Package ‘apache.sedona’

January 9, 2026

Type Package

Title R Interface for Apache Sedona

Version 1.8.1

Maintainer Apache Sedona <private@sedona.apache.org>

Description R interface for 'Apache Sedona’ based on 'sparklyr'
(<https://sedona.apache.org>).

License Apache License 2.0
URL https://github.com/apache/sedona/, https://sedona.apache.org/

BugReports https://github.com/apache/sedona/issues
Depends R (>=3.2)

Imports rlang, sparklyr (>= 1.3), dbplyr (>= 1.1.0), cli, lifecycle
Suggests dplyr (>= 0.7.2), knitr, rmarkdown

Encoding UTF-8

RoxygenNote 7.3.2

SystemRequirements 'Apache Spark' 3.x

NeedsCompilation no

Author Apache Sedona [aut, cre],
Jia Yu [ctb, cph],
Yitao Li [aut, cph] (ORCID: <https://orcid.org/0000-0002-1261-905X>),
The Apache Software Foundation [cph],
RStudio [cph]
Repository CRAN

Date/Publication 2026-01-09 06:00:02 UTC

Contents

APPIOX_COUNE . . o v v v v v et i e e e e e e e e e e e e e e
crs_transform L e e
minimum_bounding_boxo

https://sedona.apache.org
https://github.com/apache/sedona/
https://sedona.apache.org/
https://github.com/apache/sedona/issues
https://orcid.org/0000-0002-1261-905X

2 approx_count
new_bounding_box e e e 5
sdf_register.spatial_rdd L 6
sedona_apply_spatial_partitioner 7
sedona_build_index, 8
sedona_knn_qUery e e e e e e e e 9
sedona_range_quUeryo e i et e e e e e e e e 11
sedona_read_dsv_to_typed_rdd 12
sedona_read_geojson L. e 14
sedona_read_shapefile_to_typed_rdd L oL o oL 16
sedona_render_choropleth_map 17
sedona_render_heatmap 19
sedona_render_scatter_plot e e 21
sedona_save_spatial_rdd 23
sedona_spatial_join e e e e 24
sedona_spatial_join_count_by_key o 25
sedona_write_wkb e 27
spark_read_shapefile 28
spark_Write_geojson L e e e e e e e 30
to_spatial_rdd 31

Index 33

approx_count Find the approximate total number of records within a Spatial RDD.

Description

Given a Sedona spatial RDD, find the (possibly approximated) number of total records within it.

Usage

approx_count(x)

Arguments

X

Value

A Sedona spatial RDD.

Approximate number of records within the SpatialRDD.

See Also

Other Spatial RDD aggregation routine: minimum_bounding_box ()

crs_transform 3

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")
if (!inherits(sc, "test_connection”)) {

input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_shapefile_to_typed_rdd(

sc,
location = input_location, type = "polygon”
)
approx_cnt <- approx_count(rdd)
3
crs_transform Perform a CRS transformation.
Description

Transform data within a spatial RDD from one coordinate reference system to another. This uses
the lon/lat order since v1.5.0. Before, it used lat/lon

Usage

crs_transform(x, src_epsg_crs_code, dst_epsg_crs_code, strict = FALSE)

Arguments

X The spatial RDD to be processed.

src_epsg_crs_code
Coordinate reference system to transform from (e.g., "epsg:4326", "epsg:3857",
etc).

dst_epsg_crs_code
Coordinate reference system to transform to. (e.g., "epsg:4326", "epsg:3857",
etc).

strict If FALSE (default), then ignore the "Bursa-Wolf Parameters Required" error.

Value

The transformed SpatialRDD.

4 minimum_bounding_box

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")
if (!inherits(sc, "test_connection”)) {

input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_geojson_to_typed_rdd(

sc,
location = input_location, type = "polygon”
)
crs_transform(
rdd,
src_epsg_crs_code = "epsg:4326", dst_epsg_crs_code = "epsg:3857"
)

3

minimum_bounding_box Find the minimal bounding box of a geometry.

Description
Given a Sedona spatial RDD, find the axis-aligned minimal bounding box of the geometry repre-
sented by the RDD.

Usage

minimum_bounding_box (x)

Arguments

X A Sedona spatial RDD.

Value

A minimum bounding box object.

See Also

Other Spatial RDD aggregation routine: approx_count()

new_bounding_box

Examples
library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (linherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_shapefile_to_typed_rdd(

sc,
location = input_location, type = "polygon”
)
boundary <- minimum_bounding_box(rdd)
3
new_bounding_box Construct a bounding box object.
Description

Construct a axis-aligned rectangular bounding box object.

Usage
new_bounding_box(sc, min_x = -Inf, max_x = Inf, min_y = -Inf, max_y = Inf)
Arguments
sc The Spark connection.
min_x Minimum x-value of the bounding box, can be +/- Inf.
max_x Maximum x-value of the bounding box, can be +/- Inf.
min_y Minimum y-value of the bounding box, can be +/- Inf.
max_y Maximum y-value of the bounding box, can be +/- Inf.
Value
A bounding box object.
Examples
library(sparklyr)

library(apache. sedona)

sc <- spark_connect(master = "spark://HOST:PORT")
bb <- new_bounding_box(sc, -1, 1, -1, 1)

6 sdf_register.spatial_rdd

sdf_register.spatial_rdd
Import data from a spatial RDD into a Spark Dataframe.

Description
Import data from a spatial RDD (possibly with non-spatial attributes) into a Spark Dataframe.

* sdf_register: method for sparklyr’s sdf_register to handle Spatial RDD

* as.spark.dataframe: lower level function with more fine-grained control on non-spatial
columns

Usage

S3 method for class 'spatial_rdd'
sdf_register(x, name = NULL)

as.spark.dataframe(x, non_spatial_cols = NULL, name = NULL)

Arguments
X A spatial RDD.
name Name to assign to the resulting Spark temporary view. If unspecified, then a

random name will be assigned.

non_spatial_cols
Column names for non-spatial attributes in the resulting Spark Dataframe. By
default (NULL) it will import all field names if that property exists, in particular
for shapefiles.

Value

A Spark Dataframe containing the imported spatial data.

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_geojson_to_typed_rdd(
sc,
location = input_location,
type = "polygon”
)
sdf <- sdf_register(rdd)

sedona_apply_spatial_partitioner 7

input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_dsv_to_typed_rdd(

sc,

location = input_location,
delimiter = ",",

type = "point”,

first_spatial_col_index = 1L,
repartition = 5
)
sdf <- as.spark.dataframe(rdd, non_spatial_cols = c("attr1”, "attr2"))

}

sedona_apply_spatial_partitioner
Apply a spatial partitioner to a Sedona spatial RDD.

Description

Given a Sedona spatial RDD, partition its content using a spatial partitioner.

Usage
sedona_apply_spatial_partitioner(
rdd,
partitioner = c("quadtree”, "kdbtree"),
max_levels = NULL
)
Arguments
rdd The spatial RDD to be partitioned.
partitioner The name of a grid type to use (currently "quadtree" and "kdbtree" are sup-
ported) or an org. apache. sedona.core.spatialPartitioning.SpatialPartitioner
JVM object. The latter option is only relevant for advanced use cases involving
a custom spatial partitioner.
max_levels Maximum number of levels in the partitioning tree data structure. If NULL (de-
fault), then use the current number of partitions within rdd as maximum number
of levels. Specifying max_levels is unsupported for use cases involving a cus-
tom spatial partitioner because in these scenarios the partitioner object already
has its own maximum number of levels set and there is no well-defined way to
override this existing setting in the partitioning data structure.
Value

A spatially partitioned SpatialRDD.

8 sedona_build_index

Examples
library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (linherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_dsv_to_typed_rdd(

sc,
location = input_location,
delimiter = ",",
type = "point”,
first_spatial_col_index = 1L
)
sedona_apply_spatial_partitioner(rdd, partitioner = "kdbtree")
3
sedona_build_index Build an index on a Sedona spatial RDD.
Description

Given a Sedona spatial RDD, build the type of index specified on each of its partition(s).

Usage

sedona_build_index(
rdd,
type = c("quadtree”, "rtree"),
index_spatial_partitions = TRUE

)
Arguments
rdd The spatial RDD to be indexed.
type The type of index to build. Currently "quadtree" and "rtree" are supported.

index_spatial_partitions
If the RDD is already partitioned using a spatial partitioner, then index each
spatial partition within the RDD instead of partitions within the raw RDD as-
sociated with the underlying spatial data source. Default: TRUE. Notice this
option is irrelevant if the input RDD has not been partitioned using with a spa-
tial partitioner yet.

Value

A spatial index object.

sedona_knn_query 9

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_shapefile_to_typed_rdd(
sc,
location = input_location,
type = "polygon”

)
sedona_build_index(rdd, type = "rtree")
3
sedona_knn_query Query the k nearest spatial objects.
Description

Given a spatial RDD, a query object x, and an integer k, find the k nearest spatial objects within the
RDD from x (distance between x and another geometrical object will be measured by the minimum
possible length of any line segment connecting those 2 objects).

Usage
sedona_knn_query(
rdd,
X,
K,
index_type = c("quadtree”, "rtree"),
result_type = c("rdd”, "sdf"”, "raw")
)
Arguments
rdd A Sedona spatial RDD.
X The query object.
k Number of nearest spatail objects to return.
index_type Index to use to facilitate the KNN query. If NULL, then do not build any ad-

ditional spatial index on top of x. Supported index types are "quadtree" and
"rtree".

10 sedona_knn_query

result_type Type of result to return. If "rdd" (default), then the k nearest objects will be
returned in a Sedona spatial RDD. If "sdf", then a Spark dataframe containing
the k nearest objects will be returned. If "raw", then a list of k nearest objects
will be returned. Each element within this list will be a JVM object of type
org.locationtech. jts.geom.Geometry.

Value

The KNN query result.

See Also

Other Sedona spatial query: sedona_range_query()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
knn_query_pt_x <- -84.01
knn_query_pt_y <- 34.01
knn_query_pt_tbl <- sdf_sql(
sc,
sprintf(
"SELECT ST_GeomFromText(\"POINT(%f %f)\") AS ~pt™",
knn_query_pt_x,
knn_query_pt_y
)
) %%
collect()
knn_query_pt <- knn_query_pt_tbl$pt[[1]]
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_geojson_to_typed_rdd(
sc,
location = input_location,
type = "polygon”

)
knn_result_sdf <- sedona_knn_query(

rdd,

x = knn_query_pt, k = 3, index_type = "rtree”, result_type = "sdf"
)

}

sedona_range_query 11

sedona_range_query Execute a range query.

Description

Given a spatial RDD and a query object x, find all spatial objects within the RDD that are covered
by x or intersect x.

Usage
sedona_range_query(
rdd,
X ’
query_type = c("cover”, "intersect"),
index_type = c("quadtree”, "rtree"),
result_type = c("rdd”, "sdf”, "raw")
)
Arguments
rdd A Sedona spatial RDD.
X The query object.
query_type Type of spatial relationship involved in the query. Currently "cover" and "inter-
sect" are supported.
index_type Index to use to facilitate the KNN query. If NULL, then do not build any ad-
ditional spatial index on top of x. Supported index types are "quadtree" and
"rtree".

result_type Type of result to return. If "rdd" (default), then the k nearest objects will be
returned in a Sedona spatial RDD. If "sdf", then a Spark dataframe containing
the k nearest objects will be returned. If "raw", then a list of k nearest objects
will be returned. Each element within this list will be a JVM object of type
org.locationtech. jts.geom.Geometry.
Value

The range query result.

See Also

Other Sedona spatial query: sedona_knn_query()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

12 sedona_read_dsv_to_typed_rdd

if (!inherits(sc, "test_connection”)) {

range_query_min_x <- -87
range_query_max_x <- -50
range_query_min_y <- 34
range_query_max_y <- 54
geom_factory <- invoke_new(

sc,

"org.locationtech. jts.geom.GeometryFactory”
)
range_query_polygon <- invoke_new(

sc,

"org.locationtech. jts.geom.Envelope”,

range_query_min_x,

range_query_max_x,

range_query_min_y,

range_query_max_y
) %%

invoke(geom_factory, "toGeometry”, .)
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_geojson_to_typed_rdd(

sc,

location = input_location,

type = "polygon”

)

range_query_result_sdf <- sedona_range_query(
rdd,
X = range_query_polygon,
query_type = "intersect”,
index_type = "rtree”,
result_type = "sdf"

)

3

sedona_read_dsv_to_typed_rdd
Create a typed SpatialRDD from a delimiter-separated values data
source.

Description

Create a typed SpatialRDD (namely, a PointRDD, a PolygonRDD, or a LineStringRDD) from a data
source containing delimiter-separated values. The data source can contain spatial attributes (e.g.,
longitude and latidude) and other attributes. Currently only inputs with spatial attributes occupying
a contiguous range of columns (i.e., [first_spatial_col_index, last_spatial_col_index]) are supported.

Usage

sedona_read_dsv_to_typed_rdd(

sedona_read_dsv_to_typed_rdd 13

sc,

location,

delimiter = c(",", "\t", "?2", "mUv,OUN\UU M oonem g uen oy,
type = c("point”, "polygon", "linestring”),

first_spatial_col_index = 0oL,

last_spatial_col_index = NULL,

has_non_spatial_attrs = TRUE,

storage_level = "MEMORY_ONLY",

repartition = 1L

)
Arguments
sc A spark_connection.
location Location of the data source.
delimiter Delimiter within each record. Must be one of ., °’\t’, °?’, ’\”, ", ” . >, "%’,
7~S’ ?l?, ’;7
type Type of the SpatialRDD (must be one of "point", "polygon", or "linestring".

first_spatial_col_index
Zero-based index of the left-most column containing spatial attributes (default:
0).

last_spatial_col_index
Zero-based index of the right-most column containing spatial attributes (de-
fault: NULL). Note last_spatial_col_index does not need to be specified when
creating a PointRDD because it will automatically have the implied value of
(first_spatial_col_index + 1). For all other types of RDDs, if last_spatial_col_index
is unspecified, then it will assume the value of -1 (i.e., the last of all input
columns).

has_non_spatial_attrs
Whether the input contains non-spatial attributes.

storage_level Storage level of the RDD (default: MEMORY_ONLY).

repartition The minimum number of partitions to have in the resulting RDD (default: 1).
Value

A typed SpatialRDD.
See Also

Other Sedona RDD data interface functions: sedona_read_geojson(), sedona_read_shapefile_to_typed_rdd(),
sedona_save_spatial_rdd(), sedona_write_wkb()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

14 sedona_read_geojson

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your csv file
rdd <- sedona_read_dsv_to_typed_rdd(
sc,
location = input_location,
delimiter = ",",
type = "point”,
first_spatial_col_index = 1L

sedona_read_geojson Read geospatial data into a Spatial RDD

Description

Import spatial object from an external data source into a Sedona SpatialRDD.

* sedona_read_shapefile: from a shapefile
* sedona_read_geojson: from a geojson file
* sedona_read_wkt: from a geojson file

* sedona_read_wkb: from a geojson file

Usage

sedona_read_geojson(
sc,
location,
allow_invalid_geometries = TRUE,
skip_syntactically_invalid_geometries = TRUE,
storage_level = "MEMORY_ONLY",
repartition = 1L

sedona_read_wkb(
sc,
location,
wkb_col_idx = oL,
allow_invalid_geometries = TRUE,
skip_syntactically_invalid_geometries = TRUE,
storage_level = "MEMORY_ONLY",
repartition = 1L

sedona_read_wkt (

sedona_read_geojson 15

sc,
location,

wkt_col_idx = oL,

allow_invalid_geometries = TRUE,
skip_syntactically_invalid_geometries = TRUE,
storage_level = "MEMORY_ONLY",

repartition = 1L

)

sedona_read_shapefile(sc, location, storage_level = "MEMORY_ONLY")

Arguments
sc A spark_connection.
location Location of the data source.

allow_invalid_geometries
Whether to allow topology-invalid geometries to exist in the resulting RDD.
skip_syntactically_invalid_geometries
Whether to allows Sedona to automatically skip syntax-invalid geometries, rather
than throwing errorings.

storage_level Storage level of the RDD (default: MEMORY_ONLY).

repartition The minimum number of partitions to have in the resulting RDD (default: 1).
wkb_col_idx Zero-based index of column containing hex-encoded WKB data (default: 0).
wkt_col_idx Zero-based index of column containing hex-encoded WKB data (default: 0).
Value
A SpatialRDD.
See Also

Other Sedona RDD data interface functions: sedona_read_dsv_to_typed_rdd(), sedona_read_shapefile_to_typed_rc
sedona_save_spatial_rdd(), sedona_write_wkb()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_geojson(sc, location = input_location)

}

16

sedona_read_shapefile_to_typed_rdd

sedona_read_shapefile_to_typed_rdd
(Deprecated) Create a typed SpatialRDD from a shapefile or geojson

data source.

Description

[D

eprecated]

Constructors of typed RDD (PointRDD, PolygonRDD, LineStringRDD) are soft deprecated, use
non-types versions

Create a typed SpatialRDD (namely, a PointRDD, a PolygonRDD, or a LineStringRDD)

Usage

se

)

se

* sedona_read_shapefile_to_typed_rdd: from a shapefile data source

e sedona_read_geojson_to_typed_rdd: from a GeoJSON data source

dona_read_shapefile_to_typed_rdd(

sc,

location,

type = c("point”, "polygon", "linestring”),
storage_level = "MEMORY_ONLY"

dona_read_geojson_to_typed_rdd(

sc,

location,

type = c("point”, "polygon”, "linestring”),
has_non_spatial_attrs = TRUE,

storage_level = "MEMORY_ONLY",

repartition = 1L

)
Arguments

sc A spark_connection.

location Location of the data source.

type Type of the SpatialRDD (must be one of "point", "polygon", or "linestring".

storage_level Storage level of the RDD (default: MEMORY_ONLY).

has_non_spatial_attrs

Whether the input contains non-spatial attributes.

repartition The minimum number of partitions to have in the resulting RDD (default: 1).
Value

A typed SpatialRDD.

sedona_render_choropleth_map 17

See Also

Other Sedona RDD data interface functions: sedona_read_dsv_to_typed_rdd(), sedona_read_geojson(),
sedona_save_spatial_rdd(), sedona_write_wkb()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your shapefile
rdd <- sedona_read_shapefile_to_typed_rdd(
sc,
location = input_location, type = "polygon”

sedona_render_choropleth_map
Visualize a Sedona spatial RDD using a choropleth map.

Description

Generate a choropleth map of a pair RDD assigning integral values to polygons.

Usage

sedona_render_choropleth_map(
pair_rdd,
resolution_x,
resolution_y,
output_location,
output_format = c("png"”, "gif", "svg"),
boundary = NULL,

color_of_variation = c("red", "green”, "blue"),
base_color = c(0, @, 0),
shade = TRUE,

reverse_coords = FALSE,
overlay = NULL,
browse = interactive()

18 sedona_render_choropleth_map

Arguments

pair_rdd A pair RDD with Sedona Polygon objects being keys and java.lang.Long being
values.

resolution_x Resolution on the x-axis.

resolution_y Resolution on the y-axis.

output_location
Location of the output image. This should be the desired path of the image file
excluding extension in its file name.

non

output_format File format of the output image. Currently "png", "gif", and "svg" formats are
supported (default: "png").

boundary Only render data within the given rectangular boundary. The boundary parame-
ter can be set to either a numeric vector of c(min_x, max_y, min_y, max_y) val-
ues, or with a bounding box object e.g., new_bounding_box(sc, min_x, max_y,
min_y, max_y), or NULL (the default). If boundary is NULL, then the min-
imum bounding box of the input spatial RDD will be computed and used as
boundary for rendering.

color_of_variation
Which color channel will vary depending on values of data points. Must be one
of "red", "green", or "blue". Default: red.

base_color Color of any data point with value 0. Must be a numeric vector of length 3
specifying values for red, green, and blue channels. Default: ¢(0, 0, 0).

shade Whether data point with larger magnitude will be displayed with darker color.
Default: TRUE.

reverse_coords Whether to reverse spatial coordinates in the plot (default: FALSE).

overlay A viz_op object containing a raster image to be displayed on top of the resulting
image.
browse Whether to open the rendered image in a browser (default: interactive()).
Value

No return value.

See Also

Other Sedona visualization routines: sedona_render_heatmap(), sedona_render_scatter_plot()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")
if (linherits(sc, "test_connection”)) {

pt_input_location <- "/dev/null” # replace it with the path to your input file
pt_rdd <- sedona_read_dsv_to_typed_rdd(

sedona_render._heatmap

sc,
location = pt_input_location,
type = "point”,
first_spatial_col_index = 1
)
polygon_input_location <- "/dev/null” # replace it with the path to your input file
polygon_rdd <- sedona_read_geojson_to_typed_rdd(
sc,
location = polygon_input_location,
type = "polygon”

)
join_result_rdd <- sedona_spatial_join_count_by_key(
pt_rdd,
polygon_rdd,
join_type = "intersect”,
partitioner = "quadtree”
)

sedona_render_choropleth_map(
join_result_rdd,
400,
200,
output_location = tempfile(”choropleth-map-"),
boundary = c(-86.8, -86.6, 33.4, 33.6),
base_color = c(255, 255, 255)

sedona_render_heatmap Visualize a Sedona spatial RDD using a heatmap.

Description

Generate a heatmap of geometrical object(s) within a Sedona spatial RDD.

Usage

sedona_render_heatmap(
rdd,
resolution_x,
resolution_y,
output_location,
output_format = c("png”, "gif", "svg"),
boundary = NULL,
blur_radius = 10L,
overlay = NULL,
browse = interactive()

20 sedona_render._heatmap

Arguments

rdd A Sedona spatial RDD.
resolution_x Resolution on the x-axis.

resolution_y Resolution on the y-axis.

output_location
Location of the output image. This should be the desired path of the image file
excluding extension in its file name.

non

output_format File format of the output image. Currently "png", "gif", and "svg" formats are
supported (default: "png").

boundary Only render data within the given rectangular boundary. The boundary parame-
ter can be set to either a numeric vector of ¢(min_x, max_y, min_y, max_y) val-
ues, or with a bounding box object e.g., new_bounding_box(sc, min_x, max_y,
min_y, max_y), or NULL (the default). If boundary is NULL, then the min-
imum bounding box of the input spatial RDD will be computed and used as
boundary for rendering.

blur_radius Controls the radius of a Gaussian blur in the resulting heatmap.
overlay A viz_op object containing a raster image to be displayed on top of the resulting
image.
browse Whether to open the rendered image in a browser (default: interactive()).
Value

No return value.

See Also

Other Sedona visualization routines: sedona_render_choropleth_map(), sedona_render_scatter_plot()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_dsv_to_typed_rdd(
sc,
location = input_location,
type = "point”
)

sedona_render_heatmap(
rdd,
resolution_x = 800,
resolution_y = 600,
output_location = tempfile("points-"),

sedona_render_scatter_plot 21

output_format = "png",
boundary = c(-91, -84, 30, 35),
blur_radius = 10
)
3

sedona_render_scatter_plot
Visualize a Sedona spatial RDD using a scatter plot.

Description

Generate a scatter plot of geometrical object(s) within a Sedona spatial RDD.

Usage

sedona_render_scatter_plot(
rdd,
resolution_x,
resolution_y,
output_location,
output_format = c("png”, "gif", "svg"),
boundary = NULL,

color_of_variation = c("red", "green”, "blue"),
base_color = c(0, 0, 0),
shade = TRUE,

reverse_coords = FALSE,
overlay = NULL,
browse = interactive()

Arguments

rdd A Sedona spatial RDD.
resolution_x Resolution on the x-axis.

resolution_y Resolution on the y-axis.

output_location
Location of the output image. This should be the desired path of the image file
excluding extension in its file name.

non

output_format File format of the output image. Currently "png", "gif", and "svg" formats are
supported (default: "png").

boundary Only render data within the given rectangular boundary. The boundary parame-
ter can be set to either a numeric vector of ¢(min_x, max_y, min_y, max_y) val-
ues, or with a bounding box object e.g., new_bounding_box(sc, min_x, max_y,
min_y, max_y), or NULL (the default). If boundary is NULL, then the min-
imum bounding box of the input spatial RDD will be computed and used as
boundary for rendering.

22 sedona_render_scatter_plot

color_of_variation
Which color channel will vary depending on values of data points. Must be one
of "red", "green", or "blue". Default: red.

base_color Color of any data point with value 0. Must be a numeric vector of length 3
specifying values for red, green, and blue channels. Default: c(0, 0, 0).

shade Whether data point with larger magnitude will be displayed with darker color.
Default: TRUE.

reverse_coords Whether to reverse spatial coordinates in the plot (default: FALSE).

overlay A viz_op object containing a raster image to be displayed on top of the resulting
image.
browse Whether to open the rendered image in a browser (default: interactive()).
Value

No return value.

See Also

Other Sedona visualization routines: sedona_render_choropleth_map(), sedona_render_heatmap()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_dsv_to_typed_rdd(
sc,
location = input_location,
type = "point”
)

sedona_render_scatter_plot(
rdd,
resolution_x = 800,
resolution_y = 600,
output_location = tempfile("points-"),
output_format = "png",
boundary = c(-91, -84, 30, 35)

sedona_save_spatial_rdd 23

sedona_save_spatial_rdd
Save a Spark dataframe containing exactly I spatial column into a file.

Description

Export serialized data from a Spark dataframe containing exactly 1 spatial column into a file.

Usage

sedona_save_spatial_rdd(
X,
spatial_col,
output_location,
output_format = c("wkb”, "wkt"”, "geojson")

)
Arguments
X A Spark dataframe object in sparklyr or a dplyr expression representing a Spark
SQL query.
spatial_col The name of the spatial column.

output_location
Location of the output file.

output_format Format of the output.

Value

No return value.

See Also

Other Sedona RDD data interface functions: sedona_read_dsv_to_typed_rdd(), sedona_read_geojson(),
sedona_read_shapefile_to_typed_rdd(), sedona_write_wkb()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (linherits(sc, "test_connection”)) {
tbl <- dplyr::tbl(
sc,
dplyr::sql ("SELECT ST_GeomFromText('POINT(-71.064544 42.28787)') AS ~pt™")
)

sedona_save_spatial_rdd(

24

sedona_spatial_join

tbl %>% dplyr::mutate(id = 1),
spatial_col = "pt",
output_location = "/tmp/pts.wkb”,
output_format = "wkb"

sedona_spatial_join Perform a spatial join operation on two Sedona spatial RDD:s.

Description

Given spatial_rdd and query_window_rdd, return a pair RDD containing all pairs of geometrical
elements (p, q) such that p is an element of spatial_rdd, q is an element of query_window_rdd,
and (p, q) satisfies the spatial relation specified by join_type.

Usage

sedona_spatial_join(
spatial_rdd,
query_window_rdd,

join_type = c("contain”, "intersect"),
partitioner = c("quadtree”, "kdbtree"),
index_type = c("quadtree”, "rtree")
)
Arguments

spatial_rdd

Spatial RDD containing geometries to be queried.

query_window_rdd

join_type

partitioner

index_type

Spatial RDD containing the query window(s).

Type of the join query (must be either "contain" or "intersect"). If join_type
is "contain", then a geometry from spatial_rdd will match a geometry from
the query_window_rdd if and only if the former is fully contained in the latter.
If join_type is "intersect”, then a geometry from spatial_rdd will match a
geometry from the query_window_rdd if and only if the former intersects the
latter.

Spatial partitioning to apply to both spatial_rdd and query_window_rdd to
facilitate the join query. Can be either a grid type (currently "quadtree" and
"kdbtree" are supported) or a custom spatial partitioner object. If partitioner
is NULL, then assume the same spatial partitioner has been applied to both
spatial_rdd and query_window_rdd already and skip the partitioning step.

Controls how spatial_rdd and query_window_rdd will be indexed (unless
they are indexed already). If "NONE", then no index will be constructed and
matching geometries will be identified in a doubly nested- loop iterating through
all possible pairs of elements from spatial_rdd and query_window_rdd, which
will be inefficient for large data sets.

sedona_spatial_join_count_by_key 25

Value

A spatial RDD containing the join result.

See Also

Other Sedona spatial join operator: sedona_spatial_join_count_by_key()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_dsv_to_typed_rdd(
sc,
location = input_location,
delimiter = ",",
type = "point”,
first_spatial_col_index = 1L
)
query_rdd_input_location <- "/dev/null” # replace it with the path to your input file
query_rdd <- sedona_read_shapefile_to_typed_rdd(
sc,
location = query_rdd_input_location,

type = "polygon”

)
join_result_rdd <- sedona_spatial_join(
rdd,
query_rdd,
join_type = "intersect”,
partitioner = "quadtree”
)

sedona_spatial_join_count_by_key
Perform a spatial count-by-key operation based on two Sedona spatial
RDDs.

Description

For each element p from spatial_rdd, count the number of unique elements q from query_window_rdd
such that (p, q) satisfies the spatial relation specified by join_type.

26

Usage

sedona_spatial_join_count_by_key

sedona_spatial_join_count_by_key(

spatial_rdd,

query_window_rdd,

join_type = c("contain”, "intersect"),
partitioner = c("quadtree”, "kdbtree"),
index_type = c("quadtree”, "rtree")
)

Arguments

spatial_rdd

Spatial RDD containing geometries to be queried.

query_window_rdd

join_type

partitioner

index_type

Value

Spatial RDD containing the query window(s).

Type of the join query (must be either "contain" or "intersect"). If join_type
is "contain", then a geometry from spatial_rdd will match a geometry from
the query_window_rdd if and only if the former is fully contained in the latter.
If join_type is "intersect", then a geometry from spatial_rdd will match a
geometry from the query_window_rdd if and only if the former intersects the
latter.

Spatial partitioning to apply to both spatial_rdd and query_window_rdd to
facilitate the join query. Can be either a grid type (currently "quadtree" and
"kdbtree" are supported) or a custom spatial partitioner object. If partitioner
is NULL, then assume the same spatial partitioner has been applied to both
spatial_rdd and query_window_rdd already and skip the partitioning step.

Controls how spatial_rdd and query_window_rdd will be indexed (unless
they are indexed already). If "NONE", then no index will be constructed and
matching geometries will be identified in a doubly nested- loop iterating through
all possible pairs of elements from spatial_rdd and query_window_rdd, which
will be inefficient for large data sets.

A spatial RDD containing the join-count-by-key results.

See Also

Other Sedona spatial join operator: sedona_spatial_join()

Examples

library(sparklyr)

library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file

sedona_write_wkb 27

rdd <- sedona_read_dsv_to_typed_rdd(
sc,
location = input_location,
delimiter = ",",
type = "point”,
first_spatial_col_index = 1L
)
query_rdd_input_location <- "/dev/null” # replace it with the path to your input file
query_rdd <- sedona_read_shapefile_to_typed_rdd(
sc,
location = query_rdd_input_location,

type = "polygon”

)

join_result_rdd <- sedona_spatial_join_count_by_key(
rdd,
query_rdd,
join_type = "intersect”,
partitioner = "quadtree”

)

3
sedona_write_wkb Write SpatialRDD into a file.
Description

Export serialized data from a Sedona SpatialRDD into a file.

¢ sedona_write_wkb:
e sedona_write_wkt:

e sedona_write_geojson:

Usage

sedona_write_wkb(x, output_location)
sedona_write_wkt(x, output_location)

sedona_write_geojson(x, output_location)

Arguments

X The SpatialRDD object.
output_location
Location of the output file.

Value

No return value.

28 spark_read_shapefile

See Also

Other Sedona RDD data interface functions: sedona_read_dsv_to_typed_rdd(), sedona_read_geojson(),
sedona_read_shapefile_to_typed_rdd(), sedona_save_spatial_rdd()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- sedona_read_wkb(
sc,
location = input_location,
wkb_col_idx = oL
)
sedona_write_wkb(rdd, "/tmp/wkb_output.tsv")

}

spark_read_shapefile Read geospatial data into a Spark DataFrame.

Description

[Deprecated]

These functions are deprecated and will be removed in a future release. Sedona has been imple-
menting readers as spark DataFrame sources, so you can use spark_read_source with the right

non

sources ("shapefile", "geojson", "geoparquet") to read geospatial data.

Functions to read geospatial data from a variety of formats into Spark DataFrames.

* spark_read_shapefile: from a shapefile
* spark_read_geojson: from a geojson file

* spark_read_geoparquet: from a geoparquet file

Usage
spark_read_shapefile(sc, name = NULL, path = name, options = list(), ...)

spark_read_geojson(
sc,
name = NULL,
path = name,
options = list(),
repartition = 0,

spark_read_shapefile 29

memory = TRUE,
overwrite = TRUE

)
spark_read_geoparquet(
sc,
name = NULL,

path = name,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE

)
Arguments
sc A spark_connection.
name The name to assign to the newly generated table.
path The path to the file. Needs to be accessible from the cluster. Supports the
“"hdfs://", *"s3a://"" and ‘"file://" protocols.
options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration
Optional arguments; currently unused.
repartition The number of partitions used to distribute the generated table. Use O (the de-
fault) to avoid partitioning.
memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)
overwrite Boolean; overwrite the table with the given name if it already exists?
Value
A tbl
See Also

Other Sedona DF data interface functions: spark_write_geojson()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
input_location <- "/dev/null” # replace it with the path to your input file
rdd <- spark_read_shapefile(sc, location = input_location)

}

https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

30 spark_write_geojson

spark_write_geojson Write geospatial data from a Spark DataFrame.

Description

[Deprecated]

These functions are deprecated and will be removed in a future release. Sedona has been imple-
menting writers as spark DataFrame sources, so you can use spark_write_source with the right

non non

sources ("shapefile", "geojson", "geoparquet") to write geospatial data.

Functions to write geospatial data into a variety of formats from Spark DataFrames.

e spark_write_geojson: to GeoJSON
* spark_write_geoparquet: to GeoParquet

* spark_write_raster: to raster tiles after using RS output functions (RS_AsXXX)

Usage
spark_write_geojson(
X’
path,
mode = NULL,

options = list(),
partition_by = NULL,

)
spark_write_geoparquet(
X,
path,
mode = NULL,

options = list(),
partition_by = NULL,

)
spark_write_raster(
X7
path,
mode = NULL,

options = list(),
partition_by = NULL,

to_spatial_rdd 31

Arguments

X A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, “"s3a://" and ‘"file://" protocols.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, *append’, *overwrite’ and ignore. Notice that
“overwrite’” will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

partition_by A character vector. Partitions the output by the given columns on the file
system.

Optional arguments; currently unused.

See Also

Other Sedona DF data interface functions: spark_read_shapefile()

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
tbl <- dplyr::tbhl(
sc,
dplyr::sql("SELECT ST_GeomFromText('POINT(-71.064544 42.28787)') AS ~pt™")
)
spark_write_geojson(
tbl %>% dplyr::mutate(id = 1),
output_location = "/tmp/pts.geojson”

)
3
to_spatial_rdd Export a Spark SQL query with a spatial column into a Sedona spatial
RDD.
Description

Given a Spark dataframe object or a dplyr expression encapsulating a Spark SQL query, build a
Sedona spatial RDD that will encapsulate the same query or data source. The input should contain
exactly one spatial column and all other non-spatial columns will be treated as custom user-defined
attributes in the resulting spatial RDD.

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

32 to_spatial_rdd

Usage

to_spatial_rdd(x, spatial_col)

Arguments
X A Spark dataframe object in sparklyr or a dplyr expression representing a Spark
SQL query.
spatial_col The name of the spatial column.
Value

A SpatialRDD encapsulating the query.

Examples

library(sparklyr)
library(apache.sedona)

sc <- spark_connect(master = "spark://HOST:PORT")

if (!inherits(sc, "test_connection”)) {
tbl <- dplyr::tbl(
sc,
dplyr::sql("SELECT ST_GeomFromText('POINT(-71.064544 42.28787)') AS “pt™")
)
rdd <- to_spatial_rdd(tbl, "pt")
3

Index

+x Sedona DF data interface functions
spark_read_shapefile, 28
spark_write_geojson, 30

+* Sedona RDD data interface functions
sedona_read_dsv_to_typed_rdd, 12
sedona_read_geojson, 14

sedona_read_shapefile_to_typed_rdd,

16
sedona_save_spatial_rdd, 23
sedona_write_wkb, 27

* Sedona spatial join operator
sedona_spatial_join, 24
sedona_spatial_join_count_by_key,

25

* Sedona spatial query
sedona_knn_query, 9
sedona_range_query, 11

*x Sedona visualization routines
sedona_render_choropleth_map, 17
sedona_render_heatmap, 19
sedona_render_scatter_plot, 21

* Spatial RDD aggregation routine
approx_count, 2
minimum_bounding_box, 4

approx_count, 2, 4
as.spark.dataframe
(sdf_register.spatial_rdd), 6

crs_transform, 3
minimum_bounding_box, 2, 4
new_bounding_box, 5
sdf_register.spatial_rdd, 6
sedona_apply_spatial_partitioner,7
sedona_build_index, 8

sedona_knn_query, 9, 11
sedona_range_query, 10, 11

33

sedona_read_dsv_to_typed_rdd, 12, 15, 17,

23,28
sedona_read_geojson, 13,14, 17, 23,28
sedona_read_geojson_to_typed_rdd

(sedona_read_shapefile_to_typed_rdd),

16
sedona_read_shapefile
(sedona_read_geojson), 14

sedona_read_shapefile_to_typed_rdd, /3,

15,16, 23, 28
sedona_read_wkb (sedona_read_geojson),
14
sedona_read_wkt (sedona_read_geojson),
14
sedona_render_choropleth_map, 17, 20, 22
sedona_render_heatmap, I8, 19, 22
sedona_render_scatter_plot, /8, 20, 21
sedona_save_spatial_rdd, 13, 15, 17, 23,
28
sedona_spatial_join, 24, 26
sedona_spatial_join_count_by_key, 25,
25
sedona_write_geojson
(sedona_write_wkb), 27
sedona_write_wkb, 13, 15, 17,23,27
sedona_write_wkt (sedona_write_wkb), 27
spark_read_geojson
(spark_read_shapefile), 28
spark_read_geoparquet
(spark_read_shapefile), 28
spark_read_shapefile, 28, 31
spark_write_geojson, 29, 30
spark_write_geoparquet
(spark_write_geojson), 30
spark_write_raster
(spark_write_geojson), 30

to_spatial_rdd, 31

	approx_count
	crs_transform
	minimum_bounding_box
	new_bounding_box
	sdf_register.spatial_rdd
	sedona_apply_spatial_partitioner
	sedona_build_index
	sedona_knn_query
	sedona_range_query
	sedona_read_dsv_to_typed_rdd
	sedona_read_geojson
	sedona_read_shapefile_to_typed_rdd
	sedona_render_choropleth_map
	sedona_render_heatmap
	sedona_render_scatter_plot
	sedona_save_spatial_rdd
	sedona_spatial_join
	sedona_spatial_join_count_by_key
	sedona_write_wkb
	spark_read_shapefile
	spark_write_geojson
	to_spatial_rdd
	Index

