
Package ‘RcppCCTZ’
January 8, 2026

Type Package

Title 'Rcpp' Bindings for the 'CCTZ' Library

Version 0.2.14

Date 2026-01-08

Description 'Rcpp' access to the 'CCTZ' timezone library is provided. 'CCTZ' is
a C++ library for translating between absolute and civil times using the rules
of a time zone. The 'CCTZ' source code, released under the Apache 2.0 License,
is included in this package. See <https://github.com/google/cctz> for more
details.

License GPL (>= 2)

Imports Rcpp (>= 0.11.0)

Suggests tinytest

LinkingTo Rcpp

SystemRequirements A 64-bit POSIX OS such as Linux or OS X with IANA
time zone data in /usr/share/zoneinfo. On Windows the zoneinfo
included with R is used; and time parsing support is enabled
via a backport of std::get_time from the LLVM libc++ library.

URL https://github.com/eddelbuettel/rcppcctz,

https://dirk.eddelbuettel.com/code/rcpp.cctz.html

BugReports https://github.com/eddelbuettel/rcppcctz/issues

RoxygenNote 6.0.1

NeedsCompilation yes

Author Dirk Eddelbuettel [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6419-907X>),

Bradley White [aut] (Principal author of CCTZ)

Maintainer Dirk Eddelbuettel <edd@debian.org>

Repository CRAN

Date/Publication 2026-01-08 16:20:21 UTC

1

https://github.com/google/cctz
https://github.com/eddelbuettel/rcppcctz
https://dirk.eddelbuettel.com/code/rcpp.cctz.html
https://github.com/eddelbuettel/rcppcctz/issues
https://orcid.org/0000-0001-6419-907X

2 RcppCCTZ-package

Contents

RcppCCTZ-package . 2
formatDatetime . 3
parseDatetime . 4
toTz . 5
tzDiff . 6

Index 8

RcppCCTZ-package A Simple Wrapper to the CCTZ Library for Time Zone Calculations

Description

CCTZ contains two underlying libraries which build on the C++11 library chrono. The first covers
civil time for computing with human-scale time such as dates and time. It is header-only. The
second covers time zones and allow translation between absolute time and civil time.

RcppCCTZ brings CCTZ to R by means of Rcpp.

Details

CCTZ requires a valid timezone library as well as recent-enough compiler to cope with C++11.

Windows is supported since version 0.2.0 via the g++-4.9 compiler, but note that it provides an
incomplete C++11 library. The std::get_time function was ported from libc++ of the LLVM to
enable this. However, string formatting is more limited as the libc++ library used by g++-4.9 does
not provide complete C++11 semantics. As one example, CCTZ frequently uses "%F %T" which do
not work on Windows; one has to use "%Y-%m-%d %H:%M:%S".

Author(s)

Dirk Eddelbuettel wrote the package; Dan Dillon ported std::get_time from LLVM’s libc++;
Bradley White and Greg Miller wrote the underlying CCTZ library.

Maintainer: Dirk Eddelbuettel <edd@debian.org>

References

The CCZT repository at https://github.com/google/cctz has additional information.

Examples

helloMoon()

https://github.com/google/cctz

formatDatetime 3

formatDatetime Format a Datetime vector as a string vector

Description

Format a Datetime vector

Usage

formatDatetime(dtv, fmt = "%Y-%m-%dT%H:%M:%E*S%Ez", lcltzstr = "UTC",
tgttzstr = "UTC")

formatDouble(secv, nanov, fmt = "%Y-%m-%dT%H:%M:%E*S%Ez",
tgttzstr = "UTC")

Arguments

dtv A Datetime vector object to be formatted

fmt A string with the format, which is based on strftime with some extensions; see
the CCTZ documentation for details.

lcltzstr The local timezone object for creation the CCTZ timepoint

tgttzstr The target timezone for the desired format

secv A numeric vector with seconds since the epoch

nanov A numeric vector with nanoseconds since the epoch, complementing secv.

Details

An alternative to format.POSIXct based on the CCTZ library. The formatDouble variant uses
two vectors for seconds since the epoch and fractional nanoseconds, respectively, to provide fuller
resolution.

Value

A string vector with the requested format of the datetime objects

Note

Windows is now supported via the g++-4.9 compiler, but note that it provides an incomplete C++11
library. This means we had to port a time parsing routine, and that string formatting is more limited.
As one example, CCTZ frequently uses "%F %T" which do not work on Windows; one has to use
"%Y-%m-%d %H:%M:%S".

Author(s)

Dirk Eddelbuettel

4 parseDatetime

Examples

Not run:
now <- Sys.time()
formatDatetime(now) # current (UTC) time, in full precision RFC3339
formatDatetime(now, tgttzstr="America/New_York") # same but in NY
formatDatetime(now + 0:4) # vectorised

End(Not run)

parseDatetime Parse a Datetime vector from a string vector

Description

Parse a Datetime vector

Usage

parseDatetime(svec, fmt = "%Y-%m-%dT%H:%M:%E*S%Ez", tzstr = "UTC")

parseDouble(svec, fmt = "%Y-%m-%dT%H:%M:%E*S%Ez", tzstr = "UTC")

Arguments

svec A string vector from which a Datetime vector is to be parsed

fmt A string with the format, which is based on strftime with some extensions; see
the CCTZ documentation for details.

tzstr The local timezone for the desired format

Details

An alternative to as.POSIXct based on the CCTZ library

Value

A Datetime vector object for parseDatetime, a numeric matrix with two columns for seconds and
nanoseconds for parseDouble

Author(s)

Dirk Eddelbuettel

toTz 5

Examples

ds <- getOption("digits.secs")
options(digits.secs=6) # max value
parseDatetime("2016-12-07 10:11:12", "%Y-%m-%d %H:%M:%S") # full seconds
parseDatetime("2016-12-07 10:11:12.123456", "%Y-%m-%d %H:%M:%E*S") # fractional seconds
parseDatetime("2016-12-07T10:11:12.123456-00:00") ## default RFC3339 format
parseDatetime("20161207 101112.123456", "%E4Y%m%d %H%M%E*S") # fractional seconds
now <- trunc(Sys.time())
parseDatetime(formatDatetime(now + 0:4)) # vectorised
options(digits.secs=ds)

toTz Shift datetime object from one timezone to another

Description

Change from one given timezone to another.

Usage

toTz(dtv, tzfrom, tzto, verbose = FALSE)

Arguments

dtv A DatetimeVector object specifying when the difference is to be computed.

tzfrom The first time zone as a character vector.

tzto The second time zone as a character vector.

verbose A boolean toggle indicating whether more verbose operations are desired, de-
fault is FALSE.

Details

Time zone offsets vary by date, and this helper function converts a Datetime object from one given
timezone to another.

Value

A DatetimeVector object with the given (civil time) determined by the incoming object (and its
timezone) shifted to the target timezone.

Author(s)

Dirk Eddelbuettel

6 tzDiff

Examples

Not run:
toTz(Sys.time(), "America/New_York", "Europe/London")
this redoes the 'Armstrong on the moon in NYC and Sydney' example
toTz(ISOdatetime(1969,7,20,22,56,0,tz="UTC"), "America/New_York", "Australia/Sydney", verbose=TRUE)
we can also explicitly format for Sydney time
format(toTz(ISOdatetime(1969,7,20,22,56,0,tz="UTC"),

"America/New_York", "Australia/Sydney", verbose=TRUE),
tz="Australia/Sydney")

End(Not run)

tzDiff Return difference between two time zones at a given date.

Description

Difference between two given timezones at a specified date.

Usage

tzDiff(tzfrom, tzto, dt, verbose = FALSE)

Arguments

tzfrom The first time zone as a character vector.

tzto The second time zone as a character vector.

dt A Datetime object specifying when the difference is to be computed.

verbose A boolean toggle indicating whether more verbose operations are desired, de-
fault is FALSE.

Details

Time zone offsets vary by date, and this helper function computes the difference (in hours) between
two time zones for a given date time.

Value

A numeric value with the difference (in hours) between the first and second time zone at the given
date

Author(s)

Dirk Eddelbuettel

tzDiff 7

Examples

Not run:
simple call: difference now
tzDiff("America/New_York", "Europe/London", Sys.time())
tabulate difference for every week of the year
table(sapply(0:52, function(d) tzDiff("America/New_York", "Europe/London",

as.POSIXct(as.Date("2016-01-01") + d*7))))

End(Not run)

Index

∗ package
RcppCCTZ-package, 2

example0 (RcppCCTZ-package), 2
example1 (RcppCCTZ-package), 2
example2 (RcppCCTZ-package), 2
example3 (RcppCCTZ-package), 2
example4 (RcppCCTZ-package), 2
exampleFormat (RcppCCTZ-package), 2

formatDatetime, 3
formatDouble (formatDatetime), 3

helloMoon (RcppCCTZ-package), 2

parseDatetime, 4
parseDouble (parseDatetime), 4

RcppCCTZ (RcppCCTZ-package), 2
RcppCCTZ-package, 2

toTz, 5
tzDiff, 6

8

	RcppCCTZ-package
	formatDatetime
	parseDatetime
	toTz
	tzDiff
	Index

