
Package ‘binaryRL’
January 8, 2026

Version 0.9.9

Title Reinforcement Learning Tools for Two-Alternative Forced Choice
Tasks

Description Tools for building Rescorla-Wagner Models for Two-Alternative
Forced Choice tasks, commonly employed in psychological research.
Most concepts and ideas within this R package are referenced from
Sutton and Barto (2018) <ISBN:9780262039246>.
The package allows for the intuitive definition of RL models using simple
if-else statements and three basic models built into this R package are
referenced from
Niv et al. (2012) <doi:10.1523/JNEUROSCI.5498-10.2012>.
Our approach to constructing and evaluating these computational models
is informed by the guidelines proposed in
Wilson & Collins (2019) <doi:10.7554/eLife.49547>.
Example datasets included with the package are sourced from the work of
Mason et al. (2024) <doi:10.3758/s13423-023-02415-x>.

Maintainer YuKi <hmz1969a@gmail.com>

URL https://yuki-961004.github.io/binaryRL/

BugReports https://github.com/yuki-961004/binaryRL/issues

License GPL-3

Encoding UTF-8

LazyData TRUE

ByteCompile TRUE

RoxygenNote 7.3.3

Depends R (>= 4.0.0)

Imports Rcpp, compiler, future, doFuture, foreach, doRNG, progressr

LinkingTo Rcpp

Suggests stats, GenSA, GA, DEoptim, pso, mlrMBO, mlr, ParamHelpers,
smoof, lhs, DiceKriging, rgenoud, cmaes, nloptr

NeedsCompilation yes

1

https://doi.org/10.1523/JNEUROSCI.5498-10.2012
https://doi.org/10.7554/eLife.49547
https://doi.org/10.3758/s13423-023-02415-x
https://yuki-961004.github.io/binaryRL/
https://github.com/yuki-961004/binaryRL/issues


2 fit_p

Author YuKi [aut, cre] (ORCID: <https://orcid.org/0009-0000-1378-1318>)

Repository CRAN

Date/Publication 2026-01-08 09:00:07 UTC

Contents
fit_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
func_epsilon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
func_eta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
func_gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
func_logl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
func_pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
func_tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Mason_2024_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Mason_2024_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
optimize_para . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
rcv_d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
recovery_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
rpl_e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
RSTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
run_m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
simulate_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
summary.binaryRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Index 61

fit_p Step 3: Optimizing parameters to fit real data

Description

This function is designed to fit the optimal parameters of black-box functions (models) to real-
world data. Provided that the black-box function adheres to the specified interface (demo: TD,
RSTD, Utility ) , this function can employ the various optimization algorithms detailed below to
find the best- fitting parameters for your model.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from stats::optim)

• 2. Simulated Annealing (GenSA::GenSA)

• 3. Genetic Algorithm (GA::ga)

• 4. Differential Evolution (DEoptim::DEoptim)

• 5. Particle Swarm Optimization (pso::psoptim)

• 6. Bayesian Optimization (mlrMBO::mbo)

https://orcid.org/0009-0000-1378-1318
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• 7. Covariance Matrix Adapting Evolutionary Strategy (cmaes::cma_es)

• 8. Nonlinear Optimization (nloptr::nloptr)

For more information, please refer to the homepage of this package: https://yuki-961004.
github.io/binaryRL/

Usage

fit_p(
estimate = "MLE",
policy = "off",
data,
id = NULL,
n_trials = NULL,
funcs = NULL,
model_name = c("TD", "RSTD", "Utility"),
fit_model = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
priors = NULL,
lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
upper = list(c(1, 5), c(1, 1, 5), c(1, 1, 5)),
initial_params = NA,
initial_size = 50,
tolerance = 0.001,
seed = 123,
iteration_i = 10,
iteration_g = 0,
nc = 1,
algorithm

)

Arguments

estimate [string]
Estimation method. Can be either "MLE" or "MAP".

• Maximum Likelihood Estimation "MLE": (Default): This method finds
the parameter values that maximize the log-likelihood of the data. A higher
log-likelihood indicates that the parameters provide a better explanation
for the observed human behavior. In other words, data simulated using
these parameters would most closely resemble the actual human data. This
method does not consider any prior information about the parameters.

• Maximum A Posteriori Estimation "MAP": This method finds the param-
eter values that maximize the posterior probability. It is an iterative process
based on the Expectation-Maximization (EM) framework.

– Initialization: The process begins by assuming a uniform distribution
as the prior for each parameter, making the initial log-prior zero. The
first optimization is thus equivalent to MLE.

– Iteration: After finding the best parameters for all subjects, the al-
gorithm assesses the actual distribution of each parameter and fits a

https://yuki-961004.github.io/binaryRL/
https://yuki-961004.github.io/binaryRL/
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normal distribution to it. This fitted distribution becomes the new em-
pirical prior.

– Re-estimation: The parameters are then re-optimized to maximize the
updated posterior probability.

– Convergence: This cycle repeats until the posterior probability con-
verges or the maximum number of iterations is reached.

Using this method requires that the priors argument be specified to define
the initial prior distributions.

default: estimate = "MLE"

policy [string]
Specifies the learning policy to be used. This determines how the model updates
action values based on observed or simulated choices. It can be either "off" or
"on".

• Off-Policy (Q-learning): This is the most common approach for modeling
reinforcement learning in Two-Alternative Forced Choice (TAFC) tasks. In
this mode, the model’s goal is to learn the underlying value of each option
by observing the human participant’s behavior. It achieves this by consis-
tently updating the value of the option that the human actually chose. The
focus is on understanding the value representation that likely drove the par-
ticipant’s decisions.

• On-Policy (SARSA): In this mode, the target policy and the behavior pol-
icy are identical. The model first computes the selection probability for
each option based on their current values. Critically, it then uses these
probabilities to sample its own action. The value update is then performed
on the action that the model itself selected. This approach focuses more on
directly mimicking the stochastic choice patterns of the agent, rather than
just learning the underlying values from a fixed sequence of actions.

default: policy = "off"

data [data.frame]
This data should include the following mandatory columns:

• sub "Subject"
• time_line "Block" "Trial"
• L_choice "L_choice"
• R_choice "R_choice"
• L_reward "L_reward"
• R_reward "R_reward"
• sub_choose "Sub_Choose"

id [CharacterVector]
A vector specifying the subject ID(s) for which parameters should be fitted. The
function will process only the subjects provided in this vector.
To fit all subjects, you can either explicitly set the argument as id = unique(data$Subject)
or leave it as the default (id = NULL). Both approaches will direct the function to
fit parameters for every unique subject in the dataset.
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It is strongly recommended to avoid using simple numeric sequences like id =
1:4. This practice can lead to errors if subject IDs are stored as strings (e.g.,
subject four is stored as "004") or are not sequentially numbered.
default: id = NULL

n_trials [integer]
Represents the total number of trials a single subject experienced in the exper-
iment. If this parameter is kept at its default value of NULL, the program will
automatically detect how many trials a subject experienced from the provided
data. This information is primarily used for calculating model fit statistics such
as AIC (Akaike Information Criterion) and BIC (Bayesian Information Crite-
rion).
default: n_trials = NULL

funcs [CharacterVector]
A character vector containing the names of all user-defined functions required
for the computation. When parallel computation is enabled (i.e., nc > 1), user-
defined models and their custom functions might not be automatically accessible
within the parallel environment.
Therefore, if you have created your own reinforcement learning model that mod-
ifies the package’s default six default functions (default functions: util_func =
func_gamma, rate_func = func_eta, expl_func = func_epsilon, bias_func
= func_pi, prob_func = func_tau, loss_func = func_logl ), you must ex-
plicitly provide the names of your custom functions as a vector here.

model_name [List]
The name of fit modals
e.g. model_name = c("TD", "RSTD", "Utility")

fit_model [List]
A collection of functions applied to fit models to the data.
e.g. fit_model = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility)

priors [List]
A list specifying the prior distributions for the model parameters. This argument
is mandatory when using estimate = "MAP". There are two primary scenarios
for its use:
1. Static MAP Estimation (Non-Hierarchical) This approach is used when
you have a strong, pre-defined belief about the parameter priors and do not want
the model to update them iteratively.

Configuration: • Set estimate = "MAP".
• Provide pirors defining probability density function of free parame-

ters
• Keep iteration_g = 0 (the default).

Behavior: The algorithm maximizes the posterior probability based solely on
your specified priors. It will not use the EM (Expectation-Maximization)
framework to learn new priors from the data.

2. Hierarchical Bayesian Estimation via EM This approach is used to let the
model learn the group-level (hierarchical) prior distributions directly from the
data.
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Configuration: • Set estimate = "MAP".
• Specify a weak or non-informative initial prior, such as a uniform dis-

tribution for all free parameters.
• Set iteration_g to a value greater than 0.

Behavior: With a uniform prior, the initial log-posterior equals the log-likelihood,
making the first estimation step equivalent to MLE. The algorithm then ini-
tiates the EM procedure: it iteratively assesses the actual parameter distri-
bution across all subjects and updates the group-level priors. This cycle
continues until the posterior converges or iteration_g is reached.

default: priors = NULL

lower [List]
The lower bounds for model fit models
e.g. lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0))

upper [List]
The upper bounds for model fit models
e.g. upper = list(c(1, 5), c(1, 1, 5), c(1, 1, 5))

initial_params [NumericVector]
Initial values for the free parameters that the optimization algorithm will search
from. These are primarily relevant when using algorithms that require an explicit
starting point, such as L-BFGS-B. If not specified, the function will automatically
generate initial values close to zero.
default: initial_params = NA.

initial_size [integer]
This parameter corresponds to the population size in genetic algorithms (GA). It
specifies the number of initial candidate solutions that the algorithm starts with
for its evolutionary search. This parameter is only required for optimization
algorithms that operate on a population, such as GA or DEoptim.
default: initial_size = 50.

tolerance [double]
Convergence threshold for MAP estimation. If the change in log posterior prob-
ability between iterations is smaller than this value, the algorithm is considered
to have converged and the program will stop.
default: tolerance = 0.001

seed [integer]
Random seed. This ensures that the results are reproducible and remain the same
each time the function is run.
default: seed = 123

iteration_i [integer]
The number of iterations the optimization algorithm will perform when search-
ing for the best-fitting parameters during the fitting phase. A higher number
of iterations may increase the likelihood of finding a global optimum but also
increases computation time.
default: iteration_i = 10.
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iteration_g [integer]
The maximum number of iterations for the Expectation-Maximization (EM)
based MAP estimation. The algorithm will stop once this iteration count is
reached, even if the change in the log-posterior value has not yet fallen below
the tolerance threshold.
default: iteration_g = 0.

nc [integer]
Number of cores to use for parallel processing. Since fitting optimal parameters
for each subject is an independent task, parallel computation can significantly
speed up the fitting process:

• nc = 1: The fitting proceeds sequentially. Parameters for one subject are
fitted completely before moving to the next subject.

• nc > 1: The fitting is performed in parallel across subjects. For example,
if nc = 4, the algorithm will simultaneously fit data for four subjects. Once
these are complete, it will proceed to fit the next batch of subjects (e.g.,
subjects 5-8), and so on, until all subjects are processed.

default: nc = 1

algorithm [string]
Choose an algorithm package from L-BFGS-B, GenSA,GA,DEoptim,PSO, Bayesian,
CMA-ES.
In addition, any algorithm from the nloptr package is also supported. If your
chosen nloptr algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.
e.g. algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

Value

The optimal parameters found by the algorithm for each subject, along with the model fit calculated
using these parameters. This is returned as an object of class binaryRL containing results for all
subjects with all models.

Note

While both fit_p and rcv_d utilize the same underlying optimize_para function to find optimal
parameters, they play distinct and sequential roles in the modeling pipeline.

The key differences are as follows:

1. Purpose and Data Source: rcv_d should always be performed before fit_p. Its primary role
is to validate a model’s stability by fitting it to synthetic data generated by the model itself.
This process, known as parameter recovery, ensures the model is well-behaved. In contrast,
fit_p is used in the subsequent stage to fit the validated model to real experimental data.

2. Estimation Method: rcv_d does not include an estimate argument. This is because the
synthetic data is generated from known "true" parameters, which are drawn from pre-defined
distributions (typically uniform for most parameters and exponential for the inverse tempera-
ture). Since the ground truth is known, a hierarchical estimation (MAP) is not applicable. The
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fit_p function, however, requires this argument to handle real data where the true parameters
are unknown.

3. Policy Setting: In fit_p, the policy setting has different effects: "on-policy" is better for
learning choice patterns, while "off-policy" yields more accurate parameter estimates. For
rcv_d, the process defaults to an "off-policy" approach because its main objectives are to
verify if the true parameters can be accurately recovered and to assess whether competing
models are distinguishable, tasks for which off-policy estimation is more suitable.

Examples

## Not run:
comparison <- binaryRL::fit_p(

data = binaryRL::Mason_2024_G2,
#+-----------------------------------------------------------------------------+#
#|----------------------------- black-box function ----------------------------|#

funcs = c("your_funcs"),
estimate = c("MLE", "MAP"),
policy = c("off", "on"),
model_name = c("TD", "RSTD", "Utility"),

#|-------------------------------- fit models ---------------------------------|#
fit_model = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
priors = list(
list(

eta = function(x) {stats::dunif(x, min = 0, max = 1, log = TRUE)},
tau = function(x) {stats::dexp(x, rate = 1, log = TRUE)}

),
list(

eta = function(x) {stats::dunif(x, min = 0, max = 1, log = TRUE)},
eta = function(x) {stats::dunif(x, min = 0, max = 1, log = TRUE)},
tau = function(x) {stats::dexp(x, rate = 1, log = TRUE)}

),
list(

eta = function(x) {stats::dunif(x, min = 0, max = 1, log = TRUE)},
gamma = function(x) {stats::dunif(x, min = 0, max = 1, log = TRUE)},
tau = function(x) {stats::dexp(x, rate = 1, log = TRUE)}

)
),

#|---------------------------------- bound ------------------------------------|#
lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
upper = list(c(1, 10), c(1, 1, 10), c(1, 1, 10)),

#|----------------------------- iteration number ------------------------------|#
iteration_i = 10,
iteration_g = 10,

#|-------------------------------- algorithms ---------------------------------|#
nc = 1, # <nc > 1>: parallel computation across subjects
# Base R Optimization
#algorithm = "L-BFGS-B" # Gradient-Based (stats)

#|-----------------------------------------------------------------------------|#
# Specialized External Optimization
#algorithm = "GenSA" # Simulated Annealing (GenSA)
#algorithm = "GA" # Genetic Algorithm (GA)
#algorithm = "DEoptim" # Differential Evolution (DEoptim)
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#algorithm = "PSO" # Particle Swarm Optimization (pso)
#algorithm = "Bayesian" # Bayesian Optimization (mlrMBO)
#algorithm = "CMA-ES" # Covariance Matrix Adapting (cmaes)

#|-----------------------------------------------------------------------------|#
# Optimization Library (nloptr)
algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

#|-------------------------------- algorithms ---------------------------------|#
#################################################################################
)

result <- dplyr::bind_rows(comparison)

# Ensure the output directory exists before writing
if (!dir.exists("../OUTPUT")) {

dir.create("../OUTPUT", recursive = TRUE)
}

write.csv(result, "../OUTPUT/result_comparison.csv", row.names = FALSE)

## End(Not run)

func_epsilon Function: Epsilon Related

Description

The exploration strategy parameters are threshold, epsilon, and lambda.

• Epsilon-first: Used when only threshold is set. Subjects choose randomly for trials less
than threshold and by value for trials greater than ‘threshold.

• Epsilon-greedy: Used if threshold is default (1) and epsilon is set. Subjects explore with
probability epsilon throughout the experiment.

• Epsilon-decreasing: Used if threshold is default (1), and lambda is set. In this strategy, the
probability of random choice (exploration) decreases as trials increase. The parameter lambda
controls the rate at which this probability declines with each trial.

Usage

func_epsilon(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1 = NA,
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var2 = NA,
threshold = 1,
epsilon = NA,
lambda = NA,
alpha,
beta

)

Arguments

i The current row number.
L_freq The frequency of left option appearance
R_freq The frequency of right option appearance
L_pick The number of times left option was picked
R_pick The number of times left option was picked
L_value The value of the left option
R_value The value of the right option
var1 [character] Column name of extra variable 1. If your model uses more than just

reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

threshold [integer] Controls the initial exploration phase in the epsilon-first strategy. This
is the number of early trials where the subject makes purely random choices,
as they haven’t yet learned the options’ values. For example, threshold = 20
means random choices for the first 20 trials. For epsilon-greedy or epsilon-
decreasing strategies, threshold should be kept at its default value.

P (x) =

{
trial ≤ threshold, x = 1 (random choosing)
trial > threshold, x = 0 (value-based choosing)

default: threshold = 1

epsilon-first: threshold = 20, epsilon = NA, lambda = NA

epsilon [numeric] A parameter used in the epsilon-greedy exploration strategy. It de-
fines the probability of making a completely random choice, as opposed to
choosing based on the relative values of the left and right options. For example,
if epsilon = 0.1, the subject has a 10 choice and a 90 relevant when threshold
is at its default value (1) and lambda is not set.

P (x) =

{
ϵ, x = 1 (random choosing)
1− ϵ, x = 0 (value-based choosing)

epsilon-greedy: threshold = 1, epsilon = 0.1, lambda = NA
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lambda [vector] A numeric value that controls the decay rate of exploration probability
in the epsilon-decreasing strategy. A higher lambda value means the probability
of random choice will decrease more rapidly as the number of trials increases.

P (x) =

{
1

1+λ·trial , x = 1 (random choosing)
λ·trial

1+λ·trial , x = 0 (value-based choosing)

epsilon-decreasing threshold = 1, epsilon = NA, lambda = 0.5

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

Value

A numeric value, either 0 or 1. 0 indicates no exploration (choice based on value), and 1 indicates
exploration (random choice) for that trial.

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the if-else statements or the internal logic to adapt the function to your needs.

Examples

## Not run:
func_epsilon <- function(

# Trial number
i,
# Number of times this option has appeared
L_freq,
R_freq,
# Number of times this option has been chosen
L_pick,
R_pick,
# Current value of this option
L_value,
R_value,
# Extra variables
var1 = NA,
var2 = NA,

# Free Parameters
threshold = 1,
epsilon = NA,
lambda = NA,
# Extra parameters
alpha,
beta

){
set.seed(i)
# Epsilon-First: random choosing before a certain trial number
if (i <= threshold) {
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try <- 1
} else if (i > threshold & is.na(epsilon) & is.na(lambda)) {

try <- 0
# Epsilon-Greedy: random choosing throughout the experiment with probability epsilon
} else if (i > threshold & !(is.na(epsilon)) & is.na(lambda)){

try <- sample(
c(1, 0),
prob = c(epsilon, 1 - epsilon),
size = 1

)
# Epsilon-Decreasing: probability of random choosing decreases as trials increase
} else if (i > threshold & is.na(epsilon) & !(is.na(lambda))) {

try <- sample(
c(1, 0),
prob = c(

1 / (1 + lambda * i),
lambda * i / (1 + lambda * i)

),
size = 1

)
}
else {

try <- "ERROR"
}

return(try)
}

## End(Not run)

func_eta Function: Learning Rate

Description

The structure of eta depends on the model type:

• Temporal Difference (TD) model: eta is a single numeric value representing the learning
rate.

• Risk-Sensitive Temporal Difference (RSTD) model: eta is a numeric vector of length two,
where eta[1] represents the learning rate for "good" outcomes, which means the reward is
higher than the expected value. eta[2] represents the learning rate for "bad" outcomes, which
means the reward is lower than the expected value.

Usage

func_eta(
i,
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L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1 = NA,
var2 = NA,
value,
utility,
reward,
occurrence,
eta,
alpha,
beta

)

Arguments

i The current row number.

L_freq The frequency of left option appearance

R_freq The frequency of right option appearance

L_pick The number of times left option was picked

R_pick The number of times left option was picked

L_value The value of the left option

R_value The value of the right option

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

value The expected value of the stimulus in the subject’s mind at this point in time.

utility The subjective value that the subject assigns to the objective reward.

reward The objective reward received by the subject after selecting a stimulus.

occurrence The number of times the same stimulus has been chosen.

eta [vector] Parameters used in the Learning Rate Function, rate_func represent-
ing the rate at which the subject updates the difference (prediction error) be-
tween the reward and the expected value in the subject’s mind.
The structure of eta depends on the model type:
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• For the Temporal Difference (TD) model, where a single learning rate is
used throughout the experiment

Vnew = Vold + η · (R− Vold)

• For the Risk-Sensitive Temporal Difference (RDTD) model, where two
different learning rates are used depending on whether the reward is lower
or higher than the expected value:

Vnew = Vold + η+ · (R− Vold), R > Vold

Vnew = Vold + η− · (R− Vold), R < Vold

TD: eta = 0.3

RSTD: eta = c(0.3, 0.7)

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

Value

learning rate eta

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the if-else statements or the internal logic to adapt the function to your needs.

Examples

## Not run:
func_eta <- function(
# Trial number
i,
# Number of times this option has appeared
L_freq,
R_freq,
# Number of times this option has been chosen
L_pick,
R_pick,
# Current value of this option
L_value,
R_value,
# Extra variables
var1 = NA,
var2 = NA,

# Expected value for this stimulus
value,
# Subjective utility
utility,
# Reward observed after choice
reward,
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# Occurrence count for this stimulus
occurrence,

# Free Parameter
eta,
# Extra parameters
alpha,
beta

){
################################# [ TD ] ####################################

if (length(eta) == 1) {
eta <- as.numeric(eta)

}
################################ [ RSTD ] ###################################

else if (length(eta) == 2 & utility < value) {
eta <- eta[1]

}
else if (length(eta) == 2 & utility >= value) {

eta <- eta[2]
}

################################ [ ERROR ] ##################################
else {

eta <- "ERROR" # Error check
}
return(eta)

}

## End(Not run)

func_gamma Function: Utility Function

Description

This function represents an exponent used in calculating utility from reward. Its application varies
depending on the specific model:

• Stevens’ Power Law: Here, utility is calculated by raising the reward to the power of gamma.
This describes how the subjective value (utility) of a reward changes non-linearly with its
objective magnitude.

• Kahneman’s Prospect Theory: This theory applies exponents differently for gains and losses,
and introduces a loss aversion coefficient:

– For positive rewards (gains), utility is the reward raised to the power of gamma[1].
– For negative rewards (losses), utility is calculated by first multiplying the reward by beta,

and then raising this product to the power of gamma[2]. Here, beta acts as a loss aver-
sion parameter, accounting for the greater psychological impact of losses compared to
equivalent gains.
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Usage

func_gamma(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1 = NA,
var2 = NA,
value,
utility,
reward,
occurrence,
gamma = 1,
alpha,
beta

)

Arguments

i The current row number.

L_freq The frequency of left option appearance

R_freq The frequency of right option appearance

L_pick The number of times left option was picked

R_pick The number of times left option was picked

L_value The value of the left option

R_value The value of the right option

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

value The expected value of the stimulus in the subject’s mind at this point in time.

utility The subjective value that the subject assigns to the objective reward.

reward The objective reward received by the subject after selecting a stimulus.

occurrence The number of times the same stimulus has been chosen.

gamma [vector] This parameter represents the exponent in utility functions, fcun_gamma,
specifically:
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• Stevens’ Power Law: Utility is modeled as:

U(R) = Rγ

• Kahneman’s Prospect Theory: This exponent is applied differently based
on the sign of the reward:

U(R) =

{
Rγ1 , R > 0

β ·Rγ2 , R < 0

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

Value

Discount rate and utility

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the if-else statements or the internal logic to adapt the function to your needs.

Examples

## Not run:
func_gamma <- function(
# Trial number
i,
# Number of times this option has appeared
L_freq,
R_freq,
# Number of times this option has been chosen
L_pick,
R_pick,
# Current value of this option
L_value,
R_value,
# Extra variables
var1 = NA,
var2 = NA,

# Expected value for this stimulus
value,
# Subjective utility
utility,
# Reward observed after choice
reward,
# Occurrence count for this stimulus
occurrence,

# Free Parameter
gamma = 1,
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# Extra parameters
alpha,
beta

){
############################## [ Utility ] ##################################

if (length(gamma) == 1) {
gamma <- as.numeric(gamma)
utility <- sign(reward) * (abs(reward) ^ gamma)

}
############################### [ Error ] ###################################

else {
utility <- "ERROR"

}
return(list(gamma, utility))

}

## End(Not run)

func_logl Function: Loss Function

Description

This loss function reflects the similarity between human choices and RL model predictions. If a
human selects the left option and the RL model predicts a high probability for the left option, then
logPL approaches 0, causing the first term to approach 0.

Since the human chose the left option, BR becomes 0, making the second term naturally zero.
Therefore, the more consistent the RL model’s prediction is with human choice, the closer this LL
value is to 0. Conversely, it approaches negative infinity.

LL =
∑

BL × logPL +
∑

BR × logPR

Usage

func_logl(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
L_dir,
R_dir,
L_prob,
R_prob,
var1 = NA,
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var2 = NA,
LR,
try,
value,
utility,
reward,
occurrence,
alpha,
beta

)

Arguments

i The current row number.

L_freq The frequency of left option appearance

R_freq The frequency of right option appearance

L_pick The number of times left option was picked

R_pick The number of times left option was picked

L_value The value of the left option

R_value The value of the right option

L_dir Whether the participant chose the left option.

R_dir Whether the participant chose the right option.

L_prob The probability that the model assigns to choosing the left option.

R_prob The probability that the model assigns to choosing the left option.

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

LR Are you calculating the probability for the left option or the right option?

try If the choice was random, the value is 1; If the choice was based on value, the
value is 0.

value The expected value of the stimulus in the subject’s mind at this point in time.

utility The subjective value that the subject assigns to the objective reward.

reward The objective reward received by the subject after selecting a stimulus.

occurrence The number of times the same stimulus has been chosen.

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.
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Value

log-likelihood

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the if-else statements or the internal logic to adapt the function to your needs.

Examples

## Not run:
func_logl <- function(

# Trial number
i,
# Number of times this option has appeared
L_freq,
R_freq,
# Number of times this option has been chosen
L_pick,
R_pick,
# Current value of this option
L_value,
R_value,
#
L_dir,
R_dir,
#
L_prob,
R_prob,
# Extra variables
var1 = NA,
var2 = NA,

# Whether calculating probability for left or right choice
LR,
# Is it a random choosing trial?
try,

# Extra parameters
alpha,
beta

){
logl <- switch(
EXPR = LR,
"L" = L_dir * log(L_prob),
"R" = R_dir * log(R_prob)

)
}

## End(Not run)
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func_pi Function: Upper-Confidence-Bound

Description

Unlike epsilon-greedy, which explores indiscriminately, UCB is a more intelligent exploration strat-
egy. It biases the value of each action based on how often it has been selected. For options chosen
fewer times, or those with high uncertainty, a larger "uncertainty bonus" is added to their estimated
value. This increases their selection probability, effectively encouraging the exploration of poten-
tially optimal, yet unexplored actions. A higher pi indicates a greater bias toward giving less-chosen
options.

Usage

func_pi(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1,
var2,
LR,
pi,
alpha,
beta

)

Arguments

i The current row number.

L_freq The frequency of left option appearance

R_freq The frequency of right option appearance

L_pick The number of times left option was picked

R_pick The number of times left option was picked

L_value The value of the left option

R_value The value of the right option

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"



22 func_pi

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

LR Are you calculating the probability for the left option or the right option?

pi [vector] Parameter used in the Upper-Confidence-Bound (UCB) action selection
formula. func_pi controls the degree of exploration by scaling the uncertainty
bonus given to less-explored options. A larger value of pi (denoted as c in
Sutton and Barto(1998) ) increases the influence of this bonus, leading to more
exploration of actions with uncertain estimated values. Conversely, a smaller pi
results in less exploration.

At = argmax
a

[
Vt(a) + π

√
ln(t)

Nt(a)

]
default: pi = NA

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

Value

The probability of choosing this option

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the if-else statements or the internal logic to adapt the function to your needs.

Examples

## Not run:
func_tau <- function(

# Trial number
i,
# Number of times this option has appeared
L_freq,
R_freq,
# Number of times this option has been chosen
L_pick,
R_pick,
# Current value of this option
L_value,
R_value,
# Extra variables
var1 = NA,
var2 = NA,

# Whether calculating probability for left or right choice
LR,
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# Free parameter
pi = 0.1,
# Extra parameters
alpha,
beta

){
############################ [ at least 1 ] #################################

if (is.na(x = pi)) {
if (L_pick == 0 & R_pick == 0) {

bias <- 0
}
else if (LR == "L" & L_pick == 0 & R_pick > 0) {

bias <- 1e+4
}
else if (LR == "R" & R_pick == 0 & L_pick > 0) {

bias <- 1e+4
}
else {

bias <- 0
}

}
############################ [ bias value ] #################################

else if (!(is.na(x = pi)) & LR == "L") {
bias <- pi * sqrt(log(L_pick + exp(1)) / (L_pick + 1e-10))

}
else if (!(is.na(x = pi)) & LR == "R") {

bias <- pi * sqrt(log(R_pick + exp(1)) / (R_pick + 1e-10))
}

############################## [ error ] ####################################
else {

bias <- "ERROR"
}

return(bias)
}

## End(Not run)

func_tau Function: Soft-Max Function

Description

The softmax function describes a probabilistic choice rule. It implies that options with higher
subjective values are chosen with a greater probability, rather than deterministic. This probability
of choosing the higher-valued option increases with the parameter tau. A higher tau indicates
greater sensitivity to value differences, making choices more deterministic.
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Usage

func_tau(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1 = NA,
var2 = NA,
LR,
try,
tau,
lapse,
alpha,
beta

)

Arguments

i [numeric]
The current row number.

L_freq [numeric]
The frequency of left option appearance

R_freq [numeric]
The frequency of right option appearance

L_pick [numeric]
The number of times left option was picked

R_pick [numeric]
The number of times left option was picked

L_value [numeric]
The value of the left option with bias (if pi != 0)

R_value [numeric]
The value of the right option with bias (if pi != 0)

var1 [character]
Column name of extra variable 1. If your model uses more than just reward
and expected value, and you need other information, such as whether the choice
frame is Gain or Loss, then you can input the ’Frame’ column as var1 into the
model.
default: var1 = "Extra_Var1"

var2 [character]
Column name of extra variable 2. If one additional variable, var1, does not meet
your needs, you can add another additional variable, var2, into your model.
default: var2 = "Extra_Var2"
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LR [character]
Are you calculating the probability for the left option or the right option?
LR = "L"; LR = "R"

try [numeric]
If the choice was random, the value is 1; If the choice was based on value, the
value is 0.

tau [vector]
Parameters used in the Soft-Max Function. prob_func representing the sensi-
tivity of the subject to the value difference when making decisions. It determines
the probability of selecting the left option versus the right option based on their
values. A larger value of tau indicates greater sensitivity to the value difference
between the options. In other words, even a small difference in value will make
the subject more likely to choose the higher-value option.

PL =
1

1 + e−(VL−VR)·τ ;PR =
1

1 + e−(VR−VL)·τ

e.g., tau = c(0.5)

lapse [numeric]
A numeric value between 0 and 1, representing the lapse rate.
You can interpret this parameter as the probability of the agent "slipping" or
making a random choice, irrespective of the learned action values. This ac-
counts for moments of inattention or motor errors. In this sense, it represents
the minimum probability with which any given option will be selected. It is a
free parameter that acknowledges that individuals do not always make decisions
with full concentration throughout an experiment.
From a modeling perspective, the lapse rate is crucial for preventing the log-
likelihood calculation from returning -Inf. This issue arises when the model
assigns a probability of zero to an action that the participant actually chose
(log(0) is undefined). By ensuring every option has a non-zero minimum prob-
ability, the lapse parameter makes the fitting process more stable and robust
against noise in the data.

Pfinal = (1− lapse) · Psoftmax +
lapse

Nchoices

default: lapse = 0.02

This ensures each option has a minimum selection probability of 1 percent in
TAFC tasks.

alpha [vector]
Extra parameters that may be used in functions.

beta [vector]
Extra parameters that may be used in functions.

Value

The probability of choosing this option
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Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the if-else statements or the internal logic to adapt the function to your needs.

Examples

## Not run:
func_tau <- function(

# Trial number
i,
# Number of times this option has appeared
L_freq,
R_freq,
# Number of times this option has been chosen
L_pick,
R_pick,
# Current value of this option
L_value,
R_value,
# Extra variables
var1 = NA,
var2 = NA,

# Whether calculating probability for left or right choice
LR,
# Is it a random choosing trial?
try,

# Free parameters
tau,
# Extra parameters
alpha,
beta

){
############################### [ random ] ##################################

if (try == 1) {
prob <- 0.5

}
############################# [ greedy-max ] ################################

else if (try == 0 & LR == "L" & is.na(tau)) {
if (L_value == R_value) {

prob <- 0.5
}
else if (L_value > R_value) {

prob <- 1
}
else if (L_value < R_value) {

prob <- 0
}

}
else if (try == 0 & LR == "R" & is.na(tau)) {

if (L_value == R_value) {



Mason_2024_G1 27

prob <- 0.5
}
else if (R_value > L_value) {

prob <- 1
}
else if (R_value < L_value) {

prob <- 0
}

}
############################### [ soft-max ] ################################

else if (try == 0 & LR == "L" & !(is.na(tau))) {
prob <- 1 / (1 + exp(-(L_value - R_value) * tau))

}
else if (try == 0 & LR == "R" & !(is.na(tau))) {

prob <- 1 / (1 + exp(-(R_value - L_value) * tau))
}

################################ [ error ] ##################################
else {

prob <- "ERROR"
}

################################ [ lapse ] ##################################

prob <- (1 - lapse) * prob + (lapse / 2)

return(prob)
}

## End(Not run)

Mason_2024_G1 Group 1 from Mason et al. (2024)

Description

This dataset originates from Experiment 1 of Mason et al. (2024), titled "Rare and extreme out-
comes in risky choice" (doi:10.3758/s1342302302415x). The raw data is publicly available on the
Open Science Framework (OSF) at https://osf.io/hy3q4/. For the purposes of this package,
we’ve performed basic cleaning and preprocessing of the original dataset.

Format

A data frame with 45000 rows and 11 columns:

Subject Subject ID, an integer (total of 143).

Block Block number, an integer (1 to 6).

Trial Trial number, an integer (1 to 60).

L_choice Left choice, a character indicating the option presented. The possible options are:

• A: 100% gain 4.

https://doi.org/10.3758/s13423-023-02415-x
https://osf.io/hy3q4/
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• B: 90% gain 0 and 10% gain 40.
• C: 100% lose 4.
• D: 90% lose 0 and 10% lose 40.

R_choice Right choice, a character indicating the option presented. The possible options are:

• A: 100% gain 4.
• B: 90% gain 0 and 10% gain 40.
• C: 100% lose 4.
• D: 90% lose 0 and 10% lose 40.

L_reward Reward associated with the left choice.

R_reward Reward associated with the right choice.

Sub_Choose The chosen option, either L_choice or R_choice.

Frame Type of frame, a character string (e.g., "Gain", "Loss", "Catch").

NetWorth The participant’s net worth at the end of each trial.

RT The participant’s reaction time (in milliseconds) for each trial.

Examples

# Load the Mason_2024_G1 dataset
data(binaryRL::Mason_2024_G1)
head(binaryRL::Mason_2024_G1)

Mason_2024_G2 Group 2 from Mason et al. (2024)

Description

This dataset originates from Experiment 2 of Mason et al. (2024), titled "Rare and extreme out-
comes in risky choice" (doi:10.3758/s1342302302415x). The raw data is publicly available on the
Open Science Framework (OSF) at https://osf.io/hy3q4/. For the purposes of this package,
we’ve performed basic cleaning and preprocessing of the original dataset.

Format

A data frame with 45000 rows and 11 columns:

Subject Subject ID, an integer (total of 143).

Block Block number, an integer (1 to 6).

Trial Trial number, an integer (1 to 60).

L_choice Left choice, a character indicating the option presented. The possible options are:

• A: 100% gain 36.
• B: 90% gain 40 and 10% gain 0.
• C: 100% lose 36.
• D: 90% lose 40 and 10% lose 0.

https://doi.org/10.3758/s13423-023-02415-x
https://osf.io/hy3q4/
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R_choice Right choice, a character indicating the option presented. The possible options are:

• A: 100% gain 36.
• B: 90% gain 40 and 10% gain 0.
• C: 100% lose 36.
• D: 90% lose 40 and 10% lose 0.

L_reward Reward associated with the left choice.

R_reward Reward associated with the right choice.

Sub_Choose The chosen option, either L_choice or R_choice.

Frame Type of frame, a character string (e.g., "Gain", "Loss", "Catch").

NetWorth The participant’s net worth at the end of each trial.

RT The participant’s reaction time (in milliseconds) for each trial.

Examples

# Load the Mason_2024_G2 dataset
data(binaryRL::Mason_2024_G2)
head(binaryRL::Mason_2024_G2)

optimize_para Process: Optimizing Parameters

Description

This is an internal helper function for fit_p. Its primary purpose is to provide a unified interface
for users to interact with various optimization algorithm packages. It adapts the inputs and outputs
to be compatible with eight distinct algorithms, ensuring a seamless experience regardless of the
underlying solver used.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from stats::optim)

• 2. Simulated Annealing (GenSA::GenSA)

• 3. Genetic Algorithm (GA::ga)

• 4. Differential Evolution (DEoptim::DEoptim)

• 5. Particle Swarm Optimization (pso::psoptim)

• 6. Bayesian Optimization (mlrMBO::mbo)

• 7. Covariance Matrix Adapting Evolutionary Strategy (cmaes::cma_es)

• 8. Nonlinear Optimization (nloptr::nloptr)

For more information, please refer to the homepage of this package: https://yuki-961004.
github.io/binaryRL/

https://yuki-961004.github.io/binaryRL/
https://yuki-961004.github.io/binaryRL/
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Usage

optimize_para(
estimate = "MLE",
policy = "off",
data,
id,
n_trials,
n_params,
obj_func,
lower,
upper,
priors = NULL,
initial_params = NA,
initial_size = 50,
iteration = 10,
seed = 123,
algorithm

)

Arguments

estimate [string]
Estimation method. Can be either "MLE" or "MAP".

• Maximum Likelihood Estimation "MLE": (Default): This method finds
the parameter values that maximize the log-likelihood of the data. A higher
log-likelihood indicates that the parameters provide a better explanation
for the observed human behavior. In other words, data simulated using
these parameters would most closely resemble the actual human data. This
method does not consider any prior information about the parameters.

• Maximum A Posteriori Estimation "MAP": This method finds the param-
eter values that maximize the posterior probability. It is an iterative process
based on the Expectation-Maximization (EM) framework.

– Initialization: The process begins by assuming a uniform distribution
as the prior for each parameter, making the initial log-prior zero. The
first optimization is thus equivalent to MLE.

– Iteration: After finding the best parameters for all subjects, the al-
gorithm assesses the actual distribution of each parameter and fits a
normal distribution to it. This fitted distribution becomes the new em-
pirical prior.

– Re-estimation: The parameters are then re-optimized to maximize the
updated posterior probability.

– Convergence: This cycle repeats until the posterior probability con-
verges or the maximum number of iterations is reached.

Using this method requires that the priors argument be specified to define
the initial prior distributions.

default: estimate = "MLE"
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policy [character]
Specifies the learning policy to be used. This determines how the model updates
action values based on observed or simulated choices. It can be either "off" or
"on".

• Off-Policy (Q-learning): This is the most common approach for modeling
reinforcement learning in Two-Alternative Forced Choice (TAFC) tasks. In
this mode, the model’s goal is to learn the underlying value of each option
by observing the human participant’s behavior. It achieves this by consis-
tently updating the value of the option that the human actually chose. The
focus is on understanding the value representation that likely drove the par-
ticipant’s decisions.

• On-Policy (SARSA): In this mode, the target policy and the behavior pol-
icy are identical. The model first computes the selection probability for
each option based on their current values. Critically, it then uses these
probabilities to sample its own action. The value update is then performed
on the action that the model itself selected. This approach focuses more on
directly mimicking the stochastic choice patterns of the agent, rather than
just learning the underlying values from a fixed sequence of actions.

default: policy = "off"

data [data.frame]
This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [character]
Specifies the ID of the subject whose optimal parameters will be fitted. This
parameter accepts either string or numeric values. The provided ID must cor-
respond to an existing subject identifier within the raw dataset provided to the
function.

n_trials [integer]
The total number of trials in your experiment.

n_params [integer]
The number of free parameters in your model.

obj_func [function]
The objective function that the optimization algorithm package accepts. This
function must strictly take only one argument, fit_p (a vector of model param-
eters). Its output must be a single numeric value representing the loss function
to be minimized. For more detailed requirements and examples, please refer to
the relevant documentation ( TD, RSTD, Utility ).
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lower [vector]
Lower bounds of free parameters

upper [vector]
Upper bounds of free parameters

priors [List]
A list specifying the prior distributions for the model parameters. This argument
is mandatory when using estimate = "MAP". There are two primary scenarios
for its use:
1. Static MAP Estimation (Non-Hierarchical) This approach is used when
you have a strong, pre-defined belief about the parameter priors and do not want
the model to update them iteratively.

Configuration: • Set estimate = "MAP".
• Provide pirors defining probability density function of free parame-

ters
• Keep iteration_g = 0 (the default).

Behavior: The algorithm maximizes the posterior probability based solely on
your specified priors. It will not use the EM (Expectation-Maximization)
framework to learn new priors from the data.

2. Hierarchical Bayesian Estimation via EM This approach is used to let the
model learn the group-level (hierarchical) prior distributions directly from the
data.

Configuration: • Set estimate = "MAP".
• Specify a weak or non-informative initial prior, such as a uniform dis-

tribution for all free parameters.
• Set iteration_g to a value greater than 0.

Behavior: With a uniform prior, the initial log-posterior equals the log-likelihood,
making the first estimation step equivalent to MLE. The algorithm then ini-
tiates the EM procedure: it iteratively assesses the actual parameter distri-
bution across all subjects and updates the group-level priors. This cycle
continues until the posterior converges or iteration_g is reached.

default: priors = NULL

initial_params [vector]
Initial values for the free parameters that the optimization algorithm will search
from. These are primarily relevant when using algorithms that require an explicit
starting point, such as L-BFGS-B. If not specified, the function will automatically
generate initial values close to zero.
default: initial_params = NA.

initial_size [integer]
This parameter corresponds to the population size in genetic algorithms (GA). It
specifies the number of initial candidate solutions that the algorithm starts with
for its evolutionary search. This parameter is only required for optimization
algorithms that operate on a population, such as ‘GA‘ or ‘DEoptim‘.
default: initial_size = 50.
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iteration [integer]
The number of iterations the optimization algorithm will perform when search-
ing for the best-fitting parameters during the fitting phase. A higher number
of iterations may increase the likelihood of finding a global optimum but also
increases computation time.

seed [integer]
Random seed. This ensures that the results are reproducible and remain the same
each time the function is run.
default: seed = 123

algorithm [character]
Choose an algorithm package from L-BFGS-B, GenSA,GA,DEoptim,PSO, Bayesian,
CMA-ES.
In addition, any algorithm from the nloptr package is also supported. If your
chosen nloptr algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.

Value

the result of binaryRL with optimal parameters

Examples

## Not run:
binaryRL.res <- binaryRL::optimize_para(

data = binaryRL::Mason_2024_G2,
id = 1,
obj_func = binaryRL::RSTD,
n_params = 3,
n_trials = 360,
lower = c(0, 0, 0),
upper = c(1, 1, 1),
iteration = 10,
seed = 123,
#algorithm = "L-BFGS-B" # Gradient-Based (stats)
#algorithm = "GenSA" # Simulated Annealing (GenSA)
#algorithm = "GA" # Genetic Algorithm (GA)
#algorithm = "DEoptim" # Differential Evolution (DEoptim)
#algorithm = "PSO" # Particle Swarm Optimization (pso)
#algorithm = "Bayesian" # Bayesian Optimization (mlrMBO)
#algorithm = "CMA-ES" # Covariance Matrix Adapting (cmaes)
algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

)
summary(binaryRL.res)

## End(Not run)
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rcv_d Step 2: Generating fake data for parameter and model recovery

Description

This function is designed for model and parameter recovery of user-created (black-box) models,
provided they conform to the specified interface. (demo: TD, RSTD, Utility ). The process involves
generating synthetic datasets. First, parameters are randomly sampled within a defined range. These
parameters are then used to simulate artificial datasets.

Subsequently, all candidate models are used to fit these simulated datasets. Model recoverability is
assessed if a synthetic dataset generated by Model A is consistently best fitted by Model A itself.

Furthermore, the function allows users to evaluate parameter recoverability. If, for instance, a
synthetic dataset generated by Model A was based on parameters like 0.3 and 0.7, and Model A
then recovers optimal parameters close to 0.3 and 0.7 from this data, it indicates that the parameters
of Model A are recoverable.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from stats::optim)

• 2. Simulated Annealing (GenSA::GenSA)

• 3. Genetic Algorithm (GA::ga)

• 4. Differential Evolution (DEoptim::DEoptim)

• 5. Particle Swarm Optimization (pso::psoptim)

• 6. Bayesian Optimization (mlrMBO::mbo)

• 7. Covariance Matrix Adapting Evolutionary Strategy (cmaes::cma_es)

• 8. Nonlinear Optimization (nloptr::nloptr)

For more information, please refer to the homepage of this package: https://yuki-961004.
github.io/binaryRL/

Usage

rcv_d(
estimate = "MLE",
policy = "off",
data,
id = NULL,
n_trials = NULL,
funcs = NULL,
model_names = c("TD", "RSTD", "Utility"),
simulate_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
rfun = NULL,
fit_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
dfun = NULL,
lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),

https://yuki-961004.github.io/binaryRL/
https://yuki-961004.github.io/binaryRL/
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upper = list(c(1, 5), c(1, 1, 5), c(1, 1, 5)),
initial_params = NA,
initial_size = 50,
tolerance = 0.001,
seed = 123,
iteration_s = 100,
iteration_f = 100,
nc = 1,
algorithm

)

Arguments

estimate [string]
Estimation method. Can be either "MLE" or "MAP".

• Maximum Likelihood Estimation "MLE": (Default): This method finds
the parameter values that maximize the log-likelihood of the data. A higher
log-likelihood indicates that the parameters provide a better explanation
for the observed human behavior. In other words, data simulated using
these parameters would most closely resemble the actual human data. This
method does not consider any prior information about the parameters.

• Maximum A Posteriori Estimation "MAP": This method finds the param-
eter values that maximize the posterior probability. It is an iterative process
based on the Expectation-Maximization (EM) framework.

– Initialization: The process begins by assuming a uniform distribution
as the prior for each parameter, making the initial log-prior zero. The
first optimization is thus equivalent to MLE.

– Iteration: After finding the best parameters for all subjects, the al-
gorithm assesses the actual distribution of each parameter and fits a
normal distribution to it. This fitted distribution becomes the new em-
pirical prior.

– Re-estimation: The parameters are then re-optimized to maximize the
updated posterior probability.

– Convergence: This cycle repeats until the posterior probability con-
verges or the maximum number of iterations is reached.

Using this method requires that the priors argument be specified to define
the initial prior distributions.

default: estimate = "MLE"

policy [string]
Specifies the learning policy to be used. This determines how the model updates
action values based on observed or simulated choices. It can be either "off" or
"on".

• Off-Policy (Q-learning): This is the most common approach for modeling
reinforcement learning in Two-Alternative Forced Choice (TAFC) tasks. In
this mode, the model’s goal is to learn the underlying value of each option
by observing the human participant’s behavior. It achieves this by consis-
tently updating the value of the option that the human actually chose. The
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focus is on understanding the value representation that likely drove the par-
ticipant’s decisions.

• Off-Policy (SARSA): In this mode, the target policy and the behavior
policy are identical. The model first computes the selection probability
for each option based on their current values. Critically, it then uses these
probabilities to sample its own action. The value update is then performed
on the action that the model itself selected. This approach focuses more on
directly mimicking the stochastic choice patterns of the agent, rather than
just learning the underlying values from a fixed sequence of actions.

default: policy = "off"

data [data.frame]
This data should include the following mandatory columns:

• sub "Subject"
• time_line "Block" "Trial"
• L_choice "L_choice"
• R_choice "R_choice"
• L_reward "L_reward"
• R_reward "R_reward"
• sub_choose "Sub_Choose"

id [CharacterVector]
Specifies which subject’s data to use. In parameter and model recovery analyses,
the specific subject ID is often irrelevant. Although the experimental trial order
might have some randomness for each subject, the sequence of reward feedback
is typically pseudo-random.
The default value for this argument is NULL. When id = NULL, the program auto-
matically detects existing subject IDs within the dataset. It then randomly selects
one subject as a sample, and the parameter and model recovery procedures are
performed based on this selected subject’s data.
default: id = NULL

n_trials [integer]
Represents the total number of trials a single subject experienced in the exper-
iment. If this parameter is kept at its default value of NULL, the program will
automatically detect how many trials a subject experienced from the provided
data. This information is primarily used for calculating model fit statistics such
as AIC (Akaike Information Criterion) and BIC (Bayesian Information Crite-
rion).
default: n_trials = NULL

funcs [CharacterVector]
A character vector containing the names of all user-defined functions required
for the computation. When parallel computation is enabled (i.e., nc > 1), user-
defined models and their custom functions might not be automatically accessible
within the parallel environment.
Therefore, if you have created your own reinforcement learning model that mod-
ifies the package’s default six default functions (default functions: util_func =
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func_gamma, rate_func = func_eta, expl_func = func_epsilon, bias_func
= func_pi, prob_func = func_tau, loss_func = func_logl ), you must ex-
plicitly provide the names of your custom functions as a vector here.

model_names [List]
The names of fit modals
e.g. model_names = c("TD", "RSTD", "Utility")

simulate_models

[List]
A list of functions used to simulate data from different models. Each function
in the list should represent one model.
e.g. simulate_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility)

rfun [List]
A nested list of functions used to generate random parameter values for simula-
tion. The top-level elements of the list should be named according to the models.
Each of these elements must be a named list of functions, where each name cor-
responds to a model parameter and its value is the random number generation
function.
e.g., stats::runif, stats::rexp

fit_models [List]
A list of functions used to fit different models to the data. Each function in the
list should represent one model.
e.g. fit_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility)

dfun [List]
A nested list that defines the probability density/mass functions (PDF/PMF) for
each model’s parameters. The top-level names of the list must match the model
names. Each element must be another named list, where each name corresponds
to a model parameter and its value is the probability density function.
e.g., stats::dunif, stats::dexp

lower [List]
The lower bounds of models’ free parameters.
e.g. lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0))

upper [List]
The upper bounds of models’ free parameters.
e.g. upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 10))

initial_params [NumericVector]
Initial values for the free parameters that the optimization algorithm will search
from. These are primarily relevant when using algorithms that require an explicit
starting point, such as L-BFGS-B. If not specified, the function will automatically
generate initial values close to zero.
default: initial_params = NA.
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initial_size [integer]
This parameter corresponds to the population size in genetic algorithms (GA). It
specifies the number of initial candidate solutions that the algorithm starts with
for its evolutionary search. This parameter is only required for optimization
algorithms that operate on a population, such as GA or DEoptim.
default: initial_size = 50.

tolerance [double]
Convergence threshold for MAP estimation. If the change in log posterior prob-
ability between iterations is smaller than this value, the algorithm is considered
to have converged and the program will stop.
default: tolerance = 0.001

seed [integer]
Random seed. This ensures that the results are reproducible and remain the same
each time the function is run.
default: seed = 123

iteration_s [integer]
This parameter determines how many simulated datasets are created for subse-
quent model and parameter recovery analyses.
default: iteration_s = 10

iteration_f [NumericVector]
The number of iterations for the optimization algorithm. The required format
depends on the estimation method used.

• If estimate = "MLE", this should be a single numeric value specifying the
total number of iterations.

• If estimate = "MAP", this should be a NumericVector of length two: c(MLE_iterations,
MAP_iterations). (e.g. iteration_f = c(100, 10))

A higher number of iterations may increase the likelihood of finding a global
optimum but also increases computation time.
default: iteration_f = 10

nc [integer]
Number of cores to use for parallel processing. Since fitting optimal parameters
for each subject is an independent task, parallel computation can significantly
speed up the fitting process:

• nc = 1: The fitting proceeds sequentially. Parameters for one subject are
fitted completely before moving to the next subject.

• nc > 1: The fitting is performed in parallel across subjects. For example,
if nc = 4, the algorithm will simultaneously fit data for four subjects. Once
these are complete, it will proceed to fit the next batch of subjects (e.g.,
subjects 5-8), and so on, until all subjects are processed.

default: nc = 1

algorithm [string]
Choose an algorithm package from L-BFGS-B, GenSA,GA,DEoptim,PSO, Bayesian,
CMA-ES.
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In addition, any algorithm from the nloptr package is also supported. If your
chosen nloptr algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.
e.g. algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

Value

A list where each element is a data.frame. Each data.frame within this list records the results of
fitting synthetic data (generated by Model A) with Model B.

Note

While both fit_p and rcv_d utilize the same underlying optimize_para function to find optimal
parameters, they play distinct and sequential roles in the modeling pipeline.

The key differences are as follows:

1. Purpose and Data Source: rcv_d should always be performed before fit_p. Its primary role
is to validate a model’s stability by fitting it to synthetic data generated by the model itself.
This process, known as parameter recovery, ensures the model is well-behaved. In contrast,
fit_p is used in the subsequent stage to fit the validated model to real experimental data.

2. Estimation Method: rcv_d does not include an estimate argument. This is because the
synthetic data is generated from known "true" parameters, which are drawn from pre-defined
distributions (typically uniform for most parameters and exponential for the inverse tempera-
ture). Since the ground truth is known, a hierarchical estimation (MAP) is not applicable. The
fit_p function, however, requires this argument to handle real data where the true parameters
are unknown.

3. Policy Setting: In fit_p, the policy setting has different effects: "on-policy" is better for
learning choice patterns, while "off-policy" yields more accurate parameter estimates. For
rcv_d, the process defaults to an "off-policy" approach because its main objectives are to
verify if the true parameters can be accurately recovered and to assess whether competing
models are distinguishable, tasks for which off-policy estimation is more suitable.

Examples

## Not run:
recovery <- binaryRL::rcv_d(

data = binaryRL::Mason_2024_G2,
#+-----------------------------------------------------------------------------+#
#|----------------------------- black-box function ----------------------------|#

funcs = c("your_funcs"),
estimate = c("MLE", "MAP"),
policy = c("off", "on"),
model_names = c("TD", "RSTD", "Utility"),

#|------------------------------- simulate models -----------------------------|#
simulate_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
rfun = list(
list(

eta = function() { stats::runif(n = 1, min = 0, max = 1) },
tau = function() { stats::rexp(n = 1, rate = 1) }
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),
list(

etan = function() { stats::runif(n = 1, min = 0, max = 1) },
etap = function() { stats::runif(n = 1, min = 0, max = 1) },
tau = function() { stats::rexp(n = 1, rate = 1) }

),
list(

eta = function() { stats::runif(n = 1, min = 0, max = 1) },
gamma = function() { stats::runif(n = 1, min = 0, max = 1) },
tau = function() { stats::rexp(n = 1, rate = 1) }

),
),

#|---------------------------------- fit models -------------------------------|#
fit_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
dfun = list(

list(
eta = function(x) { stats::dunif(x, min = 0, max = 1, log = TRUE) },
tau = function(x) { stats::dexp(x, rate = 1, log = TRUE) }

),
list(

etan = function(x) { stats::dunif(x, min = 0, max = 1, log = TRUE) },
etap = function(x) { stats::dunif(x, min = 0, max = 1, log = TRUE) },
tau = function(x) { stats::dexp(x, rate = 1, log = TRUE) }

),
list(

eta = function(x) { stats::dunif(x, min = 0, max = 1, log = TRUE) },
gamma = function(x) { stats::dunif(x, min = 0, max = 1, log = TRUE) },
tau = function(x) { stats::dexp(x, rate = 1, log = TRUE) }

),
),

#|---------------------------------- bound ------------------------------------|#
lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
upper = list(c(1, 5), c(1, 1, 5), c(1, 1, 5)),

#|----------------------------- interation number -----------------------------|#
iteration_s = 100,
iteration_f = c(100, 10),

#|-------------------------------- algorithms ---------------------------------|#
nc = 1, # <nc > 1>: parallel computation across subjects
# Base R Optimization
#algorithm = "L-BFGS-B" # Gradient-Based (stats)

#|-----------------------------------------------------------------------------|#
# Specialized External Optimization
#algorithm = "GenSA" # Simulated Annealing (GenSA)
#algorithm = "GA" # Genetic Algorithm (GA)
#algorithm = "DEoptim" # Differential Evolution (DEoptim)
#algorithm = "PSO" # Particle Swarm Optimization (pso)
#algorithm = "Bayesian" # Bayesian Optimization (mlrMBO)
#algorithm = "CMA-ES" # Covariance Matrix Adapting (cmaes)

#|-----------------------------------------------------------------------------|#
# Optimization Library (nloptr)
algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

#|-------------------------------- algorithms ---------------------------------|#
#+#############################################################################+#
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)

result <- dplyr::bind_rows(recovery) %>%
dplyr::select(simulate_model, fit_model, iteration, everything())

# Ensure the output directory exists
if (!dir.exists("../OUTPUT")) {

dir.create("../OUTPUT", recursive = TRUE)
}

write.csv(result, file = "../OUTPUT/result_recovery.csv", row.names = FALSE)

## End(Not run)

recovery_data Process: Recovering Fake Data

Description

This function processes the synthetic datasets generated by simulate_list(). For each of these
simulated datasets, it then fits every model specified within the fit_model list. In essence, it
iteratively calls the optimize_para() function for each generated object.

The fitting procedure is analogous to that performed by fit_p, and it similarly leverages parallel
computation across subjects to significantly accelerate the parameter estimation process.

Usage

recovery_data(
policy,
estimate,
list,
id = 1,
n_trials,
n_params,
funcs = NULL,
model_name,
fit_model,
dfun,
lower,
upper,
initial_params = NA,
initial_size = 50,
tolerance,
seed = 123,
iteration,
nc = 1,
algorithm

)
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Arguments

policy [character]
Specifies the learning policy to be used. This determines how the model updates
action values based on observed or simulated choices. It can be either "off" or
"on".

• Off-Policy (Q-learning): This is the most common approach for modeling
reinforcement learning in Two-Alternative Forced Choice (TAFC) tasks. In
this mode, the model’s goal is to learn the underlying value of each option
by observing the human participant’s behavior. It achieves this by consis-
tently updating the value of the option that the human actually chose. The
focus is on understanding the value representation that likely drove the par-
ticipant’s decisions.

• On-Policy (SARSA): In this mode, the target policy and the behavior pol-
icy are identical. The model first computes the selection probability for
each option based on their current values. Critically, it then uses these
probabilities to sample its own action. The value update is then performed
on the action that the model itself selected. This approach focuses more on
directly mimicking the stochastic choice patterns of the agent, rather than
just learning the underlying values from a fixed sequence of actions.

default: policy = "off"

estimate [string]
Estimation method. Can be either "MLE" or "MAP".

• Maximum Likelihood Estimation "MLE": (Default): This method finds
the parameter values that maximize the log-likelihood of the data. A higher
log-likelihood indicates that the parameters provide a better explanation
for the observed human behavior. In other words, data simulated using
these parameters would most closely resemble the actual human data. This
method does not consider any prior information about the parameters.

• Maximum A Posteriori Estimation "MAP": This method finds the param-
eter values that maximize the posterior probability. It is an iterative process
based on the Expectation-Maximization (EM) framework.

– Initialization: The process begins by assuming a uniform distribution
as the prior for each parameter, making the initial log-prior zero. The
first optimization is thus equivalent to MLE.

– Iteration: After finding the best parameters for all subjects, the al-
gorithm assesses the actual distribution of each parameter and fits a
normal distribution to it. This fitted distribution becomes the new em-
pirical prior.

– Re-estimation: The parameters are then re-optimized to maximize the
updated posterior probability.

– Convergence: This cycle repeats until the posterior probability con-
verges or the maximum number of iterations is reached.

Using this method requires that the priors argument be specified to define
the initial prior distributions.

default: estimate = "MLE"
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list [list]
A list generated by function simulate_list()

id [vector]
Specifies which subject’s data to use. In parameter and model recovery analyses,
the specific subject ID is often irrelevant. Although the experimental trial order
might have some randomness for each subject, the sequence of reward feedback
is typically pseudo-random.
The default value for this argument is NULL. When id = NULL, the program auto-
matically detects existing subject IDs within the dataset. It then randomly selects
one subject as a sample, and the parameter and model recovery procedures are
performed based on this selected subject’s data.
default: id = NULL

n_trials [integer]
The total number of trials in your experiment.

n_params [integer]
The number of free parameters in your model.

funcs [character]
A character vector containing the names of all user-defined functions required
for the computation. When parallel computation is enabled (i.e., ‘nc > 1‘), user-
defined models and their custom functions might not be automatically accessible
within the parallel environment.
Therefore, if you have created your own reinforcement learning model that mod-
ifies the package’s default four default functions (default functions: util_func
= func_gamma, rate_func = func_eta, expl_func = func_epsilon bias_func
= func_pi prob_func = func_tau ), you must explicitly provide the names of
your custom functions as a vector here.

model_name [character]
The name of modal

fit_model [function]
fit model object function

dfun [List]
A nested list that defines the probability density/mass functions (PDF/PMF) for
each model’s parameters. The top-level names of the list must match the model
names. Each element must be another named list, where each name corresponds
to a model parameter and its value is the probability density function.
e.g., stats::dunif, stats::dexp

lower [List]
The lower bounds of model’s free parameters.
e.g. lower = c(0, 0, 0)

upper [List]
The upper bounds of model’s free parameters.
e.g. upper = c(1, 1, 5)
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initial_params [numeric]
Initial values for the free parameters that the optimization algorithm will search
from. These are primarily relevant when using algorithms that require an explicit
starting point, such as L-BFGS-B. If not specified, the function will automatically
generate initial values close to zero.
default: initial_params = NA.

initial_size [integer]
This parameter corresponds to the population size in genetic algorithms (GA). It
specifies the number of initial candidate solutions that the algorithm starts with
for its evolutionary search. This parameter is only required for optimization
algorithms that operate on a population, such as ‘GA‘ or ‘DEoptim‘.
default: initial_size = 50.

tolerance [double]
Convergence threshold for MAP estimation. If the change in log posterior prob-
ability between iterations is smaller than this value, the algorithm is considered
to have converged and the program will stop.
default: tolerance = 0.001

seed [integer]
Random seed. This ensures that the results are reproducible and remain the same
each time the function is run.
default: seed = 123

iteration [integer]
The number of iterations the optimization algorithm will perform when search-
ing for the best-fitting parameters during the fitting phase. A higher number
of iterations may increase the likelihood of finding a global optimum but also
increases computation time.

nc [integer]
Number of cores to use for parallel processing. Since fitting optimal parameters
for each subject is an independent task, parallel computation can significantly
speed up the fitting process:

• ‘nc = 1‘: The fitting proceeds sequentially. Parameters for one subject are
fitted completely before moving to the next subject.

• ‘nc > 1‘: The fitting is performed in parallel across subjects. For example, if
‘nc = 4‘, the algorithm will simultaneously fit data for four subjects. Once
these are complete, it will proceed to fit the next batch of subjects (e.g.,
subjects 5-8), and so on, until all subjects are processed.

default: nc = 1

algorithm [character] Choose an algorithm package from L-BFGS-B, GenSA,GA,DEoptim,PSO,
Bayesian, CMA-ES.
In addition, any algorithm from the nloptr package is also supported. If your
chosen nloptr algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.
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Value

a data frame for parameter recovery and model recovery

Examples

## Not run:
df_recovery <- recovery_data(

list = list_simulated,
policy = "off",
estimate = "MAP",
model_name = "RSTD",
fit_model = binaryRL::RSTD,
dfun = list(
etan = function(x) { stats::dunif(x, min = 0, max = 1, log = TRUE) },
etap = function(x) { stats::dunif(x, min = 0, max = 1, log = TRUE) },
tau = function(x) { stats::dexp(x, rate = 1, log = TRUE) }

),
lower = c(0, 0, 0),
upper = c(1, 1, 10),
iteration = c(10, 3),
nc = 10,
algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

)

## End(Not run)

rpl_e Step 4: Replaying the experiment with optimal parameters

Description

After completing Step 3 using fit_p() to obtain the optimal parameters for each subject and saving
the resulting CSV locally, this function allows you to load that result dataset. It then applies these
optimal parameters back into the reinforcement learning model, effectively simulating how the
"robot" (the model) would make its choices.

Based on this generated dataset, you can then analyze the robot’s data in the same manner as you
would analyze human behavioral data. If a particular model’s fitted data can successfully reproduce
the experimental effects observed in human subjects, it strongly suggests that this model is a good
and valid representation of the process.

Usage

rpl_e(
data,
id = NULL,
result,
model,
model_name,
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param_prefix = "param_",
n_trials = NULL

)

Arguments

data [data.frame]
This data should include the following mandatory columns:

• sub "Subject"
• time_line "Block" "Trial"
• L_choice "L_choice"
• R_choice "R_choice"
• L_reward "L_reward"
• R_reward "R_reward"
• sub_choose "Sub_Choose"

id [CharacterVector]
A vector specifying the subject ID(s) for which parameters should be fitted. The
function will process only the subjects provided in this vector.
To fit all subjects, you can either explicitly set the argument as id = unique(data$Subject)
or leave it as the default (id = NULL). Both approaches will direct the function to
fit parameters for every unique subject in the dataset.
It is strongly recommended to avoid using simple numeric sequences like id =
1:4. This practice can lead to errors if subject IDs are stored as strings (e.g.,
subject four is stored as "004") or are not sequentially numbered.
default: id = NULL

result [data.frame]
Output data generated by the fit_p() function. Each row represents model fit
results for a subject.

model [Function]
A model function to be applied in evaluating the experimental effect.

model_name [string]
A character string specifying the name of the model to extract from the result.

param_prefix [string]
A prefix string used to identify parameter columns in the result data
default: param_prefix = "param_"

n_trials [integer]
Represents the total number of trials a single subject experienced in the exper-
iment. If this parameter is kept at its default value of NULL, the program will
automatically detect how many trials a subject experienced from the provided
data. This information is primarily used for calculating model fit statistics such
as AIC (Akaike Information Criterion) and BIC (Bayesian Information Crite-
rion).
default: n_trials = NULL
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Value

A list, where each element is a data.frame representing one subject’s results. Each data.frame
includes the value update history for each option, the learning rate (eta), utility function (gamma),
and other relevant information used in each update.

Examples

## Not run:
list <- list()

list[[1]] <- dplyr::bind_rows(
binaryRL::rpl_e(
data = binaryRL::Mason_2024_G2,
result = read.csv("../OUTPUT/result_comparison.csv"),
model = binaryRL::TD,
model_name = "TD"

)
)

list[[2]] <- dplyr::bind_rows(
binaryRL::rpl_e(

data = binaryRL::Mason_2024_G2,
result = read.csv("../OUTPUT/result_comparison.csv"),
model = binaryRL::RSTD,
model_name = "RSTD"

)
)

list[[3]] <- dplyr::bind_rows(
binaryRL::rpl_e(

data = binaryRL::Mason_2024_G2,
result = read.csv("../OUTPUT/result_comparison.csv"),
model = binaryRL::Utility,
model_name = "Utility"

)
)

## End(Not run)

RSTD Model: RSTD

Description

Vnew = Vold + η+ · (R− Vold), R > Vold

Vnew = Vold + η− · (R− Vold), R < Vold
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Usage

RSTD(params)

Arguments

params [vector]
algorithm packages accept only one argument

Value

loss [numeric]

algorithm packages accept only one return

Examples

## Not run:
RSTD <- function(params) {

res <- binaryRL::run_m(
data = data,
id = id,
eta = c(params[1], params[2]),
tau = c(params[3]),
priors = priors,
n_params = n_params,
n_trials = n_trials,
mode = mode,
policy = policy

)

assign(x = "binaryRL.res", value = res, envir = binaryRL.env)
loss <- switch(EXPR = estimate, "MLE" = -res$ll, "MAP" = -res$lpo)
switch(EXPR = mode, "fit" = loss, "simulate" = res, "replay" = res)

}

## End(Not run)

run_m Step 1: Building reinforcement learning model

Description

This function is designed to construct and customize reinforcement learning models.

Items for model construction:

• Data Input and Specification: You must provide the raw dataset for analysis. Crucially, you
need to inform the run_m function about the corresponding column names within your dataset
(e.g., Mason_2024_G1, Mason_2024_G2 ). This is a game, so it’s critical that your dataset
includes rewards for both the human-chosen option and the unchosen options.
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• Customizable RL Models: This function allows you to define and adjust the number of free
parameters to create various reinforcement learning models.

– Value Function:

* Learning Rate: By adjusting the number of eta, you can construct basic reinforce-
ment learning models such as Temporal Difference (TD) and Risk Sensitive Tempo-
ral Difference (RSTD). You can also directly adjust func_eta to define your own
custom learning rate function.

* Utility Function: You can directly adjust the form of func_gamma to incorporate the
principles of Kahneman’s Prospect Theory. Currently, the built-in func_gamma only
takes the form of a power function, consistent with Stevens’ Power Law.

– Exploration-Exploitation Trade-off:

* Initial Values: This involves setting the initial expected value for each option when it
hasn’t been chosen yet. A higher initial value encourages exploration.

* Epsilon: Adjusting the threshold, epsilon and lambda parameters can lead to ex-
ploration strategies such as epsilon-first, epsilon-greedy, or epsilon-decreasing.

* Upper-Confidence-Bound: By adjusting pi, it controls the degree of exploration by
scaling the uncertainty bonus given to less-explored options.

* Soft-Max: By adjusting the inverse temperature parameter tau, this controls the
agent’s sensitivity to value differences. A higher value of tau means greater emphasis
on value differences, leading to more exploitation. A smaller value of tau indicates a
greater tendency towards exploration.

• Objective Function Format for Optimization: Once your model is defined in run_m, it
must be structured as an objective function that accepts params as input and returns a loss
value (typically logL). This format ensures compatibility with the algorithm package, which
uses it to estimate optimal parameters. For an example of a standard objective function format,
see TD, RSTD, Utility.

For more information, please refer to the homepage of this package: https://yuki-961004.
github.io/binaryRL/

Usage

run_m(
name = NA,
mode = c("simulate", "fit", "replay"),
policy = c("on", "off"),
data,
id,
n_params,
n_trials,
gamma = 1,
eta,
initial_value = NA_real_,
threshold = 1,
epsilon = NA,
lambda = NA,
pi = NA,

https://yuki-961004.github.io/binaryRL/
https://yuki-961004.github.io/binaryRL/
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tau = NA,
lapse = 0.02,
alpha = NA,
beta = NA,
priors = NULL,
util_func = func_gamma,
rate_func = func_eta,
expl_func = func_epsilon,
bias_func = func_pi,
prob_func = func_tau,
loss_func = func_logl,
sub = "Subject",
time_line = c("Block", "Trial"),
L_choice = "L_choice",
R_choice = "R_choice",
L_reward = "L_reward",
R_reward = "R_reward",
sub_choose = "Sub_Choose",
rob_choose = "Rob_Choose",
raw_cols = NULL,
var1 = NA_character_,
var2 = NA_character_,
seed = 123,
digits_1 = NA_real_,
digits_2 = NA_real_,
engine = "cpp"

)

Arguments

name [string]
The name of your RL model

mode [string]
This parameter controls the function’s operational mode. It has three possible
values, each typically associated with a specific function:

• "simulate": Should be used when working with rcv_d.
• "fit": Should be used when working with fit_p.
• "replay": Should be used when working with rpl_e.

In most cases, you won’t need to modify this parameter directly, as suitable
default values are set for different contexts.

policy [string]
Specifies the learning policy to be used. This determines how the model updates
action values based on observed or simulated choices. It can be either "off" or
"on".

• Off-Policy (Q-learning): This is the most common approach for modeling
reinforcement learning in Two-Alternative Forced Choice (TAFC) tasks. In
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this mode, the model’s goal is to learn the underlying value of each option
by observing the human participant’s behavior. It achieves this by consis-
tently updating the value of the option that the human actually chose. The
focus is on understanding the value representation that likely drove the par-
ticipant’s decisions.

• On-Policy (SARSA): In this mode, the target policy and the behavior pol-
icy are identical. The model first computes the selection probability for
each option based on their current values. Critically, it then uses these
probabilities to sample its own action. The value update is then performed
on the action that the model itself selected. This approach focuses more on
directly mimicking the stochastic choice patterns of the agent, rather than
just learning the underlying values from a fixed sequence of actions.

data [data.frame]
This data should include the following mandatory columns:

• sub "Subject"
• time_line "Block" "Trial"
• L_choice "L_choice"
• R_choice "R_choice"
• L_reward "L_reward"
• R_reward "R_reward"
• sub_choose "Sub_Choose"

id [string]
Which subject is going to be analyzed. The value should correspond to an entry
in the "sub" column, which must contain the subject IDs.
e.g. id = 18

n_params [integer]
The number of free parameters in your model.

n_trials [integer]
The total number of trials in your experiment.

gamma [NumericVector]
Note: This should not be confused with the discount rate parameter (also named
gamma) found in Temporal Difference (TD) models. Rescorla-Wagner model
does not include a discount rate. Here, gamma is used as a free parameter to
shape the utility function.

• Stevens’ Power Law: Utility is modeled as:

U(R) = Rγ

• Kahneman’s Prospect Theory: This exponent is applied differently based
on the sign of the reward:

U(R) =

{
Rγ1 , R > 0

β ·Rγ2 , R < 0

default: gamma = 1
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eta [NumericVector]
Parameters used in the Learning Rate Function, rate_func, representing the
rate at which the subject updates the difference (prediction error) between the
reward and the expected value in the subject’s mind.
The structure of eta depends on the model type:

• For the Temporal Difference (TD) model, where a single learning rate is
used throughout the experiment

Vnew = Vold + η · (R− Vold)

• For the Risk-Sensitive Temporal Difference (RDTD) model, where two
different learning rates are used depending on whether the reward is lower
or higher than the expected value:

Vnew = Vold + η+ · (R− Vold), R > Vold

Vnew = Vold + η− · (R− Vold), R < Vold

TD: eta = 0.3
RSTD: eta = c(0.3, 0.7)

initial_value [double]
Subject’s initial expected value for each stimulus’s reward. If this value is not
set initial_value = NA, the subject will use the reward received after the first
trial as the initial value for that stimulus. In other words, the learning rate for
the first trial is 100
default: initial_value = NA_real_

threshold [integer]
Controls the initial exploration phase in the epsilon-first strategy. This is the
number of early trials where the subject makes purely random choices, as they
haven’t yet learned the options’ values. For example, threshold = 20 means
random choices for the first 20 trials. For epsilon-greedy or epsilon-decreasing
strategies, threshold should be kept at its default value.

P (x) =

{
trial ≤ threshold, x = 1 (random choosing)
trial > threshold, x = 0 (value-based choosing)

default: threshold = 1

epsilon-first: threshold = 20, epsilon = NA, lambda = NA

epsilon [NumericVector]
A parameter used in the epsilon-greedy exploration strategy. It defines the prob-
ability of making a completely random choice, as opposed to choosing based on
the relative values of the left and right options. For example, if epsilon = 0.1,
the subject has a 10 choice and a 90 relevant when threshold is at its default
value (1) and lambda is not set.

P (x) =

{
ϵ, x = 1 (random choosing)
1− ϵ, x = 0 (value-based choosing)

epsilon-greedy: threshold = 1, epsilon = 0.1, lambda = NA
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lambda [NumericVector]
A numeric value that controls the decay rate of exploration probability in the
epsilon-decreasing strategy. A higher lambda value means the probability of
random choice will decrease more rapidly as the number of trials increases.

P (x) =

{
1

1+λ·trial , x = 1 (random choosing)
λ·trial

1+λ·trial , x = 0 (value-based choosing)

epsilon-decreasing: threshold = 1, epsilon = NA, lambda = 0.5

pi [NumericVector]
Parameter used in the Upper-Confidence-Bound (UCB) action selection for-
mula. bias_func controls the degree of exploration by scaling the uncertainty
bonus given to less-explored options. A larger value of pi (denoted as c in
Sutton and Barto(2018) ) increases the influence of this bonus, leading to more
exploration of actions with uncertain estimated values. Conversely, a smaller pi
results in less exploration.

At = argmax
a

[
Vt(a) + π

√
ln(t)

Nt(a)

]
default: pi = NA

tau [NumericVector]
Parameters used in the Soft-Max Function. prob_func representing the sensi-
tivity of the subject to the value difference when making decisions. It determines
the probability of selecting the left option versus the right option based on their
values. A larger value of tau indicates greater sensitivity to the value difference
between the options. In other words, even a small difference in value will make
the subject more likely to choose the higher-value option.

PL =
1

1 + e−(VL−VR)·τ ;PR =
1

1 + e−(VR−VL)·τ

default tau = NA

lapse [double]
A numeric value between 0 and 1, representing the lapse rate.
You can interpret this parameter as the probability of the agent "slipping" or
making a random choice, irrespective of the learned action values. This ac-
counts for moments of inattention or motor errors. In this sense, it represents
the minimum probability with which any given option will be selected. It is a
free parameter that acknowledges that individuals do not always make decisions
with full concentration throughout an experiment.
From a modeling perspective, the lapse rate is crucial for preventing the log-
likelihood calculation from returning -Inf. This issue arises when the model
assigns a probability of zero to an action that the participant actually chose
(log(0) is undefined). By ensuring every option has a non-zero minimum prob-
ability, the lapse parameter makes the fitting process more stable and robust
against noise in the data.
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Pfinal = (1− lapse) · Psoftmax +
lapse

Nchoices

default: lapse = 0.02

This ensures each option has a minimum selection probability of 1 percent in
TAFC tasks.

alpha [NumericVector]
Extra parameters that may be used in functions.

beta [NumericVector]
Extra parameters that may be used in functions.

priors [list]
A list specifying the prior distributions for the model parameters. This argument
is mandatory when using estimate = "MAP".
default: priors = NULL

util_func [Function]
Utility Function see func_gamma.

rate_func [Function]
Learning Rate Function see func_eta.

expl_func [Function]
Exploration Strategy Function see func_epsilon.

bias_func [Function]
Upper-Confidence-Bound see func_pi.

prob_func [Function]
Soft-Max Function see func_tau.

loss_func [Function]
Loss Function see func_logl.

sub [string]
Column name of subject ID
e.g. sub = "Subject"

time_line [CharacterVector]
A vector specifying the name of the column that the sequence of the experiment.
This argument defines how the experiment is structured, such as whether it is
organized by "Block" with breaks in between, and multiple trials within each
block.
default: time_line = c("Block", "Trial")

L_choice [string]
Column name of left choice.
default: L_choice = "Left_Choice"

R_choice [string]
Column name of right choice.
default: R_choice = "Right_Choice"
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L_reward [string]
Column name of the reward of left choice
default: L_reward = "Left_reward"

R_reward [string]
Column name of the reward of right choice
default: R_reward = "Right_reward"

sub_choose [string]
Column name of choices made by the subject.
default: sub_choose = "Choose"

rob_choose [string]
Column name of choices made by the model, which you could ignore.
default: rob_choose = "Rob_Choose"

raw_cols [CharacterVector]
Defaults to NULL. If left as NULL, it will directly capture all column names from
the raw data.

var1 [string]
Column name of extra variable 1. If your model uses more than just reward
and expected value, and you need other information, such as whether the choice
frame is Gain or Loss, then you can input the ’Frame’ column as var1 into the
model.
default: var1 = NA_character_

var2 [string]
Column name of extra variable 2. If one additional variable, var1, does not meet
your needs, you can add another additional variable, var2, into your model.
default: var2 = NA_character_

seed [integer]
Random seed. This ensures that the results are reproducible and remain the same
each time the function is run.
default: seed = 123

digits_1 [integer]
The number of decimal places to retain for columns related to value function
default: digits_1 = 2

digits_2 [integer]
The number of decimal places to retain for columns related to select function.
default: digits_2 = 5

engine [string]
- "r": Use the pure R version of the code.
- "cpp": Use the Rcpp-optimized version.
default: engine = "cpp"

Value

A list of class binaryRL containing the results of the model fitting.
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Examples

data <- binaryRL::Mason_2024_G2

binaryRL.res <- binaryRL::run_m(
mode = "replay",
data = data,
id = 18,
eta = c(0.321, 0.765),
tau = 0.5,
n_params = 3,
n_trials = 360

)

summary(binaryRL.res)

simulate_list Process: Simulating Fake Data

Description

This function generates random input parameters for a model based on user-specified distributions.
For example, if the first parameter, eta, is set to follow a uniform distribution from 0 to 1, its values
will be randomly sampled from U(0, 1).

You can also specify parameters to be drawn from a normal distribution. For example, eta
= function() { stats::rnorm(n = 1, mean = 0.5, sd = 0.1) } . Make sure the last parameter,
which typically represents the inverse temperature parameter in the soft-max function, is sampled
from an exponential distribution.

Usage

simulate_list(
data,
id = 1,
n_params,
n_trials,
obj_func,
rfun,
iteration = 10,
seed = 123

)

Arguments

data [data.frame]
This data should include the following mandatory columns:

• "sub"
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• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [vector]
Specifies which subject’s data to use. In parameter and model recovery analyses,
the specific subject ID is often irrelevant. Although the experimental trial order
might have some randomness for each subject, the sequence of reward feedback
is typically pseudo-random.
The default value for this argument is NULL. When id = NULL, the program auto-
matically detects existing subject IDs within the dataset. It then randomly selects
one subject as a sample, and the parameter and model recovery procedures are
performed based on this selected subject’s data.
default: id = NULL

n_params [integer]
The number of free parameters in your model.

n_trials [integer]
The total number of trials in your experiment.

obj_func [function]
The objective function that the optimization algorithm package accepts. This
function must strictly take only one argument, params (a vector of model param-
eters). Its output must be a single numeric value representing the loss function
to be minimized. For more detailed requirements and examples, please refer to
the relevant documentation ( TD, RSTD, Utility ).

rfun [List]
A nested list of functions used to generate random parameter values for simula-
tion. The top-level elements of the list should be named according to the models.
Each of these elements must be a named list of functions, where each name cor-
responds to a model parameter and its value is the random number generation
function.
e.g., stats::runif, stats::rexp

iteration [integer]
This parameter determines how many simulated datasets are created for subse-
quent model and parameter recovery analyses.
default: iteration_s = 10

seed [integer]
Random seed. This ensures that the results are reproducible and remain the same
each time the function is run.
default: seed = 123

Value

a list with fake data generated by random free parameters
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Examples

## Not run:
list_simulated <- binaryRL::simulate_list(

data = binaryRL::Mason_2024_G2,
obj_func = binaryRL::RSTD,
n_params = 3,
n_trials = 360,
rfun = list(
etan = function() { stats::runif(n = 1, min = 0, max = 1) },
etap = function() { stats::runif(n = 1, min = 0, max = 1) },
tau = function() { stats::rexp(n = 1, rate = 1) }

),
iteration = 10

)

## End(Not run)

summary.binaryRL S3method summary

Description

S3method summary

Usage

## S3 method for class 'binaryRL'
summary(object, ...)

Arguments

object binaryRL result

... others

Value

summary
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TD Model: TD

Description

Vnew = Vold + η · (R− Vold)

Usage

TD(params)

Arguments

params [vector]
algorithm packages accept only one argument

Value

loss [numeric]

algorithm packages accept only one return

Examples

## Not run:
TD <- function(params) {

res <- binaryRL::run_m(
data = data,
id = id,
eta = c(params[1]),
tau = c(params[2]),
priors = priors,
n_params = n_params,
n_trials = n_trials,
mode = mode,
policy = policy

)

assign(x = "binaryRL.res", value = res, envir = binaryRL.env)
loss <- switch(EXPR = estimate, "MLE" = -res$ll, "MAP" = -res$lpo)
switch(EXPR = mode, "fit" = loss, "simulate" = res, "replay" = res)

}

## End(Not run)
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Utility Model: Utility

Description

U(R) = Rγ

Vnew = Vold + η · (U(R)− Vold)

Usage

Utility(params)

Arguments

params [vector]
algorithm packages accept only one argument

Value

loss [numeric]

algorithm packages accept only one return

Examples

## Not run:
Utility <- function(params) {

res <- binaryRL::run_m(
data = data,
id = id,
eta = c(params[1]),
gamma = c(params[2]),
tau = c(params[3]),
priors = priors,
n_params = n_params,
n_trials = n_trials,
mode = mode,
policy = policy

)

assign(x = "binaryRL.res", value = res, envir = binaryRL.env)
loss <- switch(EXPR = estimate, "MLE" = -res$ll, "MAP" = -res$lpo)
switch(EXPR = mode, "fit" = loss, "simulate" = res, "replay" = res)

}

## End(Not run)
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