return the name of the enum value descriptor.
enum_type 2.12.3 return the EnumDescriptor type of this EnumValueDescriptor.
as.character 2124 character representation of a descriptor.
toString 2125 character representation of a descriptor (same as as.character).
asMessage 2126 return EnumValueDescriptorProto message.

Table 12. Description of methods for the EnumValueDescriptor S4 class

2.12.1. The number method. The number method can be used to retrieve the number of the enum value descriptor.

number (tutorial.Person$PhoneType$value (2))

[1] 2

2.12.2. The name method. The name method can be used to retrieve the name of the enum value descriptor.

simple name.
name (tutorial.Person$PhoneType$value(2))

30 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

: :EnumValt

https://cran.r-project.org/package=RProtoBuf

[1] "WORK"

name including scope.
name (tutorial.Person$PhoneType$value (2), TRUE)

[1] "tutorial.Person.WORK"

2.12.3. The enum_type method. The enum_type method can be used to retrieve the EnumDescriptor of the enum value
descriptor.

enum_type (tutorial.Person$PhoneType$value (2))

descriptor for enum 'PhoneType' with 3 values

2.12.4. The as.character method. The as.character method gives the debug string of the enum value type.

cat(as.character(tutorial.Person$PhoneType$value (2)))

WORK = 2;

2.12.5. The toString method. The toString method gives the debug string of the enum value type.

cat (toString(tutorial.Person$PhoneType$value(2)))

WORK = 2;

2.12.6. The asMessage method. The asMessage method returns a message of type google . protobuf . EnumValueDescriptorProto
of the EnumValueDescriptor.

tutorial.Person$PhoneType$value (2) $asMessage ()

message of type 'google.protobuf.EnumValueDescriptorProto' with 2 fields set

cat(as.character(tutorial.Person$PhoneType$value (2)$asMessage()))

mname: "WORK"
number: 2

2.13. File descriptors. File descriptors describe a whole .proto file and are represented in R with the FileDescriptor S4
class. The class contains the slots pointer, filename, and package :

Similarly to messages, the $ operator can be used to extract fields from the file descriptor (in this case, types defined in
the file), or invoke pseudo-methods. Table~14 describes the methods defined for the FileDescriptor class.

f <- tutorial.Person$fileDescriptor()
f

Eddelbuettel, Frangois and Stokely RProtoBuf Vignette | January 11,2026 | 31

slot description

pointer external pointer to the FileDescriptor object of the C++ proto library. Documentation for the
FileDescriptor class is available from the protocol buffer project page: https:/protobuf.dev/
reference/csharp/api-docs/class/google/protobuf/reflection/file-descriptor.html

filename fully qualified pathname of the . proto file.

package package name defined in this . proto file.
Table 13. Description of slots for the FileDescriptor S4 class

file descriptor for package tutorial (addressbook.proto)

f$Person

descriptor for type 'tutorial.Person'

| method section description
name 2.13.5 Return the filename for this FileDescriptorProto.
package 2.13.6 Return the file-level package name specified in this FileDescriptorProto.
as.character 2.131 character representation of a descriptor.
toString 2.13.2 character representation of a descriptor (same as as.character).
asMessage 2.13.3 return FileDescriptorProto message.
as.list 2134 return named list of descriptors defined in this file descriptor.

Table 14. Description of methods for the FileDescriptor S4 class

2.13.1. The as.character method. The as . character method gives the debug string of the file descriptor.

cat (as.character(fileDescriptor (tutorial.Person)))

syntax = "proto2";
package tutorial;

option java_package = '"com.example.tutorial";
option java_outer_classname = "AddressBookProtos";

message Person {
message PhoneNumber {
required string number = 1;
optional .tutorial.Person.PhoneType type = 2 [default = HOME];
}
enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;
}
required string name = 1;
required int32 id = 2;
optional string email = 3;
repeated .tutorial.Person.PhoneNumber phone = 4;
extensions 100 to 199;

3

H OH H H HHHHEHHEHHEHHEHHEHHEHHEHHEHEHEHE

message AddressBook {

32 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://protobuf.dev/reference/csharp/api-docs/class/google/protobuf/reflection/file-descriptor.html
https://protobuf.dev/reference/csharp/api-docs/class/google/protobuf/reflection/file-descriptor.html
https://cran.r-project.org/package=RProtoBuf

repeated .tutorial.Person person = 1;

3

service EchoService {

H OH H HHH

¥
2.13.2. The toString method. toString is an alias of as.character.

cat(fileDescriptor(tutorial.Person)$toString())

syntax = "proto2";
package tutorial;

option java_package = '"com.example.tutorial";
option java_outer_classname = "AddressBookProtos";

message Person {
message PhoneNumber {
required string number = 1;

X

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

X

required string name = 1;

required int32 id = 2;

optional string email = 3;

repeated .tutorial.Person.PhoneNumber phone = 4;

extensions 100 to 199;

¥
message AddressBook {
repeated .tutorial.Person person = 1;

}

service EchoService {

H OH H HEHHEHHHEHHEHHEHHEHHEHHHEHHEHHEHREHHEHHER

}

rpc Echo(.tutorial.Person) returns (.tutorial.Person);

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

rpc Echo(.tutorial.Person) returns (.tutorial.Person);

2.13.3. The asMessage method. The asMessage method returns a protocol buffer message representation of the file descriptor.

asMessage (tutorial.Person$fileDescriptor())

message of type 'google.protobuf.FileDescriptorProto' with 5 fields set

cat(as.character (asMessage (tutorial.Person$fileDescriptor())))

Eddelbuettel, Francois and Stokely

RProtoBuf Vignette

January 11,2026 | 33

34

mname: "addressbook.proto"
package: "tutorial"

message_type {

name: "Person"

field {

H OH H H H H HHHHEHFHHEHHEHHEHHEHHEHHTEHHEHEHEHFHHEHHTEHHEHEHEHEHHEHHEHHEHEHEHHEHHEH KR

name: "name"

number: 1

label: LABEL_REQUIRED
type: TYPE_STRING

}

field {
name: "id"
number: 2

}

label: LABEL_REQUIRED
type: TYPE_INT32

field {

}

name: "email"

number: 3

label: LABEL_OPTIONAL
type: TYPE_STRING

field {

}

name: "phone"

number: 4

label: LABEL_REPEATED
type: TYPE_MESSAGE

type_name: ".tutorial.Person.PhoneNumber"

nested_type {

}

name: "PhoneNumber"

field {
name: "number"
number: 1

label: LABEL_REQUIRED

type: TYPE_STRING
3
field {
name: "type"
number: 2

label: LABEL_OPTIONAL

type: TYPE_ENUM

type_name: ".tutorial.Person.PhoneType"
default_value: "HOME"

}

enum_type {

name: "PhoneType"
value {
name: "MOBILE"
number: O

}

value {
name: "HOME"
number: 1

https://cran.r-project.org/package=RProtoBuf

Eddelbuettel, Frangois and Stokely

https://cran.r-project.org/package=RProtoBuf

}
value {
name: "WORK"
number: 2
}
}
extension_range {
start: 100
end: 200
}
}
message_type {
name: "AddressBook"

field {
name: "person"
number: 1

type: TYPE_MESSAGE

}
¥
service {
name: "EchoService"
method {
name: "Echo"

}
}

options {

H OH H HHHEHHEHHHEHHEHHEHHHEHHEHHHEHHEHRHEHRHHEHHER

3

label: LABEL_REPEATED

type_name: ".tutorial.Person"

input_type: ".tutorial.Person"

output_type: ".tutorial.Person"

java_package: '"com.example.tutorial"
java_outer_classname: "AddressBookProtos"

2.13.4. The as.list method. The as.list method creates a named R list that contains the descriptors defined in this file

descriptor.

as.list(tutorial.Person$fileDescriptor())

$Person

$AddressBook

H OH H HHHEH

$EchoService

descriptor for type 'tutorial.Person'

descriptor for type 'tutorial.AddressBook'

2.13.5. The name method. The name method can be used to retrieve the file name associated with the file descriptor. The

optional boolean argument can be specified if full pathnames are desired.

name (tutorial.Person$fileDescriptor())

[1] "addressbook.proto"

Eddelbuettel, Francois and Stokely

RProtoBuf Vignette

January 11,2026 | 35

tutorial.Person$fileDescriptor () $name (TRUE)

[1] "addressbook.proto"

2.13.6. The package method. The package method can be used to retrieve the package scope associated with this file descriptor.

tutorial.Person$fileDescriptor () $package ()

[1] "tutorial"

2.14. Service descriptors. Not fully implemented. Needs to be connected to a concrete RPC implementation. The Google
Protocol Buffers C++ open-source library does not include an RPC implementation, but this can be connected easily to
others.

2.14.1. The method descriptors method. Not fully implemented. Needs to be connected to a concrete RPC implementation.

The Google Protocol Buffers C++ open-source library does not include an RPC implementation, but this can be connected
easily to others. Now that Google gRPC is released, this an obvious possibility. Contributions would be most welcome.

3. Utilities

3.1. Ccoercing objects to messages. The asMessage function uses the standard coercion mechanism of the as method,
and so can be used as a shorthand :

coerce a message type descriptor to a message
asMessage(tutorial.Person)

message of type 'google.protobuf.DescriptorProto' with 5 fields set

coerce a enum descriptor
asMessage (tutorial.Person.PhoneType)

message of type 'google.protobuf.EnumDescriptorProto' with 2 fields set

coerce a field descriptor
asMessage(tutorial.Person$email)

message of type 'google.protobuf.FieldDescriptorProto' with 4 fields set

coerce a file descriptor
asMessage(fileDescriptor(tutorial.Person))

message of type 'google.protobuf.FileDescriptorProto' with 5 fields set

36 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://grpc.io/
https://cran.r-project.org/package=RProtoBuf

3.2. Completion. The RProtoBuf package implements the .DollarNames S3 generic function (defined in the utils
package) for all classes.
Completion possibilities include pseudo method names for all classes, plus :

* field names for messages

* field names, enum types, nested types for message type descriptors
* names for enum descriptors

* names for top-level extensions

* message names for file descriptors

In the unlikely event that there is a user-defined field of exactly the same name as one of the pseudo methods, the
user-defined field shall take precedence for completion purposes by design, since the method name can always be invoked
directly.

3.3. with and within. The S3 generic with function is implemented for class Message, allowing to evaluate an R expression
in an environment that allows to retrieve and set fields of a message simply using their names.

{r withwithin message <- new(tutorial.Person, email = "foo### The com” method with(message, { ##
set the id field id <- 2

set the name field from the email field
name <- gsub("[@]", " ", email)

sprintf("%d [%s] : %s", id, email, name)

H

The difference between \texttt{with} and \texttt{within} is the value

that is returned. For \texttt{with} returns the result of the R expression,
for \texttt{within} the message is returned. In both cases, the message

is modified because \texttt{RProtoBufl} works by reference.

identical

The \texttt{identical} method is implemented to compare two messages.

T
ml <- new(tutorial.Person, email = "foo@bar.com", id = 2)
m2 <- update(new(tutorial.Person) , email = "foo@bar.com", id = 2)
identical(ml, m2)

[1] TRUE

The == operator can be used as an alias to identical.

ml == m2

[1] TRUE

Eddelbuettel, Francois and Stokely RProtoBuf Vignette | January 11,2026 | 37

ml !'= m2

[1] FALSE

Alternatively, the all.equal function can be used, allowing a tolerance when comparing float or double values.
3.4. merge. merge can be used to merge two messages of the same type.
ml <- new(tutorial.Person, "foobar")
m2 <- new(tutorial.Person, "foo@bar.com")

m3 <- merge(ml, m2)
cat(as.character(m3))

mname: "foobar"
email: "foo@bar.com"

3.5. P. The P function is an alternative way to retrieve a message descriptor using its type name. It is not often used because
of the lookup mechanism described in section~4.2.

P("tutorial.Person")
descriptor for type 'tutorial.Person'
new(P("tutorial.Person"))

message of type 'tutorial.Person' with O fields set

but we can do this instead
tutorial.Person

descriptor for type 'tutorial.Person'
new(tutorial.Person)
message of type 'tutorial.Person' with O fields set

4. Advanced Features

4.1. Extensions. Extensions allow you to declare a range of field numbers in a message that are available for extension
types. This allows others to declare new fields for a given message type possibly in their own . proto files without having
to edit the original file. See https:/github.com/murraystokely/RProtoBufUtils.

Notice that the last line of the Person message schema in addressbook.proto is the following line :

extensions 100 to 199;

This specifies that other users in other .proto files can use tag numbers between 100 and 199 for extension types of this
message.

38 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://github.com/murraystokely/RProtoBufUtils
https://cran.r-project.org/package=RProtoBuf

4.2. Descriptor lookup. The RProtoBuf package uses the user defined tables framework that is defined as part of the
RObjectTables package available from the OmegaHat project.

The feature allows RProtoBuf to install the special environment RProtoBuf:DescriptorPool in the R search path. The
environment is special in that, instead of being associated with a static hash table, it is dynamically queried by R as part of
R’s usual variable lookup. In other words, it means that when the R interpreter looks for a binding to a symbol (foo) in its
search path, it asks to our package if it knows the binding “foo”, this is then implemented by the RProtoBuf package by
calling an internal method of the protobuf C++ library.

4.3. 64-bit integer issues. R does not have native 64-bit integer support. Instead, R treats large integers as doubles which
have limited precision. For example, it loses the ability to distinguish some distinct integers:

2753 == (2753 + 1)

[1] TRUE

Protocol Buffers are frequently used to pass data between different systems, however, and most other systems these days
have support for 64-bit integers. To work around this, RProtoBuf allows users to get and set 64-bit integer types by treating
them as characters when running on a platform with a 64-bit long long type available.

If we try to set an int64 field in R to double values, we lose precision:

4.4. Deprecated Feature: Protocol Buffer Groups. Groups are a deprecated feature that offered another way to nest
information in message definitions. For example, the TestAl1Types message type in unittest.proto includes an
OptionalGroup type:

optional group OptionalGroup = 16 {
optional int32 a = 17;
X

And although the feature is deprecated, it can be used with RProtoBuf:

test <- new(protobuf_unittest.TestAllTypes)
test$optionalgroup$a <- 3
test$optionalgroup$a

[1] 3
cat(as.character(test))

OptionalGroup {
a: 3
7

Note that groups simply combine a nested message type and a field into a single declaration. The field type is
OptionalGroup in this example, and the field name is converted to lower-case ‘optionalgroup’ so as not to conflict with the
type name.

Note that groups simply combine a nested message type and a field into a single declaration. The field type is
OptionalGroup in this example, and the field name is converted to lower-case ‘optionalgroup’ so as not to conflict with the
type name.

5. Other approaches

Saptarshi Guha wrote another package that deals with integration of Protocol Buffer messages with R, taking a different
angle: serializing any R object as a message, based on a single catch-all proto file.

Jeroen Ooms took a similar approach influenced by Saptarshi in his RProtoBufUtils package. Unlike Saptarshi’s
package, RProtoBufUtils depends on RProtoBuf for underlying message operations. This package is available at https:
/lgithub.com/murraystokely/RProtoBufUltils.

Eddelbuettel, Frangois and Stokely RProtoBuf Vignette | January 11,2026 | 39

https://github.com/murraystokely/RProtoBufUtils
https://github.com/murraystokely/RProtoBufUtils

6. Plans for future releases

Protocol Buffers have a mechanism for remote procedure calls (RPC) that is not yet used by RProtoBuf, but we may one
day take advantage of this by writing a Protocol Buffer message R server, and client code as well, probably based on the
functionality of the Rserve package. Now that Google gRPC is released, this an obvious possibility. Contributions would be
most welcome.

Extensions have been implemented in RProtoBuf and have been extensively used and tested, but they are not currently
described in this vignette. Additional examples and documentation are needed for extensions.

7. Acknowedgements

Some of the design of the package is based on the design of the rJava package by Simon Urbanek (dispatch on new, S4
class structures using external pointers, etc). We would like to thank Simon for his indirect involvment on RProtoBuf.
The user defined table mechanism, implemented by Duncan Temple Lang for the purpose of the RObjectTables package
allowed the dynamic symbol lookup (see section~4.2). Many thanks to Duncan for this amazing feature.

40 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, Frangois and Stokely

https://grpc.io/
https://cran.r-project.org/package=RProtoBuf

	Protocol Buffers
	Basic use: Protocol Buffers and R
	Importing proto files dynamically
	Creating a message
	Access and modify fields of a message
	Display messages
	Serializing messages
	Parsing messages
	Classes, Methods and Pseudo Methods
	Messages
	Retrieve fields
	Modify fields
	Message$has method
	Message$clone method
	Message$isInitialized method
	Message$serialize method
	Message$clear method
	Message$size method
	Message$bytesize method
	Message$swap method
	Message$set method
	Message$fetch method
	Message$setExtension method
	Message$getExtension method
	Message$add method
	Message$str method
	Message$as.character method
	Message$toString method
	Message$as.list method
	Message$update method
	Message$descriptor method
	Message$fileDescriptor method

	Message descriptors
	Extracting descriptors
	The new method
	The read method
	The readASCII method
	The toString method
	The as.character method
	The as.list method
	The asMessage method
	The fileDescriptor method
	The name method
	The containing_type method
	The field_count method
	The field method
	The nested_type_count method
	The nested_type method
	The enum_type_count method
	The enum_type method

	Field descriptors}
	The as.character method
	The toString method
	The asMessage method
	The name method
	The fileDescriptor method
	The containing_type method
	The is_extension method
	The number method
	The type method
	The cpp_type method
	The label method
	The is_repeated method
	The is_required method
	The is_optional method
	The has_default_value method
	The default_value method
	The message_type method
	The enum_type method

	Eenum descriptors
	Extracting descriptors
	The as.list method
	The as.character method
	The toString method
	The asMessage method
	The name method
	The fileDescriptor method
	The containing_type method
	The length method
	The has method
	The value_count method
	The value method

	Enum value descriptors
	The number method
	The name method
	The enum_type method
	The as.character method
	The toString method
	The asMessage method

	File descriptors
	The as.character method
	The toString method
	The asMessage method
	The as.list method
	The name method
	The package method

	Service descriptors
	The method descriptors method

	Utilities
	Ccoercing objects to messages
	Completion
	with and within
	merge
	P

	Advanced Features
	Extensions
	Descriptor lookup
	64-bit integer issues
	Deprecated Feature: Protocol Buffer Groups

	Other approaches
	Plans for future releases
	Acknowedgements

