

Package ‘VARshrink’

January 10, 2026

Title Shrinkage Estimation Methods for Vector Autoregressive Models

Version 0.3.3

Description Vector autoregressive (VAR) model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method. This package is an integrative package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner, such as the multivariate ridge regression in Golub, Heath, and Wahba (1979) [doi:10.2307/1268518](https://doi.org/10.2307/1268518), a James-Stein type nonparametric shrinkage method in Opgen-Rhein and Strimmer (2007) [doi:10.1186/1471-2105-8-S2-S3](https://doi.org/10.1186/1471-2105-8-S2-S3), and Bayesian estimation methods using noninformative and informative priors in Lee, Choi, and S.-H. Kim (2016) [doi:10.1016/j.csda.2016.03.007](https://doi.org/10.1016/j.csda.2016.03.007) and Ni and Sun (2005) [doi:10.1198/073500104000000622](https://doi.org/10.1198/073500104000000622).

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports vars (>= 1.6.1), ars (>= 0.6), corpcor (>= 1.6.9), strucchange, stats, MASS, mvtnorm

Suggests knitr, rmarkdown, kableExtra

URL <https://github.com/namgillee/VARshrink/>

BugReports <https://github.com/namgillee/VARshrink/issues/>

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Namgil Lee [aut, cre, cph] (ORCID: <https://orcid.org/0000-0003-0593-9028>), Heon Young Yang [ctb], Sung-Ho Kim [aut, cph]

Maintainer Namgil Lee <namgil.lee@kangwon.ac.kr>

Repository CRAN

Date/Publication 2026-01-10 00:40:28 UTC

Contents

Acoef_sh	2
Bcoef_sh	3
calcSSE_Acoef	4
causality_sh	5
convPsi2varresult	6
createVARCoefs_ltriangular	7
irf.varshrinkest	8
lm_full_Bayes_SR	10
lm_multiv_ridge	11
lm_semi_Bayes_PCV	12
lm_ShVAR_KCV	13
logLik.varshrinkest	14
Phi.varshrinkest	15
print.varshrinkest	15
print.varshsum	16
restrict_sh	17
roots_sh	18
serial.test_sh	18
shrinkVARcoef	19
simVARmodel	20
stability_sh	21
summary.shrinklm	22
summary.varshrinkest	23
VARshrink	24

Index

26

Acoef_sh	<i>Coefficient matrices of the lagged endogenous variables</i>
----------	--

Description

Returns the estimated coefficient matrices of the lagged endogenous variables as a list of $(K \times K)$ matrices.

Usage

`Acoef_sh(x)`

Arguments

`x` An object of class "varshrinkeset", generated by `VARshrink()`.

Details

Consider VAR(p) model:

$$\mathbf{y}_t = \mathbf{A}_1 \mathbf{y}_{t-1} + \dots + \mathbf{A}_p \mathbf{y}_{t-p} + \mathbf{C} \mathbf{d}_t + \mathbf{e}_t.$$

The function returns the $(K \times K)$ matrices $\mathbf{A}_1, \dots, \mathbf{A}_p$ as a list object.

This function modifies `vars::Acoef()` for the class "varshrinkest", preventing redundant copying of data matrix objects.

Value

A list object with K-by-K VAR coefficient matrices $\mathbf{A}_1, \dots, \mathbf{A}_p$.

See Also

[Acoef](#)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
Acoef_sh(estim)
```

Bcoef_sh

Coefficient matrix of an estimated VAR(p)

Description

Returns the estimated coefficients of a VAR(p) model as a matrix.

Usage

`Bcoef_sh(x)`

Arguments

x	An object of class "varshrinkest" generated by <code>VARshrink()</code> .
---	---

Details

Consider VAR(p) model:

$$\mathbf{y}_t = \mathbf{A}_1 \mathbf{y}_{t-1} + \dots + \mathbf{A}_p \mathbf{y}_{t-p} + \mathbf{C} \mathbf{d}_t + \mathbf{e}_t.$$

The function returns the concatenated matrix $(\mathbf{A}_1, \dots, \mathbf{A}_p, \mathbf{C})$ as a matrix object.

This function modifies `vars::Bcoef()` for the class "varshrinkest", preventing redundant copying of data matrix objects.

Value

A matrix holding the estimated coefficients of a VAR.

See Also

[Bcoef](#)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
Bcoef_sh(estim)
```

calcSSE_Acoef

Sum of squared errors (SSE) between coefficients of two VARs

Description

Compute sum of squared errors of coefficients of lagged endogenous variables (Acoef) of two VAR models.

Usage

```
calcSSE_Acoef(Acoef1, Acoef2)
```

Arguments

Acoef1, Acoef2 Each one is a list object with K-by-K coefficient matrices of lagged endogenous variables. See `help(Acoef_sh)`, or, `help(Acoef)`.

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C d_t + e_t.$$

The SSE of two VAR(p) models is expressed as

$$\sum_{k=1}^p \sum_{i=1}^K \sum_{j=1}^K ((A_k)_{ij} - (A'_k)_{ij})^2.$$

Value

An SSE value.

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim1 <- VARshrink(y, p = 2, type = "const", method = "fbayes")
Acoef1 <- Acoef_sh(estim1)
estim2 <- VARshrink(y, p = 2, type = "const", method = "ridge")
Acoef2 <- Acoef_sh(estim2)
calcSSE_Acoef(Acoef1, Acoef2)
```

causality_sh

Causality Analysis

Description

Computes the test statistics for Granger- and Instantaneous causality for a VAR(p).

Usage

```
causality_sh(x, cause = NULL, vcov. = NULL, boot = FALSE, boot.runs = 100)
```

Arguments

x	An object of class "varshrinkest" obtained by VARshrink().
cause, vcov., boot, boot.runs	Other arguments for causality analysis; see help(causality) for details.

Details

This function runs `vars::causality()` for an object of class "varshrinkest".

Value

A list of class attribute "htest" with the following elements: Granger, Instant.

See Also

[causality](#)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
causality_sh(estim, cause = "e")
```

<code>convPsi2varresult</code>	<i>Convert format for VAR coefficients from Psi to varresult</i>
--------------------------------	--

Description

Convert a matrix of VAR coefficients estimated by a shrinkage method into a list of "shrinklm" object, where the class "shrinklm" inherits the class "lm".

Usage

```
convPsi2varresult(
  Psi,
  Y,
  X,
  lambda0,
  type = c("const", "trend", "both", "none"),
  ybar = NULL,
  xbar = NULL,
  Q_values = NULL,
  callstr = ""
)
```

Arguments

<code>Psi</code>	An M-by-K matrix of VAR coefficients
<code>Y</code>	An N-by-K data matrix of dependent variables
<code>X</code>	An N-by-M data matrix of regressors
<code>lambda0</code>	A rescaled shrinkage intensity parameter, based on which the effective number of parameters is computed by
	$Trace(X(X'X + \lambda_0 * I)^{-1}X')$
<code>type</code>	Type of deterministic variables in the VAR estimation problem. Either of "const", "trend", "both", or "none".
<code>ybar, xbar</code>	NULL if Y and X are not centered. Mean vectors if Y and X had been centered. If Y and X had been centered (ybar and xbar are not NULL) and type is "const" or "both", then the coefficients for the constant term is computed and concatenated to the coefficients.
<code>Q_values</code>	Nonnegative weight vector of length N. Default is NULL. Take weights on rows (samples) of Y and X by \sqrt{Q} .
<code>callstr</code>	The call to VARshrink().

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C d_t + e_t.$$

It can be written in the matrix form:

$$Y = X\Psi + E,$$

where Ψ is a concatenated M-by-K matrix, $\Psi = (A_1, \dots, A_p, C)^T$. It can be written in the multiple linear regression form of a VAR(p) model:

$$y_j = X\psi_j + e_j, \quad j = 1, \dots, K,$$

where y_j , ψ_j , and e_j are the j-th column vectors of Y, Ψ , and E, respectively. This function converts Ψ into a list of "shrinklm" objects, where each "shrinklm" object contains the length-M vector ψ_j as coefficients.

Considering that each coefficient vector ψ_j is estimated by a shrinkage method, the effective number of parameters, k_{eff} , is computed as:

$$k_{eff} = \text{Trace}(X(X^T X + \lambda_0 * I)^{-1} X^T).$$

Then, the degree of freedom of residuals is computed as:

$$df.residual = N - k_{eff},$$

where N is the number of rows of data matrices Y and X.

Value

A list object with objects of class c("shrinklm", "lm"). Each "shrinklm" object has components: coefficients, residuals, fitted.values, rank, df.residual, lambda0, call, terms, svd

createVARCoefs_ltriangular

Create coefficients of a VAR model

Description

Randomly create sparse lower-triangular matrices for VAR coefficients of lagged endogenous variables, and set a constant vector.

Usage

```
createVARCoefs_ltriangular(
  p = 1,
  K = 5,
  diag_val = 1/p,
  num_nonzero = 0,
  const_vector = NULL,
  range_min = 0.2,
  range_max = 1/p
)
```

Arguments

p	lag order
K	Number of time series variables.
diag_val	diagonal values of A_1, \dots, A_p .
num_nonzero	Number of nonzero entries on the lower-triangular parts of A_1, \dots, A_p
const_vector	constant vector c of the VAR model
range_min, range_max	Each nonzero off-diagonal entry of coefficient matrices is drawn uniformly from the interval [-range_max, -range_min] U [range_min, range_max]

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + c + e_t,$$

with the constant deterministic variable ($d_t = 1$). The function creates the coefficient matrices A_1, \dots, A_p and constant vector c.

Diagonal elements of each K-by-K matrix A_i are all equal to diag_val, and off-diagonal elements are all zero except for a few randomly selected nonzero elements. Nonzero off-diagonal elements are selected from lower-triangular parts of A_i and the values are drawn from a uniform distribution over [-range_max, -range_min] U [range_min, range_max].

Value

A list object with components \$A and \$c. \$A is a list of K-by-K matrices A_1, \dots, A_p , and \$c is a constant vector of length K.

Examples

```
p <- 1; K <- 20;
const_vector <- c(rep(0.2, 5), rep(0.7, 15))
createVARCoefs_ltriangular(p = p, K = K, diag_val = 0.6,
num_nonzero = K, const_vector = const_vector, range_max = 1)
```

Description

Computes the impulse response coefficients of a VAR(p) (or transformed VECM to VAR(p)) for n.ahead steps.

Usage

```
## S3 method for class 'varshrinkest'
irf(
  x,
  impulse = NULL,
  response = NULL,
  n.ahead = 10,
  ortho = TRUE,
  cumulative = FALSE,
  boot = TRUE,
  ci = 0.95,
  runs = 100,
  seed = NULL,
  ...
)
```

Arguments

<code>x</code>	Object of class "varshrinkest", generated by <code>VARshrink()</code>
<code>impulse</code>	A character vector of the impulses, default is all variables.
<code>response</code>	A character vector of the responses, default is all variables.
<code>n.ahead</code>	Integer specifying the steps.
<code>ortho</code>	Logical, if TRUE (the default) the orthogonalised impulse response coefficients are computed (only for objects of class 'varshrinkest').
<code>cumulative</code>	Logical, if TRUE the cumulated impulse response coefficients are computed. The default value is false.
<code>boot</code>	Logical, if TRUE (the default) bootstrapped error bands for the imuplse response coefficients are computed.
<code>ci</code>	Numeric, the confidence interval for the bootstrapped errors bands.
<code>runs</code>	An integer, specifying the runs for the bootstrap.
<code>seed</code>	An integer, specifying the seed for the rng of the bootstrap.
<code>...</code>	Currently not used.

Details

This function runs `vars::irf()` for an object of class "varshrinkest".

Value

An object of class "varirf", computed by `vars::irf()`.

See Also

[irf](#)

lm_full_Bayes_SR	<i>Full Bayesian Shrinkage Estimation Method for Multivariate Regression</i>
------------------	--

Description

Estimate regression coefficients and scale matrix for noise by using Gibbs MCMC algorithm. The function assumes 1) multivariate t-distribution for noise as a sampling distribution, and 2) noninformative priors for regression coefficients and scale matrix for noise.

Usage

```
lm_full_Bayes_SR(Y, X, dof = Inf, burnincycle = 1000, mcmccycle = 2000)
```

Arguments

Y	An N x K matrix of dependent variables.
X	An N x M matrix of regressors.
dof	Degree of freedom for multivariate t-distribution. If dof = Inf (default), then multivariate normal distribution is applied and weight vector q is not estimated. If dof = NULL or dof <= 0, then dof and q are estimated automatically. If dof is a positive number, q is estimated.
burnincycle, mcmccycle	Number of burnin cycles is the number of initially generated sample values to drop. Number of MCMC cycles is the number of generated sample values to compute estimates.

Details

Consider the multivariate regression:

$$Y = X\Psi + e, \quad e \sim MVT(0, \nu, \Sigma).$$

Ψ is a M-by-K matrix of regression coefficients and Σ is a K-by-K scale matrix for multivariate t-distribution for noise.

Sampling distribution for noise e is multivariate t-distribution with degree of freedom dof and scale matrix $\Sigma : e \sim MVT(0, \nu, \Sigma)$. The priors are noninformative priors: 1) the shrinkage prior for regression coefficients Ψ , and 2) the reference prior for scale matrix Σ .

The function implements Gibbs MCMC algorithm for estimating regression coefficients Psi and scale matrix Sigma.

Value

A list object with estimated parameters: Psi, Sigma, dof, delta (delta is the reciprocal of lambda), and lambda. Additional components are se.param (standard error of the parameters) and LINEX-VARmodel (estimates under LINEX loss).

References

S. Ni and D. Sun (2005). Bayesian estimates for vector autoregressive models. *Journal of Business & Economic Statistics* 23(1), 105-117.

lm_multiv_ridge	<i>Multivariate Ridge Regression</i>
-----------------	--------------------------------------

Description

Estimate regression coefficients by using ridge regression.

Usage

```
lm_multiv_ridge(Y, X, lambda = 0, do_scale = FALSE)
```

Arguments

Y	An N x K matrix of dependent variables.
X	An N x M matrix of regressors.
lambda	Numeric vector of lambda values
do_scale	If true, X is centered and scaled, and Y is centered.

Details

Consider the multivariate regression:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\Psi} + \mathbf{e}.$$

$\boldsymbol{\Psi}$ is a M-by-K matrix of regression coefficients. The ridge regression estimate for the coefficients is

$$\boldsymbol{\Psi} = (\mathbf{X}'\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}'\mathbf{Y}.$$

Value

A list object with the components: 1) Psi - A list of estimated $\boldsymbol{\Psi}$ matrices, 2) lambda - A vector of λ values, 3) GCV - A vector of GCV values

References

G. H. Golub, M. Heath, G. Wahba (1979). Generalized cross-validation as a method for choosing a good ridge parameter. *Technometrics* 21(2), 215-223. doi: 10.2307/1268518

lm_semi_Bayes_PCV	<i>Semiparametric Bayesian Shrinkage Estimation Method for Multivariate Regression</i>
-------------------	--

Description

Estimate regression coefficients and scale matrix for noise by using a parameterized cross validation (PCV). The function assumes 1) multivariate t-distribution for noise as a sampling distribution, and 2) informative priors for regression coefficients and scale matrix for noise.

Usage

```
lm_semi_Bayes_PCV(
  Y,
  X,
  dof = Inf,
  lambda = NULL,
  lambda_var = NULL,
  prior_type = c("NCJ", "CJ"),
  num_folds = 5,
  m0 = ncol(Y)
)
```

Arguments

Y	An N x K matrix of dependent variables.
X	An N x M matrix of regressors.
dof	Degrees-of-freedom, ν , for multivariate t-distribution. If dof = Inf (default), then multivariate normal distribution is applied and weight vector q is not estimated. If dof = NULL or a numeric vector, then dof is selected by k-fold CV automatically and q is estimated.
lambda	If NULL or a vector of length ≥ 2 , it is selected by PCV.
lambda_var	If NULL, it is selected by a Stein-type shrinkage method.
prior_type	"NCJ" for non-conjugate prior and "CJ" for conjugate prior for scale matrix Sigma.
num_folds	Number of folds for PCV.
m0	A hyperparameter for inverse Wishart distribution for Sigma

Details

Consider the multivariate regression:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\Psi} + \mathbf{e}, \quad \mathbf{e} \sim MVT(0, \nu, \boldsymbol{\Sigma}).$$

$\boldsymbol{\Psi}$ is a $(M \times K)$ matrix of regression coefficients and $\boldsymbol{\Sigma}$ is a $(K \times K)$ scale matrix for multivariate t-distribution for noise.

Sampling distribution for noise \mathbf{e} is the multivariate t-distribution with the degrees-of-freedom ν and scale matrix Σ : $\mathbf{e} \sim MVT(0, \nu, \Sigma)$. The priors are informative priors: 1) a shrinkage prior for regression coefficients \mathbf{Psi} , and 2) inverse Wishart prior for scale matrix Σ , which can be either non-conjugate ("NCJ") or conjugate ("CJ") to the shrinkage prior for coefficients Ψ .

The function implements parameterized cross validation (PCV) for selecting a shrinkage parameter lambda for estimating regression coefficients ($0 < \text{lambda} \leq 1$). In addition, the function uses a Stein-type shrinkage method for selecting a shrinkage parameter lambda_var for estimating variances of time series variables.

References

N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. *Computational Statistics & Data Analysis* 101, 250-276. doi: 10.1016/j.csda.2016.03.007

lm_ShVAR_KCV

K-fold Cross Validation for Selection of Shrinkage Parameters of Semiparametric Bayesian Shrinkage Estimator for Multivariate Regression

Description

Estimate regression coefficients and scale matrix for noise by using semiparametric Bayesian shrinkage estimator, whose shrinkage parameters are selected by k-fold cross validation (KCV).

Usage

```
lm_ShVAR_KCV(
  Y,
  X,
  dof = Inf,
  lambda = NULL,
  lambda_var = NULL,
  prior_type = c("NCJ", "CJ"),
  num_folds = 5,
  m0 = ncol(Y)
)
```

Arguments

Y	An $N \times K$ matrix of dependent variables.
X	An $N \times M$ matrix of regressors.
dof	Degree of freedom for multivariate t-distribution. If $dof = \text{Inf}$ (default), then multivariate normal distribution is applied and weight vector q is not estimated. If $dof = \text{NULL}$ or a numeric vector, then dof is selected by k-fold CV automatically and q is estimated.

lambda	If NULL or a vector of length ≥ 2 , it is selected by KCV.
lambda_var	If NULL or a vector of length ≥ 2 , it is selected by KCV.
prior_type	"NCJ" for non-conjugate prior and "CJ" for conjugate prior for scale matrix Sigma.
num_folds	Number of folds for KCV.
m0	A hyperparameter for inverse Wishart distribution for Sigma

Details

The shrinkage parameters, lambda and lambda_var, for the semiparametric Bayesian shrinkage estimator are selected by KCV. See `help(lm_semi_Bayes_PCV)` for details about semiparametric Bayesian estimator.

References

N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. *Computational Statistics & Data Analysis* 101, 250-276. doi: 10.1016/j.csda.2016.03.007

`logLik.varshrinkest` *Log-likelihood method for class "varshrinkest"*

Description

Returns the log-likelihood of a VAR model estimated by `VARshrink()`. It extends `vars::logLik.varest()` to incorporate 1) multivariate t-distribution for residuals, 2) scale matrix Sigma provided by shrinkage methods, and 3) effective number of parameters provided by shrinkage methods.

Usage

```
## S3 method for class 'varshrinkest'
logLik(object, ...)
```

Arguments

object	An object of class "varshrinkest"
...	Currently not used.

Value

log-likelihood of the fitted VAR model, with the `class` attribute "logLik" and the attributes `df` and `nobs`.

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
logLik(estim)
```

<code>Phi.varshrinkest</code>	<i>Coefficient matrices of the MA representation</i>
-------------------------------	--

Description

Returns the estimated coefficient matrices of the moving average representation of a stable VAR(p).

Usage

```
## S3 method for class 'varshrinkest'
Phi(x, nstep = 10, ...)
```

Arguments

<code>x</code>	An object of class "varshrinkest", generated by <code>VARshrink()</code> .
<code>nstep</code>	An integer specifying the number of moving error coefficient matrices to be calculated.
<code>...</code>	Currently not used.

Details

This is a modification of `vars::Phi.varest()` for the class "varshrinkest", preventing redundant copying of data matrix objects.

Value

An array with dimension $K \times K \times (nstep + 1)$ holding the estimated coefficients of the moving average representation. The first slice of the array is the starting value, i.e., Φ_0 .

See Also

[Phi](#)

<code>print.varshrinkest</code>	<i>Print method for class "varshrinkest"</i>
---------------------------------	--

Description

`print` method for an object of class "varshrinkest"

Usage

```
## S3 method for class 'varshrinkest'
print(x, digits = max(3,getOption("digits") - 3), ...)
```

Arguments

- x An object of class "varshinkest"
- digits, ... Other arguments for `print()` method

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
print(estim)
```

print.varshsum*Print method for class "varshsum"***Description**

`print` method for an object obtained by `summary.varshinkest()`.

Usage

```
## S3 method for class 'varshsum'
print(
  x,
  digits = max(3,getOption("digits") - 3),
  signif.stars =getOption("show.signif.stars"),
  ...
)
```

Arguments

- x An object of class "varshsum"
- digits, signif.stars, ... Other arguments for `print()`, `printCoefmat()`, `format()` method

Details

This function extends `print.varsum()` for VAR models estimated by shrinkage methods. The output includes the covariance matrix Σ and the degrees-of-freedom dof for the multivariate t-distribution for the residuals.

restrict_sh*Restricted VAR*

Description

Estimation of a VAR by imposing zero restrictions manually or by significance.

Usage

```
restrict_sh(x, ...)
```

Arguments

x	An object of class "varshrinkest"
...	Other arguments to vars::restrict()

Details

This is a modification of `vars::restrict()` for the class "varshrinkest". Given an estimated VAR object of class "varest" or "varshrinkest", a restricted VAR is obtained by choosing `method` "ser" or "manual". Note: this function fits a restricted VAR using ordinary least squares rather than a shrinkage method.

Value

An object of class "varest", a VAR model fitted using ordinary least squares. It contains an additional element `restrictions`, which is a zero-one matrix indicating which variables were fixed to zero.

See Also

[restrict](#)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
restrict_sh(estim)
```

roots_sh

*Eigenvalues of the companion coefficient matrix of a VAR(p)***Description**

This is a variant of `vars::roots()` for an object of class "varshrinkest", VAR parameters estimated by `VARshrink()`.

Usage

```
roots_sh(x, modulus = TRUE)
```

Arguments

<code>x</code>	An object of class "varshrinkest"
<code>modulus</code>	TRUE for modulus of the roots.

Value

A vector with the eigenvalues of the companion matrix, or their modulus (default).

See Also

[roots](#)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
roots_sh(estim)
```

serial.test_sh

*Test for serially correlated errors***Description**

Computes the multivariate Portmanteau- and Breusch-Godfrey test for serially correlated errors.

Usage

```
serial.test_sh(
  x,
  lags.pt = 16,
  lags.bg = 5,
  type = c("PT.asymptotic", "PT.adjusted", "BG", "ES")
)
```

Arguments

- x An object of class "varshrinkest" obtained by VARshrink().
- lags.pt, lags.bg, type Other arguments for vars::serial.test().

Details

An extension of vars::serial.test() to the class "varshrinkest".

Value

An object of class "varcheck" computed by vars::serial.test().

See Also

[serial.test](#)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
serial.test_sh(estim)
```

shrinkVARcoef

Semiparametric Bayesian Shrinkage Estimator for Multivariate Regression

Description

Compute the semiparametric Bayesian shrinkage estimator of Psi and Sigma for a given shrinkage parameter lambda. The function is a private function for lm_semi_Bayes_PCV() and lm_ShVAR_KCV().

Usage

```
shrinkVARcoef(
  Y,
  X,
  lambda,
  dof = Inf,
  prior_type = "NCJ",
  TolDRes = 1e-04,
  m0 = ncol(Y)
)
```

Arguments

Y	An N x K matrix of dependent variables.
X	An N x M matrix of regressors.
lambda	A shrinkage intensity parameter value between 0~1.
dof	Degree of freedom for multivariate t-distribution. If NULL or Inf, then use multivariate normal distribution.
prior_type	"NCJ" for non-conjugate prior and "CJ" for conjugate prior for scale matrix Sigma.
TolDRes	Tolerance parameter for stopping criterion.
m0	A hyperparameter for inverse Wishart distribution for Sigma

References

N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. Computational Statistics & Data Analysis 101, 250-276. doi: 10.1016/j.csda.2016.03.007

simVARmodel*Generate multivariate time series data using the given VAR model*

Description

Generate a multivariate time series data set using the given VAR model.

Usage

```
simVARmodel(numT, model, burnin = 0)
```

Arguments

numT	Number of observed time points, T.
model	A list object with Coef, Sigma, dof; Coef is a list with A and c; A is a list object of K-by-K coefficient matrices and c is a length-K vector. Sigma is a K-by-K scale matrix and dof is a degree of freedom for multivariate t-distribution for noise.
burnin	Number of initial points which are not included in the final values.

Details

First, it creates (p+burnin+numT x K) data, then it remove the first (p+burnin) vectors. Finally, it returns (numT x K) data.

Value

A numT-by-K matrix

Examples

```
myCoef <- list(A = list(matrix(c(0.5, 0, 0, 0.5), 2, 2)), c = c(0.2, 0.7))
myModel <- list(Coef = myCoef, Sigma = diag(0.1^2, 2), dof = Inf)
simVARmodel(numT = 100, model = myModel, burnin = 10)
```

stability_sh	<i>Structural stability of a VAR(p)</i>
--------------	--

Description

Computes empirical fluctuation processes for VAR estimates. Utilizes `strucchange::efp()` for the VAR estimates of each time series variable.

Usage

```
stability_sh(
  x,
  type = c("OLS-CUSUM", "Rec-CUSUM", "Rec-MOSUM", "OLS-MOSUM", "RE", "ME", "Score-CUSUM",
          "Score-MOSUM", "fluctuation"),
  h = 0.15,
  dynamic = FALSE,
  rescale = TRUE,
  ...
)
```

Arguments

<code>x</code>	Object of class "varshrinkest"
<code>type, h, dynamic, rescale, ...</code>	Other arguments to <code>strucchange::efp()</code>

Details

A variant of `vars::stability()` for an object of class "varshrinkest".

Value

A list with class attribute "varstabil" which contains the following elements: `stability`, `endog`, `K`. The `stability` is a list of `strucchange::efp()` outputs.

See Also

[stability](#)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
stabil <- stability_sh(estim)
plot(stabil)
```

summary.shrinklm *Summarizing shrinkage estimates of an AR model*

Description

summary method for an object of class "shrinklm".

Usage

```
## S3 method for class 'shrinklm'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
```

Arguments

object	An object of class "shrinklm"
correlation	If TRUE, the correlation matrix of the estimated coefficients is returned and printed.
symbolic.cor	If TRUE, print the correlations in a symbolic form rather than as numbers
...	Currently not used.

Details

The class "shrinklm" inherits from the class "lm", and extends it to incorporate shrinkage estimates with the effective number of parameters.

Value

Returns a list with class attribute "summary.lm", which contains summary statistics of the fitted linear model given in object.

summary.varshrinkest *Summary method for an object of class "varshrinkest", VAR parameters estimated by VARshrink()*

Description

Extend `summary.varest()` to the class "varshrinkest" to incorporate adapted methods for the new classes: `summary.shrinklm()`, `logLik.varshrinkest()`, `roots_sh()`.

Usage

```
## S3 method for class 'varshrinkest'
summary(object, equations = NULL, ...)
```

Arguments

<code>object</code>	An object of class "varshrinkest", usually a result of call to "VARshrink()".
<code>equations</code>	Subset of names of endogenous time series variables to summarize.
<code>...</code>	Currently not used.

Details

The code has been modified to eliminate direct calls to the data matrices (`$y`, `$datamat`) and to use the effective numbers of parameters obtained from the shrinkage estimates. The output additionally includes the covariance matrix `Sigma` and the degrees-of-freedom `dof` of the multivariate t-distribution for the residuals.

Value

Returns a list with class attribute "varshsum" and "varsum" which contains the following elements: `names`, `logLik`, `obs`, `roots`, `type`, `call`, `varresult`, `covres`, `corres`, `Sigma`, `dof`.

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
summary(estim)
```

VARshrink

*Shrinkage estimation of VAR parameters***Description**

Shrinkage estimation methods for high-dimensional VAR models. Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \cdots + A_p y_{t-p} + C d_t + e_t,$$

where y_t is K-dimensional time series, d_t is deterministic regressors, e_t is a noise process, and A_1, \dots, A_p , and C are coefficient matrices. Exogenous variables can be included additionally as regressors.

Usage

```
VARshrink(
  y,
  p = 1,
  type = c("const", "trend", "both", "none"),
  season = NULL,
  exogen = NULL,
  method = c("ridge", "ns", "fbayes", "sbayes", "kcv"),
  lambda = NULL,
  lambda_var = NULL,
  dof = Inf,
  ...
)
```

Arguments

y	A T-by-K matrix of endogenous variables
p	Integer for the lag order
type	Type of deterministic regressors to include. 1) const - the constant. 2) trend - the trend. 3) both - both the constant and the trend. 4) none - no deterministic regressors. ***Note: In the package version <= 0.3, method="ns" does not accept type="const" and type="both" to avoid constant term.
season	An integer value of frequency for inclusion of centered seasonal dummy variables. abs(season) >= 3.
exogen	A T-by-L matrix of exogenous variables. Default is NULL.
method	1) "ridge" - multivariate ridge regression. 2) "ns" - a Stein-type nonparametric shrinkage method. 3) "fbayes" - a full Bayesian shrinkage method using non-informative priors. 4) "sbayes" - a semiparametric Bayesian shrinkage method using parameterized cross validation. 5) "kcv" - a semiparametric Bayesian shrinkage method using K-fold cross validation

lambda, lambda_var

Shrinkage parameter value(s). Use of this parameter is slightly different for each method: the same value does not imply the same shrinkage estimates.

dof

Degree of freedom of multivariate t-distribution for noise. Valid only for method = "fbayes" and method = "sbayes". dof = Inf means multivariate normal distribution.

...

Extra arguments to pass to a specific function of the estimation method. For example, burnincycle and mcmccycle are for "fbayes".

Details

Shrinkage estimation methods can estimate the coefficients even when the dimensionality K is larger than the number of observations.

Value

An object of class "varshrinkest" with the components: varresult, datamat, y, type, p, K, obs, totobs, restrictions, method, lambda, call. The class "varshrinkest" inherits the class "varest" in the package vars.

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
VARshrink(y, p = 2, type = "const", method = "ridge")
```

Index

Acoef, 3
Acoef_sh, 2

Bcoef, 4
Bcoef_sh, 3

calcSSE_Acoef, 4
causality, 5
causality_sh, 5
convPsi2varresult, 6
createVARCoefs_ltriangular, 7

irf, 9
irf.varshrinkest, 8

lm_full_Bayes_SR, 10
lm_multiv_ridge, 11
lm_semi_Bayes_PCV, 12
lm_ShVAR_KCV, 13
logLik.varshrinkest, 14

Phi, 15
Phi.varshrinkest, 15
print.varshrinkest, 15
print.varshsum, 16

restrict, 17
restrict_sh, 17
roots, 18
roots_sh, 18

serial.test, 19
serial.test_sh, 18
shrinkVARcoef, 19
simVARmodel, 20
stability, 21
stability_sh, 21
summary.shrinklm, 22
summary.varshrinkest, 23

VARshrink, 24