
Package ‘admix’
January 8, 2026

Title Package Admix for Admixture (aka Contamination) Models

Version 2.5.2

Description Implements techniques to estimate the unknown quantities
related to two-component admixture models, where the two components
can belong to any distribution (note that in the case of multinomial
mixtures, the two components must belong to the same family).
Estimation methods depend on the assumptions made on the unknown
component density; see Bordes and Vandekerkhove (2010)
<doi:10.3103/S1066530710010023>, Patra and Sen (2016)
<doi:10.1111/rssb.12148>, and Milhaud, Pommeret, Salhi, Vandekerkhove
(2024) <doi:10.3150/23-BEJ1593>. In practice, one can estimate both
the mixture weight and the unknown component density in a wide variety
of frameworks. On top of that, hypothesis tests can be performed in
one and two-sample contexts to test the unknown component density (see
Milhaud, Pommeret, Salhi and Vandekerkhove (2022)
<doi:10.1016/j.jspi.2021.05.010>, and Milhaud, Pommeret, Salhi,
Vandekerkhove (2024) <doi:10.3150/23-BEJ1593>). Finally, clustering of
unknown mixture components is also feasible in a K-sample setting (see
Milhaud, Pommeret, Salhi, Vandekerkhove (2024)
<https://jmlr.org/papers/v25/23-0914.html>).

License GPL (>= 3)

URL https://github.com/XavierMilhaud/admix-Rpackage

BugReports https://github.com/XavierMilhaud/admix-Rpackage/issues

Encoding UTF-8

RoxygenNote 7.3.3

Imports base, cubature, EnvStats, fdrtool, graphics, Iso, MASS,
orthopolynom, pracma, Rcpp, Rdpack, stats, utils

Suggests doParallel, doRNG, evd, flexsurv, foreach, gridExtra, knitr,
lattice, logitnorm, plyr, reshape2, rmarkdown, rmutil, testthat
(>= 3.0.0)

Depends R (>= 2.10)

LazyData true

1

https://doi.org/10.3103/S1066530710010023
https://doi.org/10.1111/rssb.12148
https://doi.org/10.3150/23-BEJ1593
https://doi.org/10.1016/j.jspi.2021.05.010
https://doi.org/10.3150/23-BEJ1593
https://jmlr.org/papers/v25/23-0914.html
https://github.com/XavierMilhaud/admix-Rpackage
https://github.com/XavierMilhaud/admix-Rpackage/issues


2 Contents

LinkingTo Rcpp

RdMacros Rdpack

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

Author Xavier Milhaud [aut, cre],
Pierre Vandekerkhove [ctb],
Denys Pommeret [ctb],
Yahia Salhi [ctb]

Maintainer Xavier Milhaud <xavier.milhaud.research@gmail.com>

Repository CRAN

Date/Publication 2026-01-08 14:10:10 UTC

Contents
admix_cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
admix_estim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
admix_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
admix_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
allGalaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
decontaminated_density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
detect_support_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
get_cluster_members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
get_cluster_sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
get_discrepancy_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
get_discrepancy_rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
get_known_component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
get_mixing_weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
get_mixture_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
get_statistic_components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
get_tabulated_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
is_equal_knownComp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
milkyWay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
mortality_sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
plot.admix_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
plot.decontaminated_density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
plot.twoComp_mixt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
print.admix_cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
print.admix_estim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
print.admix_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
print.decontaminated_density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
print.twoComp_mixt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
reject_nullHyp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
stmf_small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
summary.admix_cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



admix_cluster 3

summary.admix_estim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
summary.admix_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
summary.decontaminated_density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
summary.twoComp_mixt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
twoComp_mixt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
which_rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Index 35

admix_cluster Cluster K populations following admixture models

Description

Create clusters on the unknown components related to the K populations following admixture mod-
els. Based on the K-sample test using Inversion - Best Matching (IBM) approach, see ’Details’
below for further information.

Usage

admix_cluster(
samples,
admixMod,
conf_level = 0.95,
tune_penalty = TRUE,
tabul_dist = NULL,
echo = TRUE,
...

)

Arguments

samples A list of the K (K>1) samples to be studied, all following admixture distribu-
tions.

admixMod A list of objects of class admix_model, containing useful information about dis-
tributions and parameters.

conf_level (default to 0.95) The confidence level of the k-sample tests used in the clustering
procedure.

tune_penalty (default to TRUE) A boolean that allows to choose between a classical penalty
term or an optimized penalty (embedding some tuning parameters, automati-
cally optimized). Optimized penalty is particularly useful for low/mid-sized
samples, or unbalanced sample sizes to detect alternatives to the null hypothesis
(H0). It is recommended to use it.

tabul_dist (default to NULL) Only useful for comparisons of detected clusters at different
confidence levels. A list of the tabulated distributions of the stochastic integral
used in the k-sample test, each element for each cluster previously detected.

echo (default to TRUE) Display the remaining computation time.



4 admix_cluster

... Optional arguments to IBM_k_samples_test; namely ’n_sim_tab’, ’parallel’ and
’n_cpu’. These are crucial to speed-up the building of clusters.

Value

An object of class admix_cluster, containing 12 attributes: 1) the number of samples under study;
2) the sizes of samples; 3) the information about mixture components in each sample (distributions
and parameters); 4) the number of detected clusters; 5) the list of p-values for each k-sample test at
the origin of detected clusters; 6) the cluster affiliation for each sample; 7) the confidence level of
statistical tests; 8) which samples in which cluster; 9) the size of clusters; 10) the estimated weights
of the unknown component distributions inside each cluster (remind that estimated weights are
consistent only if unknown components are tested to be identical, which is the case inside clusters);
11) the matrix of pairwise discrepancies across all samples; 12) the list of tabulated distributions
used for statistical tests involved in building the clusters.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

References

Milhaud X, Pommeret D, Salhi Y, Vandekerkhove P (2024). “Contamination-source based K-
sample clustering.” Journal of Machine Learning Research, 25(287), 1–32. https://jmlr.org/
papers/v25/23-0914.html.

Examples

## Simulate mixture data:
mixt1 <- twoComp_mixt(n = 1600, weight = 0.8,

comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 16, "scale" = 1/4),

list("rate" = 1/3.5)))
mixt2 <- twoComp_mixt(n = 2000, weight = 0.7,

comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 14, "scale" = 1/2),

list("rate" = 1/5)))
mixt3 <- twoComp_mixt(n = 2500, weight = 0.6,

comp.dist = list("gamma", "gamma"),
comp.param = list(list("shape" = 16, "scale" = 1/4),

list("shape" = 12, "scale" = 1/2)))
mixt4 <- twoComp_mixt(n = 3800, weight = 0.5,

comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 14, "scale" = 1/2),

list("rate" = 1/7)))
data1 <- get_mixture_data(mixt1)
data2 <- get_mixture_data(mixt2)
data3 <- get_mixture_data(mixt3)
data4 <- get_mixture_data(mixt4)
## Define the admixture models:
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])

mailto:xavier.milhaud.research@gmail.com
https://jmlr.org/papers/v25/23-0914.html
https://jmlr.org/papers/v25/23-0914.html


admix_estim 5

admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],
knownComp_param = mixt2$comp.param[[2]])

admixMod3 <- admix_model(knownComp_dist = mixt3$comp.dist[[2]],
knownComp_param = mixt3$comp.param[[2]])

admixMod4 <- admix_model(knownComp_dist = mixt4$comp.dist[[2]],
knownComp_param = mixt4$comp.param[[2]])

## Clustering procedure:
admix_cluster(samples = list(data1, data2, data3, data4),

admixMod = list(admixMod1, admixMod2, admixMod3, admixMod4),
conf_level = 0.95, tune_penalty = TRUE, n_sim_tab = 10)

admix_estim Estimate the unknown weight in an admixture model

Description

Estimate the unknown component weight (and possibly location shift parameter in case of a sym-
metric unknown component density), using different estimation techniques. We remind that the i-th
admixture model has probability density function (pdf) l_i such that: l_i = p_i * f_i + (1-p_i) * g_i,
where g_i is the known component density. The unknown quantities p_i and f_i then have to be
estimated.

Usage

admix_estim(samples, admixMod, est_method = c("PS", "BVdk", "IBM"), ...)

Arguments

samples A list of the K (K>0) samples to be studied, all following admixture distribu-
tions.

admixMod A list of objects of class admix_model, containing useful information about dis-
tributions and parameters.

est_method The estimation method to be applied. Can be one of ’BVdk’ (Bordes and
Vandekerkhove estimator), ’PS’ (Patra and Sen estimator), or ’IBM’ (Inversion
Best-Matching approach) in the continuous case (continuous random variable).
Only ’IBM’ for discrete random variables. The same estimation method is per-
formed on each sample if several samples are provided.

... Optional arguments to estim_PS, estim_BVdk or estim_IBM depending on the
choice made by the user for the estimation method.

Details

For further details on the different estimation techniques, see references below on i) Patra and
Sen estimator ; ii) Bordes and Vandekerkhove estimator ; iii) Inversion Best-Matching approach.
Important note: estimation by ’IBM’ requires at least two samples at hand, and provides unbiased
estimators only if the distributions of unknown components are equal (meaning that it requires to
perform previously this test between the pairs of samples, see admix_test.



6 admix_estim

Value

An object of class estim_BVdk, estim_PS or estim_IBM (that inherits from class admix_estim),
containing at least 5 attributes: 1) the number of samples under study; 2) the information about
the mixture components (distributions and parameters); 3) the sizes of the samples; 4) the chosen
estimation technique (one of ’BVdk’, ’PS’ or ’IBM’); 5) the estimated mixing proportions (weights
of the unknown component distributions in the mixture model). In case of ’BVdk’ estimation, one
additional attribute corresponding to the estimated location shift parameter is included.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

References

Patra RK, Sen B (2016). “Estimation of a two-component mixture model with applications to
multiple testing.” Journal of the Royal Statistical Society Series B, 78(4), 869-893. Bordes L,
Delmas C, Vandekerkhove P (2006). “Semiparametric Estimation of a Two-Component Mix-
ture Model Where One Component Is Known.” Scandinavian Journal of Statistics, 33(4), 733–
752. ISSN 03036898, 14679469, http://www.jstor.org/stable/4616955. Bordes L, Vandek-
erkhove P (2010). “Semiparametric two-component mixture model with a known component: An
asymptotically normal estimator.” Mathematical Methods of Statistics, 19(1), 22–41. doi:10.3103/
S1066530710010023. Milhaud X, Pommeret D, Salhi Y, Vandekerkhove P (2024). “Two-sample
contamination model test.” Bernoulli, 30(1), 170–197. doi:10.3150/23BEJ1593.

Examples

## Simulate mixture data:
mixt1 <- twoComp_mixt(n = 300, weight = 0.7,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
mixt2 <- twoComp_mixt(n = 250, weight = 0.85,

comp.dist = list("norm", "exp"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("rate" = 1)))
mixt3 <- twoComp_mixt(n = 500, weight = 0.5,

comp.dist = list("pois", "pois"),
comp.param = list(list("lambda" = 2),

list("lambda" = 7)))
mixt4 <- twoComp_mixt(n = 1500, weight = 0.2, comp.dist = list("multinom", "multinom"),

comp.param = list(list("size"=1, "prob" = c(0.8,0.1,0.1)),
list("size"=1, "prob" = c(0.1,0.2,0.7))))

data1 <- get_mixture_data(mixt1)
data2 <- get_mixture_data(mixt2)
data3 <- get_mixture_data(mixt3)
data4 <- get_mixture_data(mixt4)
## Define the admixture models:
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],

knownComp_param = mixt2$comp.param[[2]])

mailto:xavier.milhaud.research@gmail.com
http://www.jstor.org/stable/4616955
https://doi.org/10.3103/S1066530710010023
https://doi.org/10.3103/S1066530710010023
https://doi.org/10.3150/23-BEJ1593


admix_model 7

admixMod3 <- admix_model(knownComp_dist = mixt3$comp.dist[[2]],
knownComp_param = mixt3$comp.param[[2]])

admixMod4 <- admix_model(knownComp_dist = mixt4$comp.dist[[2]],
knownComp_param = mixt4$comp.param[[2]])

# Estimation by different methods:
admix_estim(samples = list(data1), admixMod = list(admixMod1), est_method = "BVdk")
admix_estim(samples = list(data1, data2, data3, data4),

admixMod = list(admixMod1, admixMod2, admixMod3, admixMod4), est_method = "PS")
admix_estim(samples = list(data1,data2), admixMod = list(admixMod1,admixMod2), est_method = "IBM")

admix_model Define the distribution/parameter(s) of the known component

Description

Create an object of class admix_model, containing the information about the known component
distribution in the admixture model. An admixture (aka contamination) model is a two-component
mixture model with one known component. Both the second component distribution and the mixing
weight are unknown.

Usage

admix_model(knownComp_dist, knownComp_param)

Arguments

knownComp_dist (Character) The name of the distribution (specified as in R glossary) of the
known component of the admixture model

knownComp_param

(Character) A vector of the names of the parameters (specified as in R glossary)
involved in the chosen known distribution, with their values.

Value

An object of class admix_model, containing 2 attributes: 1) a list that gives the information about
the distributions involved in the two-component mixture model (the unknown and the known ones);
2) a list that gives the information about the corresponding parameters of those distributions.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

admix_model(knownComp_dist = "norm", knownComp_param = list("mean"=0, "sd"=1))
admix_model(knownComp_dist = "exp", knownComp_param = list("rate"=2))
admix_model(knownComp_dist = "pois", knownComp_param = list("lambda"=5))
admix_model(knownComp_dist = "multinom", knownComp_param = list("size"=1, "prob"=c(0.2,0.8,0.1)))

mailto:xavier.milhaud.research@gmail.com


8 admix_test

admix_test Equality test for the unknown components in admixture models

Description

Perform hypothesis test between unknown components of a list of admixture models, where we
remind that the i-th admixture model has probability density function (pdf) l_i such that: l_i = p_i *
f_i + (1-p_i) * g_i, with g_i the known component density. The unknown quantities p_i and f_i are
thus estimated, leading to the test given by the following null and alternative hypothesis: H0: f_i =
f_j for all i != j against H1 : there exists at least i != j such that f_i differs from f_j. The test can be
performed using two methods, either the comparison of coefficients obtained through polynomial
basis expansions of the component densities, or by the inner-convergence property obtained using
the IBM approach. See ’Details’ below for further information.

Usage

admix_test(
samples,
admixMod,
test_method = c("poly", "icv"),
conf_level = 0.95,
...

)

Arguments

samples A list of the K (K > 0) samples to be studied, each one assumed to follow a
mixture distribution.

admixMod A list of objects of class admix_model, containing useful information about dis-
tributions and parameters of the contamination / admixture models under study.

test_method The testing method to be applied. Can be either ’poly’ (polynomial basis ex-
pansion) or ’icv’ (inner convergence from IBM). The same testing method is
performed between all samples. In the one-sample case, only ’poly’ is available
and the test is a gaussianity test. For further details, see section ’Details’ below.

conf_level The confidence level of the K-sample test.

... Depending on the choice made by the user for the test method (’poly’ or ’icv’),
optional arguments to gaussianity_test, orthobasis_test (in case of ’poly’), or
IBM_k_samples_test in case of ’icv’.

Details

For further details on implemented hypothesis tests, see the references hereafter. .



allGalaxies 9

Value

An object of class gaussianity_test, orthobasis_test, or IBM_test (that inherits from class
htest), containing attributes specific to the object class (in addition to classical attributes from
htest). Usually, the test decision (reject the null hypothesis or not); the confidence level of the
test (1-alpha, where alpha denotes the level of the test or equivalently the type-I error); the number
of samples under study; the respective size of each sample; the information about known mixture
components.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

References

Milhaud X, Pommeret D, Salhi Y, Vandekerkhove P (2024). “Contamination-source based K-
sample clustering.” Journal of Machine Learning Research, 25(287), 1–32. https://jmlr.org/
papers/v25/23-0914.html. Milhaud X, Pommeret D, Salhi Y, Vandekerkhove P (2022). “Semi-
parametric two-sample admixture components comparison test: The symmetric case.” Journal of
Statistical Planning and Inference, 216, 135-150. ISSN 0378-3758, doi:10.1016/j.jspi.2021.05.010.
Pommeret D, Vandekerkhove P (2019). “Semiparametric density testing in the contamination
model.” Electronic Journal of Statistics, 4743–4793. doi:10.1214/19EJS1650.

Examples

####### Example with 2 samples
mixt1 <- twoComp_mixt(n = 380, weight = 0.7,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
mixt2 <- twoComp_mixt(n = 350, weight = 0.85,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = -1, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
data2 <- get_mixture_data(mixt2)
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],

knownComp_param = mixt2$comp.param[[2]])
admix_test(samples = list(data1,data2), admixMod = list(admixMod1,admixMod2),

conf_level = 0.95, test_method = "poly", ask_poly_param = FALSE, support = "Real")

allGalaxies Measurements of heliocentric velocities

mailto:xavier.milhaud.research@gmail.com
https://jmlr.org/papers/v25/23-0914.html
https://jmlr.org/papers/v25/23-0914.html
https://doi.org/10.1016/j.jspi.2021.05.010
https://doi.org/10.1214/19-EJS1650


10 decontaminated_density

Description

An evolving data frame of velocities for 4 dSph galaxies (namely Carina, Sextans, Sculptor and
Fornax), from SIMBAD astronomical database.

Usage

allGalaxies

Format

Currently contains 8,862 rows and 3 columns, with information on:

Target Target identification; Galaxy-ID number

HV Weighted mean Heliocentric rest frame velocity

Name The name of the galaxy

Source

https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=
50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%
2a-c.eq&-sort=_r&-oc.form=sexa

decontaminated_density

Probability density function of the unknown component

Description

Estimates the decontaminated probability density function (PDF) of the unknown component in an
admixture model, based on the inversion of the admixture density equation l = pf + (1− p)g.

Usage

decontaminated_density(sample1, admixMod, estim.p)

Arguments

sample1 Numeric vector, sample under study.

admixMod An object of class admix_model, containing useful information about known
distribution(s) and parameter(s).

estim.p Numeric. The estimated mixing proportion p̂ of the unknown component.

https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%2a-c.eq&-sort=_r&-oc.form=sexa
https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%2a-c.eq&-sort=_r&-oc.form=sexa
https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%2a-c.eq&-sort=_r&-oc.form=sexa


decontaminated_density 11

Details

The decontaminated density f is computed as:

f(x) = (1/p̂)[l̂(x)− (1− p̂)g(x)]

where:

• l̂(x) is the empirical density of the sample,

• g(x) is the known component’s theoretical density,

• p̂ is the estimated mixture weight.

For continuous data, l̂(x) is estimated using kernel density estimation. For discrete data, it is ap-
proximated from normalized frequencies.

Value

An object of class decontaminated_density containing:

data Original sample.

support Type of support ("Continuous" or "Discrete").

decontaminated_density_fun A function returning the estimated decontaminated density.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

## Simulate mixture data:
mixt1 <- twoComp_mixt(n = 400, weight = 0.4,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
## Define the admixture models:
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
## Estimation:
est <- admix_estim(samples = list(data1), admixMod = list(admixMod1),

est_method = 'PS')
## Determine the decontaminated version of the unknown density by inversion:
x <- decontaminated_density(sample1 = data1, admixMod = admixMod1,

estim.p = get_mixing_weights(est))
print(x)
summary(x)
plot(x)

####### Discrete support:
mixt1 <- twoComp_mixt(n = 4000, weight = 0.6,

comp.dist = list("pois", "pois"),
comp.param = list(list("lambda" = 3),

mailto:xavier.milhaud.research@gmail.com


12 detect_support_type

list("lambda" = 2)))
mixt2 <- twoComp_mixt(n = 3000, weight = 0.8,

comp.dist = list("pois", "pois"),
comp.param = list(list("lambda" = 3),

list("lambda" = 4)))
mixt3 <- twoComp_mixt(n = 1500, weight = 0.5,

comp.dist = list("pois", "pois"),
comp.param = list(list("lambda" = 7),

list("lambda" = 1)))
data1 <- get_mixture_data(mixt1)
data2 <- get_mixture_data(mixt2)
data3 <- get_mixture_data(mixt3)
## Define the admixture models:
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],

knownComp_param = mixt2$comp.param[[2]])
admixMod3 <- admix_model(knownComp_dist = mixt3$comp.dist[[2]],

knownComp_param = mixt3$comp.param[[2]])
## Estimation:
est <- admix_estim(samples = list(data1,data2),

admixMod = list(admixMod1,admixMod2), est_method = 'IBM')
est2 <- admix_estim(samples = list(data3), admixMod = list(admixMod3), est_method = 'PS')
## Determine the decontaminated version of the unknown density by inversion:
x <- decontaminated_density(sample1 = data1, admixMod = admixMod1,

estim.p = get_mixing_weights(est)[1])
y <- decontaminated_density(sample1 = data2, admixMod = admixMod2,

estim.p = get_mixing_weights(est)[2])
z <- decontaminated_density(sample1 = data3, admixMod = admixMod3,

estim.p = get_mixing_weights(est2))
plot(x, offset = -0.2, bar_width = 0.2, col = "steelblue")
plot(y, add_plot = TRUE, offset = 0, bar_width = 0.2, col = "red")
plot(z, add_plot = TRUE, offset = 0.2, bar_width = 0.2, col = "orange")

detect_support_type Detect the type of support of some random variables

Description

Given one or two sets of observations (samples), the function provides with the most plausible
type of support for the underlying random variables to be studied. If less than 3 percents of the
observations have different values, we consider that the support is discrete. Otherwise, we consider
it as a continuous support.

Usage

detect_support_type(sample1, sample2 = NULL)



get_cluster_members 13

Arguments

sample1 The first sample of observations under study.

sample2 The second sample of observations under study.

Value

The type of support, either discrete or continuous.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

## Simulate mixture data:
mixt1 <- twoComp_mixt(n = 1500, weight = 0.5,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = 3, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
mixt2 <- twoComp_mixt(n = 2000, weight = 0.7,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = 3, "sd" = 0.5),

list("mean" = 5, "sd" = 2)))
data2 <- get_mixture_data(mixt2)
## Test the type of support:
detect_support_type(data1, data2)

get_cluster_members Extractor for members of clusters

Description

Extract the clusters that were discovered among K samples, where belonging to one given cluster
means having equal unknown component distributions.

Usage

get_cluster_members(x)

Arguments

x An object of class admix_cluster.

Value

The samples included in each detected cluster.

mailto:xavier.milhaud.research@gmail.com


14 get_cluster_sizes

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

## Simulate mixture data:
mixt1 <- twoComp_mixt(n = 1600, weight = 0.8,

comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 16, "scale" = 1/4),

list("rate" = 1/3.5)))
mixt2 <- twoComp_mixt(n = 2000, weight = 0.7,

comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 14, "scale" = 1/2),

list("rate" = 1/5)))
mixt3 <- twoComp_mixt(n = 2500, weight = 0.6,

comp.dist = list("gamma", "gamma"),
comp.param = list(list("shape" = 16, "scale" = 1/4),

list("shape" = 12, "scale" = 1/2)))
mixt4 <- twoComp_mixt(n = 3800, weight = 0.5,

comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 14, "scale" = 1/2),

list("rate" = 1/7)))
data1 <- get_mixture_data(mixt1) ; data2 <- get_mixture_data(mixt2)
data3 <- get_mixture_data(mixt3) ; data4 <- get_mixture_data(mixt4)
## Define the admixture models:
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],

knownComp_param = mixt2$comp.param[[2]])
admixMod3 <- admix_model(knownComp_dist = mixt3$comp.dist[[2]],

knownComp_param = mixt3$comp.param[[2]])
admixMod4 <- admix_model(knownComp_dist = mixt4$comp.dist[[2]],

knownComp_param = mixt4$comp.param[[2]])
## Clustering procedure:
x <- admix_cluster(samples = list(data1, data2, data3, data4),

admixMod = list(admixMod1, admixMod2, admixMod3, admixMod4),
conf_level = 0.95, tune_penalty = TRUE, n_sim_tab = 10)

get_cluster_members(x)
get_cluster_sizes(x)

get_cluster_sizes Extractor for cluster sizes

Description

Provide the number of samples in each cluster.

mailto:xavier.milhaud.research@gmail.com


get_discrepancy_matrix 15

Usage

get_cluster_sizes(x)

Arguments

x An object of class admix_cluster.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

get_discrepancy_matrix

Extractor for discrepancies b/w unknown components

Description

Provide the matrix storing pairwise discrepancies b/w unknown components in admixture models,
using Inversion-Best Matching approach.

Usage

get_discrepancy_matrix(x)

Arguments

x An object of class IBM_test or admix_cluster.

Value

A matrix of pairwise discrepancies among the K (K>2) samples under study.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com


16 get_known_component

get_discrepancy_rank Extractor for pairwise discrepancy rankings

Description

Provide the matrix storing the ranks of discrepancies using Inversion-Best Matching approach be-
tween all couples among the K (K>2) samples under study.

Usage

get_discrepancy_rank(x)

Arguments

x An object of class IBM_test.

Value

A matrix of ranks, from the closest couple (rank 1) in terms of discrepancy measure to the most
different one.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

get_known_component Extractor for known component(s) in admixture model(s)

Description

Get the known component of the admixture model considered for estimation, test, or clustering.

Usage

get_known_component(x)

Arguments

x An object of class admix_estim, gaussianity_test, orthobasis_test, IBM_test,
or admix_cluster.

Details

This is a generic extractor, providing with the same information whatever the object class.

mailto:xavier.milhaud.research@gmail.com


get_mixing_weights 17

Value

A list providing information on the known component (distribution, parameters).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

## Simulate a two-component Gaussian mixture:
mixt1 <- twoComp_mixt(n = 380, weight = 0.7,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
## Estimate the unknown quantities:
x <- admix_estim(samples = list(data1), admixMod = list(admixMod1), est_method = "BVdk")
## Extract the information about the known component:
get_known_component(x)

get_mixing_weights Extractor for estimated mixing weights

Description

Extracts the estimated mixing weights from fitted objects of class admix_estim, gaussianity_test
and orthobasis_test.

Usage

get_mixing_weights(x)

Arguments

x An object of class admix_estim, gaussianity_test or orthobasis_test.

Details

This is a generic extractor. The exact behavior depends on the class of the input object:

• admix_estim: returns the estimated mixture proportions.

• gaussianity_test, orthobasis_test: returns weights derived from hypothesis testing re-
sults.

mailto:xavier.milhaud.research@gmail.com


18 get_mixture_data

Value

A numeric vector of estimated mixing weight(s).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

## Simulate a two-component Gaussian mixture:
mixt1 <- twoComp_mixt(n = 380, weight = 0.7,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
## Estimate the unknown quantities:
x <- admix_estim(samples = list(data1), admixMod = list(admixMod1), est_method = "BVdk")
## Extract the information about the known component:
get_mixing_weights(x)

get_mixture_data Extractor for simulated data from two-component mixture

Description

Get the mixture data generated from method twoComp_mixt().

Usage

get_mixture_data(x)

Arguments

x An object of class twoComp_mixt.

Value

A numeric vector of the simulated data.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com


get_statistic_components 19

Examples

sim.X <- twoComp_mixt(n = 20, weight = 0.5,
comp.dist = list("norm", "norm"),
comp.param = list(list("mean"=3, "sd"=0.5),

list("mean"=0, "sd"=1)))
get_mixture_data(sim.X)

get_statistic_components

Extractor for components involved in test statistic

Description

Provide the terms (or discrepancies) that compose the test statistic for the k-sample test.

Usage

get_statistic_components(x)

Arguments

x An object of class IBM_test.

Value

The components finally included in the test statistic, i.e. the discrepancies of the couples that were
aggregated in the built sequence of statistics.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

get_tabulated_dist Extractor for tabulated distribution in the k-sample test

Description

Provide (the list of) tabulated distribution(s) that allow to define the extreme quantile(s) against
which the test statistic(s) is compared.

Usage

get_tabulated_dist(x)

mailto:xavier.milhaud.research@gmail.com


20 is_equal_knownComp

Arguments

x An object of class IBM_test or admix_cluster.

Value

A numeric vector containing the simulated values of the tabulated distribution, sorted in increasing
order.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

mixt1 <- twoComp_mixt(n = 380, weight = 0.7,
comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
mixt2 <- twoComp_mixt(n = 350, weight = 0.85,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = -1, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
data2 <- get_mixture_data(mixt2)
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],

knownComp_param = mixt2$comp.param[[2]])
x <- admix_test(samples = list(data1,data2), admixMod = list(admixMod1,admixMod2),

conf_level = 0.95, test_method = "icv", n_sim_tab = 10)
get_tabulated_dist(x)

is_equal_knownComp Equality of known components in two admixture models

Description

Test if the known component distributions coming from two admixture models are identical.

Usage

is_equal_knownComp(admixMod1, admixMod2)

Arguments

admixMod1 An object of class admix_model related to the first admixture model.

admixMod2 An object of class admix_model related to the second admixture model.

mailto:xavier.milhaud.research@gmail.com


milkyWay 21

Value

A boolean (TRUE if the known components are the same, otherwise FALSE).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

admixMod1 <- admix_model(knownComp_dist = "norm",
knownComp_param = list("mean"=0, "sd"=1))

admixMod2 <- admix_model(knownComp_dist = "norm",
knownComp_param = list("mean"=0, "sd"=1))

is_equal_knownComp(admixMod1, admixMod2)

admixMod1 <- admix_model(knownComp_dist = "multinom",
knownComp_param = list("size"=1, "prob"=c(0.2,0.5,0.3)))

admixMod2 <- admix_model(knownComp_dist = "multinom",
knownComp_param = list("size"=1, "prob"=c(0.2,0.4,0.4)))

is_equal_knownComp(admixMod1, admixMod2)

milkyWay Dataset of heliocentric velocity for the Milky Way

Description

Dataset of heliocentric velocity for the Milky Way

Usage

milkyWay

Format

A data frame with 170,601 rows and 1 column:

V1 Heliocentric velocity measurements of the Milky way

Source

https://www.aanda.org/articles/aa/full_html/2018/08/aa32905-18/aa32905-18.html

References

Walker MG, Mateo M, Olszewski EW, Gnedin OY, Wang X, Sen B, Woodroofe M (2007). “Veloc-
ity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies.” The Astrophysical Journal, 667(1),
L53–L56. ISSN 1538-4357, doi:10.1086/521998, http://dx.doi.org/10.1086/521998.

mailto:xavier.milhaud.research@gmail.com
https://www.aanda.org/articles/aa/full_html/2018/08/aa32905-18/aa32905-18.html
https://doi.org/10.1086/521998
http://dx.doi.org/10.1086/521998


22 plot.admix_model

mortality_sample Dataset of deaths statistics in 11 european countries

Description

Dataset of deaths statistics in 11 european countries

Usage

mortality_sample

Format

Dataset providing the exposure-to-death (population size) and number of deaths for males in 11
european countries, between 1908 and 2020, with ages ranging from 30 years old to 85 years old.
Exported from the Human Mortality Database (HMD). The two first lists relate to some subsample
of the population size and number of deaths in those countries, with random sampling from the
original dataset.

An evolving data frame of exposure-to-death and number of deaths in Belgium, Switzerland, Den-
mark, Spain, Finland, France, United Kingdom, Italia, The Netherlands, Norway and Sweden.

XP A list of eleven elements (one for each country) giving a subset of the exposure-to-death (or
reduced population size), each element having 56 rows (ages 30-85) and 113 columns (period
1908-2020)

DX A list of eleven elements (one for each country) giving a subset of the number of deaths, each
element having 56 rows (ages 30-85) and 113 columns (period 1908-2020)

names A list of eleven elements giving the names of the countries, in the same order as the elements
in other lists

Source

https://www.mortality.org

plot.admix_model Plot method for objects of class admix_model

Description

Plots the probability density function of the known component of the admixture model, where we
recall that an admixture model has probability density function (pdf) l_i such that: l_i = p_i * f_i +
(1-p_i) * g_i, with g_i the known component density. The unknown quantities are therefore p_i and
f_i.

https://www.mortality.org


plot.decontaminated_density 23

Usage

## S3 method for class 'admix_model'
plot(x, ...)

Arguments

x An object of class admix_model.

... A list of additional parameters belonging to the default method.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

plot(admix_model(knownComp_dist = "norm", knownComp_param = list("mean"=0, "sd"=1)))
plot(admix_model(knownComp_dist = "pois", knownComp_param = list("lambda"=1.5)))

plot.decontaminated_density

Plot method for object of class decontaminated_density

Description

Plot the decontaminated density of the unknown component from some admixture model, after
inversion of the admixture cumulative distribution functions.

Usage

## S3 method for class 'decontaminated_density'
plot(x, x_val = NULL, add_plot = FALSE, offset = 0, bar_width = 0.3, ...)

Arguments

x An object of class decontaminated_density (see ?decontaminated_density).

x_val Values at which to evaluate the decontaminated density.

add_plot Boolean, TRUE when a new plot is added to the existing one.

offset Numeric. Position of the bars relative to the labels on the x-axis.

bar_width Width of bars to be plotted.

... Arguments to be passed to generic method plot, such as graphical parameters
(see ?par).

Details

The decontaminated density is obtained by inverting the admixture density, given by l = p*f +
(1-p)*g, to isolate the unknown component f after having estimated p and l.

mailto:xavier.milhaud.research@gmail.com


24 plot.twoComp_mixt

Value

The plot of the decontaminated density if one sample is provided, or the comparison of decontami-
nated densities plotted on the same graph in the case of multiple samples.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

plot.twoComp_mixt Plot the empirical mixture pdf

Description

Plots the empirical densities of the samples provided, with optional arguments to improve the visu-
alization.

Usage

## S3 method for class 'twoComp_mixt'
plot(x, add_plot = FALSE, offset = 0, bar_width = 0.2, ...)

Arguments

x Object of class twoComp_mixt from which the density will be plotted.

add_plot (default to FALSE) Option to plot another mixture distribution on the same
graph.

offset Numeric. Position of the bars relative to the labels on the x-axis.

bar_width Width of bars to be plotted.

... further classical arguments and graphical parameters for methods plot and hist.

Value

A plot with the densities of the samples provided as inputs.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com


print.admix_cluster 25

print.admix_cluster Print method for object of class ’admix_cluster’

Description

Print the main results when clustering the unknown component distributions coming from various
admixture samples, i.e. the obtained clusters.

Usage

## S3 method for class 'admix_cluster'
print(x, ...)

Arguments

x An object of class ’admix_cluster’ (see ?admix_clustering).

... further arguments passed to or from other methods.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

print.admix_estim Print method for object of class admix_estim

Description

Print method for object of class admix_estim

Usage

## S3 method for class 'admix_estim'
print(x, ...)

Arguments

x An object of class admix_estim (see ?admix_estim).

... further arguments passed to or from other methods.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com


26 print.decontaminated_density

print.admix_model Print method for objects of class admix_model

Description

Print an object of class ’admix_mod’. An admixture model has probability density function (pdf)
l_i such that: l_i = p_i * f_i + (1-p_i) * g_i, with g_i the known component density. The unknown
quantities are therefore p_i and f_i.

Usage

## S3 method for class 'admix_model'
print(x, ...)

Arguments

x An object of class admix_model.

... A list of additional parameters belonging to the default method.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

print.decontaminated_density

Print method for object of class decontaminated_density

Description

Print some overview of the decontaminated density function.

Usage

## S3 method for class 'decontaminated_density'
print(x, ...)

Arguments

x An object of class decontaminated_density (see ?decontaminated_density).

... Arguments to be passed to generic method plot, such as graphical parameters
(see ?par).

Value

The function related to the estimated decontaminated density.

mailto:xavier.milhaud.research@gmail.com


print.twoComp_mixt 27

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

print.twoComp_mixt Print method for objects twoComp_mixt

Description

Print an object of class twoComp_mixt. A two-component mixture model has probability density
function (pdf) l such that: l = p * f + (1-p) * g, where p is the mixing proportion, and f and g are the
component distributions.

Usage

## S3 method for class 'twoComp_mixt'
print(x, ...)

Arguments

x An object of class twoComp_mixt.

... A list of additional parameters belonging to the default method.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

reject_nullHyp Extractor for the test decision

Description

Provide the decision of the statistical test: reject or do not reject the null hypothesis.

Usage

reject_nullHyp(x)

Arguments

x An object of class gaussianity_test, orthobasis_test or IBM_test.

Value

A boolean giving the result of the test, TRUE if the null hypothesis is rejected, otherwise FALSE.

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com


28 stmf_small

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

mixt1 <- twoComp_mixt(n = 380, weight = 0.7,
comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
mixt2 <- twoComp_mixt(n = 350, weight = 0.85,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = -1, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
data2 <- get_mixture_data(mixt2)
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],

knownComp_param = mixt2$comp.param[[2]])
x <- admix_test(samples = list(data1,data2), admixMod = list(admixMod1,admixMod2),

conf_level = 0.95, test_method = "poly", ask_poly_param = FALSE, support = "Real")
reject_nullHyp(x)

stmf_small Dataset of Short-term Mortality Fluctuations (STMF) from HMD

Description

Restricted to 6 countries: Belgium, France, Italy, Netherlands, Spain, Germany. Weekly death
counts provide the most objective and comparable way of assessing the scale of short-term mortality
elevations across countries and time. Extraction date from the Human Mortality Database (HMD):
09/21/2020.

Usage

stmf_small

Format

A data frame with 88146 rows and 19 variables:

CountryCode Mortality database country code

Year Year

Week Week number

Sex Gender (’m’: male, ’f’: female, ’b’: both)

D0_14 Age range 0-14

mailto:xavier.milhaud.research@gmail.com


summary.admix_cluster 29

D15_64 Age range 15-64

D65_74 Age range 65-74

D75_84 Age range 75-84

D85p Age range 85-+

DTotal Count of deaths for all ages combined

R0_14 Crude death rate for age range 0-14

R15_64 Crude death rate for age range 15-64

R65_74 Crude death rate for age range 65-74

R75_84 Crude death rate for age range 75-84

R85p Crude death rate for age range 85-+

RTotal Crude death rate for all ages combined

Split Indicates if data were split from aggregated age groups (0 if the original data has necessary
detailed age scale). For example, if the original age scale was 0-4, 5-29, 30-65, 65+, then split
will be equal to 1

SplitSex Indicates if the original data are available by sex (0) or data are interpolated (1)

Forecast Equals 1 for all years where forecasted population exposures were used to calculate
weekly death rates

Source

https://www.mortality.org

summary.admix_cluster Summary method for object of class ’admix_cluster’

Description

Summarizes the results obtained when clustering the unknown component distributions coming
from various admixture samples.

Usage

## S3 method for class 'admix_cluster'
summary(object, ...)

Arguments

object An object of class ’admix_cluster’ (see ?admix_clustering).

... further arguments passed to or from other methods.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

https://www.mortality.org
mailto:xavier.milhaud.research@gmail.com


30 summary.admix_model

summary.admix_estim Summary method for object of class admix_estim

Description

Summarize the estimated weight(s) of the unknown component(s), and admixture model(s) under
study. Recall that an admixture model follows the cumulative distribution function (CDF) L, where
L = p*F + (1-p)*G, with G a known CDF, and p and F unknown quantities.

Usage

## S3 method for class 'admix_estim'
summary(object, ...)

Arguments

object An object of class admix_estim (see ?admix_estim).

... further arguments passed to or from other methods.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

summary.admix_model Summary method for objects of class admix_model

Description

Summarizes the information related to the known component of the two-component mixture. An
admixture model has probability density function (pdf) l_i such that: l_i = p_i * f_i + (1-p_i) * g_i,
with g_i the known component density. The unknown quantities are therefore p_i and f_i.

Usage

## S3 method for class 'admix_model'
summary(object, ...)

Arguments

object An object of class admix_model.

... A list of additional parameters belonging to the default method.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com


summary.decontaminated_density 31

summary.decontaminated_density

Summary method for object of class decontaminated_density

Description

Summarizes information about the estimated decontaminated density function.

Usage

## S3 method for class 'decontaminated_density'
summary(object, ...)

Arguments

object An object of class decontaminated_density (see ?decontaminated_density).
... Arguments to be passed to generic method summary.

Value

Classical statistical indicators about the decontaminated density.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

summary.twoComp_mixt Summary method for objects twoComp_mixt

Description

Provides statistical indicators of an object of class twoComp_mixt. A two-component mixture model
has probability density function (pdf) l such that: l = p * f + (1-p) * g, where p is the mixing
proportion, and f and g are the component distributions.

Usage

## S3 method for class 'twoComp_mixt'
summary(object, ...)

Arguments

object An object of class twoComp_mixt.
... A list of additional parameters belonging to the default method.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com


32 twoComp_mixt

twoComp_mixt Simulation of a two-component mixture model

Description

Simulate a two-component mixture model following the probability density function (pdf) l such
that l = p*f + (1-p)*g, with f and g the mixture component distributions, and p the mixing weight.

Usage

twoComp_mixt(
n = 1000,
weight = 0.5,
comp.dist = list("norm", "norm"),
comp.param = list(list(mean = 0, sd = 1), list(mean = 2, sd = 1))

)

Arguments

n Number of observations to be simulated.

weight Weight of the first component distribution (distribution f) in the mixture.

comp.dist A list of two elements corresponding to the component distributions (with avail-
able names listed in object ’Distribution.df’ in package EnvStats) involved in
the mixture model. These elements respectively refer to the two component dis-
tributions f and g. By convention, in the framework of admixture models where
one of the two components is unknown, the first element of the list corresponds
to the ’unknown’ component distribution, whereas the second one refers to the
known one.

comp.param A list of two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in each list must
correspond to the available parameters listed in object ’Distribution.df’ in pack-
age EnvStats. These elements respectively refer to the parameters of f and g
distributions of the mixture model. By convention, in the framework of admix-
ture models where one of the two components is unknown, the first element of
the list corresponds to the ’unknown’ component parameters, whereas the sec-
ond one refers to the known ones.

Value

An object of class twoComp_mixt, containing eight attributes: 1) the number of simulated obser-
vations, 2) the simulated mixture data, 3) the support of the distributions, 4) the name of the com-
ponent distributions, 5) the name of the parameters of the component distributions and their values,
6) the mixing proportion, 7) the observations coming from the first component, 8) the observations
coming from the second component.



which_rank 33

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

## Mixture of continuous random variables:
sim.X <- twoComp_mixt(n = 2000, weight = 0.5,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean"=3, "sd"=0.5),

list("mean"=0, "sd"=1)))
print(sim.X)
sim.Y <- twoComp_mixt(n = 1200, weight = 0.7,

comp.dist = list("norm", "exp"),
comp.param = list(list("mean"=-3, "sd"=0.5),

list("rate"=1)))
plot(sim.X, xlim=c(-5,5), ylim=c(0,0.5))
plot(sim.Y, add_plot = TRUE, xlim=c(-5,5), ylim=c(0,0.5), col = "red")

## Mixture of discrete random variables:
sim.X <- twoComp_mixt(n = 2000, weight = 0.5,

comp.dist = list("multinom", "multinom"),
comp.param = list(list("size"=1, "prob"=c(0.3,0.4,0.3)),

list("size"=1, "prob"=c(0.1,0.2,0.7))))
sim.Y <- twoComp_mixt(n = 1800, weight = 0.7,

comp.dist = list("multinom", "multinom"),
comp.param = list(list("size"=1, "prob"=c(0.3,0.4,0.3)),

list("size"=1, "prob"=c(0.6,0.2,0.2))))
sim.Z <- twoComp_mixt(n = 1800, weight = 0.3,

comp.dist = list("multinom", "multinom"),
comp.param = list(list("size"=1, "prob"=c(0.2,0.1,0.7)),

list("size"=1, "prob"=c(1/3,1/3,1/3))))
plot(sim.X, offset = -0.05, bar_width = 0.05, col = "steelblue")
plot(sim.Y, add_plot = TRUE, offset = 0, bar_width = 0.05, col = "orange")
plot(sim.Z, add_plot = TRUE, offset = +0.05, bar_width = 0.05, col = "red")

which_rank Extractor for the selected rank in the test statistic

Description

Provide the selected rank of the test statistic (connected to the expansion order of the densities
in the orthonormal polynomial basis if method ’poly’ was chosen; or to the number of terms, i.e.
discrepancies between couples of samples, included in the test statistic with method ’icv’).

Usage

which_rank(x)

mailto:xavier.milhaud.research@gmail.com


34 which_rank

Arguments

x An object of class gaussianity_test, orthobasis_test or IBM_test.

Value

An integer corresponding to the selected rank in the test statistics, i.e. how many terms were kept
in the test statistic.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

mixt1 <- twoComp_mixt(n = 380, weight = 0.7,
comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = 0, "sd" = 1)))
mixt2 <- twoComp_mixt(n = 350, weight = 0.85,

comp.dist = list("norm", "norm"),
comp.param = list(list("mean" = -2, "sd" = 0.5),

list("mean" = -1, "sd" = 1)))
data1 <- get_mixture_data(mixt1)
data2 <- get_mixture_data(mixt2)
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],

knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],

knownComp_param = mixt2$comp.param[[2]])
x <- admix_test(samples = list(data1,data2), admixMod = list(admixMod1,admixMod2),

conf_level = 0.95, test_method = "poly", ask_poly_param = FALSE, support = "Real")
which_rank(x)

mailto:xavier.milhaud.research@gmail.com


Index

∗ datasets
allGalaxies, 9
milkyWay, 21
mortality_sample, 22
stmf_small, 28

admix_cluster, 3, 4
admix_estim, 5, 6
admix_model, 3, 5, 7, 7, 8
admix_test, 5, 8
allGalaxies, 9

decontaminated_density, 10
detect_support_type, 12

estim_BVdk, 5
estim_IBM, 5
estim_PS, 5

gaussianity_test, 8
get_cluster_members, 13
get_cluster_sizes, 14
get_discrepancy_matrix, 15
get_discrepancy_rank, 16
get_known_component, 16
get_mixing_weights, 17
get_mixture_data, 18
get_statistic_components, 19
get_tabulated_dist, 19

IBM_k_samples_test, 4, 8
is_equal_knownComp, 20

milkyWay, 21
mortality_sample, 22

orthobasis_test, 8

plot.admix_model, 22
plot.decontaminated_density, 23
plot.twoComp_mixt, 24

print.admix_cluster, 25
print.admix_estim, 25
print.admix_model, 26
print.decontaminated_density, 26
print.twoComp_mixt, 27

reject_nullHyp, 27

stmf_small, 28
summary.admix_cluster, 29
summary.admix_estim, 30
summary.admix_model, 30
summary.decontaminated_density, 31
summary.twoComp_mixt, 31

twoComp_mixt, 32, 32

which_rank, 33

35


	admix_cluster
	admix_estim
	admix_model
	admix_test
	allGalaxies
	decontaminated_density
	detect_support_type
	get_cluster_members
	get_cluster_sizes
	get_discrepancy_matrix
	get_discrepancy_rank
	get_known_component
	get_mixing_weights
	get_mixture_data
	get_statistic_components
	get_tabulated_dist
	is_equal_knownComp
	milkyWay
	mortality_sample
	plot.admix_model
	plot.decontaminated_density
	plot.twoComp_mixt
	print.admix_cluster
	print.admix_estim
	print.admix_model
	print.decontaminated_density
	print.twoComp_mixt
	reject_nullHyp
	stmf_small
	summary.admix_cluster
	summary.admix_estim
	summary.admix_model
	summary.decontaminated_density
	summary.twoComp_mixt
	twoComp_mixt
	which_rank
	Index

