
Package ‘ao’
December 15, 2025

Title Alternating Optimization

Version 1.2.2

Description An iterative process that optimizes a function by alternately
performing restricted optimization over parameter subsets. Instead of joint
optimization, it breaks the optimization problem down into simpler
sub-problems. This approach can make optimization feasible when joint
optimization is too difficult.

URL https://loelschlaeger.de/ao/, https://github.com/loelschlaeger/ao/

BugReports https://github.com/loelschlaeger/ao/issues

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

Imports checkmate, cli, future.apply, oeli (>= 0.7.3), progressr, R6,
stats, utils

Suggests devtools, ggplot2, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Depends R (>= 4.0.0), optimizeR (>= 1.2.1)

NeedsCompilation no

Author Lennart Oelschläger [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5421-9313>),

Siddhartha Chib [ctb]

Maintainer Lennart Oelschläger <oelschlaeger.lennart@gmail.com>

Repository CRAN

Date/Publication 2025-12-15 17:00:02 UTC

Contents
ao . 2
Process . 7

1

https://loelschlaeger.de/ao/
https://github.com/loelschlaeger/ao/
https://github.com/loelschlaeger/ao/issues
https://orcid.org/0000-0001-5421-9313

2 ao

Index 16

ao Alternating Optimization

Description

Alternating optimization (AO) is an iterative process for optimizing a real-valued function jointly
over all its parameters by alternating restricted optimization over parameter partitions.

Usage

ao(
f,
initial,
target = NULL,
npar = NULL,
gradient = NULL,
hessian = NULL,
...,
partition = "sequential",
new_block_probability = 0.3,
minimum_block_number = 1,
minimize = TRUE,
lower = NULL,
upper = NULL,
iteration_limit = Inf,
seconds_limit = Inf,
tolerance_value = 1e-06,
tolerance_parameter = 1e-06,
tolerance_parameter_norm = function(x, y) sqrt(sum((x - y)^2)),
tolerance_history = 1,
base_optimizer = Optimizer$new("stats::optim", method = "L-BFGS-B"),
verbose = FALSE,
hide_warnings = TRUE,
add_details = TRUE

)

Arguments

f [function]
A function to be optimized, returning a single numeric value.
The first argument of f should be a numeric of the same length as initial,
optionally followed by any other arguments specified by the ... argument.
If f is to be optimized over an argument other than the first, or more than one
argument, this has to be specified via the target argument.

ao 3

initial [numeric() | list()]
The starting parameter values for the target argument(s).
This can also be a list of multiple starting parameter values, see details.

target [character() | NULL]
The name(s) of the argument(s) over which f gets optimized.
This can only be numeric arguments.
Can be NULL (default), then it is the first argument of f.

npar [integer()]
The length(s) of the target argument(s).
Must be specified if more than two target arguments are specified via the target
argument.
Can be NULL if there is only one target argument, in which case npar is set to be
length(initial).

gradient [function | NULL]
Optionally a function that returns the gradient of f.
The function call of gradient must be identical to f.
Ignored if base_optimizer does not support custom gradient.

hessian [function | NULL]
Optionally a function that returns the Hessian of f.
The function call of hessian must be identical to f.
Ignored if base_optimizer does not support custom Hessian.

... Additional arguments to be passed to f (and gradient).

partition [character(1) | list()]
Defines the parameter partition, and can be either

• "sequential" for treating each parameter separately,
• "random" for a random partition in each iteration,
• "none" for no partition (which is equivalent to joint optimization),
• or a list of vectors of parameter indices, specifying a custom partition for

the AO process.

This can also be a list of multiple partition definitions, see details.
new_block_probability

[numeric(1)]
Only relevant if partition = "random".
The probability for a new parameter block when creating a random partition.
Values close to 0 result in larger parameter blocks, values close to 1 result in
smaller parameter blocks.

minimum_block_number

[integer(1)]
Only relevant if partition = "random".
The minimum number of blocks in random partitions.

minimize [logical(1)]
Minimize during the AO process?
If FALSE, maximization is performed.

4 ao

lower, upper [numeric() | NULL]
Optionally lower and upper parameter bounds.
Ignored if base_optimizer does not support parameter bounds.

iteration_limit

[integer(1) | Inf]
The maximum number of iterations through the parameter partition before the
AO process is terminated.
Can also be Inf for no iteration limit.

seconds_limit [numeric(1)]
The time limit in seconds before the AO process is terminated.
Can also be Inf for no time limit.
Note that this stopping criteria is only checked after a sub-problem is solved
and not within solving a sub-problem, so the actual process time can exceed this
limit.

tolerance_value

[numeric(1)]
A non-negative tolerance value. The AO process terminates if the absolute dif-
ference between the current function value and the one before tolerance_history
iterations is smaller than tolerance_value.
Can be 0 for no value threshold.

tolerance_parameter

[numeric(1)]
A non-negative tolerance value. The AO process terminates if the distance
between the current estimate and the before tolerance_history iterations is
smaller than tolerance_parameter.
Can be 0 for no parameter threshold.
By default, the distance is measured using the euclidean norm, but another norm
can be specified via the tolerance_parameter_norm argument.

tolerance_parameter_norm

[function]
The norm that measures the distance between the current estimate and the one
from the last iteration. If the distance is smaller than tolerance_parameter,
the AO process is terminated.
It must be of the form function(x, y) for two vector inputs x and y, and re-
turn a single numeric value. By default, the euclidean norm function(x, y)
sqrt(sum((x - y)^2)) is used.

tolerance_history

[integer(1)]
The number of iterations to look back to determine whether tolerance_value
or tolerance_parameter has been reached.

base_optimizer [Optimizer | list()]
An Optimizer object, which can be created via Optimizer. It numerically
solves the sub-problems.
By default, the optim optimizer with method = "L-BFGS-B" is used.
This can also be a list of multiple base optimizers, see details.

ao 5

verbose [logical(1)]
Print tracing details during the AO process?
Not supported when using multiple processes, see details.

hide_warnings [logical(1)]
Hide warnings during the AO process?

add_details [logical(1)]
Add details about the AO process to the output?

Details

Multiple processes:
AO can suffer from local optima. To increase the likelihood of reaching the global optimum, you
can specify:

• multiple starting parameters
• multiple parameter partitions
• multiple base optimizers

Use the initial, partition, and/or base_optimizer arguments to provide a list of possible
values for each parameter. Each combination of initial values, parameter partitions, and base
optimizers will create a separate AO process.

Output value:
In the case of multiple processes, the output values refer to the optimal (with respect to function
value) AO processes.
If add_details = TRUE, the following elements are added:

• estimates is a list of optimal parameters in each process.
• values is a list of optimal function values in each process.
• details combines details of the single processes and has an additional column process

with an index for the different processes.
• seconds_each gives the computation time in seconds for each process.
• stopping_reasons gives the termination message for each process.
• processes give details how the different processes were specified.

Parallel computation:
By default, processes run sequentially. However, since they are independent, they can be par-
allelized. To enable parallel computation, use the {future} framework. For example, run the
following before the ao() call:
future::plan(future::multisession, workers = 4)

Progress updates:
When using multiple processes, setting verbose = TRUE to print tracing details during AO is not
supported. However, you can still track the progress using the {progressr} framework. For
example, run the following before the ao() call:
progressr::handlers(global = TRUE)
progressr::handlers(
progressr::handler_progress(":percent :eta :message")

)

https://future.futureverse.org/
https://progressr.futureverse.org/

6 ao

Value

A list with the following elements:

• estimate is the parameter vector at termination.
• value is the function value at termination.
• details is a data.frame with information about the AO process: For each iteration (column
iteration) it contains the function value (column value), parameter values (columns starting
with p followed by the parameter index), the active parameter block (columns starting with
b followed by the parameter index, where 1 stands for a parameter contained in the active
parameter block and 0 if not), and computation times in seconds (column seconds). Only
available if add_details = TRUE.

• seconds is the overall computation time in seconds.
• stopping_reason is a message why the AO process has terminated.

In the case of multiple processes, the output changes slightly, see details.

Examples

Example 1: Minimization of Himmelblau's function --------------------------

himmelblau <- function(x) (x[1]^2 + x[2] - 11)^2 + (x[1] + x[2]^2 - 7)^2
ao(f = himmelblau, initial = c(0, 0))

Example 2: Maximization of 2-class Gaussian mixture log-likelihood --------

target arguments:
- class means mu (2, unrestricted)
- class standard deviations sd (2, must be non-negative)
- class proportion lambda (only 1 for identification, must be in [0, 1])

normal_mixture_llk <- function(mu, sd, lambda, data) {
c1 <- lambda * dnorm(data, mu[1], sd[1])
c2 <- (1 - lambda) * dnorm(data, mu[2], sd[2])
sum(log(c1 + c2))

}

set.seed(123)

ao(
f = normal_mixture_llk,
initial = runif(5),
target = c("mu", "sd", "lambda"),
npar = c(2, 2, 1),
data = datasets::faithful$eruptions,
partition = list("sequential", "random", "none"),
minimize = FALSE,
lower = c(-Inf, -Inf, 0, 0, 0),
upper = c(Inf, Inf, Inf, Inf, 1),
add_details = FALSE

)

Process 7

Process Process Object

Description

This object specifies an AO process.

Active bindings

npar [integer(1)]
The (total) length of the target argument(s).

partition [character(1) | list()]
Defines the parameter partition, and can be either

• "sequential" for treating each parameter separately,
• "random" for a random partition in each iteration,
• "none" for no partition (which is equivalent to joint optimization),
• or a list of vectors of parameter indices, specifying a custom partition for the AO pro-

cess.

new_block_probability [numeric(1)]
Only relevant if partition = "random".
The probability for a new parameter block when creating a random partition.
Values close to 0 result in larger parameter blocks, values close to 1 result in smaller parameter
blocks.

minimum_block_number [integer(1)]
Only relevant if partition = "random".
The minimum number of blocks in random partitions.

verbose [logical(1)]
Print tracing details during the AO process?

minimize [logical(1)]
Minimize during the AO process?
If FALSE, maximization is performed.

iteration_limit [integer(1) | Inf]
The maximum number of iterations through the parameter partition before the AO process is
terminated.
Can also be Inf for no iteration limit.

seconds_limit [numeric(1)]
The time limit in seconds before the AO process is terminated.
Can also be Inf for no time limit.
Note that this stopping criteria is only checked after a sub-problem is solved and not within
solving a sub-problem, so the actual process time can exceed this limit.

8 Process

tolerance_value [numeric(1)]
A non-negative tolerance value. The AO process terminates if the absolute difference between
the current function value and the one before tolerance_history iterations is smaller than
tolerance_value.
Can be 0 for no value threshold.

tolerance_parameter [numeric(1)]
A non-negative tolerance value. The AO process terminates if the distance between the current
estimate and the before tolerance_history iterations is smaller than tolerance_parameter.
Can be 0 for no parameter threshold.
By default, the distance is measured using the euclidean norm, but another norm can be spec-
ified via the tolerance_parameter_norm field.

tolerance_parameter_norm [function]
The norm that measures the distance between the current estimate and the one from the last
iteration. If the distance is smaller than tolerance_parameter, the AO process is terminated.
It must be of the form function(x, y) for two vector inputs x and y, and return a single
numeric value. By default, the euclidean norm function(x, y) sqrt(sum((x - y)^2)) is
used.

tolerance_history [integer(1)]
The number of iterations to look back to determine whether tolerance_value or tolerance_parameter
has been reached.

add_details [logical(1)]
Add details about the AO process to the output?

iteration [integer(1)]
The current iteration number.

block [integer()]
The currently active parameter block, represented as parameter indices.

output [list(), read-only]
The output of the AO process, which is a list with the following elements:

• estimate is the parameter vector at termination.
• value is the function value at termination.
• details is a data.frame with full information about the AO process. For each iteration

(column iteration) it contains the function value (column value), parameter values
(columns starting with p followed by the parameter index), the active parameter block
(columns starting with b followed by the parameter index, where 1 stands for a parameter
contained in the active parameter block and 0 if not), and computation times in seconds
(column seconds). Only available if add_details = TRUE.

• seconds is the overall computation time in seconds.
• stopping_reason is a message why the AO process has terminated.

Methods

Public methods:

• Process$new()

• Process$print_status()

Process 9

• Process$initialize_details()

• Process$update_details()

• Process$get_partition()

• Process$get_details()

• Process$get_value()

• Process$get_value_latest()

• Process$get_value_best()

• Process$get_parameter()

• Process$get_parameter_latest()

• Process$get_parameter_best()

• Process$get_seconds()

• Process$get_seconds_total()

• Process$check_stopping()

Method new(): Creates a new object of this R6 class.
Usage:
Process$new(
npar = integer(),
partition = "sequential",
new_block_probability = 0.3,
minimum_block_number = 1,
verbose = FALSE,
minimize = TRUE,
iteration_limit = Inf,
seconds_limit = Inf,
tolerance_value = 1e-06,
tolerance_parameter = 1e-06,
tolerance_parameter_norm = function(x, y) sqrt(sum((x - y)^2)),
tolerance_history = 1,
add_details = TRUE

)

Arguments:
npar [integer(1)]

The (total) length of the target argument(s).
partition [character(1) | list()]

Defines the parameter partition, and can be either
• "sequential" for treating each parameter separately,
• "random" for a random partition in each iteration,
• "none" for no partition (which is equivalent to joint optimization),
• or a list of vectors of parameter indices, specifying a custom partition for the AO pro-

cess.
new_block_probability [numeric(1)]

Only relevant if partition = "random".
The probability for a new parameter block when creating a random partition.
Values close to 0 result in larger parameter blocks, values close to 1 result in smaller param-
eter blocks.

10 Process

minimum_block_number [integer(1)]
Only relevant if partition = "random".
The minimum number of blocks in random partitions.

verbose [logical(1)]
Print tracing details during the AO process?

minimize [logical(1)]
Minimize during the AO process?
If FALSE, maximization is performed.

iteration_limit [integer(1) | Inf]
The maximum number of iterations through the parameter partition before the AO process
is terminated.
Can also be Inf for no iteration limit.

seconds_limit [numeric(1)]
The time limit in seconds before the AO process is terminated.
Can also be Inf for no time limit.
Note that this stopping criteria is only checked after a sub-problem is solved and not within
solving a sub-problem, so the actual process time can exceed this limit.

tolerance_value [numeric(1)]
A non-negative tolerance value. The AO process terminates if the absolute difference
between the current function value and the one before tolerance_history iterations is
smaller than tolerance_value.
Can be 0 for no value threshold.

tolerance_parameter [numeric(1)]
A non-negative tolerance value. The AO process terminates if the distance between the cur-
rent estimate and the before tolerance_history iterations is smaller than tolerance_parameter.
Can be 0 for no parameter threshold.
By default, the distance is measured using the euclidean norm, but another norm can be
specified via the tolerance_parameter_norm field.

tolerance_parameter_norm [function]
The norm that measures the distance between the current estimate and the one from the
last iteration. If the distance is smaller than tolerance_parameter, the AO process is
terminated.
It must be of the form function(x, y) for two vector inputs x and y, and return a single
numeric value. By default, the euclidean norm function(x, y) sqrt(sum((x - y)^2)) is
used.

tolerance_history [integer(1)]
The number of iterations to look back to determine whether tolerance_value or tolerance_parameter
has been reached.

add_details [logical(1)]
Add details about the AO process to the output?

Method print_status(): Prints a status message.

Usage:
Process$print_status(message, message_type = 8, verbose = self$verbose)

Arguments:
message [character(1)]

A status message.

Process 11

message_type [integer(1)]
The message type, one of the following:
• 1 for cli::cli_h1()
• 2 for cli::cli_h2()
• 3 for cli::cli_h3()
• 4 for cli::cli_alert_success()
• 5 for cli::cli_alert_info()
• 6 for cli::cli_alert_warning()
• 7 for cli::cli_alert_danger()
• 8 for cli::cat_line()

verbose [logical(1)]
Print tracing details during the AO process?

Method initialize_details(): Initializes the details part of the output.

Usage:
Process$initialize_details(initial_parameter, initial_value)

Arguments:
initial_parameter [numeric()]

The starting parameter values for the AO process.
initial_value [numeric(1)]

The function value at the initial parameters.

Method update_details(): Updates the details part of the output.

Usage:
Process$update_details(
value,
parameter_block,
seconds,
error,
error_message,
block = self$block

)

Arguments:
value [numeric(1)]

The updated function value.
parameter_block [numeric()]

The updated parameter values for the active parameter block.
seconds [numeric(1)]

The time in seconds for solving the sub-problem.
error [logical(1)]

Did solving the sub-problem result in an error?
error_message [character(1)]

An error message if error = TRUE.
block [integer()]

The currently active parameter block, represented as parameter indices.

12 Process

Method get_partition(): Get a parameter partition.

Usage:
Process$get_partition()

Method get_details(): Get the details part of the output.

Usage:
Process$get_details(
which_iteration = NULL,
which_block = NULL,
which_column = c("iteration", "value", "parameter", "block", "seconds")

)

Arguments:

which_iteration [integer()]
Selects the iteration(s).
Can also be NULL to select all iterations.

which_block [character(1) | integer()]
Selects the parameter block in the partition and can be one of
• "first" for the first parameter block,
• "last" for the last parameter block,
• an integer vector of parameter indices,
• or NULL for all parameter blocks.

which_column [character()]
Selects the columns in the details part of the output and can be one or more of
• "iteration",
• "value",
• "parameter",
• "block",
• and "seconds".

Method get_value(): Get the function value in different steps of the AO process.

Usage:
Process$get_value(
which_iteration = NULL,
which_block = NULL,
keep_iteration_column = FALSE,
keep_block_columns = FALSE

)

Arguments:

which_iteration [integer()]
Selects the iteration(s).
Can also be NULL to select all iterations.

which_block [character(1) | integer()]
Selects the parameter block in the partition and can be one of
• "first" for the first parameter block,

Process 13

• "last" for the last parameter block,
• an integer vector of parameter indices,
• or NULL for all parameter blocks.

keep_iteration_column [logical(1)]
Keep the column containing the information about the iteration in the output?

keep_block_columns [logical(1)]
Keep the column containing the information about the active parameter block in the output?

Method get_value_latest(): Get the function value in the latest step of the AO process.

Usage:
Process$get_value_latest()

Method get_value_best(): Get the optimum function value in the AO process.

Usage:
Process$get_value_best()

Method get_parameter(): Get the parameter values in different steps of the AO process.

Usage:
Process$get_parameter(
which_iteration = self$iteration,
which_block = NULL,
keep_iteration_column = FALSE,
keep_block_columns = FALSE

)

Arguments:
which_iteration [integer()]

Selects the iteration(s).
Can also be NULL to select all iterations.

which_block [character(1) | integer()]
Selects the parameter block in the partition and can be one of
• "first" for the first parameter block,
• "last" for the last parameter block,
• an integer vector of parameter indices,
• or NULL for all parameter blocks.

keep_iteration_column [logical(1)]
Keep the column containing the information about the iteration in the output?

keep_block_columns [logical(1)]
Keep the column containing the information about the active parameter block in the output?

Method get_parameter_latest(): Get the parameter value in the latest step of the AO process.

Usage:
Process$get_parameter_latest(parameter_type = "full")

Arguments:
parameter_type [character(1)]

Selects the parameter type and can be one of

14 Process

• "full" (default) to get the full parameter vector,
• "block" to get the parameter values for the current block, i.e., the parameters with the

indices self$block
• "fixed" to get the parameter values which are currently fixed, i.e., all except for those

with the indices self$block

Method get_parameter_best(): Get the optimum parameter value in the AO process.

Usage:
Process$get_parameter_best(parameter_type = "full")

Arguments:
parameter_type [character(1)]

Selects the parameter type and can be one of
• "full" (default) to get the full parameter vector,
• "block" to get the parameter values for the current block, i.e., the parameters with the

indices self$block
• "fixed" to get the parameter values which are currently fixed, i.e., all except for those

with the indices self$block

Method get_seconds(): Get the optimization time in seconds in different steps of the AO
process.

Usage:
Process$get_seconds(
which_iteration = NULL,
which_block = NULL,
keep_iteration_column = FALSE,
keep_block_columns = FALSE

)

Arguments:
which_iteration [integer()]

Selects the iteration(s).
Can also be NULL to select all iterations.

which_block [character(1) | integer()]
Selects the parameter block in the partition and can be one of
• "first" for the first parameter block,
• "last" for the last parameter block,
• an integer vector of parameter indices,
• or NULL for all parameter blocks.

keep_iteration_column [logical(1)]
Keep the column containing the information about the iteration in the output?

keep_block_columns [logical(1)]
Keep the column containing the information about the active parameter block in the output?

Method get_seconds_total(): Get the total optimization time in seconds of the AO process.

Usage:
Process$get_seconds_total()

Process 15

Method check_stopping(): Checks if the AO process can be terminated.

Usage:
Process$check_stopping()

Index

ao, 2

optim, 4
Optimizer, 4

Process, 7

R6, 9

16

	ao
	Process
	Index

