
RProtoBuf: An R API for Protocol Buffers

Dirk Eddelbuettela, Romain Françoisb, and Murray Stokelyc

ahttp://dirk.eddelbuettel.com; bhttps://github.com/romainfrancois; chttps://github.com/murraystokely

This version was compiled on January 11, 2026

Protocol Buffers is a software project by Google that is used extensively internally and also released under an Open Source license. It provides a way of

encoding structured data in an efficient yet extensible format. Google formally supports APIs for C++, Java and Python. This vignette describes version

the RProtoBuf package which brings support for Protocol Buffer messages to R.

Contents

1 Protocol Buffers 3

2 Basic use: Protocol Buffers and R 3

2.1 Importing proto files dynamically . 3

2.2 Creating a message . 4

2.3 Access and modify fields of a message . 4

2.4 Display messages . 5

2.5 Serializing messages . 5

2.6 Parsing messages . 6

2.7 Classes, Methods and Pseudo Methods . 7

2.8 Messages . 7

2.8.1 Retrieve fields . 7

2.8.2 Modify fields . 8

2.8.3 Message$has method . 9

2.8.4 Message$clone method . 10

2.8.5 Message$isInitialized method . 10

2.8.6 Message$serialize method . 10

2.8.7 Message$clear method . 11

2.8.8 Message$size method . 11

2.8.9 Message$bytesize method . 12

2.8.10 Message$swap method . 12

2.8.11 Message$set method . 13

2.8.12 Message$fetch method . 13

2.8.13 Message$setExtension method . 13

2.8.14 Message$getExtension method . 14

2.8.15 Message$add method . 14

2.8.16 Message$str method . 14

2.8.17 Message$as.character method . 14

2.8.18 Message$toString method . 15

2.8.19 Message$as.list method . 15

2.8.20 Message$update method . 15

2.8.21 Message$descriptor method . 16

2.8.22 Message$fileDescriptor method . 16

2.9 Message descriptors . 16

2.9.1 Extracting descriptors . 16

2.9.2 The new method . 17

2.9.3 The read method . 18

2.9.4 The readASCII method . 18

2.9.5 The toString method . 18

2.9.6 The as.character method . 18

2.9.7 The as.list method . 20

2.9.8 The asMessage method . 20

https://cran.r-project.org/package=RProtoBuf RProtoBuf Vignette | January 11, 2026 | 1–40

http://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://github.com/murraystokely
https://cran.r-project.org/package=RProtoBuf

2.9.9 The fileDescriptor method . 20

2.9.10 The name method . 20

2.9.11 The containing_type method . 21

2.9.12 The field_count method . 21

2.9.13 The field method . 21

2.9.14 The nested_type_count method . 21

2.9.15 The nested_type method . 21

2.9.16 The enum_type_count method . 21

2.9.17 The enum_type method . 22

2.10 Field descriptors} . 22

2.10.1 The as.character method . 22

2.10.2 The toString method . 22

2.10.3 The asMessage method . 23

2.10.4 The name method . 23

2.10.5 The fileDescriptor method . 23

2.10.6 The containing_type method . 23

2.10.7 The is_extension method . 24

2.10.8 The number method . 24

2.10.9 The type method . 24

2.10.10The cpp_type method . 24

2.10.11The label method . 25

2.10.12The is_repeated method . 25

2.10.13The is_required method . 25

2.10.14The is_optional method . 25

2.10.15The has_default_value method . 26

2.10.16The default_value method . 26

2.10.17The message_type method . 26

2.10.18The enum_type method . 26

2.11 Eenum descriptors . 27

2.11.1 Extracting descriptors . 27

2.11.2 The as.list method . 27

2.11.3 The as.character method . 28

2.11.4 The toString method . 28

2.11.5 The asMessage method . 28

2.11.6 The name method . 28

2.11.7 The fileDescriptor method . 28

2.11.8 The containing_type method . 29

2.11.9 The length method . 29

2.11.10The has method . 29

2.11.11The value_count method . 29

2.11.12The value method . 30

2.12 Enum value descriptors . 30

2.12.1 The number method . 30

2.12.2 The name method . 30

2.12.3 The enum_type method . 31

2.12.4 The as.character method . 31

2.12.5 The toString method . 31

2.12.6 The asMessage method . 31

2.13 File descriptors . 31

2.13.1 The as.character method . 32

2.13.2 The toString method . 33

2.13.3 The asMessage method . 33

2.13.4 The as.list method . 35

2.13.5 The name method . 35

2.13.6 The package method . 36

2.14 Service descriptors . 36

2 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

2.14.1 The method descriptors method . 36

3 Utilities 36

3.1 Ccoercing objects to messages . 36

3.2 Completion . 37

3.3 with and within . 37

3.4 merge . 38

3.5 P . 38

4 Advanced Features 38

4.1 Extensions . 38

4.2 Descriptor lookup . 39

4.3 64-bit integer issues . 39

4.4 Deprecated Feature: Protocol Buffer Groups . 39

5 Other approaches 39

6 Plans for future releases 40

7 Acknowedgements 40

1. Protocol Buffers

Protocol Buffers are a language-neutral, platform-neutral, extensible way of serializing structured data for use in communi-

cations protocols, data storage, and more.

Protocol Buffers offer key features such as an efficient data interchange format that is both language- and operating

system-agnostic yet uses a lightweight and highly performant encoding, object serialization and de-serialization as well

data and configuration management. Protocol Buffers are also forward compatible: updates to the proto files do not break

programs built against the previous specification.

While benchmarks are not available, Google states on the project page that in comparison to XML, Protocol Buffers are

at the same time simpler, between three to ten times smaller, between twenty and one hundred times faster, as well as less

ambiguous and easier to program.

The Protocol Buffers code is released under an open-source (BSD) license. The Protocol Buffer project (https://protobuf.dev)

contains a C++ library and a set of runtime libraries and compilers for C++, Java and Python.

With these languages, the workflow follows standard practice of so-called Interface Description Languages (IDL) (c.f.

Wikipedia on IDL). This consists of compiling a Protocol Buffer description file (ending in .proto) into language specific

classes that can be used to create, read, write and manipulate Protocol Buffer messages. In other words, given the ‘proto’

description file, code is automatically generated for the chosen target language(s). The project page contains a tutorial for

each of these officially supported languages: https://protobuf.dev/getting-started/

Besides the officially supported C++, Java and Python implementations, several projects have been created to support

Protocol Buffers for many languages. The list of known languages to support protocol buffers is compiled as part of the

project page: https://github.com/protocolbuffers/protobuf/blob/main/docs/third_party.md

The Protocol Buffer project page contains a comprehensive description of the language: https://protobuf.dev/programming-guides/

proto/.

2. Basic use: Protocol Buffers and R

This section describes how to use the R API to create and manipulate protocol buffer messages in R, and how to read and

write the binary payload of the messages to files and arbitrary binary R connections.

2.1. Importing proto files dynamically. In contrast to the other languages (Java, C++, Python) that are officially supported

by Google, the implementation used by the RProtoBuf package does not rely on the protoc compiler (with the exception

of the two functions discussed in the previous section). This means that no initial step of statically compiling the proto file

into C++ code that is then accessed by R code is necessary. Instead, proto files are parsed and processed at runtime by the

protobuf C++ library—which is much more appropriate for a dynamic language.

The readProtoFiles function allows importing proto files in several ways.

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 3

https://protobuf.dev
https://en.wikipedia.org/wiki/Interface_description_language
https://protobuf.dev/getting-started/
https://github.com/protocolbuffers/protobuf/blob/main/docs/third_party.md
https://protobuf.dev/programming-guides/proto/
https://protobuf.dev/programming-guides/proto/

args(readProtoFiles)

function (files, dir, package = "RProtoBuf", pattern = "\\.proto$",

lib.loc = NULL)

NULL

Using the file argument, one can specify one or several file paths that ought to be proto files.

pdir <- system.file("proto", package = "RProtoBuf")

pfile <- file.path(pdir, "addressbook.proto")

readProtoFiles(pfile)

With the dir argument, which is ignored if the file is supplied, all files matching the .proto extension will be imported.

dir(pdir, pattern = "\\.proto$", full.names = TRUE)

readProtoFiles(dir = pdir)

Finally, with the package argument (ignored if file or dir is supplied), the function will import all .proto files that

are located in the proto sub-directory of the given package. A typical use for this argument is in the .onLoad function of a

package.

readProtoFiles(package = "RProtoBuf")

Once the proto files are imported, all message descriptors are available in the R search path in the RProtoBuf:DescriptorPool

special environment. The underlying mechanism used here is described in more detail in section~4.2.

ls("RProtoBuf:DescriptorPool")

[1] "rexp.CMPLX" "rexp.REXP"

[3] "rexp.STRING" "rprotobuf.HelloWorldRequest"

[5] "rprotobuf.HelloWorldResponse" "tutorial.AddressBook"

[7] "tutorial.Person"

2.2. Creating a message. The objects contained in the special environment are descriptors for their associated message

types. Descriptors will be discussed in detail in another part of this document, but for the purpose of this section, descriptors

are just used with the new function to create messages.

p <- new(tutorial.Person, name = "Romain", id = 1)

2.3. Access and modify fields of a message. Once the message is created, its fields can be queried and modified using the

dollar operator of R, making protocol buffer messages seem like lists.

p$name

[1] "Romain"

p$id

[1] 1

4 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

p$email <- "francoisromain@free.fr"

However, as opposed to R lists, no partial matching is performed and the name must be given entirely.

The [[operator can also be used to query and set fields of a message, supplying either their name or their tag number :

p[["name"]] <- "Romain Francois"

p[[2]] <- 3

p[["email"]]

[1] "francoisromain@free.fr"

Protocol buffers include a 64-bit integer type, but R lacks native 64-bit integer support. A workaround is available and

described in Section~4.3 for working with large integer values.

2.4. Display messages. Protocol buffer messages and descriptors implement show methods that provide basic information

about the message :

p

message of type 'tutorial.Person' with 3 fields set

For additional information, such as for debugging purposes, the as.character method provides a more complete ASCII

representation of the contents of a message.

cat(as.character(p))

name: "Romain Francois"

id: 3

email: "francoisromain@free.fr"

2.5. Serializing messages. However, the main focus of protocol buffer messages is efficiency. Therefore, messages are

transported as a sequence of bytes. The serialize method is implemented for protocol buffer messages to serialize a

message into the sequence of bytes (raw vector in R speech) that represents the message.

serialize(p, NULL)

[1] 0a 0f 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 1a 16 66 72 61 6e 63 6f 69

[29] 73 72 6f 6d 61 69 6e 40 66 72 65 65 2e 66 72

The same method can also be used to serialize messages to files :

tf1 <- tempfile()

tf1

[1] "/tmp/r/RtmpQeVJyH/file2fea9326e061e"

serialize(p, tf1)

readBin(tf1, raw(0), 500)

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 5

[1] 0a 0f 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 1a 16 66 72 61 6e 63 6f 69

[29] 73 72 6f 6d 61 69 6e 40 66 72 65 65 2e 66 72

Or to arbitrary binary connections:

tf2 <- tempfile()

con <- file(tf2, open = "wb")

serialize(p, con)

close(con)

readBin(tf2, raw(0), 500)

[1] 0a 0f 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 1a 16 66 72 61 6e 63 6f 69

[29] 73 72 6f 6d 61 69 6e 40 66 72 65 65 2e 66 72

serialize can also be used in a more traditional object oriented fashion using the dollar operator :

serialize to a file

p$serialize(tf1)

serialize to a binary connection

con <- file(tf2, open = "wb")

p$serialize(con)

close(con)

2.6. Parsing messages. The RProtoBuf package defines the read function to read messages from files, raw vector (the

message payload) and arbitrary binary connections.

args(read)

function (descriptor, input)

NULL

The binary representation of the message (often called the payload) does not contain information that can be used to

dynamically infer the message type, so we have to provide this information to the read function in the form of a descriptor :

message <- read(tutorial.Person, tf1)

cat(as.character(message))

name: "Romain Francois"

id: 3

email: "francoisromain@free.fr"

The input argument of read can also be a binary readable R connection, such as a binary file connection:

con <- file(tf2, open = "rb")

message <- read(tutorial.Person, con)

close(con)

cat(as.character(message))

name: "Romain Francois"

id: 3

email: "francoisromain@free.fr"

Finally, the payload of the message can be used :

6 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

reading the raw vector payload of the message

payload <- readBin(tf1, raw(0), 5000)

message <- read(tutorial.Person, payload)

read can also be used as a pseudo method of the descriptor object :

reading from a file

message <- tutorial.Person$read(tf1)

reading from a binary connection

con <- file(tf2, open = "rb")

message <- tutorial.Person$read(con)

close(con)

read from the payload

message <- tutorial.Person$read(payload)

2.7. Classes, Methods and Pseudo Methods. The RProtoBuf package uses the S4 system to store information about

descriptors and messages, but the information stored in the R object is very minimal and mainly consists of an external

pointer to a C++ variable that is managed by the proto C++ library.

str(p)

Using the S4 system allows the RProtoBuf package to dispatch methods that are not generic in the S3 sense, such as

new and serialize.

The RProtoBuf package combines the R typical dispatch of the form method(object, arguments) and the more

traditional object oriented notation object$method(arguments).

2.8. Messages. Messages are represented in R using the Message S4 class. The class contains the slots pointer and type

as described on the Table~1.

slot description

pointer external pointer to the Message object of the C++ proto library. Documentation for the Message

class is available from the protocol buffer project page: https://protobuf.dev/reference/cpp/api-docs/

google.protobuf.message/

type fully qualified path of the message. For example a Person message has its type slot set to

tutorial.Person

Table 1. Description of slots for the Message S4 class

Although the RProtoBuf package uses the S4 system, the @ operator is very rarely used. Fields of the message are

retrieved or modified using the $ or [[operators as seen on the previous section, and pseudo-methods can also be called

using the $ operator. Table~2 describes the methods defined for the Message class :

2.8.1. Retrieve fields. The $ and [[operators allow extraction of a field data.

message <- new(tutorial.Person,

name = "foo", email = "foo@bar.com", id = 2,

phone = list(new(tutorial.Person.PhoneNumber,

number = "+33(0)...", type = "HOME"),

new(tutorial.Person.PhoneNumber,

number = "+33(0)###", type = "MOBILE")

)

)

message$name

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 7

https://protobuf.dev/reference/cpp/api-docs/google.protobuf.message/
https://protobuf.dev/reference/cpp/api-docs/google.protobuf.message/

method section description

has 2.8.3 Indicates if a message has a given field.

clone 2.8.4 Creates a clone of the message

isInitialized 2.8.5 Indicates if a message has all its required fields set

serialize 2.8.6 serialize a message to a file or a binary connection or retrieve the message

payload as a raw vector

clear 2.8.7 Clear one or several fields of a message, or the entire message

size 2.8.8 The number of elements in a message field

bytesize 2.8.9 The number of bytes the message would take once serialized

swap 2.8.10 swap elements of a repeated field of a message

set 2.8.11 set elements of a repeated field

fetch 2.8.12 fetch elements of a repeated field

setExtension 2.8.13 set an extension of a message

getExtension 2.8.14 get the value of an extension of a message

add 2.8.15 add elements to a repeated field

str 2.8.16 the R structure of the message

as.character 2.8.17 character representation of a message

toString 2.8.18 character representation of a message (same as as.character)

as.list 2.8.19 converts message to a named R list

update 2.8.20 updates several fields of a message at once

descriptor 2.8.21 get the descriptor of the message type of this message

fileDescriptor 2.8.22 get the file descriptor of this message’s descriptor

Table 2. Description of methods for the Message S4 class

[1] "foo"

message$email

[1] "foo@bar.com"

message[["phone"]]

[[1]]

message of type 'tutorial.Person.PhoneNumber' with 2 fields set

#

[[2]]

message of type 'tutorial.Person.PhoneNumber' with 2 fields set

using the tag number

message[[2]] # id

[1] 2

Neither $ nor [[support partial matching of names. The $ is also used to call methods on the message, and the [[

operator can use the tag number of the field.

Table~3 details correspondence between the field type and the type of data that is retrieved by $ and [[.

2.8.2. Modify fields. The $<- and [[<- operators are implemented for Message objects to set the value of a field. The R data

is coerced to match the type of the message field.

message <- new(tutorial.Person, name = "foo", id = 2)

message$email <- "foo@bar.com"

message[["id"]] <- 42

8 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

field type R type (non repeated) R type (repeated)

double double vector double vector

float double vector double vector

uint32 double vector double vector

fixed32 double vector double vector

int32 integer vector integer vector

sint32 integer vector integer vector

sfixed32 integer vector integer vector

int64 integer or character vector 1 integer or character vector

uint64 integer or character vector integer or character vector

sint64 integer or character vector integer or character vector

fixed64 integer or character vector integer or character vector

sfixed64 integer or character vector integer or character vector

bool logical vector logical vector

string character vector character vector

bytes character vector character vector

enum integer vector integer vector

message S4 object of class Message list of S4 objects of class Message

Table 3. Correspondence between field type and R type retrieved by the extractors. 1. R lacks native 64-bit integers, so the

RProtoBuf.int64AsString option is available to return large integers as characters to avoid losing precision. This option is described in Sec-

tion 4.3. R also lacks an unsigned integer type.

message[[1]] <- "foobar"

cat(message$as.character())

name: "foobar"

id: 42

email: "foo@bar.com"

Table~4 describes the R types that are allowed in the right hand side depending on the target type of the field.

internal type allowed R types

double, float integer, raw, double, logical

int32, int64, uint32, uint64, sint32,

sint64, fixed32, fixed64, sfixed32,

sfixed64

integer, raw, double, logical, character

bool integer, raw, double, logical

bytes, string character

enum integer, double, raw, character

message, group S4, of class Message of the appropriate message type, or a list of

S4 objects of class Message of the appropriate message type.

Table 4. Allowed R types depending on internal field types.

2.8.3. Message$has method. The has method indicates if a field of a message is set. For repeated fields, the field is considered

set if there is at least on object in the array. For non-repeated fields, the field is considered set if it has been initialized.

The has method is a thin wrapper around the HasField and FieldSize methods of the google::protobuf::Reflection

C++ class.

message <- new(tutorial.Person, name = "foo")

message$has("name")

[1] TRUE

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 9

message$has("id")

[1] FALSE

message$has("phone")

[1] FALSE

2.8.4. Message$clone method. The clone function creates a new message that is a clone of the message. This function is a

wrapper around the methods New and CopyFrom of the google::protobuf::Message C++ class.

m1 <- new(tutorial.Person, name = "foo")

m2 <- m1$clone()

m2$email <- "foo@bar.com"

cat(as.character(m1))

name: "foo"

cat(as.character(m2))

name: "foo"

email: "foo@bar.com"

2.8.5. Message$isInitialized method. The isInitialized method quickly checks if all required fields have values set. This is a

thin wrapper around the IsInitialized method of the google::protobuf::Message C++ class.

message <- new(tutorial.Person, name = "foo")

message$isInitialized()

[1] FALSE

message$id <- 2

message$isInitialized()

[1] TRUE

2.8.6. Message$serialize method. The serialize method can be used to serialize the message as a sequence of bytes into a

file or a binary connection.

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

tf1 <- tempfile()

tf1

[1] "/tmp/r/RtmpQeVJyH/file2fea97ef28dc"

10 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

message$serialize(tf1)

tf2 <- tempfile()

tf2

[1] "/tmp/r/RtmpQeVJyH/file2fea95b1a33bb"

con <- file(tf2, open = "wb")

message$serialize(con)

close(con)

The (temporary) files tf1 and tf2 both contain the message payload as a sequence of bytes. The readBin function can

be used to read the files as a raw vector in R:

readBin(tf1, raw(0), 500)

[1] 0a 03 66 6f 6f 10 02 1a 0b 66 6f 6f 40 62 61 72 2e 63 6f 6d

readBin(tf2, raw(0), 500)

[1] 0a 03 66 6f 6f 10 02 1a 0b 66 6f 6f 40 62 61 72 2e 63 6f 6d

The serialize method can also be used to directly retrieve the payload of the message as a raw vector:

message$serialize(NULL)

[1] 0a 03 66 6f 6f 10 02 1a 0b 66 6f 6f 40 62 61 72 2e 63 6f 6d

2.8.7. Message$clear method. The clear method can be used to clear all fields of a message when used with no argument, or

a given field.

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

cat(as.character(message))

name: "foo"

id: 2

email: "foo@bar.com"

message$clear()

cat(as.character(message))

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

message$clear("id")

cat(as.character(message))

name: "foo"

email: "foo@bar.com"

The clear method is a thin wrapper around the Clear method of the google::protobuf::Message C++ class.

2.8.8. Message$size method. The size method is used to query the number of objects in a repeated field of a message :

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 11

message <- new(tutorial.Person, name = "foo",

phone = list(new(tutorial.Person.PhoneNumber,

number = "+33(0)...", type = "HOME"),

new(tutorial.Person.PhoneNumber,

number = "+33(0)###", type = "MOBILE")

))

message$size("phone")

[1] 2

size(message, "phone")

[1] 2

The size method is a thin wrapper around the FieldSize method of the google::protobuf::Reflection C++ class.

2.8.9. Message$bytesize method. The bytesize method retrieves the number of bytes the message would take once serialized.

This is a thin wrapper around the ByteSize method of the google::protobuf::Message C++ class.

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

message$bytesize()

[1] 20

bytesize(message)

[1] 20

length(message$serialize(NULL))

[1] 20

2.8.10. Message$swap method. The swap method can be used to swap elements of a repeated field.

message <- new(tutorial.Person, name = "foo",

phone = list(new(tutorial.Person.PhoneNumber,

number = "+33(0)...", type = "HOME"),

new(tutorial.Person.PhoneNumber,

number = "+33(0)###", type = "MOBILE")))

message$swap("phone", 1, 2)

cat(as.character(message$phone[[1]]))

number: "+33(0)###"

type: MOBILE

12 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

cat(as.character(message$phone[[2]]))

number: "+33(0)..."

type: HOME

swap(message, "phone", 1, 2)

cat(as.character(message$phone[[1]]))

number: "+33(0)..."

type: HOME

cat(as.character(message$phone[[2]]))

number: "+33(0)###"

type: MOBILE

2.8.11. Message$set method. The set method can be used to set values of a repeated field.

message <- new(tutorial.Person, name = "foo",

phone = list(new(tutorial.Person.PhoneNumber,

number = "+33(0)...", type = "HOME"),

new(tutorial.Person.PhoneNumber,

number = "+33(0)###", type = "MOBILE")))

number <- new(tutorial.Person.PhoneNumber, number = "+33(0)---", type = "WORK")

message$set("phone", 1, number)

cat(as.character(message))

name: "foo"

phone {

number: "+33(0)---"

type: WORK

}

phone {

number: "+33(0)###"

type: MOBILE

}

2.8.12. Message$fetch method. The fetch method can be used to get values of a repeated field.

message <- new(tutorial.Person, name = "foo",

phone = list(new(tutorial.Person.PhoneNumber,

number = "+33(0)...", type = "HOME"),

new(tutorial.Person.PhoneNumber,

number = "+33(0)###", type = "MOBILE")))

message$fetch("phone", 1)

[[1]]

message of type 'tutorial.Person.PhoneNumber' with 2 fields set

2.8.13. Message$setExtension method. The setExtension method can be used to set an extension field of the Message.

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 13

if (!exists("protobuf_unittest.TestAllTypes", "RProtoBuf:DescriptorPool")) {

unittest.proto.file <- system.file("tinytest", "data", "unittest.proto",

package="RProtoBuf")

readProtoFiles(file=unittest.proto.file)

}

Test setting a singular extensions.

test <- new(protobuf_unittest.TestAllExtensions)

test$setExtension(protobuf_unittest.optional_int32_extension, as.integer(1))

2.8.14. Message$getExtension method. The getExtension method can be used to get values of an extension.

test$getExtension(protobuf_unittest.optional_int32_extension)

[1] 1

2.8.15. Message$add method. The add method can be used to add values to a repeated field.

message <- new(tutorial.Person, name = "foo")

phone <- new(tutorial.Person.PhoneNumber, number = "+33(0)...", type = "HOME")

message$add("phone", phone)

cat(message$toString())

name: "foo"

phone {

number: "+33(0)..."

type: HOME

}

2.8.16. Message$str method. The str method gives the R structure of the message. This is rarely useful.

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

message$str()

Formal class 'Message' [package "RProtoBuf"] with 2 slots

..@ pointer:<externalptr>

..@ type : chr "tutorial.Person"

str(message)

Formal class 'Message' [package "RProtoBuf"] with 2 slots

..@ pointer:<externalptr>

..@ type : chr "tutorial.Person"

2.8.17. Message$as.character method. The as.character method gives the debug string of the message.

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

cat(message$as.character())

14 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

name: "foo"

id: 2

email: "foo@bar.com"

cat(as.character(message))

name: "foo"

id: 2

email: "foo@bar.com"

2.8.18. Message$toString method. toString currently is an alias to the as.character function.

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

cat(message$toString())

name: "foo"

id: 2

email: "foo@bar.com"

cat(toString(message))

name: "foo"

id: 2

email: "foo@bar.com"

2.8.19. Message$as.list method. The as.list method converts the message to a named R list.

message <- new(tutorial.Person, name = "foo", email = "foo@bar.com", id = 2)

as.list(message)

$name

[1] "foo"

#

$id

[1] 2

#

$email

[1] "foo@bar.com"

#

$phone

list()

The names of the list are the names of the declared fields of the message type, and the content is the same as can be

extracted with the $ operator described in section~2.8.1.

2.8.20. Message$update method. The update method can be used to update several fields of a message at once.

message <- new(tutorial.Person)

update(message, name = "foo", id = 2, email = "foo@bar.com")

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 15

message of type 'tutorial.Person' with 3 fields set

cat(message$as.character())

name: "foo"

id: 2

email: "foo@bar.com"

2.8.21. Message$descriptor method. The descriptor method retrieves the descriptor of a message. See section~2.9 for more

information about message type descriptors.

message <- new(tutorial.Person)

message$descriptor()

descriptor for type 'tutorial.Person'

descriptor(message)

descriptor for type 'tutorial.Person'

2.8.22. Message$fileDescriptor method. The fileDescriptor method retrieves the file descriptor of the descriptor associated

with a message. See section~2.13 for more information about file descriptors.

message <- new(tutorial.Person)

message$fileDescriptor()

file descriptor for package tutorial (addressbook.proto)

fileDescriptor(message)

file descriptor for package tutorial (addressbook.proto)

2.9. Message descriptors. Message descriptors are represented in R with the Descriptor S4 class. The class contains the

slots pointer and type :

slot description

pointer external pointer to the Descriptor object of the C++ proto library. Documentation for the

Descriptor class is available from the protocol buffer project page: https://protobuf.dev/reference/

cpp/api-docs/google.protobuf.descriptor/

type fully qualified path of the message type.

Table 5. Description of slots for the Descriptor S4 class

Similarly to messages, the $ operator can be used to extract information from the descriptor, or invoke pseudo-methods.

Table~6 describes the methods defined for the Descriptor class :

2.9.1. Extracting descriptors. The $ operator, when used on a descriptor object retrieves descriptors that are contained in the

descriptor.

This can be a field descriptor (see section~2.10), an enum descriptor (see section~2.11) or a descriptor for a nested

type

16 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://protobuf.dev/reference/cpp/api-docs/google.protobuf.descriptor/
https://protobuf.dev/reference/cpp/api-docs/google.protobuf.descriptor/
https://cran.r-project.org/package=RProtoBuf

Method Section Description

new 2.9.2 Creates a prototype of a message described by this descriptor.

read 2.9.3 Reads a message from a file or binary connection.

readASCII 2.9.4 Read a message in ASCII format from a file or text connection.

name 2.9.10 Retrieve the name of the message type associated with this descriptor.

as.character 2.9.6 character representation of a descriptor

toString 2.9.5 character representation of a descriptor (same as as.character)

as.list 2.9.7 return a named list of the field, enum, and nested descriptors included in this

descriptor.

asMessage 2.9.8 return DescriptorProto message.

fileDescriptor 2.9.9 Retrieve the file descriptor of this descriptor.

containing_type 2.9.11 Retrieve the descriptor describing the message type containing this descriptor.

field_count 2.9.12 Return the number of fields in this descriptor.

field 2.9.13 Return the descriptor for the specified field in this descriptor.

nested_type_count 2.9.14 The number of nested types in this descriptor.

nested_type 2.9.15 Return the descriptor for the specified nested type in this descriptor.

enum_type_count 2.9.16 The number of enum types in this descriptor.

enum_type 2.9.17 Return the descriptor for the specified enum type in this descriptor.

Table 6. Description of methods for the Descriptor S4 class

field descriptor

tutorial.Person$email

descriptor for field 'email' of type 'tutorial.Person'

enum descriptor

tutorial.Person$PhoneType

descriptor for enum 'PhoneType' with 3 values

nested type descriptor

tutorial.Person$PhoneNumber

descriptor for type 'tutorial.Person.PhoneNumber'

same as

tutorial.Person.PhoneNumber

descriptor for type 'tutorial.Person.PhoneNumber'

2.9.2. The new method. The new method creates a prototype of a message described by the descriptor.

tutorial.Person$new()

message of type 'tutorial.Person' with 0 fields set

new(tutorial.Person)

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 17

message of type 'tutorial.Person' with 0 fields set

Passing additional arguments to the method allows directly setting the fields of the message at construction time.

tutorial.Person$new(email = "foo@bar.com")

message of type 'tutorial.Person' with 1 field set

same as

update(tutorial.Person$new(), email = "foo@bar.com")

message of type 'tutorial.Person' with 1 field set

2.9.3. The read method. The read method is used to read a message from a file or a binary connection.

start by serializing a message

message <- new(tutorial.Person.PhoneNumber,

type = "HOME", number = "+33(0)....")

tf <- tempfile()

serialize(message, tf)

now read back the message

m <- tutorial.Person.PhoneNumber$read(tf)

cat(as.character(m))

number: "+33(0)...."

type: HOME

m <- read(tutorial.Person.PhoneNumber, tf)

cat(as.character(m))

number: "+33(0)...."

type: HOME

2.9.4. The readASCII method. The readASCII method is used to read a message from a text file or a character vector.

start by generating the ASCII representation of a message

text <- as.character(new(tutorial.Person, id=1, name="Murray"))

text

[1] "name: \"Murray\"\nid: 1\n"

Then read the ascii representation in as a new message object.

msg <- tutorial.Person$readASCII(text)

2.9.5. The toString method. toString currently is an alias to the as.character function.

2.9.6. The as.character method. as.character prints the text representation of the descriptor as it would be specified in the

.proto file.

18 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

desc <- tutorial.Person

cat(desc$toString())

message Person {

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

}

enum PhoneType {

MOBILE = 0;

HOME = 1;

WORK = 2;

}

required string name = 1;

required int32 id = 2;

optional string email = 3;

repeated .tutorial.Person.PhoneNumber phone = 4;

extensions 100 to 199;

}

cat(toString(desc))

message Person {

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

}

enum PhoneType {

MOBILE = 0;

HOME = 1;

WORK = 2;

}

required string name = 1;

required int32 id = 2;

optional string email = 3;

repeated .tutorial.Person.PhoneNumber phone = 4;

extensions 100 to 199;

}

cat(as.character(tutorial.Person))

message Person {

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

}

enum PhoneType {

MOBILE = 0;

HOME = 1;

WORK = 2;

}

required string name = 1;

required int32 id = 2;

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 19

optional string email = 3;

repeated .tutorial.Person.PhoneNumber phone = 4;

extensions 100 to 199;

}

2.9.7. The as.list method. The as.list method returns a named list of the field, enum, and nested descriptors included in

this descriptor.

tutorial.Person$as.list()

$name

descriptor for field 'name' of type 'tutorial.Person'

#

$id

descriptor for field 'id' of type 'tutorial.Person'

#

$email

descriptor for field 'email' of type 'tutorial.Person'

#

$phone

descriptor for field 'phone' of type 'tutorial.Person'

#

$PhoneNumber

descriptor for type 'tutorial.Person.PhoneNumber'

#

$PhoneType

descriptor for enum 'PhoneType' with 3 values

2.9.8. The asMessage method. The asMessage method returns a message of type google.protobuf.DescriptorProto of

the Descriptor.

tutorial.Person$asMessage()

message of type 'google.protobuf.DescriptorProto' with 5 fields set

2.9.9. The fileDescriptor method. The fileDescriptor method retrieves the file descriptor of the descriptor. See section~2.13

for more information about file descriptors.

desc <- tutorial.Person

desc$fileDescriptor()

file descriptor for package tutorial (addressbook.proto)

fileDescriptor(desc)

file descriptor for package tutorial (addressbook.proto)

2.9.10. The name method. The name method can be used to retrieve the name of the message type associated with the

descriptor.

20 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

simple name

tutorial.Person$name()

[1] "Person"

name including scope

tutorial.Person$name(full = TRUE)

[1] "tutorial.Person"

2.9.11. The containing_type method. The containing_type method retrieves the descriptor describing the message type

containing this descriptor.

tutorial.Person$containing_type()

NULL

tutorial.Person$PhoneNumber$containing_type()

descriptor for type 'tutorial.Person'

2.9.12. The field_count method. The field_count method retrieves the number of fields in this descriptor.

tutorial.Person$field_count()

[1] 4

2.9.13. The field method. The field method returns the descriptor for the specified field in this descriptor.

tutorial.Person$field(1)

descriptor for field 'name' of type 'tutorial.Person'

2.9.14. The nested_type_count method. The nested_type_count method returns the number of nested types in this descriptor.

tutorial.Person$nested_type_count()

[1] 1

2.9.15. The nested_type method. The nested_type method returns the descriptor for the specified nested type in this descriptor.

tutorial.Person$nested_type(1)

descriptor for type 'tutorial.Person.PhoneNumber'

2.9.16. The enum_type_count method. The enum_type_count method returns the number of enum types in this descriptor.

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 21

tutorial.Person$enum_type_count()

[1] 1

2.9.17. The enum_type method. The enum_type method returns the descriptor for the specified enum type in this descriptor.

tutorial.Person$enum_type(1)

descriptor for enum 'PhoneType' with 3 values

2.10. Field descriptors}. The class FieldDescriptor represents field descriptor in R. This is a wrapper S4 class around the

google::protobuf::FieldDescriptor C++ class. Table~8 describes the methods defined for the FieldDescriptor

class.

slot description

pointer External pointer to the FieldDescriptor C++ variable

name simple name of the field

full_name fully qualified name of the field

type name of the message type where the field is declared

Table 7. Description of slots for the FieldDescriptor S4 class

method section description

as.character 2.10.1 character representation of a descriptor

toString 2.10.2 character representation of a descriptor (same as as.character)

asMessage 2.10.3 return FieldDescriptorProto message.

name 2.10.4 Return the name of the field descriptor.

fileDescriptor 2.10.5 Return the fileDescriptor where this field is defined.

containing_type 2.10.6 Return the containing descriptor of this field.

is_extension 2.10.7 Return TRUE if this field is an extension.

number 2.10.8 Gets the declared tag number of the field.

type 2.10.9 Gets the type of the field.

cpp_type 2.10.10 Gets the C++ type of the field.

label 2.10.11 Gets the label of a field (optional, required, or repeated).

is_repeated 2.10.12 Return TRUE if this field is repeated.

is_required 2.10.13 Return TRUE if this field is required.

is_optional 2.10.14 Return TRUE if this field is optional.

has_default_value 2.10.15 Return TRUE if this field has a default value.

default_value 2.10.16 Return the default value.

message_type 2.10.17 Return the message type if this is a message type field.

enum_type 2.10.18 Return the enum type if this is an enum type field.

Table 8. Description of methods for the FieldDescriptor S4 class

2.10.1. The as.character method. The as.character method gives the debug string of the field descriptor.

cat(as.character(tutorial.Person$PhoneNumber))

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

}

2.10.2. The toString method. toString is an alias of as.character.

22 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

cat(tutorial.Person.PhoneNumber$toString())

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

}

2.10.3. The asMessage method. The asMessage method returns a message of type google.protobuf.FieldDescriptorProto

of the FieldDescriptor.

tutorial.PersonidasMessage()

message of type 'google.protobuf.FieldDescriptorProto' with 4 fields set

cat(as.character(tutorial.PersonidasMessage()))

name: "id"

number: 2

label: LABEL_REQUIRED

type: TYPE_INT32

2.10.4. The name method. The name method can be used to retrieve the name of the field descriptor.

simple name.

name(tutorial.Person$id)

[1] "id"

name including scope.

name(tutorial.Person$id, full=TRUE)

[1] "tutorial.Person.id"

2.10.5. The fileDescriptor method. The fileDescriptor method can be used to retrieve the file descriptor of the field descriptor.

fileDescriptor(tutorial.Person$id)

file descriptor for package tutorial (addressbook.proto)

tutorial.PersonidfileDescriptor()

file descriptor for package tutorial (addressbook.proto)

2.10.6. The containing_type method. The containing_type method can be used to retrieve the descriptor for the message

type that contains this descriptor.

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 23

containing_type(tutorial.Person$id)

descriptor for type 'tutorial.Person'

tutorial.Personidcontaining_type()

descriptor for type 'tutorial.Person'

2.10.7. The is_extension method. The is_extension method returns TRUE if this field is an extension.

is_extension(tutorial.Person$id)

[1] FALSE

tutorial.Personidis_extension()

[1] FALSE

2.10.8. The number method. The number method returns the declared tag number of this field.

number(tutorial.Person$id)

[1] 2

tutorial.Personidnumber()

[1] 2

2.10.9. The type method. The type method can be used to retrieve the type of the field descriptor.

type(tutorial.Person$id)

[1] 5

tutorial.Personidtype()

[1] 5

2.10.10. The cpp_type method. The cpp_type method can be used to retrieve the C++ type of the field descriptor.

cpp_type(tutorial.Person$id)

24 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

[1] 1

tutorial.Personidcpp_type()

[1] 1

2.10.11. The label method. Gets the label of a field (optional, required, or repeated). The label method returns the label of a

field (optional, required, or repeated). By default it returns a number value, but the optional as.string argument can be

provided to return a human readable string representation.

label(tutorial.Person$id)

[1] 2

label(tutorial.Person$id, TRUE)

[1] "LABEL_REQUIRED"

tutorial.Personidlabel(TRUE)

[1] "LABEL_REQUIRED"

2.10.12. The is_repeated method. The is_repeated method returns TRUE if this field is repeated.

is_repeated(tutorial.Person$id)

[1] FALSE

tutorial.Personidis_repeated()

[1] FALSE

2.10.13. The is_required method. The is_required method returns TRUE if this field is required.

is_required(tutorial.Person$id)

[1] TRUE

tutorial.Personidis_required()

[1] TRUE

2.10.14. The is_optional method. The is_optional method returns TRUE if this field is optional.

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 25

is_optional(tutorial.Person$id)

[1] FALSE

tutorial.Personidis_optional()

[1] FALSE

2.10.15. The has_default_value method. The has_default_value method returns TRUE if this field has a default value.

has_default_value(tutorial.Person$PhoneNumber$type)

[1] TRUE

has_default_value(tutorial.Person$PhoneNumber$number)

[1] FALSE

2.10.16. The default_value method. The default_value method returns the default value of a field.

default_value(tutorial.Person$PhoneNumber$type)

[1] 1

default_value(tutorial.Person$PhoneNumber$number)

[1] ""

2.10.17. The message_type method. The message_type method returns the message type if this is a message type field.

message_type(tutorial.Person$phone)

descriptor for type 'tutorial.Person.PhoneNumber'

tutorial.Person$phone$message_type()

descriptor for type 'tutorial.Person.PhoneNumber'

2.10.18. The enum_type method. The enum_type method returns the enum type if this is an enum type field.

enum_type(tutorial.Person$PhoneNumber$type)

26 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

descriptor for enum 'PhoneType' with 3 values

2.11. Eenum descriptors. The class EnumDescriptor is an R wrapper class around the C++ class google::protobuf::EnumDescriptor.

Table~10 describes the methods defined for the EnumDescriptor class.

slot description

pointer External pointer to the EnumDescriptor C++ variable

name simple name of the enum

full_name fully qualified name of the enum

type name of the message type where the enum is declared

Table 9. Description of slots for the EnumDescriptor S4 class

method section description

as.list 2.11.2 return a named integer vector with the values of the enum and their names.

as.character 2.11.3 character representation of a descriptor

toString 2.11.4 character representation of a descriptor (same as as.character)

asMessage 2.11.5 return EnumDescriptorProto message.

name 2.11.6 Return the name of the enum descriptor.

fileDescriptor 2.11.7 Return the fileDescriptor where this field is defined.

containing_type 2.11.8 Return the containing descriptor of this field.

length 2.11.9 Return the number of constants in this enum.

has 2.11.10 Return TRUE if this enum contains the specified named constant string.

value_count 2.11.11 Return the number of constants in this enum (same as length).

value 2.11.12 Return the EnumValueDescriptor of an enum value of specified index, name, or

number.

Table 10. Description of methods for the EnumDescriptor S4 class

2.11.1. Extracting descriptors. The $ operator, when used on a EnumDescriptor object retrieves EnumValueDescriptors that

are contained in the descriptor.

tutorial.Person$PhoneType$WORK

[1] 2

name(tutorial.Person$PhoneType$value(number=2))

[1] "WORK"

2.11.2. The as.list method. The as.list method creates a named R integer vector that captures the values of the enum and

their names.

as.list(tutorial.Person$PhoneType)

$MOBILE

[1] 0

#

$HOME

[1] 1

#

$WORK

[1] 2

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 27

2.11.3. The as.character method. The as.character method gives the debug string of the enum type.

cat(as.character(tutorial.Person$PhoneType))

enum PhoneType {

MOBILE = 0;

HOME = 1;

WORK = 2;

}

2.11.4. The toString method. The toString method gives the debug string of the enum type.

{ tostringmethod3} cat(toString(tutorial.Person$PhoneType))

2.11.5. The asMessage method. The asMessage method returns a message of type google.protobuf.EnumDescriptorProto

of the EnumDescriptor.

tutorial.Person$PhoneType$asMessage()

message of type 'google.protobuf.EnumDescriptorProto' with 2 fields set

cat(as.character(tutorial.Person$PhoneType$asMessage()))

name: "PhoneType"

value {

name: "MOBILE"

number: 0

}

value {

name: "HOME"

number: 1

}

value {

name: "WORK"

number: 2

}

2.11.6. The name method. The name method can be used to retrieve the name of the enum descriptor.

simple name.

name(tutorial.Person$PhoneType)

[1] "PhoneType"

name including scope.

name(tutorial.Person$PhoneType, full=TRUE)

[1] "tutorial.Person.PhoneType"

2.11.7. The fileDescriptor method. The fileDescriptor method can be used to retrieve the file descriptor of the enum

descriptor.

28 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

fileDescriptor(tutorial.Person$PhoneType)

file descriptor for package tutorial (addressbook.proto)

tutorial.Person$PhoneType$fileDescriptor()

file descriptor for package tutorial (addressbook.proto)

2.11.8. The containing_type method. The containing_type method can be used to retrieve the descriptor for the message

type that contains this enum descriptor.

tutorial.Person$PhoneType$containing_type()

descriptor for type 'tutorial.Person'

2.11.9. The length method. The length method returns the number of constants in this enum.

length(tutorial.Person$PhoneType)

[1] 3

tutorial.Person$PhoneType$length()

[1] 3

2.11.10. The has method. The has method returns TRUE if this enum contains the specified named constant string.

tutorial.Person$PhoneType$has("WORK")

[1] TRUE

tutorial.Person$PhoneType$has("nonexistant")

[1] FALSE

2.11.11. The value_count method. The value_count method returns the number of constants in this enum.

value_count(tutorial.Person$PhoneType)

[1] 3

tutorial.Person$PhoneType$value_count()

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 29

[1] 3

2.11.12. The value method. The value method extracts an EnumValueDescriptor. Exactly one argument of ‘index’, ‘number’,

or ‘name’ must be specified to identify which constant is desired.

tutorial.Person$PhoneType$value(1)

enum value descriptor tutorial.Person.MOBILE

tutorial.Person$PhoneType$value(name="HOME")

enum value descriptor tutorial.Person.HOME

tutorial.Person$PhoneType$value(number=1)

enum value descriptor tutorial.Person.HOME

2.12. Enum value descriptors. The class EnumValueDescriptor is an R wrapper class around the C++ class google::protobuf::EnumValueDescriptor

Table~12 describes the methods defined for the EnumValueDescriptor class.

slot description

pointer External pointer to the EnumValueDescriptor C++ variable

name simple name of the enum value

full_name fully qualified name of the enum value

Table 11. Description of slots for the EnumValueDescriptor S4 class

method section description

number 2.12.1 return the number of this EnumValueDescriptor.

name 2.12.2 Return the name of the enum value descriptor.

enum_type 2.12.3 return the EnumDescriptor type of this EnumValueDescriptor.

as.character 2.12.4 character representation of a descriptor.

toString 2.12.5 character representation of a descriptor (same as as.character).

asMessage 2.12.6 return EnumValueDescriptorProto message.

Table 12. Description of methods for the EnumValueDescriptor S4 class

2.12.1. The number method. The number method can be used to retrieve the number of the enum value descriptor.

number(tutorial.Person$PhoneType$value(number=2))

[1] 2

2.12.2. The name method. The name method can be used to retrieve the name of the enum value descriptor.

simple name.

name(tutorial.Person$PhoneType$value(number=2))

30 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

[1] "WORK"

name including scope.

name(tutorial.Person$PhoneType$value(number=2), full=TRUE)

[1] "tutorial.Person.WORK"

2.12.3. The enum_type method. The enum_type method can be used to retrieve the EnumDescriptor of the enum value

descriptor.

enum_type(tutorial.Person$PhoneType$value(number=2))

descriptor for enum 'PhoneType' with 3 values

2.12.4. The as.character method. The as.character method gives the debug string of the enum value type.

cat(as.character(tutorial.Person$PhoneType$value(number=2)))

WORK = 2;

2.12.5. The toString method. The toString method gives the debug string of the enum value type.

cat(toString(tutorial.Person$PhoneType$value(number=2)))

WORK = 2;

2.12.6. The asMessage method. The asMessage method returns a message of type google.protobuf.EnumValueDescriptorProto

of the EnumValueDescriptor.

tutorial.Person$PhoneType$value(number=2)$asMessage()

message of type 'google.protobuf.EnumValueDescriptorProto' with 2 fields set

cat(as.character(tutorial.Person$PhoneType$value(number=2)$asMessage()))

name: "WORK"

number: 2

2.13. File descriptors. File descriptors describe a whole .proto file and are represented in R with the FileDescriptor S4

class. The class contains the slots pointer, filename, and package :

Similarly to messages, the $ operator can be used to extract fields from the file descriptor (in this case, types defined in

the file), or invoke pseudo-methods. Table~14 describes the methods defined for the FileDescriptor class.

f <- tutorial.Person$fileDescriptor()

f

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 31

slot description

pointer external pointer to the FileDescriptor object of the C++ proto library. Documentation for the

FileDescriptor class is available from the protocol buffer project page: https://protobuf.dev/

reference/csharp/api-docs/class/google/protobuf/reflection/file-descriptor.html

filename fully qualified pathname of the .proto file.

package package name defined in this .proto file.

Table 13. Description of slots for the FileDescriptor S4 class

file descriptor for package tutorial (addressbook.proto)

f$Person

descriptor for type 'tutorial.Person'

method section description

name 2.13.5 Return the filename for this FileDescriptorProto.

package 2.13.6 Return the file-level package name specified in this FileDescriptorProto.

as.character 2.13.1 character representation of a descriptor.

toString 2.13.2 character representation of a descriptor (same as as.character).

asMessage 2.13.3 return FileDescriptorProto message.

as.list 2.13.4 return named list of descriptors defined in this file descriptor.

Table 14. Description of methods for the FileDescriptor S4 class

2.13.1. The as.character method. The as.character method gives the debug string of the file descriptor.

cat(as.character(fileDescriptor(tutorial.Person)))

syntax = "proto2";

#

package tutorial;

#

option java_package = "com.example.tutorial";

option java_outer_classname = "AddressBookProtos";

#

message Person {

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

}

enum PhoneType {

MOBILE = 0;

HOME = 1;

WORK = 2;

}

required string name = 1;

required int32 id = 2;

optional string email = 3;

repeated .tutorial.Person.PhoneNumber phone = 4;

extensions 100 to 199;

}

#

message AddressBook {

32 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://protobuf.dev/reference/csharp/api-docs/class/google/protobuf/reflection/file-descriptor.html
https://protobuf.dev/reference/csharp/api-docs/class/google/protobuf/reflection/file-descriptor.html
https://cran.r-project.org/package=RProtoBuf

repeated .tutorial.Person person = 1;

}

#

service EchoService {

rpc Echo(.tutorial.Person) returns (.tutorial.Person);

}

2.13.2. The toString method. toString is an alias of as.character.

cat(fileDescriptor(tutorial.Person)$toString())

syntax = "proto2";

#

package tutorial;

#

option java_package = "com.example.tutorial";

option java_outer_classname = "AddressBookProtos";

#

message Person {

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];

}

enum PhoneType {

MOBILE = 0;

HOME = 1;

WORK = 2;

}

required string name = 1;

required int32 id = 2;

optional string email = 3;

repeated .tutorial.Person.PhoneNumber phone = 4;

extensions 100 to 199;

}

#

message AddressBook {

repeated .tutorial.Person person = 1;

}

#

service EchoService {

rpc Echo(.tutorial.Person) returns (.tutorial.Person);

}

2.13.3. The asMessage method. The asMessage method returns a protocol buffer message representation of the file descriptor.

asMessage(tutorial.Person$fileDescriptor())

message of type 'google.protobuf.FileDescriptorProto' with 5 fields set

cat(as.character(asMessage(tutorial.Person$fileDescriptor())))

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 33

name: "addressbook.proto"

package: "tutorial"

message_type {

name: "Person"

field {

name: "name"

number: 1

label: LABEL_REQUIRED

type: TYPE_STRING

}

field {

name: "id"

number: 2

label: LABEL_REQUIRED

type: TYPE_INT32

}

field {

name: "email"

number: 3

label: LABEL_OPTIONAL

type: TYPE_STRING

}

field {

name: "phone"

number: 4

label: LABEL_REPEATED

type: TYPE_MESSAGE

type_name: ".tutorial.Person.PhoneNumber"

}

nested_type {

name: "PhoneNumber"

field {

name: "number"

number: 1

label: LABEL_REQUIRED

type: TYPE_STRING

}

field {

name: "type"

number: 2

label: LABEL_OPTIONAL

type: TYPE_ENUM

type_name: ".tutorial.Person.PhoneType"

default_value: "HOME"

}

}

enum_type {

name: "PhoneType"

value {

name: "MOBILE"

number: 0

}

value {

name: "HOME"

number: 1

34 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://cran.r-project.org/package=RProtoBuf

}

value {

name: "WORK"

number: 2

}

}

extension_range {

start: 100

end: 200

}

}

message_type {

name: "AddressBook"

field {

name: "person"

number: 1

label: LABEL_REPEATED

type: TYPE_MESSAGE

type_name: ".tutorial.Person"

}

}

service {

name: "EchoService"

method {

name: "Echo"

input_type: ".tutorial.Person"

output_type: ".tutorial.Person"

}

}

options {

java_package: "com.example.tutorial"

java_outer_classname: "AddressBookProtos"

}

2.13.4. The as.list method. The as.list method creates a named R list that contains the descriptors defined in this file

descriptor.

as.list(tutorial.Person$fileDescriptor())

$Person

descriptor for type 'tutorial.Person'

#

$AddressBook

descriptor for type 'tutorial.AddressBook'

#

$EchoService

2.13.5. The name method. The name method can be used to retrieve the file name associated with the file descriptor. The

optional boolean argument can be specified if full pathnames are desired.

name(tutorial.Person$fileDescriptor())

[1] "addressbook.proto"

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 35

tutorial.Person$fileDescriptor()$name(TRUE)

[1] "addressbook.proto"

2.13.6. The package method. The package method can be used to retrieve the package scope associated with this file descriptor.

tutorial.Person$fileDescriptor()$package()

[1] "tutorial"

2.14. Service descriptors. Not fully implemented. Needs to be connected to a concrete RPC implementation. The Google

Protocol Buffers C++ open-source library does not include an RPC implementation, but this can be connected easily to

others.

2.14.1. The method descriptors method. Not fully implemented. Needs to be connected to a concrete RPC implementation.

The Google Protocol Buffers C++ open-source library does not include an RPC implementation, but this can be connected

easily to others. Now that Google gRPC is released, this an obvious possibility. Contributions would be most welcome.

3. Utilities

3.1. Ccoercing objects to messages. The asMessage function uses the standard coercion mechanism of the as method,

and so can be used as a shorthand :

coerce a message type descriptor to a message

asMessage(tutorial.Person)

message of type 'google.protobuf.DescriptorProto' with 5 fields set

coerce a enum descriptor

asMessage(tutorial.Person.PhoneType)

message of type 'google.protobuf.EnumDescriptorProto' with 2 fields set

coerce a field descriptor

asMessage(tutorial.Person$email)

message of type 'google.protobuf.FieldDescriptorProto' with 4 fields set

coerce a file descriptor

asMessage(fileDescriptor(tutorial.Person))

message of type 'google.protobuf.FileDescriptorProto' with 5 fields set

36 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://grpc.io/
https://cran.r-project.org/package=RProtoBuf

3.2. Completion. The RProtoBuf package implements the .DollarNames S3 generic function (defined in the utils

package) for all classes.

Completion possibilities include pseudo method names for all classes, plus :

• field names for messages

• field names, enum types, nested types for message type descriptors

• names for enum descriptors

• names for top-level extensions

• message names for file descriptors

In the unlikely event that there is a user-defined field of exactly the same name as one of the pseudo methods, the

user-defined field shall take precedence for completion purposes by design, since the method name can always be invoked

directly.

3.3. with and within. The S3 generic with function is implemented for class Message, allowing to evaluate an R expression

in an environment that allows to retrieve and set fields of a message simply using their names.

{r withwithin message <- new(tutorial.Person, email = "foo### The com” method with(message, { ##

set the id field id <- 2

set the name field from the email field

name <- gsub("[@]", " ", email)

sprintf("%d [%s] : %s", id, email, name)

})

The difference between \texttt{with} and \texttt{within} is the value

that is returned. For \texttt{with} returns the result of the R expression,

for \texttt{within} the message is returned. In both cases, the message

is modified because \texttt{RProtoBuf} works by reference.

identical

The \texttt{identical} method is implemented to compare two messages.

``` r

m1 <- new(tutorial.Person, email = "foo@bar.com", id = 2)

m2 <- update(new(tutorial.Person) , email = "foo@bar.com", id = 2)

identical(m1, m2)

# [1] TRUE

The == operator can be used as an alias to identical.

m1 == m2

# [1] TRUE

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 37



m1 != m2

# [1] FALSE

Alternatively, the all.equal function can be used, allowing a tolerance when comparing float or double values.

3.4. merge. merge can be used to merge two messages of the same type.

m1 <- new(tutorial.Person, name = "foobar")

m2 <- new(tutorial.Person, email = "foo@bar.com")

m3 <- merge(m1, m2)

cat(as.character(m3))

# name: "foobar"

# email: "foo@bar.com"

3.5. P. The P function is an alternative way to retrieve a message descriptor using its type name. It is not often used because

of the lookup mechanism described in section~4.2.

P("tutorial.Person")

# descriptor for type 'tutorial.Person'

new(P("tutorial.Person"))

# message of type 'tutorial.Person' with 0 fields set

# but we can do this instead

tutorial.Person

# descriptor for type 'tutorial.Person'

new(tutorial.Person)

# message of type 'tutorial.Person' with 0 fields set

4. Advanced Features

4.1. Extensions. Extensions allow you to declare a range of field numbers in a message that are available for extension

types. This allows others to declare new fields for a given message type possibly in their own .proto files without having

to edit the original file. See https://github.com/murraystokely/RProtoBufUtils.

Notice that the last line of the Person message schema in addressbook.proto is the following line :

extensions 100 to 199;

This specifies that other users in other .proto files can use tag numbers between 100 and 199 for extension types of this

message.

38 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://github.com/murraystokely/RProtoBufUtils
https://cran.r-project.org/package=RProtoBuf


4.2. Descriptor lookup. The RProtoBuf package uses the user defined tables framework that is defined as part of the

RObjectTables package available from the OmegaHat project.

The feature allows RProtoBuf to install the special environment RProtoBuf:DescriptorPool in the R search path. The

environment is special in that, instead of being associated with a static hash table, it is dynamically queried by R as part of

R’s usual variable lookup. In other words, it means that when the R interpreter looks for a binding to a symbol (foo) in its

search path, it asks to our package if it knows the binding “foo”, this is then implemented by the RProtoBuf package by

calling an internal method of the protobuf C++ library.

4.3. 64-bit integer issues. R does not have native 64-bit integer support. Instead, R treats large integers as doubles which

have limited precision. For example, it loses the ability to distinguish some distinct integers:

2ˆ53 == (2ˆ53 + 1)

# [1] TRUE

Protocol Buffers are frequently used to pass data between different systems, however, and most other systems these days

have support for 64-bit integers. To work around this, RProtoBuf allows users to get and set 64-bit integer types by treating

them as characters when running on a platform with a 64-bit long long type available.

If we try to set an int64 field in R to double values, we lose precision:

4.4. Deprecated Feature: Protocol Buffer Groups. Groups are a deprecated feature that offered another way to nest

information in message definitions. For example, the TestAllTypes message type in unittest.proto includes an

OptionalGroup type:

optional group OptionalGroup = 16 {

optional int32 a = 17;

}

And although the feature is deprecated, it can be used with RProtoBuf:

test <- new(protobuf_unittest.TestAllTypes)

test$optionalgroup$a <- 3

test$optionalgroup$a

# [1] 3

cat(as.character(test))

# OptionalGroup {

# a: 3

# }

Note that groups simply combine a nested message type and a field into a single declaration. The field type is

OptionalGroup in this example, and the field name is converted to lower-case ‘optionalgroup’ so as not to conflict with the

type name.

Note that groups simply combine a nested message type and a field into a single declaration. The field type is

OptionalGroup in this example, and the field name is converted to lower-case ‘optionalgroup’ so as not to conflict with the

type name.

5. Other approaches

Saptarshi Guha wrote another package that deals with integration of Protocol Buffer messages with R, taking a different

angle: serializing any R object as a message, based on a single catch-all proto file.

Jeroen Ooms took a similar approach influenced by Saptarshi in his RProtoBufUtils package. Unlike Saptarshi’s

package, RProtoBufUtils depends on RProtoBuf for underlying message operations. This package is available at https:

//github.com/murraystokely/RProtoBufUtils.

Eddelbuettel, François and Stokely RProtoBuf Vignette | January 11, 2026 | 39

https://github.com/murraystokely/RProtoBufUtils
https://github.com/murraystokely/RProtoBufUtils


6. Plans for future releases

Protocol Buffers have a mechanism for remote procedure calls (RPC) that is not yet used by RProtoBuf, but we may one

day take advantage of this by writing a Protocol Buffer message R server, and client code as well, probably based on the

functionality of the Rserve package. Now that Google gRPC is released, this an obvious possibility. Contributions would be

most welcome.

Extensions have been implemented in RProtoBuf and have been extensively used and tested, but they are not currently

described in this vignette. Additional examples and documentation are needed for extensions.

7. Acknowedgements

Some of the design of the package is based on the design of the rJava package by Simon Urbanek (dispatch on new, S4

class structures using external pointers, etc). We would like to thank Simon for his indirect involvment on RProtoBuf.

The user defined table mechanism, implemented by Duncan Temple Lang for the purpose of the RObjectTables package

allowed the dynamic symbol lookup (see section~4.2). Many thanks to Duncan for this amazing feature.

40 | https://cran.r-project.org/package=RProtoBuf Eddelbuettel, François and Stokely

https://grpc.io/
https://cran.r-project.org/package=RProtoBuf

	Protocol Buffers
	Basic use: Protocol Buffers and R
	Importing proto files dynamically
	Creating a message
	Access and modify fields of a message
	Display messages
	Serializing messages
	Parsing messages
	Classes, Methods and Pseudo Methods
	Messages
	Retrieve fields
	Modify fields
	Message$has method
	Message$clone method
	Message$isInitialized method
	Message$serialize method
	Message$clear method
	Message$size method
	Message$bytesize method
	Message$swap method
	Message$set method
	Message$fetch method
	Message$setExtension method
	Message$getExtension method
	Message$add method
	Message$str method
	Message$as.character method
	Message$toString method
	Message$as.list method
	Message$update method
	Message$descriptor method
	Message$fileDescriptor method

	Message descriptors
	Extracting descriptors
	The new method
	The read method
	The readASCII method
	The toString method
	The as.character method
	The as.list method
	The asMessage method
	The fileDescriptor method
	The name method
	The containing_type method
	The field_count method
	The field method
	The nested_type_count method
	The nested_type method
	The enum_type_count method
	The enum_type method

	Field descriptors}
	The as.character method
	The toString method
	The asMessage method
	The name method
	The fileDescriptor method
	The containing_type method
	The is_extension method
	The number method
	The type method
	The cpp_type method
	The label method
	The is_repeated method
	The is_required method
	The is_optional method
	The has_default_value method
	The default_value method
	The message_type method
	The enum_type method

	Eenum descriptors
	Extracting descriptors
	The as.list method
	The as.character method
	The toString method
	The asMessage method
	The name method
	The fileDescriptor method
	The containing_type method
	The length method
	The has method
	The value_count method
	The value method

	Enum value descriptors
	The number method
	The name method
	The enum_type method
	The as.character method
	The toString method
	The asMessage method

	File descriptors
	The as.character method
	The toString method
	The asMessage method
	The as.list method
	The name method
	The package method

	Service descriptors
	The method descriptors method


	Utilities
	Ccoercing objects to messages
	Completion
	with and within
	merge
	P

	Advanced Features
	Extensions
	Descriptor lookup
	64-bit integer issues
	Deprecated Feature: Protocol Buffer Groups

	Other approaches
	Plans for future releases
	Acknowedgements

