Package ‘alookr’

January 12, 2026

Type Package

Title Model Classifier for Binary Classification
Version 0.5.1

Date 2026-01-11

Description
A collection of tools that support data splitting, predictive modeling, and model evaluation.
A typical function is to split a dataset into a training dataset and a test dataset.
Then compare the data distribution of the two datasets.
Another feature is to support the development of predictive models and to compare the perfor-
mance of several predictive models,
helping to select the best model.

Depends R (>=3.2.0), ggplot2 (>= 3.0.0), randomForest

Imports caTools, cli (>=1.1.0), dlookr, dplyr (>= 0.7.6), future,
MASS, MLmetrics, methods, parallelly, party, purrr, ROCR,
ranger, rlang, rpart, stats, tibble, tidyr, tidyselect, xgboost
(>=3.1.2.1), glmnet

Suggests knitr, ISLR, mice, mlbench, rmarkdown, stringi
Author Choonghyun Ryu [aut, cre]

Maintainer Choonghyun Ryu <choonghyun. ryu@gmail.com>
BugReports https://github.com/choonghyunryu/alookr/issues

URL https://choonghyunryu.github.io/alookr/
License GPL-2

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.2.3

Language en-US

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-12 00:00:02 UTC

https://github.com/choonghyunryu/alookr/issues
https://choonghyunryu.github.io/alookr/

2 cleanse.data.frame
Contents
cleanse.data.frame 2
cleanse.split_df 4
compare_diag e e e e e e e e e 5
compare_performance i e e e e e e e e e e e e e 7
compare_plot e 8
compare_target_Category ¢ . v vt e e e e e e e e e e e e 10
compare_target_NUMEIIC+« vt v v vt e e e et e e e 11
EXITACE SEL . . . v v o e e e e e e s 12
matthews e e e 13
performance_metric e e e e e e 14
plot_cutoff e e e e 16
plot_performance 18
run_models L e e 19
run_performance e e 21
run_predict . . oL oL L e e e e e e 23
sampling_target L. e e e e e 25
SPlit_by . . e e 28
summary.split_ df 29
reatment_COIT v v v v v e e e e e e e e e e e 30
Index 32
cleanse.data.frame Cleansing the dataset for classification modeling
Description
The cleanse() cleanse the dataset for classification modeling
Usage
S3 method for class 'data.frame'
cleanse(
.data,

uniq = TRUE,
uniq_thres = 0.1,
char = TRUE,
missing = FALSE,
verbose = TRUE,

)

cleanse(.data, ...)

cleanse.data.frame

Arguments
.data
uniq

unig_thres

char
missing

verbose

Details

a data.frame or a tbl_df.
logical. Set whether to remove the variables whose unique value is one.

numeric. Set a threshold to removing variables when the ratio of unique val-
ues(number of unique values / number of observation) is greater than the set
value.

logical. Set the change the character to factor.
logical. Set whether to removing variables including missing value
logical. Set whether to echo information to the console at runtime.

further arguments passed to or from other methods.

This function is useful when fit the classification model. This function does the following.: Remove
the variable with only one value. And remove variables that have a unique number of values relative
to the number of observations for a character or categorical variable. In this case, it is a variable
that corresponds to an identifier or an identifier. And converts the character to factor.

Value

An object of data.frame or train_df. and return value is an object of the same type as the .data

argument.

Examples

create sample dataset

set.seed(123L)

id <- sapply(1:1000, function(x)
paste(c(sample(letters, 5), x), collapse = ""))

year <- "2018"

set.seed(123L)

count <- sample(1:10, size = 1000, replace = TRUE)

set.seed(123L)

alpha <- sample(letters, size = 1000, replace = TRUE)

set.seed(123L)

flag <- sample(c("Y", "N"), size = 1000, prob = c(@0.1, 0.9), replace = TRUE)

dat <- data.frame(id, year, count, alpha, flag, stringsAsFactors = FALSE)
structure of dataset

str(dat)

cleansing dataset
newDat <- cleanse(dat)

structure of cleansing dataset

4 cleanse.split_df

str(newDat)

cleansing dataset
newDat <- cleanse(dat, uniq = FALSE)

structure of cleansing dataset
str(newDat)

cleansing dataset
newDat <- cleanse(dat, unig_thres = 0.3)

structure of cleansing dataset
str(newDat)

cleansing dataset
newDat <- cleanse(dat, char = FALSE)

structure of cleansing dataset
str(newDat)

cleanse.split_df Cleansing the dataset for classification modeling

Description

Diagnosis of similarity between datasets splitted by train set and set included in the "split_df" class.
and cleansing the "split_df" class

Usage

S3 method for class 'split_df"

cleanse(.data, add_character = FALSE, uniqg_thres = 0.9, missing = FALSE, ...)
Arguments

.data an object of class "split_df", usually, a result of a call to split_df().

add_character logical. Decide whether to include text variables in the compare of categorical
data. The default value is FALSE, which also not includes character variables.

unig_thres numeric. Set a threshold to removing variables when the ratio of unique val-
ues(number of unique values / number of observation) is greater than the set
value.

missing logical. Set whether to removing variables including missing value

further arguments passed to or from other methods.

Details

Remove the detected variables from the diagnosis using the compare_diag() function.

compare_diag 5

Value

An object of class "split_df".

Examples

library(dplyr)

Credit Card Default Data
head(ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

sb %>%
cleanse

compare_diag Diagnosis of train set and test set of split_df object

Description

Diagnosis of similarity between datasets splitted by train set and set included in the "split_df" class.

Usage

compare_diag(
.data,
add_character = FALSE,
uniq_thres = 0.01,
miss_msg = TRUE,
verbose = TRUE

Arguments

.data an object of class "split_df", usually, a result of a call to split_df().

add_character logical. Decide whether to include text variables in the compare of categorical
data. The default value is FALSE, which also not includes character variables.

uniqg_thres numeric. Set a threshold to removing variables when the ratio of unique val-
ues(number of unique values / number of observation) is greater than the set
value.

miss_msg logical. Set whether to output a message when diagnosing missing value.

verbose logical. Set whether to echo information to the console at runtime.

6 compare_diag

Details

In the two split datasets, a variable with a single value, a variable with a level not found in any
dataset, and a variable with a high ratio to the number of levels are diagnosed.

Value
list. Variables of tbl_df for first component named "single_value":

e variables : character. variable name

e train_uniq : character. the type of unique value in train set. it is divided into "single" and
"multi".

* test_uniq : character. the type of unique value in test set. it is divided into "single" and "multi".
Variables of tbl_df for second component named "uniq_rate":

* variables : character. categorical variable name
* train_uniqcount : numeric. the number of unique value in train set

* train_uniqrate : numeric. the ratio of unique values(number of unique values / number of
observation) in train set

* test_uniqcount : numeric. the number of unique value in test set
* test_uniqgrate : numeric. the ratio of unique values(number of unique values / number of
observation) in test set

Variables of tbl_df for third component named "missing_level":

e variables : character. variable name
* n_levels : integer. count of level of categorical variable
* train_missing_nlevel : integer. the number of non-existent levels in the train set

* test_missing_nlevel : integer. he number of non-existent levels in the test set

Examples

library(dplyr)

Credit Card Default Data
head(ISLR: :Default)

defaults <- ISLR::Default
defaults$id <- seq(NROW(defaults))

set.seed(1)
defaults[sample(seq(NROW(defaults)), 3), "student”] <- NA
set.seed(2)
defaults[sample(seq(NROW(defaults)), 10), "balance"] <- NA

sb <- defaults %>%
split_by(default)

sb %>%

compare_performance 7

compare_diag()

sb %>%
compare_diag(add_character = TRUE)

sb %>%
compare_diag(uniq_thres = 0.0005)

compare_performance Compare model performance

Description

compare_performance() compares the performance of a model with several model performance
metrics.

Usage

compare_performance(model)

Arguments

model A model_df. results of predicted model that created by run_predict().

Value
list. results of compared model performance. list has the following components:

» recommend_model : character. The name of the model that is recommended as the best among
the various models.

* top_count : numeric. The number of best performing performance metrics by model.

* mean_rank : numeric. Average of ranking individual performance metrics by model.

* top_metric : list. The name of the performance metric with the best performance on individual
performance metrics by model.

The performance metrics calculated are as follows.:

e ZeroOneLoss : Normalized Zero-One Loss(Classification Error Loss).

* Accuracy : Accuracy.

* Precision : Precision.

* Recall : Recall.

* Specificity : Specificity.

e F1 Score : F1 Score.

* LogLoss : Log loss / Cross-Entropy Loss.

* AUC : Area Under the Receiver Operating Characteristic Curve (ROC AUC).

8 compare_plot

* Gini : Gini Coefficient.

PRAUC : Area Under the Precision-Recall Curve (PR AUC).
LiftAUC : Area Under the Lift Chart.

* GainAUC : Area Under the Gain Chart.

KS_Stat : Kolmogorov-Smirnov Statistic.

Examples

library(dplyr)

Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
split_by(Kyphosis)

Extract the train data set from original data set.
train <- sb %>%
extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
sampling_target(seed = 1234L, method = "ubSMOTE")

Cleaning the set.
train <- train %>%
cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis"”, positive = "present")

Predict the model.
pred <- run_predict(result, test)

Compare the model performance
This code works fine. When using the example code, uncomment it and run it.
compare_performance(pred)

compare_plot Comparison plot of train set and test set

compare_plot 9

Description

Plot compare information of the train set and test set included in the "split_df" class.

Usage
compare_plot(.data, ...)
Arguments
.data an object of class "split_df", usually, a result of a call to split_df().
one or more unquoted expressions separated by commas. Select the variable you
want to plotting. You can treat variable names like they are positions. Positive
values select variables; negative values to drop variables. If the first expression is
negative, compare_target_category() will automatically start with all variables.
These arguments are automatically quoted and evaluated in a context where col-
umn names represent column positions. They support unquoting and splicing.
Details

The numerical variables are density plots and the categorical variables are mosaic plots to compare
the distribution of train sets and test sets.

Value

There is no return value. Draw only the plot.

Examples
library(dplyr)

Credit Card Default Data
head(ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

sb %>%
compare_plot(”"income")

sb %>%
compare_plot()

10 compare_target_category

compare_target_category
Comparison of categorical variables of train set and test set

Description

Compare the statistics of the categorical variables of the train set and test set included in the
"split_df" class.

Usage

compare_target_category(.data, ..., add_character = FALSE, margin = FALSE)
Arguments

.data an object of class "split_df", usually, a result of a call to split_df().

one or more unquoted expressions separated by commas. Select the categorical
variable you want to compare. You can treat variable names like they are posi-
tions. Positive values select variables; negative values to drop variables. If the
first expression is negative, compare_target_category() will automatically start
with all variables. These arguments are automatically quoted and evaluated in a
context where column names represent column positions. They support unquot-
ing and splicing.

add_character logical. Decide whether to include text variables in the compare of categorical
data. The default value is FALSE, which also not includes character variables.

margin logical. Choose to calculate the marginal frequency information.

Details

Compare the statistics of the numerical variables of the train set and the test set to determine whether
the raw data is well separated into two data sets.

Value

tbl_df. Variables of tbl_df for comparison:

* variable : character. categorical variable name

* level : factor. level of categorical variables

* train : numeric. the relative frequency of the level in the train set
* test : numeric. the relative frequency of the level in the test set

* abs_diff : numeric. the absolute value of the difference between two relative frequencies

compare_target_numeric 11

Examples

library(dplyr)

Credit Card Default Data
head(ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

sb %>%

compare_target_category()

sb %>%

compare_target_category(add_character = TRUE)

sb %>%

compare_target_category(margin = TRUE)

sb %>%

compare_target_category(student)

sb %>%

compare_target_category(student, margin = TRUE)

compare_target_numeric

Comparison of numerical variables of train set and test set

Description

Compare the statistics of the numerical variables of the train set and test set included in the "split_df"

class.
Usage
compare_target_numeric(.data, ...)
Arguments
.data an object of class "split_df", usually, a result of a call to split_df().

one or more unquoted expressions separated by commas. Select the numeric
variable you want to compare. You can treat variable names like they are posi-
tions. Positive values select variables; negative values to drop variables. If the
first expression is negative, compare_target_numeric() will automatically start
with all variables. These arguments are automatically quoted and evaluated in a
context where column names represent column positions. They support unquot-
ing and splicing.

12

Details

extract_set

Compare the statistics of the numerical variables of the train set and the test set to determine whether
the raw data is well separated into two data sets.

Value

tbl_df. Variables for comparison:

variable : character. numeric variable name

train_mean : numeric. arithmetic mean of train set

test_mean : numeric. arithmetic mean of test set

train_sd : numeric. standard deviation of train set

test_sd : numeric. standard deviation of test set

train_z : numeric. the arithmetic mean of the train set divided by the standard deviation

test_z : numeric. the arithmetic mean of the test set divided by the standard deviation

Examples

library(dplyr)

Credit Card Default Data
head(ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

sb %>%
compare_target_numeric()

sb %>%
compare_target_numeric(balance)

extract_set Extract train/test dataset

Description

Extract train set or test set from split_df class object

Usage

extract_set(x, set = c("train", "test"))

matthews 13

Arguments
X an object of class "split_df", usually, a result of a call to split_df().
set character. Specifies whether the extracted data is a train set or a test set. You can
use "train" or "test".
Details

Extract the train or test sets based on the parameters you defined when creating split_df with
split_by().
Value

an object of class "tbl_df".

Examples

library(dplyr)

Credit Card Default Data
head (ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

train <- sb %>%
extract_set(set = "train")

test <- sb %>%

extract_set(set = "test")
matthews Compute Matthews Correlation Coefficient
Description

compute the Matthews correlation coefficient with actual and predict values.

Usage

matthews(predicted, y, positive)

Arguments
predicted numeric. the predicted value of binary classification
y factor or character. the actual value of binary classification

positive level of positive class of binary classification

14 performance_metric

Details

The Matthews Correlation Coefficient has a value between -1 and 1, and the closer to 1, the better
the performance of the binary classification.

Value

numeric. The Matthews Correlation Coefficient.

Examples

simulate actual data

set.seed(123L)

actual <- sample(c("Y", "N"), size = 100, prob = c(0.3, 0.7), replace = TRUE)
actual

simulate predict data

set.seed(123L)

pred <- sample(c("Y", "N"), size = 100, prob = c(0.2, 0.8), replace = TRUE)
pred

simulate confusion matrix
table(pred, actual)

matthews(pred, actual, "Y")

performance_metric Calculate metrics for model evaluation

Description

Calculate some representative metrics for binary classification model evaluation.

Usage
performance_metric(
pred,
actual,
positive,
metric = c("ZeroOneLoss", "Accuracy"”, "Precision”, "Recall”, "Sensitivity",

"Specificity”, "F1_Score"”, "Fbeta_Score"”, "LoglLoss"”, "AUC", "Gini", "PRAUC",
"LiftAUC", "GainAUC", "KS_Stat"”, "ConfusionMatrix"),
cutoff = 0.5,
beta = 1

performance_metric

Arguments

pred
actual
positive
metric

cutoff

beta

Details

15

numeric. Probability values that predicts the positive class of the target variable.
factor. The value of the actual target variable.

character. Level of positive class of binary classification.

character. The performance metrics you want to calculate. See details.

numeric. Threshold for classifying predicted probability values into positive and
negative classes.

numeric. Weight of precision in harmonic mean for F-Beta Score.

The cutoff argument applies only if the metric argument is "ZeroOneLoss", "Accuracy", "Preci-

non

sion", "Recall", "Sensitivity", "Specificity", "F1_Score", "Fbeta_Score", "ConfusionMatrix".

Value

numeric or table object. Confusion Matrix return by table object. and otherwise is numeric.: The
performance metrics calculated are as follows.:

e ZeroOnelLoss : Normalized Zero-One Loss(Classification Error Loss).

e Accuracy : Accuracy.

» Precision : Precision.
e Recall : Recall.

* Sensitivity : Sensitivity.

 Specificity : Specificity.
e F1_Score : F1 Score.

e Fbeta_Score : F-Beta Score.

* Logloss : Log loss / Cross-Entropy Loss.

* AUC : Area Under the Receiver Operating Characteristic Curve (ROC AUC).
* Gini : Gini Coefficient.

* PRAUC : Area Under the Precision-Recall Curve (PR AUC).

* LiftAUC : Area Under the Lift Chart.

* GainAUC : Area Under the Gain Chart.

» KS_Stat : Kolmogorov-Smirnov Statistic.

¢ ConfusionMatrix : Confusion Matrix.

Examples

library(dplyr)

Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
split_by(Kyphosis)

16 plot_cutoff

Extract the train data set from original data set.
train <- sb %>%
extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
sampling_target(seed = 1234L, method = "ubSMOTE")

Cleaning the set.
train <- train %>%
cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis"”, positive = "present")
result

Predict the model.
pred <- run_predict(result, test)
pred

Calculate Accuracy.

performance_metric(attr(pred$predicted[[1]], "pred_prob"”), test$Kyphosis,
"present”, "Accuracy")

Calculate Confusion Matrix.

performance_metric(attr(pred$predicted[[1]], "pred_prob"”), test$Kyphosis,
"present”, "ConfusionMatrix")

Calculate Confusion Matrix by cutoff = 0.55.

performance_metric(attr(pred$predicted[[1]], "pred_prob"”), test$Kyphosis,
"present”, "ConfusionMatrix”, cutoff = 0.55)

plot_cutoff Visualization for cut-off selection

Description

plot_cutoff() visualizes a plot to select a cut-off that separates positive and negative from the prob-
abilities that are predictions of a binary classification, and suggests a cut-off.

plot_cutoff 17
Usage
plot_cutoff(
predicted,
Y,
positive,
type = c("mec”, "density"”, "prob”),
measure = c("mcc”, "cross"”, "half")
)
Arguments
predicted numeric. the predicted value of binary classification
y factor or character. the actual value of binary classification
positive level of positive class of binary classification
type character. Visualization type. "mcc" draw the Matthews Correlation Coefficient
scatter plot, "density" draw the density plot of negative and positive, and "prob"
draws line or points plots of the predicted probability.
measure character. The kind of measure that calculates the cutoff. "mcc" is the Matthews
Correlation Coefficient, "cross" is the point where the positive and negative den-
sities cross, and "half" is the median of the probability, 0.5
Details

If the type argument is "prob", visualize the points plot if the number of observations is less than
100. If the observation is greater than 100, draw a line plot. In this case, the speed of visualization

can be slow.

Value

numeric. cut-off value

Examples

library(ggplot2)
library(rpart)
data(kyphosis)

fit <- glm(Kyphosis ~., family = binomial, kyphosis)
pred <- predict(fit, type = "response")

cutoff <- plot_cutoff(pred, kyphosis$Kyphosis, "present”, type = "mcc”)

cutoff

plot_cutoff(pred,
plot_cutoff(pred,

plot_cutoff(pred,
plot_cutoff(pred,
plot_cutoff(pred,

n n

kyphosis$Kyphosis, "present”, type = "mcc”, measure = "cross")

kyphosis$Kyphosis, "present”, type = "mcc”, measure = "half")

kyphosis$Kyphosis, "present”, type = "density”, measure = "mcc")
kyphosis$Kyphosis, "present”, type = "density"”, measure = "cross")
kyphosis$Kyphosis, "present”, type = "density"”, measure = "half")

18 plot_performance

plot_cutoff(pred, kyphosis$Kyphosis, "present”, type = "prob"”, measure = "mcc")
plot_cutoff(pred, kyphosis$Kyphosis, "present”, type "prob"”, measure = "cross")
plot_cutoff(pred, kyphosis$Kyphosis, "present”, type = "prob", measure = "half")

plot_performance Visualization for ROC curve

Description

plot_performance() visualizes a plot to ROC curve that separates model algorithm.

Usage

plot_performance(model)

Arguments

model A model_df. results of predicted model that created by run_predict().

Details

The ROC curve is output for each model included in the model_df class object specified as a model
argument.

Value

There is no return value. Only the plot is drawn.

Examples

library(dplyr)

Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
split_by(Kyphosis)

Extract the train data set from original data set.
train <- sb %>%
extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
sampling_target(seed = 1234L, method = "ubSMOTE")

run_models 19

Cleaning the set.
train <- train %>%
cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis"”, positive = "present"”)

Predict the model.
pred <- run_predict(result, test)

Plot ROC curve
plot_performance(pred)

run_models Fit binary classification model

Description

Fit some representative binary classification models.

Usage

run_models(
.data,
target,
positive,
models = c("logistic”, "rpart”, "ctree”, "randomForest"”, "ranger"”, "xgboost"”, "lasso")

)

Arguments
.data A train_df. Train data to fit the model. It also supports tbl_df, tbl, and data.frame
objects.
target character. Name of target variable.
positive character. Level of positive class of binary classification.
models character. Algorithm types of model to fit. See details. default value is c("logistic",

non non

"rpart", "ctree",

non

randomForest", "ranger"”, "lasso").

20 run_models

Details

Supported models are functions supported by the representative model package used in R environ-
ment. The following binary classifications are supported:

* "logistic" : logistic regression by glm() in stats package.

 "rpart" : recursive partitioning tree model by rpart() in rpart package.

 "ctree" : conditional inference tree model by ctree() in party package.

* "randomForest" : random forest model by randomForest() in randomForest package.

* "ranger" : random forest model by ranger() in ranger package.

* "xgboost" : XGBoosting model by xgboost() in xgboost package.

* "lasso" : lasso model by glmnet() in glmnet package.

run_models() executes the process in parallel when fitting the model. However, it is not supported
in MS-Windows operating system and RStudio environment.

Value

model_df. results of fitted model. model_df is composed of tbl_df and contains the following
variables.:

* step : character. The current stage in the model fit process. The result of calling run_models()
is returned as "1.Fitted".

* model_id : character. Type of fit model.

* target : character. Name of target variable.

* is_factor : logical. Indicates whether the target variable is a factor.

* positive : character. Level of positive class of binary classification.

* negative : character. Level of negative class of binary classification.

* fitted_model : list. Fitted model object.

Examples

library(dplyr)

Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
split_by(Kyphosis)

Extract the train data set from original data set.
train <- sb %>%
extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%

run_performance 21

sampling_target(seed = 1234L, method = "ubSMOTE")

Cleaning the set.
train <- train %>%
cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis"”, positive = "present")
result

Run the several kinds model fitting by dplyr
train %>%

run_models(target = "Kyphosis"”, positive = "present”)
run_performance Apply calculate performance metrics for model evaluation
Description

Apply calculate performance metrics for binary classification model evaluation.

Usage

run_performance(model, actual = NULL)

Arguments
model A model_df. results of predicted model that created by run_predict().
actual factor. A data of target variable to evaluate the model. It supports factor that has
binary class.
Details

run_performance() is performed in parallel when calculating the performance evaluation index.
However, it is not supported in MS-Windows operating system and RStudio environment.

Value

model_df. results of predicted model. model_df is composed of tbl_df and contains the following
variables.:

* step : character. The current stage in the model fit process. The result of calling run_performance()
is returned as "3.Performanced".

* model_id : character. Type of fit model.

22

run_performance

* target : character. Name of target variable.
* positive : character. Level of positive class of binary classification.
* fitted_model : list. Fitted model object.

e predicted : list. Predicted value by individual model. Each value has a predict_class class
object.

* performance : list. Calculate metrics by individual model. Each value has a numeric vector.
The performance metrics calculated are as follows.:

e ZeroOneLoss : Normalized Zero-One Loss(Classification Error Loss).
e Accuracy : Accuracy.

* Precision : Precision.

* Recall : Recall.

* Sensitivity : Sensitivity.

* Specificity : Specificity.

e F1_Score : F1 Score.

¢ Fbeta_Score : F-Beta Score.

* LogLoss : Log loss / Cross-Entropy Loss.

* AUC : Area Under the Receiver Operating Characteristic Curve (ROC AUC).
* Gini : Gini Coefficient.

e PRAUC : Area Under the Precision-Recall Curve (PR AUC).
 LiftAUC : Area Under the Lift Chart.

* GainAUC : Area Under the Gain Chart.

» KS_Stat : Kolmogorov-Smirnov Statistic.

Examples

library(dplyr)

Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
split_by(Kyphosis)

Extract the train data set from original data set.
train <- sb %>%
extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
sampling_target(seed = 1234L, method = "ubSMOTE")

run_predict

Cleaning the set.
train <- train %>%
cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis"”, positive = "present"”)
result

Predict the model. (Case 1)
pred <- run_predict(result, test)
pred

Calculate performace metrics. (Case 1)
perf <- run_performance(pred)

perf

perf$performance

Predict the model. (Case 2)
pred <- run_predict(result, test[, -11)
pred

Calculate performace metrics. (Case 2)

perf <- run_performance(pred, pull(test[, 11))
perf

perf$performance

Convert to matrix for compare performace.
sapply(perf$performance, "c")

run_predict Predict binary classification model

Description

Predict some representative binary classification models.

Usage

run_predict(model, .data, cutoff = 0.5)

Arguments

model A model_df. results of fitted model that created by run_models().

24 run_predict

.data A tbl_df. The data set to predict the model. It also supports tbl, and data.frame
objects.
cutoff numeric. Cut-off that determines the positive from the probability of predicting

the positive.

Details

Supported models are functions supported by the representative model package used in R environ-
ment. The following binary classifications are supported:

* "logistic" : logistic regression by predict.glm() in stats package.

* "rpart” : recursive partitioning tree model by predict.rpart() in rpart package.

 "ctree" : conditional inference tree model by predict() in stats package.

* "randomForest" : random forest model by predict.randomForest() in randomForest package.

* "ranger" : random forest model by predict.ranger() in ranger package.

* "xgboost" : random forest model by predict.xgb.Booster() in xgboost package.

* "lasso" : random forest model by predict.glmnet() in glmnet package.

run_predict() is executed in parallel when predicting by model. However, it is not supported in
MS-Windows operating system and RStudio environment.

Value

model_df. results of predicted model. model_df is composed of tbl_df and contains the following
variables.:

* step : character. The current stage in the model fit process. The result of calling run_predict()
is returned as "2.Predicted".

* model_id : character. Type of fit model.

* target : character. Name of target variable.

* is_factor : logical. Indicates whether the target variable is a factor.

* positive : character. Level of positive class of binary classification.

* negative : character. Level of negative class of binary classification.

* fitted_model : list. Fitted model object.

o predicted : list. Predicted value by individual model. Each value has a predict_class class
object.

Examples
library(dplyr)
Divide the train data set and the test data set.

sb <- rpart::kyphosis %>%
split_by(Kyphosis)

Extract the train data set from original data set.
train <- sb %>%

sampling_target 25

extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
sampling_target(seed = 1234L, method = "ubSMOTE")

Cleaning the set.
train <- train %>%
cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis"”, positive = "present")
result

Run the several kinds model predict by dplyr
result %>%
run_predict(test)

sampling_target Extract the data to fit the model

Description

To solve the imbalanced class, perform sampling in the train set of split_df.

Usage
sampling_target(
.data,
method = c("ubUnder”, "ubOver"”, "ubSMOTE"),
seed = NULL,
perc = 50,
k = ifelse(method == "ubSMOTE", 5, @),

perc.over = 200,
perc.under = 200

Arguments

.data an object of class "split_df", usually, a result of a call to split_df().

26

method

seed

perc

perc.over

perc.under

Details

sampling_target

character. sampling methods. "ubUnder" is under-sampling, and "ubOver"
is over-sampling, "ubSMOTE" is SMOTE(Synthetic Minority Over-sampling
TEchnique).

integer. random seed used for sampling

integer. The percentage of positive class in the final dataset. It is used only in
under-sampling. The default is 50. perc can not exceed 50.

integer. It is used only in over-sampling and SMOTE. If over-sampling and if
K=0: sample with replacement from the minority class until we have the same
number of instances in each class. under-sampling and if K>0: sample with
replacement from the minority class until we have k-times the original number
of minority instances. If SMOTE, the number of neighbours to consider as the
pool from where the new examples are generated

integer. It is used only in SMOTE. per.over/100 is the number of new instances
generated for each rare instance. If perc.over < 100 a single instance is gener-
ated.

integer. It is used only in SMOTE. perc.under/100 is the number of "normal"
(majority class) instances that are randomly selected for each smoted observa-
tion.

In order to solve the problem of imbalanced class, sampling is performed by under sampling, over
sampling, SMOTE method.

Value

An object of train_df.

attributes of train_df class

The attributes of the train_df class are as follows.:

* sample_seed : integer. random seed used for sampling

* method : character. sampling methods.

* perc : integer. perc argument value

* k: integer. k argument value

* perc.over : integer. perc.over argument value

 perc.under : integer. perc.under argument value

* binary : logical. whether the target variable is a binary class

* target : character. target variable name

* minority : character. the level of the minority class

* majority : character. the level of the majority class

sampling_target

Examples

library(dplyr)

Credit Card Default Data
head(ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

under-sampling with random seed
under <- sb %>%
sampling_target(seed = 1234L)

under %>%
count(default)

under-sampling with random seed, and minority class frequency is 40%
under40@ <- sb %>%
sampling_target(seed = 1234L, perc = 40)

under40 %>%
count(default)

over-sampling with random seed
over <- sb %>%
sampling_target(method = "ubOver”, seed = 1234L)

over %>%
count(default)

over-sampling with random seed, and k = 10
over1@ <- sb %>%
sampling_target(method = "ubOver"”, seed = 1234L, k = 10)

overl10 %>%
count(default)

SMOTE with random seed
smote <- sb %>%
sampling_target(method

"ubSMOTE”, seed = 1234L)

smote %>%
count(default)

SMOTE with random seed, and perc.under = 250
smote250 <- sb %>%
sampling_target(method = "ubSMOTE"”, seed = 1234L, perc.under = 250)

smote250 %>%
count(default)

27

28 split_by
split_by Split Data into Train and Test Set
Description
The split_by() splits the data.frame or tbl_df into a train set and a test set.
Usage
split_by(.data, ...)
S3 method for class 'data.frame’
split_by(.data, target, ratio = 0.7, seed = NULL, ...)
Arguments
.data a data.frame or a tbl_df.
further arguments passed to or from other methods.
target unquoted expression or variable name. the name of the target variable
ratio numeric. the ratio of the train dataset. default is 0.7
seed random seed used for splitting
Details
The split_df class is created, which contains the split information and criteria to separate the training
and the test set.
Value

An object of split_by.

attributes of split_by

The attributes of the split_df class are as follows.:

* split_seed : integer. random seed used for splitting

* target : character. the name of the target variable

* binary : logical. whether the target variable is binary class
* minority : character. the name of the minority class

* majority : character. the name of the majority class

* minority_rate : numeric. the rate of the minority class

* majority_rate : numeric. the rate of the majority class

summary.split_df 29

Examples

library(dplyr)

Credit Card Default Data
head(ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

sb

summary.split_df Summarizing split_df information

Description

summary method for "split_df" class.

Usage
S3 method for class 'split_df"
summary (object, ...)
Arguments
object an object of class "split_df", usually, a result of a call to split_df().

further arguments passed to or from other methods.

Details

summary.split_df provides information on the number of two split data sets, minority class and
majority class.

Value

NULL is returned. However, the split train set and test set information are displayed. The output
information is as follows.:

¢ Random seed
e Number of train sets and test sets
* Name of target variable

* Target variable minority class and majority class information (label and ratio)

30 treatment_corr

Examples
library(dplyr)

Credit Card Default Data
head (ISLR: :Default)

Generate data for the example
sb <- ISLR::Default %>%
split_by(default)

sb
summary (sb)

treatment_corr Diagnosis and removal of highly correlated variables

Description

The treatment_corr() diagnose pairs of highly correlated variables or remove on of them.

Usage

treatment_corr(.data, corr_thres = 0.8, treat = TRUE, verbose = TRUE)

Arguments
.data a data.frame or a tbl_df.
corr_thres numeric. Set a threshold to detecting variables when correlation greater then
threshold.
treat logical. Set whether to removing variables
verbose logical. Set whether to echo information to the console at runtime.
Details

The correlation coefficient of pearson is obtained for continuous variables and the correlation coef-
ficient of spearman for categorical variables.
Value

An object of data.frame or train_df. and return value is an object of the same type as the .data
argument. However, several variables can be excluded by correlation between variables.

treatment_corr

Examples

numerical variable

x1 <= 1:100

set.seed(12L)

x2 <- sample(1:3, size = 100, replace = TRUE) * x1 + rnorm(1)
set.seed(1234L)

x3 <- sample(1:2, size = 100, replace = TRUE) * x1 + rnorm(1)

categorical variable
x4 <- factor(rep(letters[1:20], time = 5))
set.seed(100L)

x5 <- factor(rep(letters[1:20 + sample(1:6, size = 20, replace = TRUE)], time = 5))
set.seed(200L)
x6 <- factor(rep(letters[1:20 + sample(1:3, size = 20, replace = TRUE)], time = 5))

set.seed(300L)
x7 <- factor(sample(letters[1:5], size = 100, replace = TRUE))

exam <- data.frame(x1, x2, x3, x4, x5, x6, x7)
str(exam)
head(exam)

default case
treatment_corr(exam)

not removing variables
treatment_corr(exam, treat = FALSE)

Set a threshold to detecting variables when correlation greater then 0.9
treatment_corr(exam, corr_thres = 0.9, treat = FALSE)

not verbose mode
treatment_corr(exam, verbose = FALSE)

Index

cleanse (cleanse.data. frame), 2
cleanse.data.frame, 2
cleanse.split_df, 4
compare_diag, 5
compare_performance, 7
compare_plot, 8
compare_target_category, 10
compare_target_numeric, 11

extract_set, 12
matthews, 13

performance_metric, 14
plot_cutoff, 16
plot_performance, 18

run_models, 19
run_performance, 21
run_predict, 23

sampling_target, 25
split_by, 28
summary.split_df, 29

tbl_df, 3, 28, 30
treatment_corr, 30

32

	cleanse.data.frame
	cleanse.split_df
	compare_diag
	compare_performance
	compare_plot
	compare_target_category
	compare_target_numeric
	extract_set
	matthews
	performance_metric
	plot_cutoff
	plot_performance
	run_models
	run_performance
	run_predict
	sampling_target
	split_by
	summary.split_df
	treatment_corr
	Index

