
Package ‘audubon’
January 9, 2026

Title Japanese Text Processing Tools

Version 0.6.2

Description A collection of Japanese text processing tools for filling
Japanese iteration marks, Japanese character type conversions,
segmentation by phrase, and text normalization which is based on rules
for the 'Sudachi' morphological analyzer and the 'NEologd' (Neologism
dictionary for 'MeCab'). These features are specific to Japanese and
are not implemented in 'ICU' (International Components for Unicode).

License Apache License (>= 2)

URL https://github.com/paithiov909/audubon,

https://paithiov909.github.io/audubon/

BugReports https://github.com/paithiov909/audubon/issues

Depends R (>= 4.1)

Imports dplyr (>= 1.1.0), magrittr, purrr, readr, rlang, stringi (>=
1.8.3), V8

Suggests roxygen2, scales, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Akiru Kato [cre, aut],
Koki Takahashi [cph] (Author of japanese.js),
Shuhei Iitsuka [cph] (Author of budoux),
Taku Kudo [cph] (Author of TinySegmenter)

Maintainer Akiru Kato <paithiov909@gmail.com>

Repository CRAN

Date/Publication 2026-01-09 11:20:02 UTC

1

https://github.com/paithiov909/audubon
https://paithiov909.github.io/audubon/
https://github.com/paithiov909/audubon/issues

2 default_format

Contents

default_format . 2
hiroba . 3
label_date_jp . 3
label_wrap_jp . 4
polano . 5
read_rewrite_def . 6
strj-hira-kana . 6
strj_fill_iter_mark . 7
strj_normalize . 8
strj_parse_date . 9
strj_rewrite_as_def . 10
strj_romanize . 11
strj_tokenize . 12
strj_transcribe_num . 13

Index 14

default_format Default Japanese date format

Description

Returns the default date format string used for Japanese calendar date parsing and formatting.

This helper function exists to provide a UTF-8 encoded format string without embedding non-
ASCII characters directly in function defaults.

Usage

default_format()

Value

A character string representing a Japanese calendar date format.

Examples

default_format()

hiroba 3

hiroba Whole tokens of ’Porano no Hiroba’ written by Miyazawa Kenji from
Aozora Bunko

Description

A tidy text data of audubon::polano that tokenized with ’MeCab’.

Usage

hiroba

Format

An object of class data.frame with 26849 rows and 5 columns.

Examples

head(hiroba)

label_date_jp Japanese date labeller for ggplot2

Description

Formats date labels using the Japanese calendar system and returns labels suitable for use with
ggplot2 scales.

Usage

label_date_jp(labels, format = default_format(), tz = NULL)

label_date_jp_gen(format = default_format(), tz = NULL)

Arguments

labels A vector of values coercible to Date objects.

format A date-time format string following ICU conventions.

tz A time zone used when coercing values to Date objects.

Details

This labeller formats dates according to a locale-aware Japanese calendar, allowing era-based rep-
resentations such as Reiwa or Heisei. The output is intended for discrete or continuous date scales
in ggplot2.

4 label_wrap_jp

Value

• label_date_jp() returns a character vector of formatted date labels.

• label_date_jp_gen() returns a labeller function for use in ggplot2 scales.

Examples

date_range <- function(start, days) {
start <- as.POSIXct(start)
c(start, start + days * 24 * 60 * 60)

}
two_months <- date_range("2025-12-31", 60)

label_date_jp(two_months)
Not run:
if (requireNamespace("scales", quietly = TRUE)) {

scales::demo_datetime(two_months, labels = label_date_jp_gen())
}

End(Not run)

label_wrap_jp Japanese word-wrapping labeller for ggplot2

Description

Wraps character strings using Japanese phrase boundaries and returns labels suitable for use with
ggplot2 scales.

Usage

label_wrap_jp(labels, wrap = 16, width = 50, collapse = "\n")

label_wrap_jp_gen(wrap = 16, width = 50, collapse = "\n")

Arguments

labels A character vector of labels to wrap.

wrap An integer giving the target number of characters per line.

width An integer giving the maximum total width of the wrapped label.

collapse A character string used to join wrapped lines.

Details

This labeller uses ICU-based Japanese phrase boundary detection to insert line breaks at natural
word boundaries. Long labels can be truncated to a fixed display width with an ellipsis.

polano 5

Value

• label_wrap_jp() returns a character vector of wrapped labels.

• label_wrap_jp_gen() returns a labeller function for use in ggplot2 scales.

Examples

label_wrap_jp(polano[4:6], width = 32)
Not run:
if (requireNamespace("scales", quietly = TRUE)) {

scales::demo_discrete(polano[4:6], labels = label_wrap_jp_gen())
}

End(Not run)

polano Whole text of ’Porano no Hiroba’ written by Miyazawa Kenji from
Aozora Bunko

Description

Whole text of ’Porano no Hiroba’ written by Miyazawa Kenji from Aozora Bunko

Usage

polano

Format

An object of class character of length 899.

Details

A dataset containing the text of Miyazawa Kenji’s novel "Porano no Hiroba" which was published
in 1934, the year after Kenji’s death. Copyright of this work has expired since more than 70 years
have passed after the author’s death.

The UTF-8 plain text is sourced from https://www.aozora.gr.jp/cards/000081/card1935.
html and is cleaned of meta data.

Source

https://www.aozora.gr.jp/cards/000081/files/1935_ruby_19924.zip

Examples

head(polano)

https://www.aozora.gr.jp/cards/000081/card1935.html
https://www.aozora.gr.jp/cards/000081/card1935.html
https://www.aozora.gr.jp/cards/000081/files/1935_ruby_19924.zip

6 strj-hira-kana

read_rewrite_def Read rewrite definition file

Description

Reads a rewrite definition file used for Japanese text normalization.

This function parses a tab-delimited definition file and returns a list of rewrite rules and ignored
characters suitable for use with strj_rewrite_as_def().

Usage

read_rewrite_def(
def_path = system.file("def/rewrite.def", package = "audubon")

)

Arguments

def_path A file path to a rewrite definition file.

Value

A list containing rewrite rules and ignored characters.

Examples

str(read_rewrite_def())

strj-hira-kana Convert Japanese kana characters

Description

Converts Japanese text between hiragana and katakana representations.

These functions transform kana characters while preserving non-kana characters. The conversion is
based on a JavaScript implementation and handles certain historical or contracted kana forms that
are not covered by standard Unicode transliteration alone.

Usage

strj_hiraganize(text)

strj_katakanize(text)

Arguments

text A character vector containing Japanese text.

strj_fill_iter_mark 7

Details

The conversion behavior is largely compatible with ICU-based transliteration, with additional sup-
port for selected combined or historical kana characters.

Value

A character vector with kana characters converted to the target script.

Examples

strj_hiraganize(
c(
paste0(

"\u3042\u306e\u30a4\u30fc\u30cf\u30c8",
"\u30fc\u30f4\u30a9\u306e\u3059\u304d",
"\u3068\u304a\u3063\u305f\u98a8"

),
"\u677f\u57a3\u6b7b\u30b9\U0002a708"

)
)
strj_katakanize(

c(
paste0(

"\u3042\u306e\u30a4\u30fc\u30cf\u30c8",
"\u30fc\u30f4\u30a9\u306e\u3059\u304d",
"\u3068\u304a\u3063\u305f\u98a8"

),
"\u672c\u65e5\u309f\u304b\u304d\u6c37\u89e3\u7981"

)
)

strj_fill_iter_mark Fill Japanese iteration marks

Description

Replaces Japanese iteration marks in character strings with the corresponding repeated characters.

This function scans each input string and expands iteration marks such as odoriji by inferring the
characters to be repeated from the surrounding context. The implementation is heuristic and in-
tended for practical text normalization rather than complete linguistic accuracy.

Usage

strj_fill_iter_mark(text)

Arguments

text A character vector containing Japanese text.

8 strj_normalize

Details

The restoration is based on local character context and may be incomplete for iteration marks that
refer to longer or more complex spans.

Value

A character vector in which iteration marks are replaced with the inferred repeated characters.

Examples

strj_fill_iter_mark(c(
"\u3042\u3044\u3046\u309d\u3003\u304b\u304d",
"\u91d1\u5b50\u307f\u3059\u309e",
"\u306e\u305f\u308a\u3033\u3035\u304b\u306a",
"\u3057\u308d\uff0f\u2033\uff3c\u3068\u3057\u305f"

))

strj_normalize Convert text following the rules of ’NEologd’

Description

Converts characters into normalized style following the rule that is recommended by the Neologism
dictionary for ’MeCab’.

Usage

strj_normalize(text)

Arguments

text A character vector containing Japanese text.

Value

A character vector with normalized text.

See Also

https://github.com/neologd/mecab-ipadic-neologd/wiki/Regexp.ja

https://github.com/neologd/mecab-ipadic-neologd/wiki/Regexp.ja

strj_parse_date 9

Examples

strj_normalize(
paste0(
"\u2015\u2015\u5357\u30a2\u30eb\u30d7\u30b9",
"\u306e\u3000\u5929\u7136\u6c34-\u3000\uff33",
"\uff50\uff41\uff52\uff4b\uff49\uff4e\uff47*",
"\u3000\uff2c\uff45\uff4d\uff4f\uff4e+",
"\u3000\u30ec\u30e2\u30f3\u4e00\u7d5e\u308a"

)
)

strj_parse_date Parse Japanese calendar dates

Description

Parses Japanese calendar date strings into POSIXct objects.

This function parses date strings formatted with the Japanese calendar system and converts them to
POSIXct values using locale-aware ICU parsing.

Usage

strj_parse_date(date, format = default_format(), tz = NULL)

Arguments

date A character vector containing Japanese calendar date strings.

format A date-time format string following ICU conventions.

tz A time zone used for the resulting POSIXct values.

Details

Partial date specifications are interpreted according to ICU parsing rules and may result in comple-
tion with the current date or time components.

Value

A POSIXct vector representing the parsed dates.

Examples

strj_parse_date("\u4ee4\u548c2\u5e747\u67086\u65e5")

10 strj_rewrite_as_def

strj_rewrite_as_def Rewrite Japanese text using normalization rules

Description

Rewrites Japanese text according to a set of normalization rules modeled after Sudachi dictionary
definitions.

Usage

strj_rewrite_as_def(text, as = read_rewrite_def())

Arguments

text A character vector containing Japanese text.

as A rewrite definition object as returned by read_rewrite_def().

Details

This function applies character-level rewrite rules to normalize variant forms while optionally ig-
noring specified characters. The implementation is a simplified and heuristic adaptation of Sudachi-
style normalization.

The rewrite process is based on fixed replacement rules and does not aim to fully reproduce Su-
dachi’s normalization behavior.

Value

A character vector with rewritten and normalized text.

Examples

strj_rewrite_as_def(
paste0(
"\u2015\u2015\u5357\u30a2\u30eb",
"\u30d7\u30b9\u306e\u3000\u5929",
"\u7136\u6c34-\u3000\uff33\uff50",
"\uff41\uff52\uff4b\uff49\uff4e\uff47*",
"\u3000\uff2c\uff45\uff4d\uff4f\uff4e+",
"\u3000\u30ec\u30e2\u30f3\u4e00\u7d5e\u308a"

)
)
strj_rewrite_as_def(

"\u60e1\u3068\u5047\u9762\u306e\u30eb\u30fc\u30eb",
read_rewrite_def(system.file("def/kyuji.def", package = "audubon"))

)

strj_romanize 11

strj_romanize Romanize Japanese text

Description

Converts Japanese kana text to Latin script using a selectable romanization system.

This function transliterates Japanese text into romaji according to the specified convention. Non-
kana characters are omitted from the output.

Usage

strj_romanize(
text,
config = c("wikipedia", "traditional hepburn", "modified hepburn", "kunrei", "nihon")

)

Arguments

text A character vector containing Japanese text.

config A string specifying the romanization system to use.

Details

Supported romanization systems include variants of Hepburn as well as Kunrei-shiki and Nihon-
shiki conventions.

Value

A character vector containing romanized text.

Examples

strj_romanize(
paste0(

"\u3042\u306e\u30a4\u30fc\u30cf\u30c8",
"\u30fc\u30f4\u30a9\u306e\u3059\u304d",
"\u3068\u304a\u3063\u305f\u98a8"

)
)

12 strj_tokenize

strj_tokenize Tokenize Japanese text

Description

Tokenizes Japanese character strings using a selectable segmentation engine and returns the result
as a list or a data frame.

This function provides a unified interface to multiple Japanese text segmentation backends. External
command-based engines were removed in v0.6.0, and all tokenization is performed using in-process
implementations.

strj_segment() and strj_tinyseg() are aliases for strj_tokenize() with the "budoux" and
"tinyseg" engines, respectively.

Usage

strj_tokenize(
text,
format = c("list", "data.frame"),
engine = c("stringi", "budoux", "tinyseg"),
split = FALSE,
...

)

strj_segment(text, format = c("list", "data.frame"), split = FALSE)

strj_tinyseg(text, format = c("list", "data.frame"), split = FALSE)

Arguments

text A character vector of Japanese text to tokenize.

format A string specifying the output format.

engine A string specifying the tokenization engine to use.

split A logical value indicating whether text should be split into individual sentences
before tokenization.

... Additional arguments passed to the underlying engine.

Details

The following engines are supported:

• "stringi": Uses ICU-based boundary analysis via stringi.

• "budoux": Uses a rule-based Japanese phrase segmentation algorithm.

• "tinyseg": Uses a TinySegmenter-compatible statistical model.

The legacy "mecab" and "sudachipy" engines were removed in v0.6.0.

strj_transcribe_num 13

Value

If format = "list", a named list of character vectors, one per input element. If format = "data.frame",
a data frame containing document identifiers and tokenized text.

Examples

strj_tokenize(
paste0(
"\u3042\u306e\u30a4\u30fc\u30cf\u30c8",
"\u30fc\u30f4\u30a9\u306e\u3059\u304d",
"\u3068\u304a\u3063\u305f\u98a8"

)
)
strj_tokenize(

paste0(
"\u3042\u306e\u30a4\u30fc\u30cf\u30c8",
"\u30fc\u30f4\u30a9\u306e\u3059\u304d",
"\u3068\u304a\u3063\u305f\u98a8"

),
format = "data.frame"

)

strj_transcribe_num Transcribe integers into Japanese kanji numerals

Description

Converts integer values to their Japanese kanji numeral representations.

This function transcribes integers up to the trillions place into kanji numerals. For larger numbers
or more comprehensive numeral support, consider using the CRAN package arabic2kansuji.

Usage

strj_transcribe_num(int)

Arguments

int An integer vector to transcribe.

Value

A character vector containing kanji numeral representations.

Examples

strj_transcribe_num(c(10L, 31415L))

Index

∗ datasets
hiroba, 3
polano, 5

default_format, 2

hiroba, 3

label_date_jp, 3
label_date_jp_gen (label_date_jp), 3
label_wrap_jp, 4
label_wrap_jp_gen (label_wrap_jp), 4

polano, 5

read_rewrite_def, 6

strj-hira-kana, 6
strj_fill_iter_mark, 7
strj_hiraganize (strj-hira-kana), 6
strj_katakanize (strj-hira-kana), 6
strj_normalize, 8
strj_parse_date, 9
strj_rewrite_as_def, 10
strj_romanize, 11
strj_segment (strj_tokenize), 12
strj_tinyseg (strj_tokenize), 12
strj_tokenize, 12
strj_transcribe_num, 13

14

	default_format
	hiroba
	label_date_jp
	label_wrap_jp
	polano
	read_rewrite_def
	strj-hira-kana
	strj_fill_iter_mark
	strj_normalize
	strj_parse_date
	strj_rewrite_as_def
	strj_romanize
	strj_tokenize
	strj_transcribe_num
	Index

