Package ‘T4transport’

January 11, 2026

Type Package
Title Tools for Computational Optimal Transport
Version 0.1.8

Description Transport theory has seen much success in many fields of statistics and machine learn-
ing. We provide a variety of algorithms to compute Wasserstein distance, barycenter, and oth-
ers. See Peyré and Cuturi (2019) <doi:10.1561/2200000073> for the general exposi-
tion to the study of computational optimal transport.

License MIT + file LICENSE

Imports Rcpp (>= 1.1.0), Rdpack, stats, utils
LinkingTo Rcpp, ReppArmadillo

Encoding UTF-8

URL https://www.kisungyou.com/T4transport/
RoxygenNote 7.3.3

RdMacros Rdpack

Depends R (>=2.10)

Suggests knitr, rmarkdown, ggplot2, mlbench
SystemRequirements C++20

VignetteBuilder knitr

NeedsCompilation yes

Author Kisung You [aut, cre] (ORCID: <https://orcid.org/0000-0002-8584-459X>)
Maintainer Kisung You <kisung.you@outlook.com>
Repository CRAN

Date/Publication 2026-01-11 03:30:02 UTC

Contents

https://doi.org/10.1561/2200000073
https://www.kisungyou.com/T4transport/
https://orcid.org/0000-0002-8584-459X

2 digit3
ecdfmed Lo 5
fharyl4C e 7
fbary15B . . . e e 9
fiedler 11
gaussbaryld L e 12
gaussbarypd L. 14
gaussmedld 15
gaussmedpd L L L e 17
gaussvis2d L e 18
gwbary ..o e 20
WISt . . . L e e e e 21
histbary L 23
histbaryl4C e 25
histbaryISB o e e e 26
histdist 28
histinterp e e e e e e e 29
histmed 30
IMagebary e e e e e e e 32
imagebaryl4C 34
imagebaryISB L. 35
imagediSt L e 37
IMageinterp e e e 38
imagemed 39
IME2MEASUTE .« . v v v v v e 41
IPOL . o e 42
PWhbary ..o e e e 44
PWAISt . . L e e e e e 47
rbary23L . .o L 49
baryGD L e e e 50
rmedIRLS 52
medWB 54
sinkhorn L 56
SWAISt e e 58
Wassboot Lo e 59
WAasSerstein e e e 61

Index 64

digit3 MNIST Images of Digit 3

Description

digit3 contains 2000 images from the famous MNIST dataset of digit 3. Each element of the list
is an image represented as an (28 x 28) matrix that sums to 1. This normalization is conventional
and it does not hurt its visualization via a basic ‘image()‘ function.

digits 3

Usage

data(digit3)

Format

a length-2000 named list "digit3” of (28 x 28) matrices.

Examples

LOAD THE DATA
data(digit3)

SHOW A FEW

opar <- par(no.readonly=TRUE)

par(mfrow=c(2,4), pty="s")

for (i in 1:8){
image(digit3[[i]])

3

par(opar)

digits MNIST Images of All Digits

Description

digits contains 5000 images from the famous MNIST dataset of all digits, consisting of 500 im-
ages per digit class from 0 to 9. Each digit image is represented as an (28 x 28) matrix that sums
to 1. This normalization is conventional and it does not hurt its visualization via a basic ‘image()*
function.

Usage

data(digits)

Format

anamed list "digits” containing

image length-5000 list of (28 x 28) image matrices.
label length-5000 vector of class labels from O to 9.

4 ecdtbary

Examples

LOAD THE DATA
data(digits)

SHOW A FEW
Select 9 random images
subimgs = digits$image[sample(1:5000, 9)]

opar <- par(no.readonly=TRUE)
par(mfrow=c(3,3), pty="s")
for (i in 1:9){

image (subimgs[[i]])
}
par(opar)
ecdfbary Barycenter of Empirical CDFs
Description
Given a collection of empirical cumulative distribution functions F*(z) fori = 1, ..., N, compute

the Wasserstein barycenter of order 2. This is obtained by taking a weighted average on a set of
corresponding quantile functions.

Usage
ecdfbary(ecdfs, weights = NULL, ...)
Arguments
ecdfs a length-V list of "ecdf” objects by [stats::ecdf()].
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length- N vector of nonnegative weights.
extra parameters including
abstol stopping criterion for iterations (default: le-8).
maxiter maximum number of iterations (default: 496).
Value

an "ecdf” object of the Wasserstein barycenter.

ecdfmed 5
Examples
__
Two Gaussians
#
Two Gaussian distributions are parametrized as follows.
Type 1 (mean, var) = (-4, 1/4)
Type 2 : (mean, var) = (+4, 1/4)
__
GENERATE ECDFs
ecdf_list = list()
ecdf_list[[1]] = stats::ecdf(stats::rnorm(200, mean=-4, sd=0.5))
ecdf_list[[2]] = stats::ecdf(stats::rnorm(200, mean=+4, sd=0.5))
COMPUTE THE BARYCENTER OF EQUAL WEIGHTS
emean = ecdfbary(ecdf_list)
QUANTITIES FOR PLOTTING
x_grid = seq(from=-8, to=8, length.out=100)
y_typel = ecdf_list[[1]1]1(x_grid)
y_type2 = ecdf_list[[2]]1(x_grid)
y_bary = emean(x_grid)
VISUALIZE
opar <- par(no.readonly=TRUE)
plot(x_grid, y_bary, lwd=3, col="red", type="l1",
main="Barycenter"”, xlab="x", ylab="Fn(x)")
lines(x_grid, y_typel, col="gray50", 1lty=3)
lines(x_grid, y_type2, col="gray50", lty=3)
par (opar)
ecdfmed Wasserstein Median of Empirical CDFs
Description
Given a collection of empirical cumulative distribution functions F*(x) fori = 1, ..., N, compute

the Wasserstein median. This is obtained by a functional variant of the Weiszfeld algorithm on a set
of quantile functions.

Usage
ecdfmed(ecdfs, weights = NULL, ...)
Arguments
ecdfs a length-V list of "ecdf” objects by [stats::ecdf()].
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it

should be a length- N vector of nonnegative weights.

6 ecdfmed

extra parameters including

abstol stopping criterion for iterations (default: 1e-8).
maxiter maximum number of iterations (default: 496).

Value

an "ecdf” object of the Wasserstein median.

Examples
__
Tree Gaussians
#
Three Gaussian distributions are parametrized as follows.
Type 1 : (mean, sd) = (-4, 1)
Type 2 : (mean, sd) = (@, 1/5)
Type 3 : (mean, sd) = (+6, 1/2)

GENERATE ECDFs

ecdf_list = list()

ecdf_list[[1]] = stats::ecdf(stats::rnorm(200, mean=-4, sd=1))
ecdf_list[[2]] = stats::ecdf(stats::rnorm(200, mean=+4, sd=0.2))
ecdf_list[[3]] = stats::ecdf(stats::rnorm(200, mean=+6, sd=0.5))

COMPUTE THE MEDIAN
emeds = ecdfmed(ecdf_list)

COMPUTE THE BARYCENTER
emean = ecdfbary(ecdf_list)

QUANTITIES FOR PLOTTING

x_grid = seq(from=-8, to=10, length.out=500)
y_typel = ecdf_list[[1]]1(x_grid)

y_type2 = ecdf_list[[2]](x_grid)

y_type3 = ecdf_list[[3]1]1(x_grid)

y_bary = emean(x_grid)
y_meds = emeds(x_grid)

VISUALIZE

opar <- par(no.readonly=TRUE)

plot(x_grid, y_bary, lwd=3, col="orange"”, type="1",
main="Wasserstein Median & Barycenter”,
xlab="x", ylab="Fn(x)", lty=2)

lines(x_grid, y_meds, lwd=3, col="blue”, lty=2)

lines(x_grid, y_typel, col="gray50", 1lty=3)

lines(x_grid, y_type2, col="gray50", lty=3)

lines(x_grid, y_type3, col="gray50", 1lty=3)

legend("topleft”, legend=c(”"Median”,"Barycenter”),

1wd=3, 1ty=2, col=c("blue”,"orange"))
par(opar)

fbary14C

fbary14C

Fixed-Support Barycenter by Cuturi & Doucet (2014)

Description

Given K empirical measures fi1, i2, . - -

, e of possibly different cardinalities, wasserstein barycen-

ter p* is the solution to the following problem

K

jzzﬂkle(u7uk)
k=1

where 7;,’s are relative weights of empirical measures. Here we assume either (1) support atoms in
Euclidean space are given, or (2) all pairwise distances between atoms of the fixed support and em-
pirical measures are given. Algorithmically, it is a subgradient method where the each subgradient
is approximated using the entropic regularization.

Usage
fbary14C(

)

support,

atoms,

marginals = NULL,
weights = NULL,
lambda = 0.1,

p =2,

fbary14Cdist(

distances,
marginals = NULL,

weights
lambda

p =2,

Arguments

support
atoms

marginals

NULL,

an (N x P) matrix of rows being atoms for the fixed support.
a length-K list where each element is an (N, x P) matrix of atoms.

marginal distribution for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length-K list where each
element is a length-V; vector of nonnegative weights that sum to 1.

8 fbary14C

weights weights for each individual measure; if NULL (default), each measure is consid-
ered equally. Otherwise, it should be a length- K vector.

lambda regularization parameter (default: 0.1).

p an exponent for the order of the distance (default: 2).

extra parameters including

abstol stopping criterion for iterations (default: le-10).

init.vec an initial vector (default: uniform weight).

maxiter maximum number of iterations (default: 496).
print.progress a logical to show current iteration (default: FALSE).

distances a length- K list where each element is an (IV x N}) pairwise distance between
atoms of the fixed support and given measures.

Value

a length- IV vector of probability vector.

References

Cuturi M, Doucet A (2014-06-22/2014-06-24). “Fast Computation of Wasserstein Barycenters.” In
Xing EP, Jebara T (eds.), Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, 685—693.

Examples

Wasserstein Barycenter for Fixed Atoms with Two Gaussians

#

* class 1 : samples from Gaussian with mean=(-4, -4)

x class 2 : samples from Gaussian with mean=(+4, +4)

x target support consists of 7 integer points from -6 to 6,

where ideally, weight is concentrated near @ since it's average!

GENERATE DATA

Empirical Measures

set.seed(100)

ndat = 100

dat1 = matrix(rnorm(ndat*2, mean=-4, sd=0.5),ncol=2)
dat2 = matrix(rnorm(ndatx2, mean=+4, sd=0.5),ncol=2)

myatoms = list()
myatoms[[1]] = dat1
myatoms[[2]] = dat2
mydata = rbind(dat1, dat2)

Fixed Support
support = cbind(seq(from=-8,to=8,by=2),
seq(from=-8, to=8,by=2))
COMPUTE
compl = fbary14C(support, myatoms, lambda=0.5, maxiter=10)

fbary15B 9

comp2 = fbary14C(support, myatoms, lambda=1, maxiter=10)
comp3 = fbary14C(support, myatoms, lambda=1@0, maxiter=10)

VISUALIZE

opar <- par(no.readonly=TRUE)

par(mfrow=c(1,3), pty="s")

barplot(comp1, ylim=c(@,1), main="Probability\n (lambda=0.5)")
barplot(comp2, ylim=c(@,1), main="Probability\n (lambda=1)")
barplot(comp3, ylim=c(@,1), main="Probability\n (lambda=10)")

par(opar)
fbary15B Fixed-Support Barycenter by Benamou et al. (2015)
Description
Given K empirical measures (i1, io, - . . , it Of possibly different cardinalities, wasserstein barycen-

ter p* is the solution to the following problem

K

Z TFng(/J’7 /’Lk)

k=1

where 7, s are relative weights of empirical measures. Here we assume either (1) support atoms
in Euclidean space are given, or (2) all pairwise distances between atoms of the fixed support and
empirical measures are given. Authors proposed iterative Bregman projections in conjunction with
entropic regularization.

Usage

fbary15B(
support,
atoms,
marginals = NULL,
weights = NULL,
lambda = 0.1,
p =2,

fbary15Bdist(
distances,
marginals = NULL,
weights = NULL,
lambda = 0.1,
p =2,

10 fbary15B

Arguments
support an (N x P) matrix of rows being atoms for the fixed support.
atoms a length- K list where each element is an (N}, x P) matrix of atoms.
marginals marginal distribution for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length-K list where each
element is a length-V; vector of nonnegative weights that sum to 1.
weights weights for each individual measure; if NULL (default), each measure is consid-
ered equally. Otherwise, it should be a length- K vector.
lambda regularization parameter (default: 0.1).
p an exponent for the order of the distance (default: 2).
extra parameters including
abstol stopping criterion for iterations (default: le-10).
init.vec an initial vector (default: uniform weight).
maxiter maximum number of iterations (default: 496).
print.progress a logical to show current iteration (default: FALSE).
distances a length- K list where each element is an (N x Nj) pairwise distance between
atoms of the fixed support and given measures.
Value

a length- IV vector of probability vector.

References

Benamou J, Carlier G, Cuturi M, Nenna L, Peyré G (2015). “Iterative Bregman Projections for Reg-
ularized Transportation Problems.” SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
ISSN 1064-8275, 1095-7197, doi:10.1137/141000439.

Examples

Wasserstein Barycenter for Fixed Atoms with Two Gaussians

#

x class 1 : samples from Gaussian with mean=(-4, -4)

% class 2 : samples from Gaussian with mean=(+4, +4)

* target support consists of 7 integer points from -6 to 6,

where ideally, weight is concentrated near @ since it's average!

GENERATE DATA

Empirical Measures

set.seed(100)

ndat = 500

dat1 matrix(rnorm(ndat*2, mean=-4, sd=0.5),ncol=2)
dat2 = matrix(rnorm(ndat*2, mean=+4, sd=0.5),ncol=2)

myatoms = list()
myatoms[[1]] = dat1

https://doi.org/10.1137/141000439

fiedler 11

myatoms[[2]] = dat2
mydata = rbind(dat1, dat2)

Fixed Support
support = cbind(seq(from=-8,to=8,by=2),

seq(from=-8, to=8,by=2))
COMPUTE
compl = fbaryl15B(support, myatoms, lambda=0.5, maxiter=10)
comp2 = fbaryl15B(support, myatoms, lambda=1, maxiter=10)
comp3 = fbary15B(support, myatoms, lambda=10, maxiter=10)

VISUALIZE

opar <- par(no.readonly=TRUE)

par(mfrow=c(1,3), pty="s")

barplot(comp1, ylim=c(@,1), main="Probability\n (lambda=0.5)")
barplot(comp2, ylim=c(@,1), main="Probability\n (lambda=1)")
barplot(comp3, ylim=c(@,1), main="Probability\n (lambda=10)")
par(opar)

fiedler Compute the fiedler vector of a point cloud

Description

Given a point cloud X € RN*P this function constructs a fully connected weighted graph using
an RBF (Gaussian) kernel with bandwidth chosen by the median heuristic, forms the unnormalized
graph Laplacian, and returns the corresponding Fiedler vector, which is the eigenvector associated
to the second smallest eigenvalue of the Laplacian.

Usage

fiedler(X, normalize = TRUE)

Arguments
X An (N x P) matrix of row observations.
normalize Logical; if TRUE (default), the Fiedler vector is rescaled to lie in [0, 1] by sub-
tracting its minimum and dividing by its range, mimicking the normalization
convention in the corresponding Python implementation. If FALSE, the raw
eigenvector is returned.
Value

A numeric vector of length N containing the Fiedler values associated with each point in the input
point cloud. If normalize = TRUE, the entries are in the interval [0, 1].

12 gaussbaryld

Examples

Description
#
Use 'iris' dataset to compute fiedler vector.
The dataset is visualized in R*2 using PCA

load dataset

>

= as.matrix(iris[,1:41)

PCA preprocessing
X2d = X%x%eigen(cov(X))$vectors[,1:2]

compute fiedler vector
fied_vec = fiedler(X2d, normalize=TRUE)

plot

opar <- par(no.readonly=TRUE)

plot(X2d, col=rainbow(150)[as.numeric(cut(fied_vec, breaks=150))1],
pch=19, xlab="PC 1", ylab="PC 2",
main="Fiedler vector on Iris dataset (PCA-reduced)”)

par (opar)
gaussbaryld Barycenter of Gaussian Distributions in R
Description
Given a collection of Gaussian distributions N (p;, 02) for i = 1,...,n, compute the Wasserstein

barycenter of order 2. For the barycenter computation of variance components, we use a fixed-point
algorithm by Alvarez-Esteban et al. (2016).

Usage
gaussbaryld(means, vars, weights = NULL, ...)
Arguments
means a length-n vector of mean parameters.
vars a length-n vector of variance parameters.
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it

should be a length-n vector of nonnegative weights.
extra parameters including

abstol stopping criterion for iterations (default: le-8).
maxiter maximum number of iterations (default: 496).

gaussbaryld 13

Value

a named list containing

mean mean of the estimated barycenter distribution.

var variance of the estimated barycenter distribution.

References

Alvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matran C (2016). “A Fixed-Point Approach
to Barycenters in Wasserstein Space.” Journal of Mathematical Analysis and Applications, 441(2),
744-762. ISSN 0022247X, doi:10.1016/j.jmaa.2016.04.045.

See Also

[T4transport::gaussbarypd()] for multivariate case.

Examples

Two Gaussians

Two Gaussian distributions are parametrized as follows.
Type 1 : (mean, var) = (-4, 1/4)
Type 2 : (mean, var) = (+4, 1/4)

GENERATE PARAMETERS
par_mean = c(-4, 4)
par_vars = c(0.25, 0.25)

COMPUTE THE BARYCENTER OF EQUAL WEIGHTS
gmean = gaussbaryld(par_mean, par_vars)

QUANTITIES FOR PLOTTING

x_grid = seq(from=-6, to=6, length.out=200)

y_dist1 = stats::dnorm(x_grid, mean=-4, sd=0.5)

y_dist2 = stats::dnorm(x_grid, mean=+4, sd=0.5)

y_gmean = stats::dnorm(x_grid, mean=gmean$mean, sd=sqrt(gmean$var))

VISUALIZE

opar <- par(no.readonly=TRUE)

plot(x_grid, y_gmean, lwd=2, col="red", type="1",
main="Barycenter"”, xlab="x", ylab="density")

lines(x_grid, y_dist1)

lines(x_grid, y_dist2)

par(opar)

https://doi.org/10.1016/j.jmaa.2016.04.045

14 gaussbarypd

gaussbarypd Barycenter of Gaussian Distributions in R™p
Description
Given a collection of n-dimensional Gaussian distributions N (p;, Z;) for ¢ = 1,...,n, compute

the Wasserstein barycenter of order 2. For the barycenter computation of variance components, we
use a fixed-point algorithm by Alvarez-Esteban et al. (2016).

Usage
gaussbarypd(means, vars, weights = NULL, ...)
Arguments
means an (n X p) matrix whose rows are mean vectors.
vars a (p X p x n) array where each slice is covariance matrix.
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length-n vector of nonnegative weights.
extra parameters including
abstol stopping criterion for iterations (default: le-8).
maxiter maximum number of iterations (default: 496).
Value

a named list containing

mean a length-p vector for mean of the estimated barycenter distribution.

var a (p X p) matrix for variance of the estimated barycenter distribution.

References

Alvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matran C (2016). “A Fixed-Point Approach
to Barycenters in Wasserstein Space.” Journal of Mathematical Analysis and Applications, 441(2),
744-762. ISSN 0022247X, doi:10.1016/j.jmaa.2016.04.045.

See Also

[T4transport::gaussbary1d()] for univariate case.

https://doi.org/10.1016/j.jmaa.2016.04.045

gaussmedld 15

Examples

GENERATE PARAMETERS
means
par_mean = rbind(c(-4,0), c(4,0))

covariances

par_vars = array(0,c(2,2,2))
par_vars[,,1] = cbind(c(4,-2),c(-2,4))
par_vars[,,2] = cbind(c(4,+2),c(+2,4))

COMPUTE THE BARYCENTER OF EQUAL WEIGHTS
gmean = gaussbarypd(par_mean, par_vars)

GET COORDINATES FOR DRAWING

pt_typel = gaussvis2d(par_mean[1,], par_vars[,,1])
pt_type2 = gaussvis2d(par_mean[2,], par_vars[,,2])
pt_gmean = gaussvis2d(gmean$mean, gmean$var)

VISUALIZE

opar <- par(no.readonly=TRUE)

plot(pt_gmean, lwd=2, col="red”, type="1",
main="Barycenter”, xlab="", ylab="",
xlim=c(-6,6))

lines(pt_typel)

lines(pt_type2)

par(opar)

gaussmedid Wasserstein Median of Gaussian Distributions in R

Description
Given a collection of Gaussian distributions N (1;,0?) for i = 1,...,n, compute the Wasserstein
median.

Usage

gaussmedld(means, vars, weights = NULL, ...)

Arguments

means a length-n vector of mean parameters.

vars a length-n vector of variance parameters.

16

weights

Value

gaussmedld

a weight of each image; if NULL (default), uniform weight is set. Otherwise, it

should be a length-n vector of nonnegative weights.
extra parameters including

abstol stopping criterion for iterations (default: le-8).
maxiter maximum number of iterations (default: 496).

a named list containing

mean mean of the estimated median distribution.

var variance of the estimated median distribution.

References

You K, Shung D, Giuffre M (2025). “On the Wasserstein Median of Probability Measures.” Journal
of Computational and Graphical Statistics, 34(1), 253-266. ISSN 1061-8600, 1537-2715.

See Also

[T4transport::gaussmedpd()] for multivariate case.

Examples

#
#
#
Type 1
#
#

Type 2 :
Type 3 :
__

(mean,
(mean,
(mean,

Tree Gaussians

Three Gaussian distributions are parametrized as follows.

sd) = (-4, 1)
sd) = (0, 1/5)
sd) = (+6, 1/2)

GENERATE PARAMETERS
par_mean = c(-4, 0, +6)
par_vars = c(1, 0.04, 0.25)

COMPUTE THE WASSERSTEIN MEDIAN
gaussmedld(par_mean, par_vars)

gmeds =

COMPUTE THE BARYCENTER
gmean = gaussbaryld(par_mean, par_vars)

QUANTITIES FOR PLOTTING
seq(from=-6, to=8, length.out=1000)

x_grid

y_dist1
y_dist2
y_dist3

y_gmean =
y_gmeds =

stats::
stats:
stats:

stats:
stats:

dnorm(x_grid, mean=par_mean[1], sd=sqrt(par_vars[1]))

:dnorm(x_grid, mean=par_mean[2], sd=sqrt(par_vars[2]))
:dnorm(x_grid, mean=par_mean[3], sd=sqrt(par_vars[3]))

:dnorm(x_grid, mean=gmean$mean, sd=sqrt(gmean$var))
:dnorm(x_grid, mean=gmeds$mean, sd=sqrt(gmeds$var))

gaussmedpd 17

VISUALIZE

opar <- par(no.readonly=TRUE)

plot(x_grid, y_gmeds, lwd=3, col="red"”, type="1",
main="Three Gaussians”, xlab="x", ylab="density",
xlim=range(x_grid), ylim=c(0,2.5))

lines(x_grid, y_gmean, lwd=3, col="blue")

lines(x_grid, y_dist1, lwd=1.5, lty=2)

lines(x_grid, y_dist2, lwd=1.5, lty=2)

lines(x_grid, y_dist3, lwd=1.5, 1lty=2)

legend("topleft”, legend=c("Median"”,"Barycenter"),

col=c("red”,"blue"), lwd=c(3,3), lty=c(1,2))

par(opar)
gaussmedpd Wasserstein Median of Gaussian Distributions in R™p
Description
Given a collection of p-dimensional Gaussian distributions N (u;, ;) for i = 1,...,n, compute

the Wasserstein median.

Usage
gaussmedpd(means, vars, weights = NULL, ...)
Arguments
means an (n X p) matrix whose rows are mean vectors.
vars a (p X p x n) array where each slice is covariance matrix.
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length-n vector of nonnegative weights.
extra parameters including
abstol stopping criterion for iterations (default: 1e-8).
maxiter maximum number of iterations (default: 496).
Value

a named list containing

mean a length-p vector for mean of the estimated median distribution.

var a (p X p) matrix for variance of the estimated median distribution.

References

You K, Shung D, Giuffre M (2025). “On the Wasserstein Median of Probability Measures.” Journal
of Computational and Graphical Statistics, 34(1), 253-266. ISSN 1061-8600, 1537-2715.

18 gaussvis2d

See Also

[T4transport::gaussmed 1d()] for univariate case.

Examples

GENERATE PARAMETERS
means
par_mean = rbind(c(-4,0), c(0,0), c(5,-1))

covariances

par_vars = array(0,c(2,2,3))
par_vars[,,1] = cbind(c(2,-1),c(-1,2))
par_vars[,,2] = cbind(c(4,+1),c(+1,4))
par_vars[,,3] diag(c(4,1))

COMPUTE THE MEDIAN
gmeds = gaussmedpd(par_mean, par_vars)

COMPUTE THE BARYCENTER
gmean = gaussbarypd(par_mean, par_vars)

GET COORDINATES FOR DRAWING

pt_typel = gaussvis2d(par_mean[1,], par_vars[,,1])
pt_type2 = gaussvis2d(par_mean[2,], par_vars[,,2]1)
pt_type3 = gaussvis2d(par_mean[3,], par_vars[,,3])
pt_gmean = gaussvis2d(gmean$mean, gmean$var)
pt_gmeds = gaussvis2d(gmeds$mean, gmeds$var)

VISUALIZE

opar <- par(no.readonly=TRUE)

plot(pt_gmean, lwd=2, col="red"”, type="1",
main="Three Gaussians”, xlab="", ylab="",
xlim=c(-6,8), ylim=c(-2.5,2.5))

lines(pt_gmeds, lwd=2, col="blue")

lines(pt_typel, lty=2, lwd=5)

lines(pt_type2, lty=2, 1lwd=5)

lines(pt_type3, lty=2, lwd=5)

abline(h=0, col="grey80", 1lty=3)

abline(v=0, col="grey80", 1lty=3)

legend("topright”, legend=c("”Median”,"Barycenter”),

lwd=2, 1ty=1, col=c("blue"”,"red"))
par(opar)

gaussvis2d Sampling from a Bivariate Gaussian Distribution for Visualization

gaussvis2d 19

Description

This function samples points along the contour of an ellipse represented by mean and variance
parameters for a 2-dimensional Gaussian distribution to help ease manipulating visualization of
the specified distribution. For example, you can directly use a basic plot() function directly for
drawing.

Usage

gaussvis2d(mean, var, n = 500)

Arguments

mean a length-2 vector for mean parameter.

var a (2 x 2) matrix for covariance parameter.

n the number of points to be drawn (default: 500).
Value

an (n X 2) matrix.

Examples

MEAN PARAMETERS
locl = ¢c(-3,0)
loc2 = c(9,5)
loc3 = ¢(3,0)

COVARIANCE PARAMETERS

varl = cbind(c(4,-2),c(-2,4))
var2 = diag(c(9,1))

var3 = chind(c(4,2),c(2,4))

GENERATE POINTS

visA = gaussvis2d(locl, varl)
visB = gaussvis2d(loc2, var2)
visC = gaussvis2d(loc3, var3)

VISUALIZE
opar <- par(no.readonly=TRUE)
plot(visA[,1], visA[,2], type="1", xlim=c(-5,5), ylim=c(-2,9),
1wd=3, col="red"”, main="3 Gaussian Distributions”)
lines(visB[,1], visB[,2], lwd=3, col="blue")
lines(visC[,1], visC[,2], lwd=3, col="orange")
legend("top”, legend=c("Type 1","Type 2","Type 3"),
lwd=3, col=c("red","blue”,"orange"), horiz=TRUE)
par(opar)

20

gwbary

gwbary

Gromov-Wasserstein Barycenter

Description

Computes the Gromov—Wasserstein (GW) barycenter of a collection of metric measure spaces.
Given a list of distance matrices D™k = 1% and their corresponding marginal distributions, the
function estimates a synthetic metric space whose intrinsic geometry best represents the input col-
lection under the GW criterion.

The GW barycenter is defined as the minimizer of a multi-measure Gromov—Wasserstein objective,
where each dataset contributes according to a user-specified barycentric weight. Since the problem
is jointly non-convex in the barycenter metric and the coupling matrices, the algorithm proceeds
through an outer—inner iterative procedure.

Usage
gwbary(distances, marginals = NULL, weights = NULL, num_support = 100, ...)
Arguments
distances a length-K list where each element is either an (Ny x Nj) distance matrix or
an object of class dist representing the pairwise distances for each empirical
measure.
marginals marginal distributions for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length- K list where each ele-
ment is a length- Ny, vector of nonnegative weights that sum to 1.
weights weights for each individual measure; if NULL (default), each measure is consid-

num_support

Value

ered equally. Otherwise, it should be a length- K vector.
the number of support points M for the barycenter (default: 100).
extra parameters including

maxiter maximum number of iterations (default: 10).
abstol stopping criterion for iterations (default: 1e-6).

method optimization method to use; can be one of "mm”, "pg"”, or "fw" (de-
fault).

A named list containing

dist an object of class dist representing the GW barycenter.

weight a length-M vector of barycenter weights with all entries being 1/M.

gwdist 21

Examples

Not run:
Description

#

#

GW barycenter computation is quite expensive. In this example,
we draw a small set of empirical measures from the digit '3’

images and compute their GW barycenter with a small number of
support points. The attained barycenter distance matrix is then
passed onto the classical MDS algorithm for visualization.

#i# GENERATE DATA

data(digits)

data_D = vector("list”, length=5)

data_W = vector("list”, length=5)

for (i in 1:5){
img_now = img2measure(digits3[[i]])
data_D[[i]] = stats::dist(img_now$support)
data_W[[i]] = as.vector(img_now$weight)

3

COMPUTE
bary_dist <- gwbary(data_D, marginals=data_W, num_support=100)
bary_cmd2 <- stats::cmdscale(bary_dist$dist, k=2)

VISUALIZE
opar <- par(no.readonly=TRUE)

par(pty="s")

plot(bary_cmd2, main="GW Barycenter Embedding”,
xaxt="n", yaxt="n", pch=19, xlab="", ylab="")

par(opar)

End(Not run)

gwdist Gromov-Wasserstein Distance

Description

Computes the Gromov-Wasserstein (GW) distance between two metric measure spaces. Given two
distance matrices D x and Dy along with their respective marginal distributions, the function solves
the GW optimization problem to obtain both the distance value and an associated optimal transport
plan.

The GW distance provides a way to compare datasets that may not lie in the same ambient space by
focusing on the intrinsic geometric structure encoded in the pairwise distances. This implementa-
tion supports multiple optimization schemes, including majorization—minimization (MM), proximal
gradient (PG), and Frank—Wolfe (FW).

22 gwdist
Usage
gwdist(Dx, Dy, wx = NULL, wy = NULL, ...)
Arguments
Dx an (M x M) distance matrix or a dist object of compatible size.
Dy an (N x N) distance matrix or a dist object of compatible size.
WX a length- M marginal density that sums to 1. If NULL (default), uniform weight
is set.
wy a length-/V marginal density that sums to 1. If NULL (default), uniform weight is
set.
extra parameters including
maxiter maximum number of iterations (default: 10).
abstol stopping criterion for iterations (default: 1e-6).
method optimization method to use; can be one of "mm”, "pg"”, or "fw" (de-
fault).
Value

a named list containing

distance the computed GW distance value.

plan an (M x N) nonnegative matrix for the optimal transport plan.

References

Mémoli F (2011). “Gromov—Wasserstein Distances and the Metric Approach to Object Matching.”
Foundations of Computational Mathematics, 11(4), 417-487. ISSN 1615-3375, 1615-3383.

Examples

Not run:

P E E

GENERATE DATA
set.seed(10)

Description

* class 1 : iris dataset (columns 1-4) with perturbations
* class 2 : class 1 rotated randomly in R*4
* class 3 : samples from N((0,0), I)

We draw 10 empirical measures from each and compare

the regular Wasserstein and GW distance. It is expected that
the GW distance between class 1 and class 2 is negligible,
while the regular Wasserstein distance is large. For simplicity,
limit the cardinalities to 20.

histbary 23

prepare empty lists
inputs = vector("list"”, length=30)

generate class 1 and 2
iris_mat = as.matrix(iris[sample(1:150,20),1:41)
for (i in 1:10){
inputs[[i]] = iris_mat + matrix(rnorm(20x4), ncol=4)
inputs[[i+10]1] = inputs[[iJ11%*%qr.Q(qr(matrix(runif(16), ncol=4)))
3
generate class 3
for (j in 21:30){
inputs[[j]] = matrix(rnorm(20*4), ncol=4)
}

COMPUTE

empty arrays

dist_RW = array(@, c(30, 30))
dist_GW = array(@, c(30, 30))

compute pairwise distances
for (i in 1:29)¢{
X <- inputs[[i]]
Dx <- stats::dist(X)
for (j in (i+1):30){
Y <- inputs[[j]]
Dy <- stats::dist(Y)
dist_RW[i,j] <- dist_RW[j,i] <- wasserstein(X, Y)$distance
dist_GW[i,j] <- dist_GW[j,i] <- gwdist(Dx, Dy)$distance
}

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")

nan —_n.n

image(dist_RW, xaxt="n", yaxt="n", main="Regular Wasserstein distance")

image(dist_GW, xaxt="n", yaxt="n", main="Gromov-Wasserstein distance"”)
par (opar)

End(Not run)

histbary Barycenter of Histograms

Description

Given multiple histograms represented as "histogram” S3 objects, compute their 2-Wasserstein
barycenter using the exact 1D quantile characterization. All input histograms must have identical
breaks.

24 histbary

Usage

histbary(hists, weights = NULL, L = 2000L)

Arguments
hists a length-V list of histograms ("histogram” objects) of same breaks.
weights a weight for each histogram; if NULL (default), uniform weights are used. Oth-
erwise, it should be a length-/V vector of nonnegative weights.
L number of quantile levels used to approximate the barycenter (default: 2000).
Larger L gives a more accurate approximation at increased computational cost.
Value

a "histogram” object representing the Wasserstein barycenter.

Binned from Two Gaussians
EXAMPLE : Very Small Example for CRAN; just showing how to use it!

GENERATE FROM TWO GAUSSIANS WITH DIFFERENT MEANS
set.seed(100)

X = stats::rnorm(1000, mean=-4, sd=0.5)

y = stats::rnorm(1000, mean=+4, sd=0.5)

bk = seq(from=-10, to=10, length.out=20)

HISTOGRAMS WITH COMMON BREAKS

histxy = list()

histxy[[1]1] = hist(x, breaks=bk, plot=FALSE)
histxy[[2]] = hist(y, breaks=bk, plot=FALSE)

COMPUTE
hh = histbary(histxy)

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
barplot(histxy[[1]]$density, col=rgh(0,0,1,1/4),
ylim=c(@, 0.75), main="Two Histograms")
barplot(histxy[[2]]$density, col=rgb(1,0,0,1/4),
ylim=c(@, 0.75), add=TRUE)
barplot(hh$density, main="Barycenter"”,
ylim=c(@, 0.75))
par (opar)

histbary 14C 25

histbary14C Barycenter of Histograms by Cuturi and Doucet (2014)

Description

Given multiple histograms represented as "histogram” S3 objects, compute Wasserstein barycen-
ter. We need one requirement that all histograms in an input list hists must have same breaks.
See the example on how to construct a histogram on predefined breaks/bins.

Usage
histbary14C(hists, p = 2, weights = NULL, lambda = NULL, ...)
Arguments
hists a length-V list of histograms ("histogram” object) of same breaks.
p an exponent for the order of the distance (default: 2).
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length- N vector of nonnegative weights.
lambda a regularization parameter; if NULL (default), a paper’s suggestion would be
taken, or it should be a nonnegative real number.
extra parameters including
abstol stopping criterion for iterations (default: 1e-8).
init.vec an initial weight vector (default: uniform weight).
maxiter maximum number of iterations (default: 496).
nthread number of threads for OpenMP run (default: 1).
print.progress a logical to show current iteration (default: TRUE).
Value

a "histogram” object representing the Wasserstein barycenter.

References

Cuturi M, Doucet A (2014-06-22/2014-06-24). “Fast Computation of Wasserstein Barycenters.” In
Xing EP, Jebara T (eds.), Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, 685-693.

See Also

fbary14C

26 histbary15B

Examples

Binned from Two Gaussians
EXAMPLE : Very Small Example for CRAN; just showing how to use it!

GENERATE FROM TWO GAUSSIANS WITH DIFFERENT MEANS
set.seed(100)

X = stats::rnorm(1000, mean=-4, sd=0.5)

y stats::rnorm(1000, mean=+4, sd=0.5)

bk = seq(from=-10, to=10, length.out=20)

HISTOGRAMS WITH COMMON BREAKS

histxy = list()

histxy[[1]1] = hist(x, breaks=bk, plot=FALSE)
histxy[[2]] = hist(y, breaks=bk, plot=FALSE)

COMPUTE
hh = histbary14C(histxy, maxiter=5)

VISUALIZE

opar <- par(no.readonly=TRUE)

par(mfrow=c(1,2))

barplot(histxy[[1]]$density, col=rgb(0,0,1,1/4),
ylim=c(@, 0.75), main="Two Histograms")

barplot(histxy[[2]]$density, col=rgb(1,0,0,1/4),
ylim=c(@, ©.75), add=TRUE)

barplot(hh$density, main="Barycenter"”,
ylim=c(0, 0.75))

par(opar)

histbary15B Barycenter of Histograms by Benamou et al. (2015)

Description

Given multiple histograms represented as "histogram” S3 objects, compute Wasserstein barycen-
ter. We need one requirement that all histograms in an input list hists must have same breaks.
See the example on how to construct a histogram on predefined breaks/bins.

Usage

histbary15B(hists, p = 2, weights = NULL, lambda = NULL, ...)

histbary15B

Arguments
hists

p
weights

lambda

Value

27

a length-V list of histograms ("histogram” object) of same breaks.
an exponent for the order of the distance (default: 2).

a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length- N vector of nonnegative weights.

a regularization parameter; if NULL (default), a paper’s suggestion would be
taken, or it should be a nonnegative real number.

extra parameters including

abstol stopping criterion for iterations (default: 1e-8).

init.vec an initial weight vector (default: uniform weight).
maxiter maximum number of iterations (default: 496).

nthread number of threads for OpenMP run (default: 1).
print.progress a logical to show current iteration (default: TRUE).

a "histogram” object of barycenter.

References

Benamou J, Carlier G, Cuturi M, Nenna L, Peyré G (2015). “Iterative Bregman Projections for Reg-
ularized Transportation Problems.” SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
ISSN 1064-8275, 1095-7197, doi:10.1137/141000439.

See Also

fbary15B

Examples

EXAMPLE

Binned from Two Gaussians

: Very Small Example for CRAN; just showing how to use it!

GENERATE FROM TWO GAUSSIANS WITH DIFFERENT MEANS

set.seed(100)

x = stats::rnorm(1000, mean=-4, sd=0.5)
y = stats::rnorm(1000, mean=+4, sd=0.5)
bk = seq(from=-10, to=10, length.out=20)

HISTOGRAMS WITH COMMON BREAKS

histxy = list()

histxy[[1]] = hist(x, breaks=bk, plot=FALSE)
histxy[[2]] = hist(y, breaks=bk, plot=FALSE)

COMPUTE

hh = histbary15B(histxy, maxiter=5)

https://doi.org/10.1137/141000439

28 histdist

VISUALIZE

opar <- par(no.readonly=TRUE)

par(mfrow=c(1,2))

barplot(histxy[[1]]$density, col=rgh(0,0,1,1/4),
ylim=c(@, 0.75), main="Two Histograms")

barplot(histxy[[2]]$density, col=rgbh(1,0,0,1/4),
ylim=c(@, ©.75), add=TRUE)

barplot(hh$density, main="Barycenter"”,
ylim=c(0, 0.75))

par(opar)

histdist Distance between Histograms

Description

Compute the p-Wasserstein distance between two 1D histograms that share the same binning, i.e.,
same breaks. The histograms are treated as discrete probability measures supported at bin midpoints
with masses given by normalized counts. Uses the exact 1D monotone OT algorithm, not LP nor
entropic regularization.

Usage

histdist(hist1, hist2, p = 2)

Arguments
hist1 a histogram object (class "histogram”).
hist2 a histogram object (class "histogram”) with the same breaks as hist1.
p an exponent for the order of the distance (default: 2).

Value

a named list containing

distance)V, distance value.

Binned from Gaussian and Uniform

Create two types of histograms with the same binning. One is from
the standard normal and the other from uniform distribution in [-5,5].

GENERATE 20 HISTOGRAMS
set.seed(100)

histinterp 29

hist20 = list()
bk = seq(from=-10, to=10, length.out=20) # common breaks
for (i in 1:10){
hist20[[i]] = hist(stats::rnorm(100), breaks=bk, plot=FALSE)
hist20[[i+10]] = hist(stats::runif (100, min=-5, max=5), breaks=bk, plot=FALSE)
3

COMPUTE THE PAIRWISE DISTANCE
pdmat = array(0,c(20,20))
for (i in 1:19){
for (3 in (i+1):20){
pdmat[i,j] = histdist(hist20[[i]], hist20[[j]], p=2)$distance
pdmat[j,i] = pdmat[i,j]
}
3

VISUALIZE
opar <- par(no.readonly=TRUE)

par(pty="s")
image (pdmat, axes=FALSE, main="Pairwise 2-Wasserstein Distance between Histograms")
par (opar)
histinterp Interpolation between Histograms
Description

Given two histograms represented as "histogram” S3 objects with identical breaks, compute inter-
polated histograms along the 2-Wasserstein geodesic connecting them. In 1D, this is achieved by
linear interpolation of quantile functions (displacement interpolation).

Usage
histinterp(hist1l, hist2, t = 0.5, L = 2000L)

Arguments
hist1 a histogram ("histogram” object).
hist2 another histogram with the same breaks as hist1.
t a scalar or numeric vector in [0, 1] specifying interpolation times. t = @ returns
hist1, t =1 returns hist2.
L number of quantile levels used to approximate the geodesic (default: 2000).
Larger L gives a more accurate approximation at increased computational cost.
Value

If length(t) == 1, a single "histogram” object representing the interpolated distribution at time
t. If length(t) > 1, alength-length(t) list of "histogram” objects.

30 histmed

Examples

Interpolating Two Gaussians

The source histogram is created from N(-5,1/4).
The target histogram is created from N(+5,4)

SETTING

set.seed(123)

x_source = rnorm(1000, mean=-5, sd=1/2)
x_target = rnorm(1000, mean=+5, sd=2)

BUILD HISTOGRAMS WITH COMMON BREAKS

bk = seq(from=-8, to=12, by=2)

h1 = hist(x_source, breaks=bk, plot=FALSE)
h2 = hist(x_target, breaks=bk, plot=FALSE)

INTERPOLATE WITH 5 GRID POINTS
h_path <- histinterp(h1, h2, t = seq(@, 1, length.out = 8))

VISUALIZE
y_slim <- c(@, max(h1$density, h2$density)) # shared y-limit

xt <- round(h1$mids, 1) # x-ticks
opar <- par(no.readonly = TRUE)
par(mfrow = c(2,4), pty = "s")

for (i in 1:8){
if (1< 2){
barplot(h_path[[i]]$density, names.arg=xt, ylim=y_slim,
main="Source"”, col=rgb(0,0,1,1/4))
} else if (1 > 7){
barplot(h_path[[i]]$density, names.arg=xt, ylim=y_slim,
main="Target", col=rgb(1,0,0,1/4))
} else {
barplot(h_path[[i]]$density, names.arg=xt, ylim=y_slim,
col="gray90", main=sprintf("t = %.3f", (i-1)/7))
}
3
par (opar)

histmed Wasserstein Median of Histograms

Description

Given multiple histograms represented as "histogram” S3 objects with common breaks, compute
their Fréchet (geometric) median under the 2-Wasserstein distance. In 1D, this is implemented
by mapping histograms to their quantile functions and running a Weiszfeld-type algorithm for the
geometric median in the Hilbert space of quantile functions.

histmed 31

Usage
histmed(hists, weights = NULL, L = 2000L, ...)
Arguments
hists a length-V list of histograms ("histogram” objects) with identical breaks.
weights a weight for each histogram; if NULL (default), uniform weights are used. Oth-
erwise, it should be a length-/V vector of nonnegative weights.
L number of quantile levels used to approximate the median (default: 2000). Larger
L gives a more accurate approximation at increased computational cost.
extra parameters including
abstol stopping criterion for iterations (default: 1e-8).
maxiter maximum number of iterations (default: 496).
print.progress logical; whether to show current iteration (default: FALSE).
Value

a "histogram” object representing the Wasserstein median.

COMMON SETTING

set.seed(100)

bk = seq(from=-10, to=10, length.out=20)
n_signal = 12

GENERATE HISTOGRAMS WITH COMMON BREAKS
hist_all = list()
for (i in 1:n_signal){

hist_all[[i]] = hist(stats::rnorm(200, mean=-4, sd=0.5), breaks=bk)
3
for (j in (n_signal+1):20){

hist_all[[j]] = hist(stats::rnorm(200, mean=+4, sd=0.5), breaks=bk)
3

COMPUTE THE BARYCENTER AND THE MEDIAN
h_bary = histbary(hist_all)
h_med histmed(hist_all)

VISUALIZE

xt <= round(h_med$mids, 1)

opar <- par(no.readonly=TRUE)

par(mfrow=c(1,3), pty="s")
barplot(hist_all[[1]]$density, col=rgb(0,0,1,1/4),

32

imagebary

ylim=c(@, ©.75), main="Two Types", names.arg=xt)

barplot(hist_all[[20]]$density, col=rgh(1,0,0,1/4),

ylim=c(@, 0.75), add=TRUE)

barplot(h_med$density, names.arg=xt, main="Median”, ylim=c(@, 0.75))
barplot(h_bary$density, names.arg=xt, main="Barycenter”, ylim=c(@, 0.75))

par(opar)

imagebary

Barycenter of Images

Description

Using exact balanced optimal transport as a subroutine, imagebary computes an unregularized
2-Wasserstein barycenter image X* from multiple input images Xi,..., Xy. Unlike the other
image barycenter routines, this function does not use entropic regularization. Instead, it solves the
barycenter problem with a robust first-order method based on mirror descent on the probability

simplex.
Usage
imagebary(images, p = 2, weights = NULL, C = NULL, ...)
Arguments
images a length-N list of same-size image matrices of size (m x n).
p an exponent for the order of the distance (default: 2). Currently, only p=2 is
supported (squared ground distance cost).
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length- N vector of nonnegative weights.
C an optional (mn x mn) ground cost matrix. If NULL (default), the squared Eu-

clidean grid cost is used. Providing C allows using alternative ground costs (e.g.,
geodesic distances on a manifold discretization).

extra parameters including

abstol stopping criterion based on ¢5 change of iterates (default: 1e-7).

init.image an initial barycenter image (default: arithmetic mean of normalized
inputs).

maxiter maximum number of mirror descent iterations (default: 200).

step0 initial stepsize for mirror descent (default: @.5).

stepschedule stepsize schedule; "sqrt” uses 7; = step0/v/Z, and "const”
uses 7, = step0 (default: "sqrt").

eps positivity floor for the barycenter and inputs; values are truncated below
eps and renormalized (default: 1e-15). Larger values can improve robust-
ness.

imagebary 33

smooth optional mixing weight toward uniform distribution after each update,
used to prevent near-zero support that may cause OT infeasibility (default:
1e-12). Set to 0@ to disable.

clip /. clipping threshold for the subgradient to stabilize exponentials in the
KL update (default: 50). Set to Inf to disable.

max_backtrack maximum number of backtracking halvings of the stepsize
when an OT probe fails at the proposed update (default: 8).

print.progress a logical to show iteration diagnostics (default: FALSE).

Details

The algorithm treats each image as a discrete probability distribution on a common (m x n) grid.
At each iteration, it computes exact OT dual potentials u; between the current barycenter iterate
and each input image via util_dual_emd_C. These dual potentials form a valid subgradient of
the barycenter objective, and a KL-mirror descent step produces a strictly positive update of the
barycenter weights. For numerical stability, the implementation includes (i) centering of dual po-
tentials (shift invariance), (ii) gradient clipping, (iii) log-domain normalization, and (iv) optional
smoothing/backtracking safeguards to avoid infeasible OT calls.

Value

an (m x n) matrix of the barycentric image.

Examples

Not run:
MNIST Data with Digit 3

small example to compare the un- and regularized problem solutions
choose only 10 images and run for 20 iterations with default penalties

LOAD DATA
set.seed(11)
data(digit3)
dat_small = digit3[sample(1:2000, 10)]

RUN

run_exact = imagebary(dat_small, maxiter=20)
run_regl4 = imagebaryl4C(dat_small, maxiter=20)
run_regl5 = imagebary15B(dat_small, maxiter=20)

VISUALIZE

opar <- par(no.readonly=TRUE)

par(mfrow=c(1,3), pty="s")

image(run_exact, axes=FALSE, main="Unregularized")
image(run_regl4, axes=FALSE, main="Cuturi & Doucet (2014)")
image(run_regl5, axes=FALSE, main="Benamou et al. (2015)")
par(opar)

End(Not run)

34

imagebary 14C

imagebary14C Barycenter of Images according to Cuturi & Doucet (2014)

Description

Using entropic regularization for Wasserstein barycenter computation, imagebary14C finds a barycen-
tric image X * given multiple images X1, Xo, ..., X. Please note the followings; (1) we only take

a matrix as an image so please make it grayscale if not, (2) all images should be of same size - no
resizing is performed.

Usage
imagebary14C(images, p = 2, weights = NULL, lambda = NULL, ...)
Arguments
images a length-NV list of same-size image matrices of size (m x n).
p an exponent for the order of the distance (default: 2).
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length- N vector of nonnegative weights.
lambda a regularization parameter; if NULL (default), a paper’s suggestion would be
taken, or it should be a nonnegative real number.
extra parameters including
abstol stopping criterion for iterations (default: le-8).
init.image an initial weight image (default: uniform weight).
maxiter maximum number of iterations (default: 496).
nthread number of threads for OpenMP run (default: 1).
print.progress a logical to show current iteration (default: TRUE).
Value

an (m x n) matrix of the barycentric image.

References

Cuturi M, Doucet A (2014-06-22/2014-06-24). “Fast Computation of Wasserstein Barycenters.” In
Xing EP, Jebara T (eds.), Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, 685—693.

See Also

fbary14C

imagebary15B 35

Examples

Not run:
MNIST Data with Digit 3

EXAMPLE 1 : Very Small Example for CRAN; just showing how to use it!
EXAMPLE 2 : Medium-size Example for Evolution of Output

EXAMPLE 1

data(digit3)

datsmall = digit3[1:2]

outsmall = imagebary14C(datsmall, maxiter=3)

EXAMPLE 2 : Barycenter of 100 Images

RANDOMLY SELECT THE IMAGES

data(digit3)

dat2 = digit3[sample(1:2000, 100)] # select 100 images

RUN SEQUENTIALLY

run1@ = imagebary14C(dat2, maxiter=10) # first 10 iterations
run2@ = imagebary14C(dat2, maxiter=10, init.image=run1@) # run 40 more

run50 = imagebary14C(dat2, maxiter=30, init.image=run20) # run 50 more

VISUALIZE

opar <- par(no.readonly=TRUE)

par(mfrow=c(2,3), pty="s")

image(dat2[[sample(100,1)]1], axes=FALSE, main="a random image")
image(dat2[[sample(100,1)]1], axes=FALSE, main="a random image")
image(dat2[[sample(100,1)]]1, axes=FALSE, main="a random image")
image(run1@, axes=FALSE, main="barycenter after 10 iter")
image(run20, axes=FALSE, main="barycenter after 20 iter")
image(run50, axes=FALSE, main="barycenter after 50 iter"”)
par(opar)

End(Not run)

imagebary15B Barycenter of Images according to Benamou et al. (2015)

Description

Using entropic regularization for Wasserstein barycenter computation, imagebary15B finds a barycen-
tric image X * given multiple images X1, Xo, ..., Xn. Please note the followings; (1) we only take

a matrix as an image so please make it grayscale if not, (2) all images should be of same size - no
resizing is performed.

Usage

imagebary15B(images, p = 2, weights = NULL, lambda = NULL, ...)

36 imagebary15B

Arguments
images a length- N list of same-size image matrices of size (m x n).
p an exponent for the order of the distance (default: 2).
weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length- N vector of nonnegative weights.
lambda a regularization parameter; if NULL (default), a paper’s suggestion would be
taken, or it should be a nonnegative real number.
extra parameters including
abstol stopping criterion for iterations (default: 1e-8).
init.image an initial weight image (default: uniform weight).
maxiter maximum number of iterations (default: 496).
nthread number of threads for OpenMP run (default: 1).
print.progress a logical to show current iteration (default: TRUE).
Value

an (m x n) matrix of the barycentric image.

References

Benamou J, Carlier G, Cuturi M, Nenna L, Peyré G (2015). “Iterative Bregman Projections for Reg-
ularized Transportation Problems.” SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
ISSN 1064-8275, 1095-7197, doi:10.1137/141000439.

See Also
fbary15B

Examples

MNIST Data with Digit 3

EXAMPLE 1 : Very Small Example for CRAN; just showing how to use it!
EXAMPLE 2 : Medium-size Example for Evolution of Output

EXAMPLE 1

data(digit3)

datsmall = digit3[1:2]

outsmall = imagebary15B(datsmall, maxiter=3)

Not run:

EXAMPLE 2 : Barycenter of 100 Images

RANDOMLY SELECT THE IMAGES

data(digit3)

dat2 = digit3[sample(1:2000, 100)] # select 100 images

RUN SEQUENTIALLY

https://doi.org/10.1137/141000439

imagedist 37

run@5 = imagebary15B(dat2, maxiter=5) # first 5 iterations
run1@ = imagebary15B(dat2, maxiter=5, init.image=run®5) # run 5 more
run50 = imagebary15B(dat2, maxiter=40, init.image=run1@) # run 40 more

VISUALIZE

opar <- par(no.readonly=TRUE)

par(mfrow=c(2,3), pty="s")

image(dat2[[sample(100,1)]]1, axes=FALSE, main="a random image")
image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
image(run@5, axes=FALSE, main="barycenter after 05 iter"”)
image(run1@, axes=FALSE, main="barycenter after 10 iter”)
image(run50, axes=FALSE, main="barycenter after 50 iter")
par(opar)

End(Not run)

imagedist Wasserstein Distance between Two Images

Description

Given two grayscale images represented as numeric matrices, compute their Wasserstein distance
using an exact balanced optimal transport solver. Each image is interpreted as a discrete probability
distribution on a common (m x n) grid. The ground cost is defined using the Euclidean distance
between grid locations.

Usage

imagedist(x, y, p = 2)

Arguments
X a grayscale image matrix of size (m x n) with nonnegative entries.
y a grayscale image matrix of size (m x n) with nonnegative entries.
p an exponent for the order of the distance (default: 2).

Value

a list containing

distance the Wasserstein distance W, (, y).

plan the optimal transport plan matrix of size (mn x mn).

38 imageinterp

Examples

DATA
data(digit3)

x <- digit3[[1]]
y <- digit3[[2]]

COMPUTE
W1 <- imagedist(x, y, p=1)
W2 <- imagedist(x, y, p=2)

SHOW RESULTS

print(paste@("Wasserstein-1 distance: ", round(Wi1$distance,4)))
print(paste@("Wasserstein-2 distance: ", round(W2$distance,4)))
imageinterp Interpolation between Images
Description

Given two grayscale images represented as numeric matrices of identical size, compute interpolated
images along a 2-Wasserstein geodesic connecting them. The function interprets each image as a
discrete probability distribution on a common (m x n) grid, computes an exact optimal transport
plan, and constructs intermediate measures by pushing the plan through the linear interpolation map
z = (1 — t)z + ty (displacement interpolation / McCann’s interpolation).

Usage
imageinterp(imagel, image2, t = 0.5, ...)
Arguments
image1 a grayscale image matrix of size (m x n) with nonnegative entries.
image2 another grayscale image matrix of size (m x n) with nonnegative entries.
t a scalar or numeric vector in [0, 1] specifying interpolation times. t=0 returns

image1l, t=1 returns image2.
extra parameters including

eps positivity floor applied after normalization (default: 1e-15). Larger values
can improve robustness.

abstol tolerance used for internal mass checks (default: 1e-12).

print.progress logical; if TRUE, print basic diagnostics (default: FALSE).

imagemed 39

Details

Because the interpolated support locations generally do not coincide with the original grid points,
the resulting distribution is projected back onto the grid by depositing transported mass to the
nearest grid location. This is a simple and robust "re-binning" step, analogous in spirit to how
histinterp re-bins interpolated quantile samples.

Value

If length(t)==1, a single (m x n) matrix representing the interpolated image. If length(t)>1, a
length-length(t) list of (m X n) matrices.

Examples

LOAD DATA
set.seed(11)
data(digits)
x1 <- digits$image[[sample(which(digits$label==1),1)]]
x2 <- digits$image[[sample(which(digits$label==8),1)1]

COMPUTE
tvec <- seq(@, 1, length.out=10)
path <- imageinterp(x1, x2, t = tvec)

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,5), pty="s")
for (k in 1:10){
image(path[[k]], axes=FALSE, main=sprintf("t=%.2f", tvecl[k]))
3
par (opar)

imagemed Wasserstein Median of Images

Description

Using exact balanced optimal transport as a subroutine, imagemed computes an unregularized 2-
Wasserstein geometric median image X ' from multiple input images X1, . .., X . The Wasserstein
median is defined as a minimizer of the (weighted) sum of Wasserstein distances,

N
arg H}gnZw, Wo (X, X5)

i=1

40 imagemed

Usage

imagemed(images, weights = NULL, C = NULL, ...)

Arguments

images a length-N list of same-size grayscale image matrices of size (m X n).

weights a weight of each image; if NULL (default), uniform weight is set. Otherwise, it
should be a length- N vector of nonnegative weights.

C an optional (mn x mn) ground cost matrix (squared distances). If NULL (de-
fault), the squared Euclidean grid cost is used.

extra parameters including

maxiter maximum number of IRLS outer iterations (default: 30).

abstol stopping tolerance based on {5 change of iterates (default: 1e-6).

delta small positive number to avoid division by zero in IRLS weights (default:
1e-8).

init.image initial median iterate (default: unweighted barycenter via imagebary
with a small number of iterations).

init.bary.iter iterations for the default initialization barycenter (default: 10).

bary.maxiter maximum iterations for each barycenter subproblem (default: 200).

bary.abstol tolerance for each barycenter subproblem (default: 1e-7).

bary.step0 initial step size for barycenter subproblem (default: @.5).

bary.stepschedule "sqrt"” or "const” for barycenter subproblem (default: "sqrt").

bary.eps positivity floor used inside barycenter (default: 1e-15).

bary.smooth smoothing used inside barycenter (default: 1e-12).

bary.clip gradient clipping used inside barycenter (default: 50).

bary.max_backtrack backtracking cap used inside barycenter (default: 8).

print.progress logical; if TRUE, print iteration diagnostics (default: FALSE).

Details

Unlike Wasserstein barycenters (which minimize squared distances), the median is a robust notion
of centrality. This function solves the problem with an iterative reweighted least squares (IRLS)
scheme (a Wasserstein analogue of Weiszfeld’s algorithm). Each outer iteration updates weights
based on current distances and then solves a weighted Wasserstein barycenter problem:

(k) P W;
! maX(WQ(X(k),Xi),é)’

N
(k+1) — ; (%) p772 .
X aurgrriénzlozZ W5 (X, X;).

The barycenter subproblem is solved by imagebary (mirror descent with exact OT dual subgradi-
ents). Distances W, are computed by exact EMD plans under the same squared ground cost.

Value

an (m x n) matrix of the median.

img2measure 41

Examples

Not run:
MNIST Example

Use 6 images from digit '8' and 4 images from digit '1'.
The median should look closer to the shape of '8'.

DATA PREP

set.seed(11)

data(digits)

dat_8 = digits$image[sample(which(digits$label==8), 6)]
dat_1 = digits$image[sample(which(digits$label==1), 4)]
dat_all = c(dat_8, dat_1)

COMPUTE BARYCENTER AND MEDIAN
img_bary = imagebary(dat_all, maxiter=50)
img_med = imagemed(dat_all, maxiter=50)

VISUALIZE

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")

image (img_bary, axes=FALSE, main="Barycenter")
image(img_med, axes=FALSE, main="Median")
par(opar)

End(Not run)

img2measure Extract a discrete measure from a gray-scale image matrix

Description

This function takes a gray-scale image represented as a matrix X and converts it into a discrete
measure suitable for optimal transport computations in a Lagrangian framework. Pixel intensities
are normalized to sum to one, and the nonzero pixels are represented as weighted points (support
and weights).

Usage

img2measure(X, threshold = TRUE)

Arguments
X An (N, 2) nonnegative matrix representing a gray-scale image, where each entry
corresponds to a pixel intensity.
threshold A logical flag indicating whether to threshold very small weights smaller than

machine epsilon.

42 ipot

Value
A named list containing

support an (M x 2) matrix of coordinates for the nonzero pixels, where each row is a point (x, y).

weight a length- M vector of weights corresponding to the nonzero pixels, summing to 1.

Examples

Description
Take a digit image and compare visualization.

load the data and select the first image
data(digit3)
img_matrix = digit3[[1]]

extract a discrete measure

img_measure = img2measure(img_matrix, threshold=TRUE)
w <- img_measure$weight

w_norm <- w / max(w) # now runs from @ to 1
col_scale <- gray(1 - w_norm) # 1 = white, @ = black

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")

image(img_matrix, xaxt="n", yaxt="n", main="Image Matrix")
plot(img_measure$support,

col = col_scale, xlab="", ylab="",
pch = 19, cex = 0.5, xaxt = "n", yaxt = "n",
main = "Extracted Discrete Measure")
par(opar)
ipot Wasserstein Distance via Inexact Proximal Point Method
Description

The Inexact Proximal Point Method (IPOT) offers a computationally efficient approach to approx-
imating the Wasserstein distance between two empirical measures by iteratively solving a series of
regularized optimal transport problems. This method replaces the entropic regularization used in
Sinkhorn’s algorithm with a proximal formulation that avoids the explicit use of entropy, thereby
mitigating numerical instabilities.

Let C := || X,,, — Y,,||P be the cost matrix, where X,,, and Y, are the support points of two discrete
distributions p and v, respectively. The IPOT algorithm solves a sequence of optimization problems:

I —arg min (T, C) + AD(T|T®),
Tell(p,v)

ipot

43

where A > 0 is the proximal regularization parameter and D(-||-) is the Kullback-Leibler diver-
gence. Each subproblem is solved approximately using a fixed number of inner iterations, making
the method inexact.

Unlike entropic methods, IPOT does not require A — 0 for convergence to the unregularized
Wasserstein solution. It is therefore more robust to numerical precision issues, especially for small
regularization parameters, and provides a closer approximation to the true optimal transport cost
with fewer artifacts.

Usage
ipot(X, Y, p = 2, wx = NULL, wy = NULL, lambda =1, ...)
ipotD(D, p = 2, wx = NULL, wy = NULL, lambda =1, ...)
Arguments
X an (M x P) matrix of row observations.
Y an (N x P) matrix of row observations.
p an exponent for the order of the distance (default: 2).
WX a length- M marginal density that sums to 1. If NULL (default), uniform weight
is set.
wy a length- IV marginal density that sums to 1. If NULL (default), uniform weight is
set.
lambda a regularization parameter (default: 0.1).
extra parameters including
maxiter maximum number of iterations (default: 496).
abstol stopping criterion for iterations (default: 1e-10).
L small number of inner loop iterations (default: 1).
D an (M x N) distance matrix d(z,,, ¥,) between two sets of observations.
Value

a named list containing

distance W, distance value

plan an (M x N) nonnegative matrix for the optimal transport plan.

References

Xie Y, Wang X, Wang R, Zha H (2020-07-22/2020-07-25). “A Fast Proximal Point Method for
Computing Exact Wasserstein Distance.” In Adams RP, Gogate V (eds.), Proceedings of the 35th
Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning
Research, 433-453.

44

pwbary

Wasserstein Distance between Samples from Two Bivariate Normal

class 1 : samples from Gaussian with mean=(-1, -1)
class 2 : samples from Gaussian with mean=(+1, +1)

matrix(rnorm(mx2, mean=-1),ncol=2) # m obs. for X

Examples
#
*
*
SMALL EXAMPLE
set.seed(100)
m = 20
n = 30
X =
Y =

matrix(rnorm(nx2, mean=+1),ncol=2) # n obs. for Y

COMPARE WITH WASSERSTEIN
= wasserstein(X, Y)

= ipot(X, Y, lambda=1)
= ipot(X, Y, lambda=10)

outw
ipt1l
ipt2

#i#t vV
pmw
pm1
pm2

ISUALIZE : SHOW THE PLAN AND DISTANCE
= paste@("Exact plan\n dist=",round(outw$distance,?2))

paste@("IPOT (lambda=1)\n dist=",round(ipti$distance,?2))
paste@("IPOT (lambda=10)\n dist=",round(ipt2$distance,?2))

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")

image (outw$plan, axes=FALSE, main=pmw)
image(ipt1$plan, axes=FALSE, main=pm1)
image(ipt2$plan, axes=FALSE, main=pm2)

par(

opar)

pwbary

Procrustes-Wasserstein Barycenter

Descript:

ion

For a collection of empirical measures { ,u;f}le, this function computes the Procrustes-Wasserstein
(PW) barycenter (Adamo et al. 2025), which accounts for both measure transport and alignment
through action of the orthogonal group.

Usage

pwbary(atoms, marginals = NULL, weights = NULL, num_support = 100, ...)

pwbary 45

Arguments
atoms a length- K list where each element is an (N}, x P) matrix of atoms.
marginals marginal distributions for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length- K list where each ele-
ment is a length- N; vector of nonnegative weights that sum to 1.
weights weights for each individual measure; if NULL (default), each measure is consid-

ered equally. Otherwise, it should be a length- K vector.
num_support the number of support points M for the PW barycenter (default: 100).
extra parameters including

abstol stopping criterion for iterations (default: le-6).
maxiter maximum number of iterations (default: 10).

Value

a list with three elements:

support an (M X P) matrix of the PW barycenter’s support points.
weight a length-M vector of median’s weights with all entries being 1/M.

References

Adamo D, Corneli M, Vuillien M, Vila E (2025). “An in Depth Look at the Procrustes-Wasserstein
Distance: Properties and Barycenters.” In Forty-Second International Conference on Machine

Learning.
Examples
Not run:

Free-Support PW Barycenter of Multiple Gaussians
#
x class 1 : samples from N((0,0), diag(c(4,1/4)))
x class 2 : samples from N((10,0), diag(c(1/4,4)))
% class 3 : samples from N((10,0), Id) randomly rotated
#
We draw 10 empirical measures from each and compare
their barycenters under the regular and PW geometries.

GENERATE DATA
set.seed(10)

prepare empty lists

input_1 = vector("list”, length=10L)
input_2 = vector("list"”, length=10L)
input_3 = vector("list"”, length=10L)

generate
random_rot = qr.Q(gr(matrix(runif(4), ncol=2)))
for (i in 1:10){

pwbary

input_1[[i]] = cbind(rnorm(50, sd=2), rnorm(50, sd=0.5))
3
for (3 in 1:10){
base_draw = cbind(rnorm(5@, sd=0.5), rnorm(50, sd=2))
base_draw[,1] = base_draw[,1] + 10

input_2[[j]] = base_draw
input_3[[j]] = base_draw%x%random_rot

COMPUTE

regular Wasserstein barycenters

regular_1 = rbaryGD(input_1, num_support=50)
regular_2 = rbaryGD(input_2, num_support=50)
regular_3 = rbaryGD(input_3, num_support=50)

Procrustes-Wasserstein barycenters
pw_1 = pwbary(input_1, num_support=50)
pw_2 = pwbary(input_2, num_support=50)
pw_3 = pwbary(input_3, num_support=50)

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(3,1))

set the x- and y-limits for display
lim_x = c(-12, 12)
lim_y = c(-10, 5)

plot prototypical measures per class

plot(input_1[[1]], pch=19, cex=0.5, col="gray80",
main="3 types of measures”, xlab="", ylab="",
xlim=1lim_x, ylim=lim_y)

points(input_2[[1]], pch=19, cex=0.5, col="gray50")

points(input_3[[11], pch=19, cex=0.5, col="gray10")

plot regular barycenters
plot(regular_1$support, pch=19, cex=0.5, col="blue",
main="Regular Wasserstein barycenters”,
xlab="", ylab="", xlim=lim_x, ylim=1lim_y)
points(regular_2$support, pch=19, cex=0.5, col="cyan")
points(regular_3$support, pch=19, cex=0.5, col="red")

plot PW barycenters

plot(pw_1$support, pch=19, cex=0.5, col="blue",
main="Procrustes-Wasserstein barycenters”,
xlab="", ylab="", xlim=lim_x, ylim=lim_y)

points(pw_2$support, pch=19, cex=0.5, col="cyan")

points(pw_3$support, pch=19, cex=0.5, col="red")

par(opar)

End(Not run)

pwdist 47

pwdist Procrustes-Wasserstein Distance

Description

Given two empirical measures

M N
= Z Umbx, and v= Z Undy,
m=1 n=1

in R?, the Procrustes-Wasserstein (PW) distance is defined as follows:

PW3(p,v) = T, W3 (1, Quv),

where O(P) is the orthogonal group and Q)4 is the pushforward via Q.

Usage
pwdist(X, Y, wx = NULL, wy = NULL, ...)
Arguments
X an (M x P) matrix of row observations.
Y an (N x P) matrix of row observations.
WX a length- M marginal density that sums to 1. If NULL (default), uniform weight
is set.
wy a length-/V marginal density that sums to 1. If NULL (default), uniform weight is
set.
extra parameters including
maxiter maximum number of iterations (default: 496).
abstol stopping criterion for iterations (default: le-10).
Value

a named list containing

distance the computed PW distance value.
plan an (M x N) nonnegative matrix for the optimal transport plan.

alignment an optimal alignment matrix of size (P x P) in O(P).

References

Adamo D, Corneli M, Vuillien M, Vila E (2025). “An in Depth Look at the Procrustes-Wasserstein
Distance: Properties and Barycenters.” In Forty-Second International Conference on Machine
Learning.

48 pwdist

Examples

Not run:
Description

#
#
x class 1 : samples from N((0,0), diag(c(4,1/4)))

x class 2 : samples from N((10,0), diag(c(1/4,4)))

* class 3 : samples from N((10,0), diag(c(1/4,4))) randomly rotated
#

#

#

We draw 10 empirical measures from each and compare
the regular Wasserstein and PW distance.

GENERATE DATA
set.seed(10)

prepare empty lists
inputs = vector("list"”, length=30)

generate
random_rot = gr.Q(gr(matrix(runif(4), ncol=2)))
for (i in 1:10){
inputs[[i]] = matrix(rnorm(50%2), ncol=2)
3
for (3 in 11:20){
base_draw = matrix(rnorm(50%2), ncol=2)
base_draw[,1] = base_draw[,1] + 10

inputs[[j1] = base_draw
inputs[[j+10]] = base_draw%x%random_rot

COMPUTE

empty arrays

dist_RW = array(@, c(30, 30))
dist_PW = array(@, c(30, 30))

compute pairwise distances
for (i in 1:29){
for (j in (i+1):30){
dist_RW[i,j] <- dist_RW[j,i] <- wasserstein(inputs[[i]], inputs[[j]])$distance
dist_PW[i,j] <- dist_PW[j,i] <- pwdist(inputs[[i]], inputs[[j]])$distance
}
3

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")

image(dist_RW, xaxt="n", yaxt="n", main="Regular Wasserstein distance"”)
neon weon

image(dist_PW, xaxt="n", yaxt="n", main="PW distance"”)
par(opar)

End(Not run)

rbary23L 49

rbary23L Free-Support Barycenter by von Lindheim (2023)

Description

For a collection of empirical measures { ,uk}le, this function implements the free-support barycen-
ter algorithm introduced by von Lindheim (2023). The algorithm takes the first input and its
marginal as a reference and performs one-step update of the support. This version implements
‘reference‘ algorithm with p = 2.

Usage

rbary23L(atoms, marginals = NULL, weights = NULL)

Arguments
atoms a length-K list where each element is an (N, x P) matrix of atoms.
marginals marginal distributions for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length- K list where each ele-
ment is a length- N; vector of nonnegative weights that sum to 1.
weights weights for each individual measure; if NULL (default), each measure is consid-
ered equally. Otherwise, it should be a length-K vector.
Value

a list with two elements:

support an (N; x P) matrix of barycenter support points (same number of atoms as the first
empirical measure).

weight a length-N; vector representing barycenter weights (copied from the first marginal).

References

von Lindheim J (2023). “Simple Approximative Algorithms for Free-Support Wasserstein Barycen-
ters.” Computational Optimization and Applications, 85(1), 213-246. ISSN 0926-6003, 1573-
2894, doi:10.1007/s10589023004583.

Examples

Free-Support Wasserstein Barycenter of Four Gaussians
#
* class 1 : samples from Gaussian with mean=(-4, -4)
* class 2 : samples from Gaussian with mean=(+4, +4)
*x class 3 : samples from Gaussian with mean=(+4, -4)
* class 4 : samples from Gaussian with mean=(-4, +4)

https://doi.org/10.1007/s10589-023-00458-3

50 rbaryGD

#
The barycenter is computed using the first measure as a reference.
All measures have uniform weights.

The barycenter function also considers uniform weights.

GENERATE DATA

Empirical Measures

set.seed(100)

unif4 = round(runif(4, 100, 200))

datl = matrix(rnorm(unif4[1]*2, mean=-4, sd=0.5),ncol=2)

dat2 = matrix(rnorm(unif4[2]*2, mean=+4, sd=0.5),ncol=2)
dat3 = cbind(rnorm(unif4[3], mean=+4, sd=0.5), rnorm(unif4[3], mean=-4, sd=0.5))
dat4 = cbind(rnorm(unif4[4], mean=-4, sd=0.5), rnorm(unif4[4], mean=+4, sd=0.5))

myatoms = list()
myatoms[[1]] = dat1

myatoms[[2]] = dat2
myatoms[[3]] = dat3
myatoms[[4]] = dat4
COMPUTE

fsbary = rbary23L(myatoms)

VISUALIZE
aligned with CRAN convention
opar <- par(no.readonly=TRUE)

plot the input measures

plot(myatoms[[1]], col="gray90", pch=19, cex=0.5, xlim=c(-6,6), ylim=c(-6,6),
main="Input Measures”, xlab="Dimension 1", ylab="Dimension 2")

points(myatoms[[2]], col="gray90", pch=19, cex=0.25)

points(myatoms[[3]], col="gray90", pch=19, cex=0.25)

points(myatoms[[4]], col="gray9e0", pch=19, cex=0.25)

plot the barycenter
points(fsbary$support, col="red", cex=0.5, pch=19)
par (opar)

rbaryGD Free-Support Barycenter by Riemannian Gradient Descent

Description

For a collection of empirical measures {px |, the free-support barycenter of order 2, defined as
a minimizer of the following functional,

K
Fv) = Z wiWa (v, g,
k=1

rbaryGD 51

is computed using the Riemannian gradient descent algorithm. The algorithm is based on the formal
Riemannian geometric view of the 2-Wasserstein space according to Otto (2001).

Usage
rbaryGD(atoms, marginals = NULL, weights = NULL, num_support = 100, ...)
Arguments
atoms a length- K list where each element is an (N}, x P) matrix of atoms.
marginals marginal distributions for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length- K list where each ele-
ment is a length- N, vector of nonnegative weights that sum to 1.
weights weights for each individual measure; if NULL (default), each measure is consid-

ered equally. Otherwise, it should be a length- K vector.
num_support the number of support points M for the barycenter (default: 100).
extra parameters including

abstol stopping criterion for iterations (default: le-6).
maxiter maximum number of iterations (default: 10).

Value

a list with three elements:

support an (M x P) matrix of barycenter support points.
weight a length-M vector of barycenter weights with all entries being 1/M.

history a vector of cost values at each iteration.

References

Otto F (2001). “The Geometry of Dissipative Evolution Equations: The Porous Medium Equation.”
Communications in Partial Differential Equations, 26(1-2), 101-174. ISSN 0360-5302, 1532-4133,
doi:10.1081/PDE100002243.

Examples

Free-Support Wasserstein Barycenter of Four Gaussians
#
% class 1 : samples from Gaussian with mean=(-4, -4)
x class 2 : samples from Gaussian with mean=(+4, +4)
x class 3 : samples from Gaussian with mean=(+4, -4)
% class 4 : samples from Gaussian with mean=(-4, +4)
#
All measures have uniform weights.

GENERATE DATA
Empirical Measures
set.seed(100)

https://doi.org/10.1081/PDE-100002243

52 rmedIRLS

unif4 = round(runif(4, 100, 200))

dat1 matrix(rnorm(unif4[1]*2, mean=-4, sd=0.5),ncol=2)

dat2 = matrix(rnorm(unif4[2]*2, mean=+4, sd=0.5),ncol=2)

dat3 = cbind(rnorm(unif4[3], mean=+4, sd=0.5), rnorm(unif4[3], mean=-4, sd=0.5))
dat4 = cbind(rnorm(unif4[4], mean=-4, sd=0.5), rnorm(unif4[4], mean=+4, sd=0.5))

myatoms = list()
myatoms[[1]] = dat1

myatoms[[2]] = dat2
myatoms[[3]] = dat3
myatoms[[4]] = dat4
COMPUTE

fsbary = rbaryGD(myatoms)

VISUALIZE
aligned with CRAN convention
opar <- par(no.readonly=TRUE, mfrow=c(1,2))

plot the input measures and the barycenter

plot(myatoms[[1]], col="gray90", pch=19, cex=0.5, xlim=c(-6,6), ylim=c(-6,6),
main="Inputs and Barycenter”, xlab="Dimension 1", ylab="Dimension 2")

points(myatoms[[2]], col="gray90", pch=19, cex=0.25)

points(myatoms[[3]], col="gray9e", pch=19, cex=0.25)

points(myatoms[[4]], col="gray90", pch=19, cex=0.25)

points(fsbary$support, col="red"”, cex=0.5, pch=19)

plot the cost history with only integer ticks
plot(seq_along(fsbary$history), fsbary$history, type="b", lwd=2, pch=19,
main="Cost History"”, xlab="Iteration”, ylab="Cost"”, xaxt='n')
axis(1, at=seq_along(fsbhary$history))

par(opar)

rmedIRLS Free-Support Median by IRLS

Description

For a collection of empirical measures {4}, the free-support Wasserstein median, a minimizer
to the following functional

K
Fw) = wiWa(v, i),
k=1

is computed using the generic method of iteratively-reweighted least squares (IRLS) method ac-
cording to You et al. (2025).
Usage

rmedIRLS(atoms, marginals = NULL, weights = NULL, num_support = 100, ...)

rmedIRLS 53

Arguments
atoms a length- K list where each element is an (N}, x P) matrix of atoms.
marginals marginal distributions for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length- K list where each ele-
ment is a length- N; vector of nonnegative weights that sum to 1.
weights weights for each individual measure; if NULL (default), each measure is consid-

ered equally. Otherwise, it should be a length- K vector.
num_support the number of support points M for the barycenter (default: 100).
extra parameters including

abstol stopping criterion for iterations (default: le-6).
maxiter maximum number of iterations (default: 10).

Value

a list with three elements:

support an (M x P) matrix of the Wasserstein median’s support points.
weight a length-M vector of median’s weights with all entries being 1/M.

history a vector of cost values at each iteration.

References

You K, Shung D, Giuffre M (2025). “On the Wasserstein Median of Probability Measures.” Journal
of Computational and Graphical Statistics, 34(1), 253-266. ISSN 1061-8600, 1537-2715.

Examples

Not run:
Free-Support Wasserstein Median of Multiple Gaussians

#

#

x class 1 : samples from N((0,0), Id)
% class 2 : samples from N((20,0), Id)
#
#
#

We draw 8 empirical measures of size 50 from class 1, and
2 from class 2. All measures have uniform weights.

GENERATE DATA

8 empirical measures from class 1

input_measures = vector(”list”, length=10L)

for (i in 1:8){
input_measures[[i]] = matrix(rnorm(50%*2), ncol=2)

3

for (3 in 9:10){
base_draw = matrix(rnorm(50%2), ncol=2)
base_draw[,1] = base_draw[,1] + 20
input_measures[[j]] = base_draw

}

54 rmedWB

COMPUTE

compute the Wasserstein median

run_median = rmedIRLS(input_measures, num_support = 50)
compute the Wasserstein barycenter

run_bary = rbaryGD(input_measures, num_support = 50)

VISUALIZE
opar <- par(no.readonly=TRUE)

draw the base points of two classes
base_1 = matrix(rnorm(80*2), ncol=2)
base_2 = matrix(rnorm(20%2), ncol=2)
base_2[,1] = base_2[,1] + 20

base_mat = rbind(base_1, base_2)
plot(base_mat, col="gray80", pch=19)

auxiliary information
title("estimated barycenter and median”)
abline(v=0); abline(h=0)

draw the barycenter and the median
points(run_bary$support, col="red", pch=19)
points(run_median$support, col="blue"”, pch=19)
par(opar)

End(Not run)

rmedwB Free-Support Median by Weiszfeld Update with Barycentric Projec-
tion

Description

For a collection of empirical measures {4}, the free-support Wasserstein median, a minimizer
to the following functional
K

f(y) = ZkaQ(V) :uk’)a

k=1

is computed using the OT-adapted version of the Weiszfeld algorithm using the barycentric projec-
tion as a means to recover an optimal displacement map.

Usage

rmedWB(atoms, marginals = NULL, weights = NULL, num_support = 100, ...)

rmedWB 55

Arguments
atoms a length- K list where each element is an (N}, x P) matrix of atoms.
marginals marginal distributions for empirical measures; if NULL (default), uniform weights
are set for all measures. Otherwise, it should be a length- K list where each ele-
ment is a length-V; vector of nonnegative weights that sum to 1.
weights weights for each individual measure; if NULL (default), each measure is consid-

ered equally. Otherwise, it should be a length-K vector.
num_support the number of support points M for the barycenter (default: 100).
extra parameters including

abstol stopping criterion for iterations (default: le-6).
maxiter maximum number of iterations (default: 10).

Value

a list with three elements:

support an (M x P) matrix of the Wasserstein median’s support points.
weight a length-M vector of median’s weights with all entries being 1/M.

history a vector of cost values at each iteration.

Examples

Not run:
Free-Support Wasserstein Median of Multiple Gaussians

#

#

x class 1 : samples from N((0,0), Id)
% class 2 : samples from N((20,0), Id)
#
#
#

We draw 8 empirical measures of size 50 from class 1, and
2 from class 2. All measures have uniform weights.

GENERATE DATA

8 empirical measures from class 1

input_measures = vector(”list”, length=10L)

for (i in 1:8){
input_measures[[i]] = matrix(rnorm(50%*2), ncol=2)

3

for (3 in 9:10){
base_draw = matrix(rnorm(50%2), ncol=2)
base_draw[,1] = base_draw[,1] + 20
input_measures[[j]] = base_draw

}

COMPUTE

compute the Wasserstein median

run_median = rmedWB(input_measures, num_support = 50)
compute the Wasserstein barycenter

run_bary = rbaryGD(input_measures, num_support = 50)

56 sinkhorn

VISUALIZE
opar <- par(no.readonly=TRUE)

draw the base points of two classes
base_1 = matrix(rnorm(80*2), ncol=2)
base_2 = matrix(rnorm(20%2), ncol=2)
base_2[,1] = base_2[,1] + 20

base_mat = rbind(base_1, base_2)
plot(base_mat, col="gray8@", pch=19)

auxiliary information
title("estimated barycenter and median”)
abline(v=0); abline(h=0)

draw the barycenter and the median
points(run_bary$support, col="red", pch=19)
points(run_median$support, col="blue"”, pch=19)
par(opar)

End(Not run)

sinkhorn Wasserstein Distance via Entropic Regularization and Sinkhorn Algo-
rithm

Description

To alleviate the computational burden of solving the exact optimal transport problem via linear
programming, Cuturi (2013) introduced an entropic regularization scheme that yields a smooth
approximation to the Wasserstein distance. Let C := || X,,, — Y,,||? be the cost matrix, where X,
and Y, are the observations from two distributions x4 and nu. Then, the regularized problem adds a
penalty term to the objective function:

) o
Woalmv) = min (T,C)+ X > Tonn10g(Tmn),

m,n

where A > 0 is the regularization parameter and I' denotes a transport plan. As A — 0, the
regularized solution converges to the exact Wasserstein solution, but small values of A may cause
numerical instability due to underflow. In such cases, the implementation halts with an error; users
are advised to increase A to maintain numerical stability.

Usage

sinkhorn(X, Y, p = 2, wx = NULL, wy = NULL, lambda = 0.1, ...)

sinkhornD(D, p = 2, wx = NULL, wy = NULL, lambda = 0.1, ...)

sinkhorn

57

Arguments
X an (M x P) matrix of row observations.
Y an (N x P) matrix of row observations.
p an exponent for the order of the distance (default: 2).
WX a length- M marginal density that sums to 1. If NULL (default), uniform weight
is set.
wy a length-/V marginal density that sums to 1. If NULL (default), uniform weight is
set.
lambda a regularization parameter (default: 0.1).
extra parameters including
maxiter maximum number of iterations (default: 496).
abstol stopping criterion for iterations (default: le-10).
D an (M x N) distance matrix d(z,,, ¥,) between two sets of observations.
Value

a named list containing

distance WV, distance value.

plan an (M x N) nonnegative matrix for the optimal transport plan.

References

Cuturi M (2013). “Sinkhorn Distances: Lightspeed Computation of Optimal Transport.” In Burges
CJ, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds.), Advances in Neural Information
Processing Systems, volume 26.

Examples

W
#

*
*x

S
set

< X 5 3
1

C
outw
skh1
skh2

V

asserstein Distance between Samples from Two Bivariate Normal

class 1 : samples from Gaussian with mean=(-1, -1)
class 2 : samples from Gaussian with mean=(+1, +1)

MALL EXAMPLE

.seed(100)

20
10
matrix(rnorm(mx2, mean=-1),ncol=2) # m obs. for X
matrix(rnorm(nx2, mean=+1),ncol=2) # n obs. for Y

OMPARE WITH WASSERSTEIN

= wasserstein(X, Y)
sinkhorn(X, Y, lambda=0.05)
= sinkhorn(X, Y, lambda=0.25)

ISUALIZE : SHOW THE PLAN AND DISTANCE

58 swdist

pml1 = paste@("Exact Wasserstein:\n distance=",round(outw$distance,?2))
pm2 = paste@(”Sinkhorn (1bd=0.05):\n distance=",round(skh1$distance,?2))
pm5 = paste@(”Sinkhorn (1bd=0.25):\n distance=",round(skh2%$distance,2))

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")

image (outw$plan, axes=FALSE, main=pm1)
image(skh1$plan, axes=FALSE, main=pm2)
image(skh2$plan, axes=FALSE, main=pm5)
par(opar)

swdist Sliced Wasserstein Distance

Description

Sliced Wasserstein (SW) Distance is a popular alternative to the standard Wasserstein distance due
to its computational efficiency on top of nice theoretical properties. For the d-dimensional proba-
bility measures p and v, the SW distance is defined as

swin = ([wpem wmne)”

where S9! is the (d — 1)-dimensional unit hypersphere and) is the uniform distribution on S%~*.
Practically, it is computed via Monte Carlo integration.

Usage
swdist(X, Y, p =2, ...)
Arguments
X an (M x P) matrix of row observations.
Y an (N x P) matrix of row observations.
p an exponent for the order of the distance (default: 2).
extra parameters including
num_proj the number of Monte Carlo samples for SW computation (default:
496).
Value

a named list containing

distance SV, distance value.

projdist a length-num_proj vector of projected univariate distances.

wassboot 59

References

Rabin J, Peyré G, Delon J, Bernot M (2012). “Wasserstein Barycenter and Its Application to Tex-
ture Mixing.” In Bruckstein AM, ter Haar Romeny BM, Bronstein AM, Bronstein MM (eds.),
Scale Space and Variational Methods in Computer Vision, volume 6667, 435-446. Springer Berlin
Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-24784-2 978-3-642-24785-9, doi:10.1007/9783-
642247859_37.

Examples

Sliced-Wasserstein Distance between Two Bivariate Normal
#

% class 1 : samples from Gaussian with mean=(-1, -1)

x class 2 : samples from Gaussian with mean=(+1, +1)

SMALL EXAMPLE

set.seed(100)

= 20

= 30

matrix(rnorm(mx2, mean=-1),ncol=2) # m obs. for X
= matrix(rnorm(n*2, mean=+1),ncol=2) # n obs. for Y

< X 5 3
1

COMPUTE THE SLICED-WASSERSTEIN DISTANCE
outsw <- swdist(X, Y, num_proj=100)

VISUALIZE

prepare ingredients for plotting

plot_x = 1:1000

plot_y = base::cumsum(outsw$projdist)/plot_x

draw

opar <- par(no.readonly=TRUE)

plot(plot_x, plot_y, type="b", cex=0.1, lwd=2,
xlab="number of MC samples”, ylab="distance”,
main="Effect of MC Sample Size")

abline(h=outsw$distance, col="red"”, lwd=2)

legend("bottomright”, legend="SW Distance”,

col="red", lwd=2)
par(opar)

wassboot Wasserstein Distance Estimation with Boostrapping

Description

This function computes the WV, distance between two empirical measures using bootstrap in order
to quantify the uncertainty of the estimation.

https://doi.org/10.1007/978-3-642-24785-9_37
https://doi.org/10.1007/978-3-642-24785-9_37

60

wassboot

Usage

wassboot(X, Y, p = 2, B = 500, wx = NULL, wy = NULL)

Arguments
X an (M x P) matrix of row observations.
Y an (N x P) matrix of row observations.
p an exponent for the order of the distance (default: 2).
B number of bootstrap samples (default: 500).
WX a length- M marginal density that sums to 1. If NULL (default), uniform weight
is set.
wy a length-/V marginal density that sums to 1. If NULL (default), uniform weight is
set.
Value

a named list containing

distance W, distance value.

boot_samples a length-B vector of bootstrap samples.

Examples

Boostrapping Wasserstein Distance between Two Bivariate Normals
#

x class 1 : samples from Gaussian with mean=(-5, @)

* class 2 : samples from Gaussian with mean=(+5, @)

SMALL EXAMPLE

m = round(runif (1, min=50, max=100))
round(runif (1, min=50, max=100))
matrix(rnorm(mx2), ncol=2) # m obs. for X
matrix(rnorm(n*2), ncol=2) # n obs. for Y

n
X
Y

X[,11 = X[,11 - 5
Y[,11 = Y[,11 + 5

COMPUTE THE BOOTSTRAP SAMPLES
boots = wassboot(X, Y, B=1000)

VISUALIZE

opar <- par(no.readonly=TRUE)

hist(boots$boot_samples, xlab="Estimates”, main="Bootstrap Samples”)

abline(v=boots$distance, lwd=2, col="blue")

abline(v=mean(boots$boot_samples), lwd=2, col="red")

abline(v=10, col="cyan", lwd=2)

legend("topright”, c("”ground truth”,"estimate"”,"bootstrap mean"),
col=c("cyan"”,"blue"”,"red"), lwd=2)

wasserstein 61

par(opar)

wasserstein Wasserstein Distance via Linear Programming

Description

Given two empirical measures

M N
W= Z Umbx, and v = Z Vn0y,,,
m=1

n=1

the p-Wasserstein distance for p > 1 is posited as the following optimization problem

M N
Wg(ﬂ,l/) = eI%[l(iIl) Z Zﬂ'mnHXm —Yan,
4 B =1 n=1

where II(u,) denotes the set of joint distributions (transport plans) with marginals 1 and v. This
function solves the above problem with linear programming, which is a standard approach for exact
computation of the empirical Wasserstein distance. Please see the section for detailed description
on the usage of the function.

Usage
wasserstein(X, Y, p = 2, wx = NULL, wy = NULL)

wassersteinD(D, p = 2, wx = NULL, wy = NULL)

Arguments
X an (M x P) matrix of row observations.
Y an (N x P) matrix of row observations.
p an exponent for the order of the distance (default: 2).
WX a length- M marginal density that sums to 1. If NULL (default), uniform weight
is set.
wy a length-/V marginal density that sums to 1. If NULL (default), uniform weight is
set.
D an (M x N) distance matrix d(z,,, y,) between two sets of observations.
Value

a named list containing

distance WV, distance value.

plan an (M x N) nonnegative matrix for the optimal transport plan.

62 wasserstein

Using wasserstein() function
We assume empirical measures are defined on the Euclidean space X = R,

M N
u= Z Umbx, and v= Z Vndy,
m=1

n=1
and the distance metric used here is standard Euclidean norm d(z, y) = ||x—y/||. Here, the marginals
(1, po2y - - -y pupg) and (v1, va, . .., vy) correspond to wx and wy, respectively.
Using wassersteinD() function

If other distance measures or underlying spaces are one’s interests, we have an option for users to
provide a distance matrix D rather than vectors, where

D :=Dyxn =d(Xm,Ys)

for arbitrary distance metrics beyond the /5 norm.

References

Peyré G, Cuturi M (2019). “Computational Optimal Transport: With Applications to Data Science.”
Foundations and Trends® in Machine Learning, 11(5-6), 355-607. ISSN 1935-8237, 1935-8245,
doi:10.1561/2200000073.

Examples

Wasserstein Distance between Samples from Two Bivariate Normal
#

% class 1 : samples from Gaussian with mean=(-1, -1)

x class 2 : samples from Gaussian with mean=(+1, +1)

SMALL EXAMPLE

m = 20

n=10

X = matrix(rnorm(mx2, mean=-1),ncol=2) # m obs. for X

Y = matrix(rnorm(nx2, mean=+1),ncol=2) # n obs. for Y

COMPUTE WITH DIFFERENT ORDERS
out1l = wasserstein(X, Y, p=1)
out2 = wasserstein(X, Y, p=2)
out5 = wasserstein(X, Y, p=5)

VISUALIZE : SHOW THE PLAN AND DISTANCE

pml = paste@("Order p=1\n distance=",round(outl$distance,2))
pm2 = paste@("Order p=2\n distance=",round(out2$distance,?2))
pm5 = paste@(”"Order p=5\n distance=",round(out5$distance,?2))

opar <- par(no.readonly=TRUE)

par(mfrow=c(1,3), pty="s")
image(out1$plan, axes=FALSE, main=pm1)

https://doi.org/10.1561/2200000073

wasserstein

image(out2$plan, axes=FALSE, main=pm2)
image (out5%$plan, axes=FALSE, main=pm5)
par (opar)

Not run:

COMPARE WITH ANALYTIC RESULTS

For two Gaussians with same covariance, their

2-Wasserstein distance is known so let's compare !

niter = 1000 # number of iterations
vdist = rep(@,niter)
for (i in 1:niter){

mm = sample(30:50, 1)

nn = sample(30:50, 1)

X = matrix(rnorm(mmx2, mean=-1),ncol=2)
Y = matrix(rnorm(nn*2, mean=+1),ncol=2)

vdist[i] = wasserstein(X, Y, p=2)$distance
if (i%%10 == 0){
print(paste@("iteration ",i,"/", niter,"
3
3

I

complete. "))

Visualize

opar <- par(no.readonly=TRUE)

hist(vdist, main="Monte Carlo Simulation")
abline(v=sqrt(8), lwd=2, col="red")
par(opar)

End(Not run)

63

Index

+ datasets
digit3,2
digits, 3

* data
digit3, 2
digits, 3

* dist
ipot, 42
pwdist, 47
sinkhorn, 56
swdist, 58
wassboot, 59

wasserstein, 61

x ecdf
ecdfbary, 4
ecdfmed, 5

x fixed_centroid
fbary14C, 7
fbary15B, 9

x free_centroid
pwbary, 44
rbary23L, 49
rbaryGD, 50
rmedIRLS, 52
rmedWB, 54

* gaussian

gaussbaryid, 12
gaussbarypd, 14
gaussmed1d, 15
gaussmedpd, 17

* gromov

gwbary, 20
gwdist, 21

* histogram

histbary, 23
histbary14C, 25
histbary15B, 26
histdist, 28
histinterp, 29

64

histmed, 30

* image
imagebary, 32
imagebary14C, 34
imagebary15B, 35
imagedist, 37
imageinterp, 38
imagemed, 39

+ other
fiedler, 11
gaussvis2d, 18
img2measure, 41

digit3, 2
digits, 3
dist, 22

ecdfbary, 4
ecdfmed, 5

fbary14C, 7, 25, 34
fbary14Cdist (fbary14C), 7
fbary15B, 9, 27, 36
fbary15Bdist (fbary15B), 9
fiedler, 11

gaussbary1d, 12
gaussbarypd, 14
gaussmedld, 15
gaussmedpd, 17
gaussvis2d, 18
gwbary, 20
gwdist, 21

histbary, 23
histbary14cC, 25
histbary15B, 26
histdist, 28
histinterp, 29
histmed, 30

INDEX

imagebary, 32, 40
imagebary14C, 34
imagebary15B, 35
imagedist, 37
imageinterp, 38
imagemed, 39
img2measure, 41
ipot, 42

ipotD (ipot), 42

pwbary, 44
pwdist, 47

rbary23L, 49
rbaryGD, 50
rmedIRLS, 52
rmedWB, 54

sinkhorn, 56
sinkhornD (sinkhorn), 56
swdist, 58

wassboot, 59
wasserstein, 61
wassersteinD (wasserstein), 61

	digit3
	digits
	ecdfbary
	ecdfmed
	fbary14C
	fbary15B
	fiedler
	gaussbary1d
	gaussbarypd
	gaussmed1d
	gaussmedpd
	gaussvis2d
	gwbary
	gwdist
	histbary
	histbary14C
	histbary15B
	histdist
	histinterp
	histmed
	imagebary
	imagebary14C
	imagebary15B
	imagedist
	imageinterp
	imagemed
	img2measure
	ipot
	pwbary
	pwdist
	rbary23L
	rbaryGD
	rmedIRLS
	rmedWB
	sinkhorn
	swdist
	wassboot
	wasserstein
	Index

