Package ‘abclass’

January 11, 2026

Title Angle-Based Classification
Version 0.5.1

Description Multi-category angle-based large-margin classifiers.
See Zhang and Liu (2014) <doi:10.1093/biomet/asu017> for details.

Depends R (>=3.5.0)

Imports Rcpp, graphics, parallel, stats
LinkingTo Rcpp, ReppArmadillo
Suggests Matrix, Rglpk, quadprog, tinytest
Copyright Eli Lilly and Company
License GPL (>=3)

URL https://wwenjie.org/abclass,
https://github.com/wenjie2wang/abclass

BugReports https://github.com/wenjie2wang/abclass/issues

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Wenjie Wang [aut, cre] (ORCID: <https://orcid.org/0000-0003-0363-3180>),
Eli Lilly and Company [cph]

Maintainer Wenjie Wang <wang@wwenjie.org>

Repository CRAN

Date/Publication 2026-01-11 17:50:02 UTC

Contents

abclass L e e
abclass_propscore L. e e e e
coefabclass
coefisupclass
cvabclass ... oL

https://doi.org/10.1093/biomet/asu017
https://wwenjie.org/abclass
https://github.com/wenjie2wang/abclass
https://github.com/wenjie2wang/abclass/issues
https://orcid.org/0000-0003-0363-3180

2 abclass
cvmoml . ..o e 10
CV.SUPCIASS . . v v o e e e e e 11
etabclass L L e 13
etmoml e 14
moml e e e e 16
predict.abclass 18
predict.supclass 19
supclass . ..o L e e e 20
VETTEX . v v v e 22

Index 24

abclass Multi-Category Angle-Based Classification

Description

Multi-category angle-based large-margin classifiers with regularization by the elastic-net or group-
wise penalty.

Usage

abclass(
X ’
Y,

loss = c("logistic”, "boost”, "hinge.boost"”, "lum"),

penalty = c("glasso"”, "lasso"),
weights = NULL,

offset = NULL,

intercept = TRUE,

control = list(),

)

abclass.control(
lum_a =1,
lum_c = 0,
boost_umin = -5,
alpha = 1,
lambda = NULL,
nlambda = 50L,
lambda_min_ratio = NULL,
lambda_max_alpha_min = 0.01,
penalty_factor = NULL,
ncv_kappa = 0.1,
gel_tau = 0.33,
mellowmax_omega = 1,
lower_limit = -Inf,

abclass 3

upper_limit = Inf,

epsilon = 1e-07,

maxit = 100000L,
standardize = TRUE,
varying_active_set = TRUE,
adjust_mm = FALSE,
save_call = FALSE,

verbose = 0L

)
Arguments

X A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.

y An integer vector, a character vector, or a factor vector representing the response
label.

loss A character value specifying the loss function. The available options are "logistic”
for the logistic deviance loss, "boost” for the exponential loss approximating
Boosting machines, "hinge.boost" for hybrid of SVM and AdaBoost machine,
and "1lum” for largin-margin unified machines (LUM). See Liu, et al. (2011) for
details.

penalty A character vector specifying the name of the penalty.

weights A numeric vector for nonnegative observation weights. Equal observation weights
are used by default.

offset An optional numeric matrix for offsets of the decision functions.

intercept A logical value indicating if an intercept should be considered in the model. The
default value is TRUE and the intercept is excluded from regularization.

control A list of control parameters. See abclass.control() for details.
Other control parameters passed to abclass.control().

lum_a A positive number greater than one representing the parameter a in LUM, which
will be used only if 1loss = "1um". The default value is 1. 0.

lum_c A nonnegative number specifying the parameter ¢ in LUM, which will be used
only if loss = "hinge.boost” or loss = "lum”. The default value is 1.0.

boost_umin A negative number for adjusting the boosting loss for the internal majorization
procedure.

alpha A numeric value in $[0,1]$ representing the mixing parameter alpha. The de-
fault value is 1. 0.

lambda A numeric vector specifying the tuning parameter lambda. A data-driven lambda

sequence will be generated and used according to specified alpha, nlambda and
lambda_min_ratio if this argument is left as NULL by default. The specified
lambda will be sorted in decreasing order internally and only the unique values
will be kept.

abclass

nlambda A positive integer specifying the length of the internally generated lambda se-
quence. This argument will be ignored if a valid 1ambda is specified. The default
value is 50.

lambda_min_ratio
A positive number specifying the ratio of the smallest lambda parameter to the
largest lambda parameter. The default value is set to 1e-4 if the sample size is
larger than the number of predictors, and 1e-2 otherwise.

lambda_max_alpha_min
A positive number specifying the minimum denominator when the function de-
termines the largest lambda. If the lambda is not specified, the largest lambda
will be determined by the data and be the large enough lambda (that would result
in all zero estimates for the covariates with positive penalty factors) divided by
max(alpha, lambda_max_alpha_min).

penalty_factor A numerical vector with nonnegative values specifying the adaptive penalty fac-
tors for individual predictors (excluding intercept).
ncv_kappa A positive number within $(0,1)$ specifying the ratio of reciprocal gamma pa-

rameter for group SCAD or group MCP. A close-to-zero ncv_kappa would give
a solution close to lasso solution.

gel_tau A positive parameter tau for group exponential lasso penalty.
mellowmax_omega
A positive parameter omega for Mellowmax penalty. It is experimental and
subject to removal in future.
lower_limit, upper_limit
Numeric matrices representing the desired lower and upper limits for the coeffi-
cient estimates, respectively.

epsilon A positive number specifying the relative tolerance that determines convergence.
maxit A positive integer specifying the maximum number of iteration.
standardize A logical value indicating if each column of the design matrix should be stan-

dardized internally to have mean zero and standard deviation equal to the sample
size. The default value is TRUE. Notice that the coefficient estimates are always
returned on the original scale.

varying_active_set
A logical value indicating if the active set should be updated after each cycle
of coordinate-descent algorithm. The default value is TRUE for usually more
efficient estimation procedure.

adjust_mm An experimental logical value specifying if the estimation procedure should
track loss function and adjust the MM lower bound if needed.

save_call A logical value indicating if the function call of the model fitting should be
saved. If TRUE, the function call will be saved in the returned object so that
one can utilize stats: :update() to update the argument specifications conve-
niently.

verbose A nonnegative integer specifying if the estimation procedure is allowed to print
out intermediate steps/results. The default value is @ for silent estimation proce-
dure.

abclass 5

Value

The function abclass() returns an object of class abclass representing a trained classifier; The
function abclass.control() returns an object of class abclass.control representing a list of
control parameters.

References

Zhang, C., & Liu, Y. (2014). Multicategory Angle-Based Large-Margin Classification. Biometrika,
101(3), 625-640.

Liu, Y., Zhang, H. H., & Wu, Y. (2011). Hard or soft classification? large-margin unified machines.
Journal of the American Statistical Association, 106(493), 166—-177.

Examples

library(abclass)
set.seed(123)

toy examples for demonstration purpose

reference: example 1 in Zhang and Liu (2014)
ntrain <- 100 # size of training set

ntest <- 1000 # size of testing set

po <- 2 # number of actual predictors
pl <- 2 # number of random predictors
k <- 3 # number of categories

n <- ntrain + ntest; p <- p@ + pl

train_idx <- seqg_len(ntrain)

y <- sample(k, size = n, replace = TRUE) # response

mu <- matrix(rnorm(p@® * k), nrow = k, ncol = p@) # mean vector

normalize the mean vector so that they are distributed on the unit circle
mu <- mu / apply(mu, 1, function(a) sqrt(sum(a * 2)))

X0 <- t(sapply(y, function(i) rnorm(p@, mean = mu[i,], sd = 0.25)))
x1 <= matrix(rnorm(pl * n, sd = @.3), nrow = n, ncol = pl1)

x <- cbind(x@, x1)

train_x <- x[train_idx,]

test_x <- x[- train_idx,]

y <- factor(paste@(”label_", y))

train_y <- y[train_idx]

test_y <- y[- train_idx]

regularization through group lasso penalty
model <- abclass(

X = train_x,

y = train_y,

loss = "logistic”,

penalty = "glasso”
)

pred <- predict(model, test_x, s = 5)
mean(test_y == pred) # accuracy
table(test_y, pred)

6 abclass_propscore

abclass_propscore Estimate Propensity Score by the Angle-Based Classifiers

Description

A wrap function to estimate the propensity score by the multi-category angle-based large-margin

classifiers.
Usage
abclass_propscore(
X ’
treatment,
loss = c("logistic”, "boost”, "hinge.boost”, "lum"),
penalty = c("glasso"”, "gscad", "gmcp", "lasso”, "scad”, "mcp", "cmcp”, "gel"”,
"mellowmax”, "mellowmcp"),
weights = NULL,
offset = NULL,
intercept = TRUE,
control = list(),
tuning = c("et”, "cv_1se”, "cv_min"),
)
Arguments
X A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.
treatment The assigned treatments represented by a character, integer, numeric, or factor
vector.
loss A character value specifying the loss function. The available options are "logistic”
for the logistic deviance loss, "boost” for the exponential loss approximating
Boosting machines, "hinge.boost" for hybrid of SVM and AdaBoost machine,
and "lum” for largin-margin unified machines (LUM). See Liu, et al. (2011) for
details.
penalty A character vector specifying the name of the penalty.
weights A numeric vector for nonnegative observation weights. Equal observation weights
are used by default.
offset An optional numeric matrix for offsets of the decision functions.
intercept A logical value indicating if an intercept should be considered in the model. The

default value is TRUE and the intercept is excluded from regularization.

control A list of control parameters. See abclass.control() for details.

coef.abclass 7

tuning A character vector specifying the tuning method. This argument will be ignored
if a single lambda is specified through control.

Other arguments passed to the corresponding methods.

coef.abclass Coefficient Estimates of A Trained Angle-Based Classifier

Description

Extract coefficient estimates from an abclass object.

Usage
S3 method for class 'abclass'
coef(object, selection = c("cv_1se”, "cv_min", "all"), ...)
Arguments
object An object of class abclass.
selection An integer vector for the indices of solution path or a character value specifying

how to select a particular set of coefficient estimates from the entire solution
path. If the specified abclass object contains the cross-validation results, one
may set selection to "cv_min"” (or "cv_1se") for the estimates giving the
smallest cross-validation error (or the set of estimates resulted from the largest
lambda within one standard error of the smallest cross-validation error). The
entire solution path will be returned in an array if selection ="all"” or no
cross-validation results are available in the specified abclass object.

Other arguments not used now.

Value

A matrix representing the coefficient estimates or an array representing all the selected solutions.

Examples

see examples of ~“abclass()".

8 cv.abclass

coef.supclass Coefficient Estimates of A Trained Sup-Norm Classifier

Description

Extract coefficient estimates from an supclass object.

Usage
S3 method for class 'supclass'
coef(object, selection = c("cv_1se"”, "cv_min", "all"), ...)
Arguments
object An object of class supclass.
selection An integer vector for the indices of solution or a character value specifying

how to select a particular set of coefficient estimates from the entire solution
path. If the specified supclass object contains the cross-validation results, one
may set selection to "cv_min” (or "cv_1se") for the estimates giving the
smallest cross-validation error (or the set of estimates resulted from the largest
lambda within one standard error of the smallest cross-validation error). The
entire solution path will be returned in an array if selection ="all"” or no
cross-validation results are available in the specified supclass object.

Other arguments not used now.

Value

A matrix representing the coefficient estimates or an array representing all the selected solutions.

Examples

see examples of “supclass()”.

cv.abclass Tune Angle-Based Classifiers by Cross-Validation

Description

Tune the regularization parameter for an angle-based large-margin classifier by cross-validation.

cv.abclass 9

Usage
cv.abclass(
X,
Y,
loss = c("logistic”, "boost”, "hinge.boost”, "lum"),

penalty = c("glasso”, "lasso"),
weights = NULL,

offset = NULL,

intercept = TRUE,

control = list(),

nfolds = 5L,
stratified = TRUE,
alignment = c("fraction”, "lambda"),

refit = FALSE,

)
Arguments

X A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.

y An integer vector, a character vector, or a factor vector representing the response
label.

loss A character value specifying the loss function. The available options are "logistic”
for the logistic deviance loss, "boost” for the exponential loss approximating
Boosting machines, "hinge.boost" for hybrid of SVM and AdaBoost machine,
and "1lum” for largin-margin unified machines (LUM). See Liu, et al. (2011) for
details.

penalty A character vector specifying the name of the penalty.

weights A numeric vector for nonnegative observation weights. Equal observation weights
are used by default.

offset An optional numeric matrix for offsets of the decision functions.

intercept A logical value indicating if an intercept should be considered in the model. The
default value is TRUE and the intercept is excluded from regularization.

control A list of control parameters. See abclass.control() for details.

nfolds A positive integer specifying the number of folds for cross-validation. Five-
folds cross-validation will be used by default. An error will be thrown out if the
nfolds is specified to be less than 2.

stratified A logical value indicating if the cross-validation procedure should be stratified
by the response label. The default value is TRUE to ensure the same number of
categories be used in validation and training.

alignment A character vector specifying how to align the lambda sequence used in the

main fit with the cross-validation fits. The available options are "fraction” for

10 cv.moml

allowing cross-validation fits to have their own lambda sequences and "lambda”
for using the same lambda sequence of the main fit. The option "lambda” will
be applied if a meaningful 1ambda is specified. The default value is "fraction”.

refit A logical value indicating if a new classifier should be trained using the selected
predictors or a named list that will be passed to abclass. control() to specify
how the new classifier should be trained.

Other control parameters passed to abclass.control().

Value

An S3 object of class cv.abclass and abclass.

cv.moml MOML with Cross-Validation

Description

Tune the regularization parameter for MOML by cross-validation.

Usage

cv.moml (
X’
treatment,
reward,
propensity_score,
loss = c("logistic”, "boost"”, "hinge.boost”, "lum"),
penalty = c("glasso"”, "lasso"),

weights = NULL,

offset = NULL,

intercept = TRUE,

control = moml.control(),

nfolds = 5L,
stratified = TRUE,
alignment = c("fraction”, "lambda"),

refit = FALSE,

)
Arguments
X A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.
treatment The assigned treatments represented by a character, integer, numeric, or factor

vector.

cv.supclass

reward

11

A numeric vector representing the rewards. It is assumed that a larger reward is
more desirable.

propensity_score

loss

penalty
weights

offset

intercept

control

nfolds

stratified

alignment

refit

A numeric vector taking values between 0 and 1 representing the propensity
score.

A character value specifying the loss function. The available options are "logistic”
for the logistic deviance loss, "boost"” for the exponential loss approximating
Boosting machines, "hinge.boost" for hybrid of SVM and AdaBoost machine,

and "lum” for largin-margin unified machines (LUM). See Liu, et al. (2011) for
details.

A character vector specifying the name of the penalty.

A numeric vector for nonnegative observation weights. Equal observation weights
are used by default.

An optional numeric matrix for offsets of the decision functions.

A logical value indicating if an intercept should be considered in the model. The
default value is TRUE and the intercept is excluded from regularization.

A list of control parameters. See abclass.control() for details.

A positive integer specifying the number of folds for cross-validation. Five-
folds cross-validation will be used by default. An error will be thrown out if the
nfolds is specified to be less than 2.

A logical value indicating if the cross-validation procedure should be stratified
by the response label. The default value is TRUE to ensure the same number of
categories be used in validation and training.

A character vector specifying how to align the lambda sequence used in the
main fit with the cross-validation fits. The available options are "fraction” for
allowing cross-validation fits to have their own lambda sequences and "lambda”
for using the same lambda sequence of the main fit. The option "lambda” will
be applied if a meaningful 1ambda is specified. The default value is "fraction”.

A logical value indicating if a new classifier should be trained using the selected
predictors or a named list that will be passed to abclass.control() to specify
how the new classifier should be trained.

Other arguments passed to the control function, which calls the abclass. control()
internally.

cv.supclass

Tune Sup-Norm Classifiers by Cross-Validation

Description

Tune the regularization parameter lambda for a sup-norm classifier by cross-validation.

12 cv.supclass

Usage
cv.supclass(
X,
Y,
model = c("logistic”, "psvm", "svm"),
penalty = c("lasso"”, "scad"),
start = NULL,
control = list(),
nfolds = 5L,

stratified = TRUE,

)
Arguments

X A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.

y An integer vector, a character vector, or a factor vector representing the response
label.

model A charactor vector specifying the classification model. The available options
are "logistic” for multi-nomial logistic regression model, "psvm” for proxi-
mal support vector machine (PSVM), "svm" for multi-category support vector
machine.

penalty A charactor vector specifying the penalty function for the sup-norms. The avail-
able options are "lasso” for sup-norm regularization proposed by Zhang et al.
(2008) and "scad" for supSCAD regularization proposed by Li & Zhang (2021).

start A numeric matrix representing the starting values for the quadratic approxima-
tion procedure behind the scene.

control A list with named elements.

nfolds A positive integer specifying the number of folds for cross-validation. Five-
folds cross-validation will be used by default. An error will be thrown out if the
nfolds is specified to be less than 2.

stratified A logical value indicating if the cross-validation procedure should be stratified
by the response label. The default value is TRUE to ensure the same number of
categories be used in validation and training.
Other arguments passed to supclass.

Value

An S3 object of class cv.supclass.

et.abclass

13

et.abclass

Tune Angle-Based Classifiers by ET-Lasso

Description

Tune the regularization parameter for an angle-based large-margin classifier by the ET-Lasso method
(Yang, et al., 2019).

Usage
et.abclass(
X’
y’
loss = c("logistic”, "boost”, "hinge.boost"”, "lum"),
penalty = c("glasso"”, "lasso"),

weights = NULL,
offset = NULL,

intercept

TRUE,

control = list(),

nstages =
nfolds = oL,

stratified = TRUE,
alignment = c("fraction”, "lambda"),
refit = FALSE,

Arguments

X

loss

penalty
weights

offset

intercept

A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.

An integer vector, a character vector, or a factor vector representing the response
label.

A character value specifying the loss function. The available options are "logistic”
for the logistic deviance loss, "boost” for the exponential loss approximating
Boosting machines, "hinge.boost"” for hybrid of SVM and AdaBoost machine,

and "1lum” for largin-margin unified machines (LUM). See Liu, et al. (2011) for
details.

A character vector specifying the name of the penalty.

A numeric vector for nonnegative observation weights. Equal observation weights
are used by default.

An optional numeric matrix for offsets of the decision functions.

A logical value indicating if an intercept should be considered in the model. The
default value is TRUE and the intercept is excluded from regularization.

14

control

nstages

nfolds

stratified

alignment

refit

Details

et.moml

A list of control parameters. See abclass.control() for details.

A positive integer specifying for the number of stages in the ET-Lasso proce-
dure. By default, two rounds of tuning by random permutations will be per-
formed as suggested in Yang, et al. (2019).

A positive integer specifying the number of folds for cross-validation. Five-
folds cross-validation will be used by default. An error will be thrown out if the
nfolds is specified to be less than 2.

A logical value indicating if the cross-validation procedure should be stratified
by the response label. The default value is TRUE to ensure the same number of
categories be used in validation and training.

A character vector specifying how to align the lambda sequence used in the
main fit with the cross-validation fits. The available options are "fraction” for
allowing cross-validation fits to have their own lambda sequences and "1lambda"
for using the same lambda sequence of the main fit. The option "lambda” will
be applied if a meaningful 1lambda is specified. The default value is "fraction”.

A logical value indicating if a new classifier should be trained using the selected
predictors or a named list that will be passed to abclass.control () to specify
how the new classifier should be trained.

Other control parameters passed to abclass.control().

The ET-Lasso procedure is intended for tuning the 1ambda parameter solely. The arguments regard-
ing cross-validation, nfolds, stratified, and alignment, allow one to estimate the prediction
accuracy by cross-validation for the model estimates resulted from the ET-Lasso procedure, which
can be helpful for one to choose other tuning parameters (e.g., alpha).

Value

An S3 object of class et.abclass and abclass.

References

Yang, S., Wen, J., Zhan, X., & Kifer, D. (2019). ET-Lasso: A new efficient tuning of lasso-type
regularization for high-dimensional data. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (pp. 607-616).

et.moml

MOML with ET-Lasso

Description

Tune the regularization parameter for MOML by the ET-Lasso method (Yang, et al., 2019).

et.moml

Usage

et.moml(
X}
treatment,
reward,
propensity_score,
loss = c("logistic”, "boost"”, "hinge.boost”, "lum"),
penalty = c("glasso"”, "lasso"),

weights = NULL,
offset = NULL,
intercept = TRUE,
control = list(),
nstages = 2,

nfolds = oL,
stratified = TRUE,
alignment = c("fraction”, "lambda"),

refit = FALSE,

15

Arguments

X

treatment

reward

A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.

The assigned treatments represented by a character, integer, numeric, or factor
vector.

A numeric vector representing the rewards. It is assumed that a larger reward is
more desirable.

propensity_score

loss

penalty
weights

offset

intercept

control

A numeric vector taking values between 0 and 1 representing the propensity
score.

A character value specifying the loss function. The available options are "logistic”
for the logistic deviance loss, "boost” for the exponential loss approximating
Boosting machines, "hinge.boost"” for hybrid of SVM and AdaBoost machine,

and "1lum” for largin-margin unified machines (LUM). See Liu, et al. (2011) for
details.

A character vector specifying the name of the penalty.

A numeric vector for nonnegative observation weights. Equal observation weights
are used by default.

An optional numeric matrix for offsets of the decision functions.

A logical value indicating if an intercept should be considered in the model. The
default value is TRUE and the intercept is excluded from regularization.

A list of control parameters. See abclass.control() for details.

16 moml

nstages A positive integer specifying for the number of stages in the ET-Lasso proce-
dure. By default, two rounds of tuning by random permutations will be per-
formed as suggested in Yang, et al. (2019).

nfolds A positive integer specifying the number of folds for cross-validation. Five-
folds cross-validation will be used by default. An error will be thrown out if the
nfolds is specified to be less than 2.

stratified A logical value indicating if the cross-validation procedure should be stratified
by the response label. The default value is TRUE to ensure the same number of
categories be used in validation and training.

alignment A character vector specifying how to align the lambda sequence used in the
main fit with the cross-validation fits. The available options are "fraction” for
allowing cross-validation fits to have their own lambda sequences and "1lambda”
for using the same lambda sequence of the main fit. The option "lambda” will
be applied if a meaningful 1ambda is specified. The default value is "fraction”.

refit A logical value indicating if a new classifier should be trained using the selected
predictors or a named list that will be passed to abclass.control() to specify
how the new classifier should be trained.

Other arguments passed to the control function, which calls the abclass. control ()
internally.

References

Yang, S., Wen, J., Zhan, X., & Kifer, D. (2019). ET-Lasso: A new efficient tuning of lasso-type
regularization for high-dimensional data. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (pp. 607-616).

moml Multi-Category Outcome-Weighted Margin-Based Learning (MOML)

Description

Performs the outcome-weighted margin-based learning for multicategory treatments proposed by
Zhang, et al. (2020).

Usage

mom1 (
X!
treatment,
reward,
propensity_score,
loss = c("logistic”, "boost”, "hinge.boost”, "lum"),
penalty = c("glasso"”, "lasso"),
weights = NULL,
offset = NULL,
intercept = TRUE,

moml

17

control = moml.control(),

moml.control(...)

Arguments

X

treatment

reward

A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.

The assigned treatments represented by a character, integer, numeric, or factor
vector.

A numeric vector representing the rewards. It is assumed that a larger reward is
more desirable.

propensity_score

loss

penalty

weights

offset

intercept

control

References

A numeric vector taking values between 0 and 1 representing the propensity
score.

n

A character value specifying the loss function. The available options are "logistic
for the logistic deviance loss, "boost” for the exponential loss approximating
Boosting machines, "hinge.boost" for hybrid of SVM and AdaBoost machine,
and "1lum” for largin-margin unified machines (LUM). See Liu, et al. (2011) for
details.

A character vector specifying the name of the penalty.

A numeric vector for nonnegative observation weights. Equal observation weights
are used by default.

An optional numeric matrix for offsets of the decision functions.

A logical value indicating if an intercept should be considered in the model. The
default value is TRUE and the intercept is excluded from regularization.

A list of control parameters. See abclass.control() for details.

Other arguments passed to the control function, which calls the abclass. control()
internally.

Zhang, C., Chen, J., Fu, H.,, He, X., Zhao, Y., & Liu, Y. (2020). Multicategory outcome weighted
margin-based learning for estimating individualized treatment rules. Statistica Sinica, 30, 1857—

1879.

18

predict.abclass

predict.abclass

Prediction by A Trained Angle-Based Classifier

Description

Predict class labels or estimate conditional probabilities for the specified new data.

Usage

S3 method for class 'abclass'

predict(
object,
newx,

type = c("class”, "probability”, "link"),
selection = c("cv_1se”, "cv_min”, "all"),
newoffset = NULL,

Arguments

object
newx

type

selection

newoffset

Value

An object of class abclass.
A numeric matrix representing the design matrix for predictions.

A character value specifying the desired type of predictions. The available op-
tions are "class"” for predicted labels, "probability” for class conditional
probability estimates, and "1ink” for decision functions.

An integer vector for the solution indices or a character value specifying how
to select a particular set of coefficient estimates from the entire solution path
for prediction. If the specified object contains the cross-validation results, one
may set selection to "cv_min” (or "cv_1se") for using the estimates giv-
ing the smallest cross-validation error (or the set of estimates resulted from the
largest lambda within one standard error of the smallest cross-validation error)
or prediction. The prediction for the entire solution path will be returned in a list
if selection = "all” or no cross-validation results are available in the specified
object.

An optional numeric matrix for the offsets.

Other arguments not used now.

A vector representing the predictions or a list containing the predictions for each set of estimates
along the solution path.

Examples

see examples of “abclass()~.

predict.supclass

19

predict.supclass

Predictions from A Trained Sup-Norm Classifier

Description

Predict class labels or estimate conditional probabilities for the specified new data.

Usage
S3 method for class 'supclass'
predict(
object,
newx,
type = c("class”, "probability"”, "link"),
selection = c("cv_1se”, "cv_min”", "all"),
)
Arguments
object An object of class abclass.
newx A numeric matrix representing the design matrix for predictions.
type A character value specifying the desired type of predictions. The available op-
tions are "class"” for predicted labels, "probability” for class conditional
probability estimates, and "1ink” for decision functions.
selection An integer vector for the solution indices or a character value specifying how
to select a particular set of coefficient estimates from the entire solution path
for prediction. If the specified object contains the cross-validation results, one
may set selection to "cv_min"” (or "cv_1se"”) for using the estimates giv-
ing the smallest cross-validation error (or the set of estimates resulted from the
largest lambda within one standard error of the smallest cross-validation error)
or prediction. The prediction for the entire solution path will be returned in a list
if selection = "all" or no cross-validation results are available in the specified
object.
Other arguments not used now.
Value

A vector representing the predictions or a list containing the predictions for each set of estimates.

Examples

see examples of “supclass()”.

20 supclass

supclass Multi-Category Classifiers with Sup-Norm Regularization

Description

Experimental implementations of multi-category classifiers with sup-norm penalties proposed by
Zhang, et al. (2008) and Li & Zhang (2021).

Usage
supclass(
X}
Y,
model = c("logistic”, "psvm”, "svm"),
penalty = c("lasso"”, "scad"),
start = NULL,

control = list(),

)

supclass.control(
lambda = 0.1,
adaptive_weight = NULL,
scad_a = 3.7,
maxit = 50,
epsilon = 1e-04,
shrinkage = 1e-04,
ridge_lambda = NA,
warm_start = TRUE,
standardize = TRUE,
Rglpk = list(verbose = TRUE, tm_limit = 6e+@5),

)
Arguments

X A numeric matrix representing the design matrix. No missing valus are allowed.
The coefficient estimates for constant columns will be zero. Thus, one should set
the argument intercept to TRUE to include an intercept term instead of adding
an all-one column to x.

y An integer vector, a character vector, or a factor vector representing the response
label.

model A charactor vector specifying the classification model. The available options

are "logistic” for multi-nomial logistic regression model, "psvm” for proxi-
mal support vector machine (PSVM), "svm” for multi-category support vector
machine.

supclass

penalty

start

control

lambda

adaptive_weight

scad_a
maxit

epsilon
shrinkage

ridge_lambda

warm_start

standardize

Rglpk

Details

21

A charactor vector specifying the penalty function for the sup-norms. The avail-
able options are "lasso” for sup-norm regularization proposed by Zhang et al.
(2008) and "scad” for supSCAD regularization proposed by Li & Zhang (2021).

A numeric matrix representing the starting values for the quadratic approxima-
tion procedure behind the scene.

A list with named elements.
Optional control parameters passed to the supclass.control().

A numeric vector specifying the tuning parameter lambda. The default value
is 0.1. Users should tune this parameter for a better model fit. The specified
lambda will be sorted in decreasing order internally and only the unique values
will be kept.

A numeric vector or matrix representing the adaptive penalty weights. The de-
fault value is NULL for equal weights. Zhang, et al. (2008) proposed two ways to
employ the adaptive weights. The first approach applies the weights to the sup-
norm of coefficient estimates, while the second approach applies element-wise
multiplication to the weights and coefficient estimates inside the sup-norms. The
first or second approach will be applied if a numeric vector or matrix is specified,
respectively. The adaptive weights are supported for lasso penalty only.

A positive number specifying the tuning parameter a in the SCAD penalty.

A positive integer specifying the maximum number of iteration. The default
value is 50 as suggested in Li & Zhang (2021).

A positive number specifying the relative tolerance that determines convergence.
A nonnegative tolerance to shrink estimates with sup-norm close enough to zero
(within the specified tolerance) to zeros. The default value is Te-4.

The tuning parameter lambda of the ridge penalty used to set the starting values
for multinomial logistic models.

A logical value indicating if the estimates from last lambda should be used as the
starting values for the next lambda. If FALSE, the user-specified starting values
will be used instead.

A logical value indicating if a standardization procedure should be performed
so that each column of the design matrix has mean zero and standardization

A named list that consists of control parameters passed to Rglpk_solve_LP().

For the multinomial logistic model or the proximal SVM model, this function utilizes the function
quadprog: :solve.QP() to solve the equivalent quadratic problem. For the multi-class SVM, this
function utilizes GNU Linear Programming Kit (GLPK) to solve the equivalent linear programming
problem via the package Rglpk. It is recommended to use a recent version of GLPK.

References

Zhang, H. H., Liu, Y., Wu, Y., & Zhu, J. (2008). Variable selection for the multicategory SVM via
adaptive sup-norm regularization. Electronic Journal of Statistics, 2, 149-167.

Li, N., & Zhang, H. H. (2021). Sparse learning with non-convex penalty in multi-classification.
Journal of Data Science, 19(1), 56-74.

22 vertex

Examples

library(abclass)

if (requireNamespace(”quadprog”, quietly = TRUE)) {
toy examples for demonstration purpose
reference: example 1 in Zhang and Liu (2014)
set.seed(123)
ntrain <- 100 # size of training set
ntest <- 1000 # size of testing set

po <- 2 # number of actual predictors
p1 <- 2 # number of random predictors
k <- 3 # number of categories

n <- ntrain + ntest; p <- p@ + pl

train_idx <- seqg_len(ntrain)

y <- sample(k, size = n, replace = TRUE) # response

mu <- matrix(rnorm(p@ * k), nrow = k, ncol = p@) # mean vector

normalize the mean vector so that they are distributed on the unit circle
mu <- mu / apply(mu, 1, function(a) sqrt(sum(a * 2)))

X0 <- t(sapply(y, function(i) rnorm(p@, mean = mu[i,], sd = 0.25)))
x1 <= matrix(rnorm(pl * n, sd = @.3), nrow = n, ncol = p1)

x <- cbind(x@, x1)

train_x <- x[train_idx,]

test_x <- x[- train_idx,]

y <- factor(paste@("label_", y))

train_y <- y[train_idx]

test_y <- y[- train_idx]

regularization with the supnorm lasso penalty
options("mc.cores” = 1)

model <- supclass(train_x, train_y, model = "psvm"”, penalty = "lasso")
pred <- predict(model, test_x)
table(test_y, pred)

mean(test_y == pred) # accuracy
3
vertex Simplex Vertices for The Angle-Based Classification
Description

Simplex Vertices for The Angle-Based Classification

Usage

vertex(k)

vertex 23

Arguments

k Number of classes, a positive integer that is greater than one.

Value

A (k-1) by k matrix that consists of vertices in columns.

References

Lange, K., & Tong Wu, Tong (2008). An MM algorithm for multicategory vertex discriminant
analysis. Journal of Computational and Graphical Statistics, 17(3), 527-544.

Index

abclass, 2
abclass_propscore, 6

coef.abclass, 7
coef.supclass, 8
cv.abclass, 8
cv.moml, 10
cv.supclass, 11

et.abclass, 13
et.moml, 14

moml, 16

predict.abclass, 18
predict.supclass, 19

supclass, 20

vertex, 22

24

	abclass
	abclass_propscore
	coef.abclass
	coef.supclass
	cv.abclass
	cv.moml
	cv.supclass
	et.abclass
	et.moml
	moml
	predict.abclass
	predict.supclass
	supclass
	vertex
	Index

