

Package ‘RcmdrMisc’

January 8, 2026

Version 2.10.1

Date 2026-01-03

Encoding UTF-8

Title R Commander Miscellaneous Functions

Depends R (>= 3.5.0), utils, car (>= 3.0-0), sandwich

Imports abind, colorspace, Hmisc (>= 4.1-0), MASS, e1071, foreign, haven, readstata13, readxl, graphics, grDevices, stats, nortest, lattice

Suggests boot, datasets, carData

ByteCompile yes

Description Various statistical, graphics, and data-management functions used by the Rcmdr package in the R Commander GUI for R.

License GPL (>= 3)

URL <https://cran.r-project.org/package=RcmdrMisc>,
<https://github.com/RCmdr-Project/rcmdrmisc>

RoxygenNote 7.3.2

NeedsCompilation no

Author John Fox [aut],
Manuel Munoz-Marquez [aut, cre],
Robert Muenchen [ctb],
Dan Putler [ctb]

Maintainer Manuel Munoz-Marquez <manuel.munoz@uca.es>

Repository CRAN

Date/Publication 2026-01-08 06:11:41 UTC

Contents

RcmdrMisc-package	2
assignCluster	3
Barplot	4

binnedCounts	6
binVariable	7
colPercents	8
DeltaMethod	9
discreteCounts	10
discretePlot	11
Dotplot	12
Gumbel	13
Hist	14
indexplot	15
KMeans	17
lineplot	18
mergeRows	19
normalityTest	20
numSummary	21
partial.cor	22
piechart	23
plotBoot	24
plotDistr	25
plotMeans	27
rcorr.adjust	28
readSAS	29
readSPSS	30
readStata	31
readXL	32
reliability	34
repeatedMeasuresPlot	35
reshapeL2W	37
reshapeW2L	38
stepwise	40
summarySandwich	42

Index	44
--------------	-----------

Description

R Commander Miscellaneous Functions

Details

Package: RcmdrMisc

Type: Package

Version: 2.10.1

Date: 2026-01-03

License: GPL (>=3)

Various statistical, graphics, and data-management functions used by the Remdr package in the R Commander GUI for R.

Author(s)

John Fox

Mantainer: Manuel Munoz-Marquez <manuel.munoz@uca.es>

See Also

<https://www.r-project.org>, <https://facsocsci.mcmaster.ca/jfox/>

assignCluster

Append a Cluster Membership Variable to a Dataframe

Description

Append a Cluster Membership Variable to a Dataframe

Usage

```
assignCluster(clusterData, origData, clusterVec)
```

Arguments

clusterData	The data matrix used in the clustering solution. The data matrix may have have only a subset of the observations contained in the original dataframe.
origData	The original dataframe from which the data used in the clustering solution were taken.
clusterVec	An integer variable containing the cluster membership assignments for the observations used in creating the clustering solution. This vector can be created using cutree for clustering solutions generated by hclust or the cluster component of a list object created by kmeans or KMeans.

Details

Correctly creates a cluster membership variable that can be attached to a dataframe when only a subset of the observations in that dataframe were used to create the clustering solution. NAs are assigned to the observations of the original dataframe not used in creating the clustering solution.

This code originally by Dan Putler, used with permission.

Value

A factor (with integer labels) that indicate the cluster assignment for each observation, with an NA value given to observations not used in the clustering solution.

Author(s)

Dan Putler

See Also

[hclust](#), [cutree](#), [kmeans](#), [KMeans](#).

Examples

```
## Load USArrests data set
data(USArrests)

## Create three cluster
USArrkm3 <- KMeans(USArrests[USArrests$UrbanPop<66, ], centers=3)

## Create a variable with cluster assignment
assignCluster(USArrests[USArrests$UrbanPop<66, ], USArrests, USArrkm3$cluster)
```

Barplot

Bar Plots

Description

Bar Plots

Usage

```
Barplot(
  x,
  by,
  scale = c("frequency", "percent"),
  conditional = TRUE,
  style = c("divided", "parallel"),
  col = if (missing(by)) "gray" else rainbow_hcl(length(levels(by))),
  xlab = deparse(substitute(x)),
  legend.title = deparse(substitute(by)),
  ylab = scale,
  main = NULL,
  legend.pos = "above",
  label.bars = FALSE,
  ...
)
```

Arguments

<code>x</code>	a factor (or character or logical variable).
<code>by</code>	optionally, a second factor (or character or logical variable).
<code>scale</code>	either "frequency" (the default) or "percent".
<code>conditional</code>	if TRUE then percentages are computed separately for each value of <code>x</code> (i.e., conditional percentages of <code>by</code> within levels of <code>x</code>); if FALSE then total percentages are graphed; ignored if <code>scale="frequency"</code> .
<code>style</code>	for two-factor plots, either "divided" (the default) or "parallel".
<code>col</code>	if <code>by</code> is missing, the color for the bars, defaulting to "gray"; otherwise colors for the levels of the <code>by</code> factor in two-factor plots, defaulting to colors provided by <code>rainbow_hcl</code> in the <code>colorspace</code> package.
<code>xlab</code>	an optional character string providing a label for the horizontal axis.
<code>legend.title</code>	an optional character string providing a title for the legend.
<code>ylab</code>	an optional character string providing a label for the vertical axis.
<code>main</code>	an optional main title for the plot.
<code>legend.pos</code>	position of the legend, in a form acceptable to the <code>legend</code> function; the default, "above", puts the legend above the plot.
<code>label.bars</code>	if TRUE (the default is FALSE) show values of frequencies or percents in the bars.
<code>...</code>	arguments to be passed to the <code>barplot</code> function.

Details

Create bar plots for one or two factors scaled by frequency or percentages. In the case of two factors, the bars can be divided (stacked) or plotted in parallel (side-by-side). This function is a front end to `barplot` in the `graphics` package.

Value

Invisibly returns the horizontal coordinates of the centers of the bars.

Author(s)

John Fox

See Also

[barplot](#), [legend](#), [rainbow_hcl](#)

Examples

```
with(Mroz, Barplot(wc))
with(Mroz, Barplot(wc, col="lightblue", label.bars=TRUE))
with(Mroz, Barplot(wc, by=hc))
with(Mroz, Barplot(wc, by=hc, scale="percent", label.bars=TRUE))
with(Mroz, Barplot(wc, by=hc, style="parallel", scale="percent", legend.pos="center"))
```

binnedCounts

*Binned Frequency Distributions of Numeric Variables***Description**

Binned Frequency Distributions of Numeric Variables

Usage

```
binnedCounts(
  x,
  breaks = "Sturges",
  round.percents = 2,
  name = deparse(substitute(x))
)
```

Arguments

<code>x</code>	a numeric vector, matrix, or data frame.
<code>breaks</code>	specification of the breaks between bins, to be passed to the hist function.
<code>round.percents</code>	number of decimal places to round percentages; default is 2.
<code>name</code>	for the variable; only used for vector argument <code>x</code> .

Details

Bins a numeric variable, as for a histogram, and reports the count and percentage in each bin. The computations are done by the [hist](#) function, but no histogram is drawn. If supplied a numeric matrix or data frame, the distribution of each column is printed.

Value

For a numeric vector, invisibly returns the vector of counts, named with the end-points of the corresponding bins. For a matrix or data frame, invisibly returns NULL

Author(s)

John Fox

See Also

[hist](#), [discreteCounts](#)

Examples

```
with(Prestige, binnedCounts(income))
binnedCounts(Prestige[, 1:4])
```

binVariable	<i>Bin a Numeric Variable</i>
-------------	-------------------------------

Description

Bin a Numeric Variable

Usage

```
binVariable(  
  x,  
  bins = 4,  
  method = c("intervals", "proportions", "natural"),  
  labels = FALSE  
)
```

Arguments

x	numeric variable to be binned.
bins	number of bins.
method	one of "intervals" for equal-width bins; "proportions" for equal-count bins; "natural" for cut points between bins to be determined by a k-means clustering.
labels	if FALSE, numeric labels will be used for the factor levels; if NULL, the cut points are used to define labels; otherwise a character vector of level names.

Details

Create a factor dissecting the range of a numeric variable into bins of equal width, (roughly) equal frequency, or at "natural" cut points. The [cut](#) function is used to create the factor.

Value

A factor.

Author(s)

Dan Putler, slightly modified by John Fox (5 Dec 04 & 5 Mar 13) with the original author's permission.

See Also

[cut](#), [kmeans](#).

Examples

```
summary(binVariable(rnorm(100), method="prop", labels=letters[1:4]))
```

colPercents	<i>Row, Column, and Total Percentage Tables</i>
-------------	---

Description

Row, Column, and Total Percentage Tables

Usage

```
colPercents(tab, digits = 1)

rowPercents(tab, digits = 1)

totPercents(tab, digits = 1)
```

Arguments

tab	a matrix or higher-dimensional array of frequency counts.
digits	number of places to the right of the decimal place for percentages.

Details

Percentage a matrix or higher-dimensional array of frequency counts by rows, columns, or total frequency.

Value

Returns an array of the same size and shape as `tab` percentaged by rows or columns, plus rows or columns of totals and counts, or by the table total.

Author(s)

John Fox

Examples

```
data(Mroz) # from car package
cat("\n\n column percents:\n")
print(colPercents(xtabs(~ lfp + wc, data=Mroz)))
cat("\n\n row percents:\n")
print(rowPercents(xtabs(~ hc + lfp, data=Mroz)))
cat("\n\n total percents:\n")
print(totPercents(xtabs(~ hc + wc, data=Mroz)))
cat("\n\n three-way table, column percents:\n")
print(colPercents(xtabs(~ lfp + wc + hc, data=Mroz)))
```

DeltaMethod

Confidence Intervals by the Delta Method

Description

Confidence Intervals by the Delta Method

Usage

```
DeltaMethod(model, g, level = 0.95)

## S3 method for class 'DeltaMethod'
print(x, ...)
```

Arguments

model	a regression model; see the deltaMethod documentation.
g	the expression — that is, function of the coefficients — to evaluate, as a character string.
level	the confidence level, defaults to 0.95.
x	an object of class "DeltaMethod".
...	optional arguments to pass to <code>print</code> to show the results.

Details

`DeltaMethod` is a wrapper for the [deltaMethod](#) function in the `car` package. It computes the asymptotic standard error of an arbitrary, usually nonlinear, function of model coefficients, which are named `b0` (if there is an intercept in the model), `b1`, `b2`, etc., and based on the standard error, a confidence interval based on the normal distribution.

Value

`DeltaMethod` returns an objects of class "DeltaMethod", for which a `print` method is provided.

Author(s)

John Fox

See Also

[deltaMethod](#) function in the `car` package.

Examples

```
DeltaMethod(lm(prestige ~ income + education, data=Duncan), "b1/b2")
```

discreteCounts	<i>Frequency Distributions of Numeric Variables</i>
----------------	---

Description

Frequency Distributions of Numeric Variables

Usage

```
discreteCounts(
  x,
  round.percents = 2,
  name = deparse(substitute(x)),
  max.values = min(round(2 * sqrt(length(x))), round(10 * log10(length(x))), 100)
)
```

Arguments

<code>x</code>	a discrete numeric vector, matrix, or data frame.
<code>round.percents</code>	number of decimal places to round percentages; default is 2.
<code>name</code>	name for the variable; only used for vector argument <code>x</code> .
<code>max.values</code>	maximum number of unique values (default is the smallest of twice the square root of the number of elements in <code>x</code> , 10 times the <code>log10</code> of the number of elements, and 100); if exceeded, an error is reported.

Details

Computes the frequency and percentage distribution of a discrete numeric variable or the distributions of the variables in a numeric matrix or data frame.

Value

For a numeric vector, invisibly returns the table of counts. For a matrix or data frame, invisibly returns `NULL`.

Author(s)

John Fox

See Also

[binnedCounts](#)

Examples

```
set.seed(12345) # for reproducibility
discreteCounts(data.frame(x=rpois(51, 2), y=rpois(51, 10)))
```

discretePlot	<i>Plot Distribution of Discrete Numeric Variable</i>
--------------	---

Description

Plot Distribution of Discrete Numeric Variable

Usage

```
discretePlot(
  x,
  by,
  scale = c("frequency", "percent"),
  xlab = deparse(substitute(x)),
  ylab = scale,
  main = "",
  xlim = NULL,
  ylim = NULL,
  ...
)
```

Arguments

<code>x</code>	a numeric variable.
<code>by</code>	optionally a factor (or character or logical variable) by which to classify <code>x</code> .
<code>scale</code>	either "frequency" (the default) or "percent".
<code>xlab</code>	optional character string to label the horizontal axis.
<code>ylab</code>	optional character string to label the vertical axis.
<code>main</code>	optional main label for the plot (ignored if the <code>by</code> argument is specified).
<code>xlim</code>	two-element numeric vectors specifying the range of the x axes; if not specified, will be determined from the data.
<code>ylim</code>	two-element numeric vectors specifying the range of the y axes; if not specified, will be determined from the data; the lower limit of the y-axis should normally be 0 and a warning will be printed if it isn't.
<code>...</code>	other arguments to be passed to plot .

Details

Plot the distribution of a discrete numeric variable, optionally classified by a factor.

If the `by` argument is specified, then one plot is produced for each level of `by`; these are arranged vertically and all use the same scale for the horizontal and vertical axes.

Value

Returns `NULL` invisibly.

Author(s)

John Fox

See Also[Hist](#), [Dotplot](#).**Examples**

```
data(mtcars)
mtcars$cyl <- factor(mtcars$cyl)
with(mtcars, discretePlot(carb))
with(mtcars, discretePlot(carb, scale="percent"))
with(mtcars, discretePlot(carb, by=cyl))
```

Dotplot*Dot Plots***Description**

Dot Plots

Usage

```
Dotplot(x, by, bin = FALSE, breaks, xlim, xlab = deparse(substitute(x)))
```

Arguments

<code>x</code>	a numeric variable.
<code>by</code>	optionally a factor (or character or logical variable) by which to classify <code>x</code> .
<code>bin</code>	if <code>TRUE</code> (the default is <code>FALSE</code>), the values of <code>x</code> are binned, as in a histogram, prior to plotting.
<code>breaks</code>	breaks for the bins, in a form acceptable to the hist function; the default is "Sturges".
<code>xlim</code>	optional 2-element numeric vector giving limits of the horizontal axis.
<code>xlab</code>	optional character string to label horizontal axis.

Details

Dot plot of numeric variable, either using raw values or binned, optionally classified by a factor. Dot plots are useful for visualizing the distribution of a numeric variable in a small data set.

If the `by` argument is specified, then one dot plot is produced for each level of `by`; these are arranged vertically and all use the same scale for `x`. An attempt is made to adjust the size of the dots to the space available without making them too big.

Value

Returns NULL invisibly.

Author(s)

John Fox

See Also

[hist](#)

Examples

```
data(Duncan)
with(Duncan, Dotplot(education))
with(Duncan, Dotplot(education, bin=TRUE))
with(Duncan, Dotplot(education, by=type))
with(Duncan, Dotplot(education, by=type, bin=TRUE))
```

Description

The Gumbel Distribution

Usage

```
dgumbel(x, location = 0, scale = 1)

pgumbel(q, location = 0, scale = 1, lower.tail = TRUE)

qgumbel(p, location = 0, scale = 1, lower.tail = TRUE)

rgumbel(n, location = 0, scale = 1)
```

Arguments

<code>x</code>	vector of values of the variable.
<code>location</code>	location parameter (default 0); potentially a vector.
<code>scale</code>	scale parameter (default 1); potentially a vector.
<code>q</code>	vector of quantiles.
<code>lower.tail</code>	logical; if TRUE (the default) probabilities and quantiles correspond to $P(X \leq x)$, if FALSE to $P(X > x)$.
<code>p</code>	vector of probabilities.
<code>n</code>	number of observations. If <code>length(n) > 1</code> , the length is taken to be the number required.

Details

Density, distribution function, quantile function and random generation for the Gumbel distribution with specified location and scale parameters.

Author(s)

John Fox

References

See https://en.wikipedia.org/wiki/Gumbel_distribution for details of the Gumbel distribution.

Examples

```
x <- 100 + 5*c(-Inf, -1, 0, 1, 2, 3, Inf, NA)
dgumbel(x, 100, 5)
pgumbel(x, 100, 5)
p <- c(0, .25, .5, .75, 1, NA)
qgumbel(p, 100, 5)
summary(rgumbel(1e5, 100, 5))
```

Hist

Plot a Histogram

Description

Plot a Histogram

Usage

```
Hist(
  x,
  groups,
  scale = c("frequency", "percent", "density"),
  xlab = deparse(substitute(x)),
  ylab = scale,
  main = "",
  breaks = "Sturges",
  ...
)
```

Arguments

x	a vector of values for which a histogram is to be plotted.
groups	a factor (or character or logical variable) to create histograms by group with common horizontal and vertical scales.
scale	the scaling of the vertical axis: "frequency" (the default), "percent", or "density".
xlab	x-axis label, defaults to name of variable.
ylab	y-axis label, defaults to value of scale.
main	main title for graph, defaults to empty.
breaks	see the breaks argument for hist .
...	arguments to be passed to hist.

Details

This function is a wrapper for the [hist](#) function in the base package, permitting percentage scaling of the vertical axis in addition to frequency and density scaling.

Value

This function is primarily called for its side effect — plotting a histogram or histograms — but it also invisibly returns an object of class [hist](#) or a list of [hist](#) objects.

Author(s)

John Fox

See Also

[hist](#)

Examples

```
data(Prestige, package="car")
Hist(Prestige$income, scale="percent")
with(Prestige, Hist(income, groups=type))
```

Description

Index Plots

Usage

```
indexplot(
  x,
  groups,
  labels = seq_along(x),
  id.method = "y",
  type = "h",
  id.n = 0,
  ylab,
  legend = "topright",
  title,
  col = palette(),
  ...
)
```

Arguments

<code>x</code>	a numeric variable, a matrix whose columns are numeric variables, or a numeric data frame; if <code>x</code> is a matrix or data frame, plots vertically aligned index plots for the columns.
<code>groups</code>	an optional grouping variable, typically a factor (or character or logical variable).
<code>labels</code>	point labels; if <code>x</code> is a data frame, defaults to the row names of <code>x</code> , otherwise to the case index.
<code>id.method</code>	method for identifying points; see showLabels .
<code>type</code>	to be passed to plot .
<code>id.n</code>	number of points to identify; see showLabels .
<code>ylab</code>	label for vertical axis; if missing, will be constructed from <code>x</code> ; for a data frame, defaults to the column names.
<code>legend</code>	see legend) giving location of the legend if <code>groups</code> are specified; if <code>legend=FALSE</code> , the legend is suppressed.
<code>title</code>	title for the legend; may normally be omitted.
<code>col</code>	vector of colors for the groups.
<code>...</code>	to be passed to plot .

Details

Index plots with point identification.

Value

Returns labelled indices of identified points or (invisibly) `NULL` if no points are identified or if there are multiple variables with some missing data.

Author(s)

John Fox

See Also

[showLabels](#), [plot.default](#)

Examples

```
with(Prestige, indexplot(income, id.n=2, labels=rownames(Prestige)))
with(Prestige, indexplot(Prestige[, c("income", "education", "prestige")],
groups = Prestige$type, id.n=2))
```

KMeans

K-Means Clustering Using Multiple Random Seeds

Description

K-Means Clustering Using Multiple Random Seeds

Usage

```
KMeans(x, centers, iter.max = 10, num.seeds = 10)
```

Arguments

x	A numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).
centers	The number of clusters in the solution.
iter.max	The maximum number of iterations allowed.
num.seeds	The number of different starting random seeds to use. Each random seed results in a different k-means solution.

Details

Finds a number of k-means clustering solutions using R's `kmeans` function, and selects as the final solution the one that has the minimum total within-cluster sum of squared distances.

Value

A list with components:

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centres (centroids).

withinss The within-cluster sum of squares for each cluster.

tot.withinss The within-cluster sum of squares summed across clusters.

betweenss The between-cluster sum of squared distances.

size The number of points in each cluster.

Author(s)

Dan Putler

See Also[kmeans](#)**Examples**

```
data(USArrests)
KMeans(USArrests, centers=3, iter.max=5, num.seeds=5)
```

lineplot

*Plot a one or more lines***Description**

Plot a one or more lines

Usage`lineplot(x, ..., legend)`**Arguments**

<code>x</code>	variable giving horizontal coordinates.
<code>...</code>	one or more variables giving vertical coordinates.
<code>legend</code>	plot legend? Default is TRUE if there is more than one variable to plot and FALSE if there is just one.

Details

This function plots lines for one or more variables against another variable, typically time series against time.

Value

Produces a plot; returns NULL invisibly.

Author(s)

John Fox

Examples

```
data(Bfox)
Bfox$time <- as.numeric(rownames(Bfox))
with(Bfox, lineplot(time, menwage, womwage))
```

`mergeRows`*Function to Merge Rows of Two Data Frames*

Description

Function to Merge Rows of Two Data Frames

Usage

```
mergeRows(X, Y, common.only = FALSE, ...)  
  
## S3 method for class 'data.frame'  
mergeRows(X, Y, common.only = FALSE, ...)
```

Arguments

X	First data frame.
Y	Second data frame.
common.only	If TRUE, only variables (columns) common to the two data frame are included in the merged data set; the default is FALSE.
...	Not used.

Details

This function merges two data frames by combining their rows.

Value

A data frame containing the rows from both input data frames.

Author(s)

John Fox

See Also

For column merges and more complex merges, see [merge](#).

Examples

```
data(Duncan)  
D1 <- Duncan[1:20,]  
D2 <- Duncan[21:45,]  
D <- mergeRows(D1, D2)  
print(D)  
dim(D)
```

normalityTest	<i>Normality Tests</i>
---------------	------------------------

Description

Normality Tests

Usage

```
normalityTest(x, ...)

## S3 method for class 'formula'
normalityTest(formula, test, data, ...)

## Default S3 method:
normalityTest(
  x,
  test = c("shapiro.test", "ad.test", "cvm.test", "lillie.test", "pearson.test",
  "sf.test"),
  groups,
  vname,
  gname,
  ...
)
```

Arguments

<code>x</code>	numeric vector or formula.
<code>...</code>	any arguments to be passed down; the only useful such arguments are for the <code>pearson.test</code> function in the nortest package.
<code>formula</code>	one-sided formula of the form <code>~x</code> or two-sided formula of the form <code>x ~ groups</code> , where <code>x</code> is a numeric variable and <code>groups</code> is a factor.
<code>test</code>	quoted name of the function to perform the test.
<code>data</code>	a data frame containing the data for the test.
<code>groups</code>	optional factor to divide the data into groups.
<code>vname</code>	optional name for the variable; if absent, taken from <code>x</code> .
<code>gname</code>	optional name for the grouping factor; if absent, taken from <code>groups</code> .

Details

Perform one of several tests of normality, either for a variable or for a variable by groups. The `normalityTest` function uses the `shapiro.test` function or one of several functions in the **nortest** package. If tests are done by groups, then adjusted p-values, computed by the Holm method, are also reported (see `p.adjust`).

Value

If testing by groups, the function invisibly returns NULL; otherwise it returns an object of class "htest", which normally would be printed.

Author(s)

John Fox

See Also

[shapiro.test](#), [ad.test](#), [cvm.test](#), [lillie.test](#), [pearson.test](#), [sf.test](#).

Examples

```
data(Prestige, package="car")
with(Prestige, normalityTest(income))
normalityTest(income ~ type, data=Prestige, test="ad.test")
normalityTest(~income, data=Prestige, test="pearson.test", n.classes=5)
```

numSummary

Summary Statistics for Numeric Variables

Description

Summary Statistics for Numeric Variables

Usage

```
numSummary(
  data,
  statistics = c("mean", "sd", "se(mean)", "var", "cv", "IQR", "quantiles", "skewness",
    "kurtosis"),
  type = c("2", "1", "3"),
  quantiles = c(0, 0.25, 0.5, 0.75, 1),
  groups
)

## S3 method for class 'numSummary'
print(x, ...)
```

Arguments

data	a numeric vector, matrix, or data frame.
statistics	any of "mean", "sd", "se(mean)", "var", "cv", "IQR", "quantiles", "skewness", or "kurtosis", defaulting to c("mean", "sd", "quantiles", "IQR").

type	definition to use in computing skewness and kurtosis; see the skewness and kurtosis functions in the e1071 package. The default is "2".
quantiles	quantiles to report; default is <code>c(0, 0.25, 0.5, 0.75, 1)</code> .
groups	optional variable, typically a factor, to be used to partition the data.
x	object of class "numSummary" to print, or for CV, a numeric vector or matrix.
...	arguments to pass down from the print method.

Details

`numSummary` creates neatly formatted tables of means, standard deviations, coefficients of variation, skewness, kurtosis, and quantiles of numeric variables. `CV` computes the coefficient of variation.

Value

`numSummary` returns an object of class "numSummary" containing the table of statistics to be reported along with information on missing data, if there are any.

Author(s)

John Fox

See Also

[mean](#), [sd](#), [cv](#), [quantile](#), [skewness](#), [kurtosis](#).

Examples

```
data(Prestige)
Prestige[1, "income"] <- NA
print(numSummary(Prestige[,c("income", "education")],
                 statistics=c("mean", "sd", "quantiles", "cv", "skewness", "kurtosis")))
print(numSummary(Prestige[,c("income", "education")], groups=Prestige$type))
```

Description

Partial Correlations

Usage

```
partial.cor(X, tests = FALSE, use = c("complete.obs", "pairwise.complete.obs"))

## S3 method for class 'partial.cor'
print(x, digits = max(3, getOption("digits") - 2), ...)
```

Arguments

X	data matrix.
tests	show two-sided p-value and p-value adjusted for multiple testing by Holm's method for each partial correlation.
use	observations to use to compute partial correlations, default is "complete.obs".
x	data matrix.
digits	minimal number of _significant_ digits, see print.default .
...	arguments to pass down from the print method.

Details

Computes a matrix of partial correlations between each pair of variables controlling for the others.

Value

Returns the matrix of partial correlations, optionally with adjusted and unadjusted p-values.

Author(s)

John Fox

See Also

[cor](#)

Examples

```
data(DavisThin, package="car")
partial.cor(DavisThin)
partial.cor(DavisThin, tests=TRUE)
```

piechart

Draw a Piechart With Percents or Counts in the Labels

Description

Draw a Piechart With Percents or Counts in the Labels

Usage

```
piechart(
  x,
  scale = c("percent", "frequency", "none"),
  col = rainbow_hcl(nlevels(x)),
  ...
)
```

Arguments

- `x` a factor or other discrete variable; the segments of the pie correspond to the unique values (levels) of `x` and are proportional to the frequency counts in the various levels.
- `scale` parenthetical numbers to add to the pie-segment labels; the default is "percent".
- `col` colors for the segments; the default is provided by the `rainbow_hcl` function in the **colorspace** package.
- `...` further arguments to be passed to `pie`.

Details

`piechart` is a front-end to the standard R `pie` function, with the capability of adding percents or counts to the pie-segment labels.

Author(s)

John Fox

See Also

`pie`, `rainbow_hcl`

Examples

```
with(Duncan, piechart(type))
```

plotBoot

Plot Bootstrap Distributions

Description

Plot Bootstrap Distributions

Usage

```
plotBoot(object, confint = NULL, ...)
## S3 method for class 'boot'
plotBoot(object, confint = NULL, ...)
```

Arguments

- `object` an object of class "boot".
- `confint` an object of class "confint.boot" (or an ordinary 2-column matrix) containing confidence limits for the parameters in `object`; if `NULL` (the default), these are computed from the first argument, using the defaults for "boot" objects.
- `...` not used

Details

The function takes an object of class "boot" and creates an array of density estimates for the bootstrap distributions of the parameters.

Creates an array of adaptive kernal density plots, using [densityPlot](#) in the **car** package, showing the bootstrap distribution, point estimate ,and (optionally) confidence limits for each parameter.

Value

Invisibly returns the object produced by [densityPlot](#).

Author(s)

John Fox

See Also

[densityPlot](#)

Examples

```
## Not run:  
plotBoot(Boot(lm(prestige ~ income + education + type, data=Duncan)))  
  
## End(Not run)
```

plotDistr

Plot a probability density, mass, or distribution function.

Description

Plot a probability density, mass, or distribution function.

Usage

```
plotDistr(  
  x,  
  p,  
  discrete = FALSE,  
  cdf = FALSE,  
  regions = NULL,  
  col = "gray",  
  legend = TRUE,  
  legend.pos = "topright",  
  ...  
)
```

Arguments

<code>x</code>	horizontal coordinates
<code>p</code>	vertical coordinates
<code>discrete</code>	is the random variable discrete?
<code>cdf</code>	is this a cumulative distribution (as opposed to mass) function?
<code>regions</code>	for continuous distributions only, if non-NULL, a list of regions to fill with color <code>col</code> ; each element of the list is a pair of <code>x</code> values with the minimum and maximum horizontal coordinates of the corresponding region.
<code>col</code>	color for plot, <code>col</code> may be a single value or a vector.
<code>legend</code>	plot a legend of the regions (default TRUE).
<code>legend.pos</code>	position for the legend (see legend , default "topright").
<code>...</code>	arguments to be passed to plot.

Details

This function plots a probability density, mass, or distribution function, adapting the form of the plot as appropriate.

Value

Produces a plot; returns NULL invisibly.

Author(s)

John Fox

Examples

```

x <- seq(-4, 4, length=100)
plotDistr(x, dnorm(x), xlab="Z", ylab="p(z)", main="Standard Normal Density")
plotDistr(x, dnorm(x), xlab="Z", ylab="p(z)", main="Standard Normal Density",
          region=list(c(1.96, Inf), c(-Inf, -1.96)), col=c("red", "blue"), new = TRUE)
plotDistr(x, dnorm(x), xlab="Z", ylab="p(z)", main="Standard Normal Density",
          region=list(c(qnorm(0), qnorm(.025)), c(qnorm(.975), qnorm(1)))) # same

x <- 0:10
plotDistr(x, pbinom(x, 10, 0.5), xlab="successes", discrete=TRUE, cdf=TRUE,
          main="Binomial Distribution Function, p=0.5, n=10")

```

`plotMeans`

Plot Means for One or Two-Way Layout

Description

Plot Means for One or Two-Way Layout

Usage

```
plotMeans(  
  response,  
  factor1,  
  factor2,  
  error.bars = c("se", "sd", "conf.int", "none"),  
  level = 0.95,  
  xlab = deparse(substitute(factor1)),  
  ylab = paste("mean of", deparse(substitute(response))),  
  legend.lab = deparse(substitute(factor2)),  
  legend.pos = c("farright", "bottomright", "bottom", "bottomleft", "left", "topleft",  
    "top", "topright", "right", "center"),  
  main = "Plot of Means",  
  pch = 1:n.levs.2,  
  lty = 1:n.levs.2,  
  col = palette(),  
  connect = TRUE,  
  ...  
)
```

Arguments

<code>response</code>	Numeric variable for which means are to be computed.
<code>factor1</code>	Factor defining horizontal axis of the plot.
<code>factor2</code>	If present, factor defining profiles of means.
<code>error.bars</code>	If "se", the default, error bars around means give plus or minus one standard error of the mean; if "sd", error bars give plus or minus one standard deviation; if "conf.int", error bars give a confidence interval around each mean; if "none", error bars are suppressed.
<code>level</code>	level of confidence for confidence intervals; default is .95
<code>xlab</code>	Label for horizontal axis.
<code>ylab</code>	Label for vertical axis.
<code>legend.lab</code>	Label for legend.
<code>legend.pos</code>	Position of legend; if "farright" (the default), extra space is left at the right of the plot.
<code>main</code>	Label for the graph.

pch	Plotting characters for profiles of means.
lty	Line types for profiles of means.
col	Colours for profiles of means.
connect	connect profiles of means, default TRUE.
...	arguments to be passed to plot.

Details

Plots cell means for a numeric variable in each category of a factor or in each combination of categories of two factors, optionally along with error bars based on cell standard errors or standard deviations.

Value

The function invisibly returns NULL.

Author(s)

John Fox

See Also

[interaction.plot](#)

Examples

```
data(Moore)
with(Moore, plotMeans(conformity, fcategory, partner.status, ylim=c(0, 25)))
```

rcorr.adjust

Compute Pearson or Spearman Correlations with p-Values

Description

Compute Pearson or Spearman Correlations with p-Values

Usage

```
rcorr.adjust(
  x,
  type = c("pearson", "spearman"),
  use = c("complete.obs", "pairwise.complete.obs")
)
## S3 method for class 'rcorr.adjust'
print(x, ...)
```

Arguments

- x a numeric matrix or data frame, or an object of class "rcorr.adjust" to be printed.
- type "pearson" or "spearman", depending upon the type of correlations desired; the default is "pearson".
- use how to handle missing data: "complete.obs", the default, use only complete cases; "pairwise.complete.obs", use all cases with valid data for each pair.
- ... not used.

Details

This function uses the [rcorr](#) function in the **Hmisc** package to compute matrices of Pearson or Spearman correlations along with the pairwise p-values among the correlations. The p-values are corrected for multiple inference using Holm's method (see [p.adjust](#)). Observations are filtered for missing data, and only complete observations are used.

Value

Returns an object of class "rcorr.adjust", which is normally just printed.

Author(s)

John Fox, adapting code from Robert A. Muenchen.

See Also

[rcorr](#), [p.adjust](#).

Examples

```
data(Mroz)
print(rcorr.adjust(Mroz[,c("k5", "k618", "age", "lwg", "inc")]))
print(rcorr.adjust(Mroz[,c("k5", "k618", "age", "lwg", "inc")], type="spearman"))
```

Description

Read a SAS b7dat Data Set

Usage

```
readSAS(file, rownames = FALSE, stringsAsFactors = FALSE)
```

Arguments

file path to a SAS b7dat file.

rownames if TRUE (the default is FALSE), the first column in the data set contains row names (which must be unique—i.e., no duplicates).

stringsAsFactors if TRUE (the default is FALSE) then columns containing character data are converted to factors.

Details

`readSAS` reads a SAS “b7dat” data set, stored in a file of type `.sas7bdat`, into an R data frame; it provides a front end to the `read_sas` function in the **haven** package.

Value

a data frame.

Author(s)

John Fox

See Also

[read_sas](#)

readSPSS

Read an SPSS Data Set

Description

Read an SPSS Data Set

Usage

```
readSPSS(
  file,
  rownames = FALSE,
  stringsAsFactors = FALSE,
  tolower = TRUE,
  use.value.labels = TRUE,
  use.haven = !por
)
```

Arguments

file	path to an SPSS .sav or .por file.
rownames	if TRUE (the default is FALSE), the first column in the data set contains row names, which should be unique.
stringsAsFactors	if TRUE (the default is FALSE) then columns containing character data are converted to factors and factors are created from SPSS value labels.
tolower	change variable names to lowercase, default TRUE.
use.value.labels	if TRUE, the default, variables with value labels in the SPSS data set will become either factors or character variables (depending on the stringsAsFactors argument) with the value labels as their levels or values. As for read.spss , this is only done if there are at least as many labels as values of the variable (and values without a matching label are returned as NA).
use.haven	use read_spss from the haven package to read the file, in preference to read.spss from the foreign package; the default is TRUE for a .sav file and FALSE for a .por file.

Details

`readSPSS` reads an SPSS data set, stored in a file of type .sav or .por, into an R data frame; it provides a front end to the [read_spss](#) function in the **haven** package and the [read.spss](#) function in the **foreign** package.

Value

a data frame.

Author(s)

John Fox

See Also

[read_spss](#), [read.spss](#)

Description

Read a Stata Data Set

Usage

```
readStata(
  file,
  rownames = FALSE,
  stringsAsFactors = FALSE,
  convert.dates = TRUE
)
```

Arguments

file path to a Stata .dta file.

rownames if TRUE (the default is FALSE), the first column in the data set contains row names, which should be unique.

stringsAsFactors if TRUE (the default is FALSE) then columns containing character data are converted to factors and factors are created from Stata value labels.

convert.dates if TRUE (the default) then Stata dates are converted to R dates.

Details

`readStata` reads a Stata data set, stored in a file of type .dta, into an R data frame; it provides a front end to the [read.dta13](#) function in the **readstata13** package.

Value

a data frame.

Author(s)

John Fox

See Also

[read.dta13](#)

readXL

Read an Excel File

Description

Read an Excel File

Usage

```
readXL(  
  file,  
  rownames = FALSE,  
  header = TRUE,  
  na = "",  
  sheet = 1,  
  stringsAsFactors = FALSE  
)
```

Arguments

file	name of an Excel file including its path.
rownames	if TRUE (the default is FALSE), the first column in the spreadsheet contains row names (which must be unique—i.e., no duplicates).
header	if TRUE (the default), the first row in the spreadsheet contains column (variable) names.
na	character string denoting missing data; the default is the empty string, "".
sheet	number of the spreadsheet in the file containing the data to be read; the default is 1.
stringsAsFactors	if TRUE (the default is FALSE) then columns containing character data are converted to factors.

Details

readXL reads an Excel file, either of type .xls or .xlsx into an R data frame; it provides a front end to the [read_excel](#) function in the [readxl](#) package. [excel_sheets](#) is re-exported from the [readxl](#) package and reports the names of spreadsheets in an Excel file.

Value

a data frame.

Author(s)

John Fox

See Also

[read_excel](#), [excel_sheets](#).

reliability	<i>Reliability of a Composite Scale</i>
-------------	---

Description

Reliability of a Composite Scale

Usage

```
reliability(S)

## S3 method for class 'reliability'
print(x, digits = 4, ...)
```

Arguments

S	the covariance matrix of the items; normally, there should be at least 3 items and certainly no fewer than 2.
x	reliability object to be printed.
digits	number of decimal places.
...	not used: for compatibility with the print generic."

Details

Calculates Cronbach's alpha and standardized alpha (lower bounds on reliability) for a composite (summated-rating) scale. Standardized alpha is for the sum of the standardized items. In addition, the function calculates alpha and standardized alpha for the scale with each item deleted in turn, and computes the correlation between each item and the sum of the other items.

Value

an object of class `reliability`, which normally would be printed.

Author(s)

John Fox

References

N. Cliff (1986) Psychological testing theory. Pp. 343–349 in S. Kotz and N. Johnson, eds., *Encyclopedia of Statistical Sciences*, Vol. 7. Wiley.

See Also

[cov](#)

Examples

```
data(DavisThin)
reliability(cov(DavisThin))
```

repeatedMeasuresPlot *Plot Means for Repeated-Measures ANOVA Designs*

Description

Plot Means for Repeated-Measures ANOVA Designs

Usage

```
repeatedMeasuresPlot(
  data,
  within,
  within.names,
  within.levels,
  between.names = NULL,
  response.name = "score",
  trace,
  xvar,
  pch = 15:25,
  lty = 1:6,
  col = palette()[-1],
  plot.means = TRUE,
  print.tables = FALSE
)
```

Arguments

<code>data</code>	a data frame in wide format.
<code>within</code>	a character vector with the names of the data columns containing the repeated measures.
<code>within.names</code>	a character vector with one or two elements, of names of the within-subjects factor(s).
<code>within.levels</code>	a named list whose elements are character vectors of level names for the within-subjects factors, with names corresponding to the names of the within-subjects factors; the product of the numbers of levels should be equal to the number of repeated-measures columns in <code>within</code> .
<code>between.names</code>	a column vector of names of the between-subjects factors (if any).
<code>response.name</code>	optional quoted name for the response variable, defaults to "score".

trace	optional quoted name of the (either within- or between-subjects) factor to define profiles of means in each panel of the graph; the default is the within-subjects factor with the smaller number of levels, if there are two, or not used if there is one.
xvar	optional quoted name of the factor to define the horizontal axis of each panel; the default is the within-subjects factor with the larger number of levels.
pch	vector of symbol numbers to use for the profiles of means (i.e., levels of the trace factor); for the meaning of the defaults, see points and par .
lty	vector of line-type numbers to use for the profiles of means.
col	vector of colors for the profiles of means; the default is given by palette() , starting at the second color.
plot.means	if TRUE (the default), draw a plot of means by the factors.
print.tables	if TRUE (the default is FALSE), print tables of means and standard deviations of the response by the factors.

Details

Creates a means plot for a repeated-measures ANOVA design with one or two within-subjects factor and zero or more between-subjects factors, for data in "wide" format.

Value

A "trellis" object, which normally is just "printed" (i.e., plotted).

Author(s)

John Fox

See Also

[Anova](#), [OBrienKaiser](#)

Examples

```
repeatedMeasuresPlot(
  data=OBrienKaiser,
  within=c("pre.1", "pre.2", "pre.3", "pre.4", "pre.5",
         "post.1", "post.2", "post.3", "post.4", "post.5",
         "fup.1", "fup.2", "fup.3", "fup.4", "fup.5"),
  within.names=c("phase", "hour"),
  within.levels=list(phase=c("pre", "post", "fup"),
                     hour = c("1", "2", "3", "4", "5")),
  between.names=c("gender", "treatment"),
  response.name="improvement",
  print.tables=TRUE
)

repeatedMeasuresPlot(data=OBrienKaiser,
  within=c("pre.1", "pre.2", "pre.3", "pre.4", "pre.5",
```

```

"post.1", "post.2", "post.3", "post.4", "post.5",
"fup.1", "fup.2", "fup.3", "fup.4", "fup.5"),
within.names=c("phase", "hour"),
within.levels=list(phase=c("pre", "post", "fup"), hour = c("1", "2", "3", "4", "5")),
between.names=c("gender", "treatment"),
trace="gender") # note that gender is between subjects

repeatedMeasuresPlot(
  data=OBrienKaiser,
  within=c("fup.1", "fup.2", "fup.3", "fup.4", "fup.5"),
  within.names="hour",
  within.levels=list(hour = c("1", "2", "3", "4", "5")),
  between.names=c("treatment", "gender"),
  response.name="improvement")

```

reshapeL2W*Reshape Repeated-Measures Data from Long to Wide Format*

Description

Reshape Repeated-Measures Data from Long to Wide Format

Usage

```
reshapeL2W(data, within, id, varying, ignore)
```

Arguments

<code>data</code>	a data frame in long format.
<code>within</code>	a character vector of names of the within-subjects factors in the long form of the data; there must be at least one within-subjects factor.
<code>id</code>	the (character) name of the variable representing the subject identifier in the long form of the data set; that is, rows with the same <code>id</code> belong to the same subject.
<code>varying</code>	a character vector of names of the occasion-varying variables in the long form of the data; there must be at least one such variable, and typically there will be just one, an occasion-varying response variable.
<code>ignore</code>	an optional character vector of names of variables in the long form of the data to exclude from the wide data set.

Details

A simple front-end to the standard R `reshape` function. The data are assumed to be in "long" format, with several rows for each subject.

Between-subjects variables don't vary by occasions for each subject. Variables that aren't listed explicitly in the arguments to the function are assumed to be between-subjects variables, and a warning is printed if their values aren't invariant for each subject (see the `ignore` argument).

Within-subjects factors vary by occasions for each subject, and it is assumed that the within-subjects design is regular, completely crossed, and balanced, so that the same combinations of within-subjects factors are observed for each subject.

Occasion-varying variables, as their name implies, (potentially) vary by occasions for each subject, and include one or more "response" variables, possibly along with occasion-varying covariates; these variables can be factors as well as numeric variables.

The data are reshaped so that there is one row per subject, with columns for the between-subjects variables, and each occasion-varying variable as multiple columns representing the combinations of levels of the within-subjects factors. The names of the columns for the occasion-varying variables are composed from the combinations of levels of the within-subjects factors and from the names of the occasion-varying variables. If a subject in the long form of the data set lacks any combination of levels of within-subjects factors, he or she is excluded (with a warning) from the wide form of the data.

Value

a data frame in "wide" format, with one row for each subject, columns representing the between subjects factors, and columns for the occasion-varying variable(s) for each combination of within-subjects factors.

Author(s)

John Fox

See Also

[reshape](#), [OBrienKaiser](#), [OBrienKaiserLong](#).

Examples

```
OBW <- reshapeL2W(OBrienKaiserLong, within=c("phase", "hour"), id="id", varying="score")
brief(OBW)
# should be the same as OBrienKaiser in the carData package:
all.equal(OBrienKaiser, OBW, check.attributes=FALSE)
```

Description

Reshape Repeated-Measures Data from Wide to Long Format

Usage

```
reshapeW2L(data, within, levels, varying, ignore, id = "id")
```

Arguments

data	wide version of data set.
within	a character vector of names for the crossed within-subjects factors to be created in the long form of the data.
levels	a named list of character vectors, each element giving the names of the levels for a within-subjects factor; the names of the list elements are the names of the within-subjects factor, given in the within argument.
varying	a named list of the names of variables in the wide data set specifying the occasion-varying variables to be created in the long data set; each element in the list is named for an occasion-varying variable and is a character vector of column names in the wide data for that occasion-varying variable.
ignore	a character vector of names of variables in the wide data to be dropped in the long form of the data.
id	the (character) name of the subject ID variable to be created in the long form of the data, default "id".

Details

The data are assumed to be in "wide" format, with a single row for each subject, and different columns for values of one or more repeated-measures variables classified by one or more within-subjects factors.

Between-subjects variables don't vary by occasions for each subject. Variables that aren't listed explicitly in the arguments to the function are assumed to be between-subjects variables. The values of these variables are duplicated in each row pertaining to a given subject.

Within-subjects factors vary by occasions for each subject, and it is assumed that the within-subjects design is regular, completely crossed, and balanced, so that the same combinations of within-subjects factors are observed for each subject. There are typically one or two within-subject factors.

Occasion-varying variables, as their name implies, (potentially) vary by occasions for each subject, and include one or more "response" variables, possibly along with occasion-varying covariates; these variables can be factors as well as numeric variables. Each occasion-varying variable is encoded in multiple columns of the wide form of the data and in a single column in the long form. There is typically one occasion-varying variable, a response variable.

There is one value of each occasion-varying variable for each combination of levels of the within-subjects factors. Thus, the number of variables in the wide data for each occasion-varying variable must be equal to the product of levels of the within-subjects factors, with the levels of the within-subjects factors varying most quickly from right to left in the within argument.

Value

a data frame in "long" format, with multiple rows for each subject (equal to the number of combinations of levels of the within-subject factors) and one column for each between-subjects and occasion-varying variable.

Author(s)

John Fox

See Also

[reshapeL2W](#), [reshape](#), [OBrienKaiser](#), [OBrienKaiserLong](#).

Examples

```
OBrienKaiserL <- reshapeW2L(OBrienKaiser, within=c("phase", "hour"),
  levels=list(phase=c("pre", "post", "fup"), hour=1:5),
  varying=list(score=c("pre.1", "pre.2", "pre.3", "pre.4", "pre.5",
    "post.1", "post.2", "post.3", "post.4", "post.5",
    "fup.1", "fup.2", "fup.3", "fup.4", "fup.5")))
brief(OBrienKaiserL, c(15, 15))
m1 <- Tapply(score ~ phase + hour + treatment + gender, mean, data=OBrienKaiserL)
m2 <- Tapply(score ~ phase + hour + treatment + gender, mean, data=OBrienKaiserLong)
all.equal(m1, m2) # should be equal

OBrienKaiserL2 <- reshapeW2L(OBrienKaiser, within="phase",
  levels=list(phase=c("pre", "post", "fup")),
  ignore=c("pre.2", "pre.3", "pre.4", "pre.5",
    "post.2", "post.3", "post.4", "post.5",
    "fup.2", "fup.3", "fup.4", "fup.5"),
  varying=list(score=c("pre.1", "post.1", "fup.1")))
brief(OBrienKaiserL2, c(6, 6))
m1 <- Tapply(score ~ phase + treatment + gender, mean, data=OBrienKaiserL2)
m2 <- Tapply(score ~ phase + treatment + gender, mean, data=subset(OBrienKaiserLong, hour==1))
all.equal(m1, m2) # should be equal
```

stepwise

*Stepwise Model Selection***Description**

Stepwise Model Selection

Usage

```
stepwise(
  mod,
  direction = c("backward/forward", "forward/backward", "backward", "forward"),
  criterion = c("BIC", "AIC"),
  ...
)
```

Arguments

mod a model object of a class that can be handled by `stepAIC`.

direction	if "backward/forward" (the default), selection starts with the full model and eliminates predictors one at a time, at each step considering whether the criterion will be improved by adding back in a variable removed at a previous step; if "forward/backwards", selection starts with a model including only a constant, and adds predictors one at a time, at each step considering whether the criterion will be improved by removing a previously added variable; "backwards" and "forward" are similar without the reconsideration at each step.
criterion	for selection. Either "BIC" (the default) or "AIC". Note that <code>stepAIC</code> labels the criterion in the output as "AIC" regardless of which criterion is employed.
...	arguments to be passed to <code>stepAIC</code> .

Details

This function is a front end to the `stepAIC` function in the **MASS** package.

Value

The model selected by `stepAIC`.

Author(s)

John Fox

References

W. N. Venables and B. D. Ripley *Modern Applied Statistics Statistics with S, Fourth Edition* Springer, 2002.

See Also

`stepAIC`

Examples

```
## adapted from stepAIC in MASS
## Assigning bwt to the global environment is required to run this example within
## the browser-based help system. In other contexts, standard assignment can be used.
if (require(MASS)){
  data(birthwt)
  bwt <- with(birthwt, {
    race <- factor(race, labels = c("white", "black", "other"))
    ptd <- factor(ptl > 0)
    ftv <- factor(ftv)
    levels(ftv)[-c(1:2)] <- "2+"
    data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0), ptd,
               ht = (ht > 0), ui = (ui > 0), ftv)
  })
  birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
  print(stepwise(birthwt.glm, trace = FALSE))
  print(stepwise(birthwt.glm, direction="forward/backward"))
}
```

```
## wrapper for stepAIC in the MASS package
```

summarySandwich

Linear Model Summary with Sandwich Standard Errors

Description

Linear Model Summary with Sandwich Standard Errors

Usage

```
summarySandwich(model, ...)

## S3 method for class 'lm'
summarySandwich(model, type = c("hc3", "hc0", "hc1", "hc2", "hc4", "hac"), ...)
```

Arguments

model	a linear-model object.
...	arguments to be passed to <code>hccm</code> or <code>vcovHAC</code> .
type	type of sandwich standard errors to be computed; see <code>hccm</code> in the <code>car</code> package, and <code>vcovHAC</code> in the <code>sandwich</code> package, for details.

Details

`summarySandwich` creates a summary of a "`lm`" object similar to the standard one, with sandwich estimates of the coefficient standard errors in the place of the usual OLS standard errors, also modifying as a consequence the reported t-tests and p-values for the coefficients. Standard errors may be computed from a heteroscedasticity-consistent ("HC") covariance matrix for the coefficients (of several varieties), or from a heteroscedasticity-and-autocorrelation-consistent ("HAC") covariance matrix.

Value

an object of class "`summary.lm`", with sandwich standard errors substituted for the usual OLS standard errors; the omnibus F-test is similarly adjusted.

Author(s)

John Fox

See Also

`hccm`, `vcovHAC`.

Examples

```
mod <- lm(prestige ~ income + education + type, data=Prestige)
summary(mod)
summarySandwich(mod)
```

Index

- * **distribution**
 - Gumbel, 13
- * **hplot**
 - Barplot, 4
 - discretePlot, 11
 - Dotplot, 12
 - Hist, 14
 - indexplot, 15
 - lineplot, 18
 - piechart, 23
 - plotBoot, 24
 - plotDistr, 25
 - plotMeans, 27
 - repeatedMeasuresPlot, 35
- * **htest**
 - normalityTest, 20
 - rcorr.adjust, 28
- * **manip**
 - binVariable, 7
 - mergeRows, 19
 - readSAS, 29
 - readSPSS, 30
 - readStata, 31
 - readXL, 32
 - reshapeL2W, 37
 - reshapeW2L, 38
- * **misc**
 - colPercents, 8
 - KMeans, 17
 - numSummary, 21
 - partial.cor, 22
 - reliability, 34
 - summarySandwich, 42
- * **models**
 - DeltaMethod, 9
 - stepwise, 40
- * **univar**
 - binnedCounts, 6
 - discreteCounts, 10

- ad.test, 21
- Anova, 36
- assignCluster, 3
- Barplot, 4
- barplot, 5
- binnedCounts, 6, 10
- binVariable, 7
- colPercents, 8
- cor, 23
- cov, 34
- cut, 7
- cutree, 4
- cv, 22
- cvm.test, 21
- DeltaMethod, 9
- deltaMethod, 9
- densityPlot, 25
- dgumbel (Gumbel), 13
- discreteCounts, 6, 10
- discretePlot, 11
- Dotplot, 12, 12
- excel_sheets, 33
- Gumbel, 13
- hccm, 42
- hclust, 4
- Hist, 12, 14
- hist, 6, 12, 13, 15
- indexplot, 15
- interaction.plot, 28
- KMeans, 4, 17
- kmeans, 4, 7, 18
- kurtosis, 22
- legend, 5, 16, 26

lillie.test, 21
lineplot, 18
mean, 22
merge, 19
mergeRows, 19
normalityTest, 20
numSummary, 21
OBrienKaiser, 36, 38, 40
OBrienKaiserLong, 38, 40
p.adjust, 20, 29
par, 36
partial.cor, 22
pearson.test, 20, 21
pgumbel (Gumbel), 13
pie, 24
piechart, 23
plot, 11, 16
plot.default, 17
plotBoot, 24
plotDistr, 25
plotMeans, 27
points, 36
print.default, 23
print.DeltaMethod (DeltaMethod), 9
print.numSummary (numSummary), 21
print.partial.cor (partial.cor), 22
print.rcorr.adjust (rcorr.adjust), 28
print.reliability (reliability), 34
qgumbel (Gumbel), 13
quantile, 22
rainbow_hcl, 5, 24
RcmdrMisc-package, 2
rcorr, 29
rcorr.adjust, 28
read.dta13, 32
read.spss, 31
read_excel, 33
read_sas, 30
read_spss, 31
readSAS, 29
readSPSS, 30
readStata, 31
readXL, 32
reliability, 34
repeatedMeasuresPlot, 35
reshape, 37, 38, 40
reshapeL2W, 37, 40
reshapeW2L, 38
rgumbel (Gumbel), 13
rowPercents (colPercents), 8
sd, 22
sf.test, 21
shapiro.test, 20, 21
showLabels, 16, 17
skewness, 22
stepAIC, 41
stepwise, 40
summarySandwich, 42
totPercents (colPercents), 8
vcovHAC, 42