
Package ‘biogrowth’
December 18, 2025

Type Package

Title Modelling of Population Growth

Version 1.0.8

Description Modelling of population growth under static and dynamic environmental conditions.
Includes functions for model fitting and making prediction under isothermal and
dynamic conditions. The methods (algorithms & models) are based on
predictive microbiology (See Perez-Rodriguez and Valero (2012, ISBN:978-1-4614-5519-6)).

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports deSolve (>= 1.28), tibble (>= 3.0.3), dplyr (>= 0.8.5), FME
(>= 1.3.6), MASS (>= 7.3), rlang (>= 0.4.7), purrr (>= 0.3.4),
ggplot2 (>= 3.3.2), cowplot (>= 1.0.0), lamW (>= 1.3.0), tidyr
(>= 1.0.2), formula.tools (>= 1.7.1), mvtnorm (>= 1.1-3),
lifecycle

Suggests knitr, rmarkdown, tidyverse (>= 1.3.0)

VignetteBuilder knitr

Depends R (>= 2.10)

NeedsCompilation no

Author Alberto Garre [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4404-3550>),

Jeroen Koomen [aut],
Heidy den Besten [aut],
Marcel Zwietering [aut]

Maintainer Alberto Garre <garre.alberto@gmail.com>

Repository CRAN

Date/Publication 2025-12-18 20:10:09 UTC

1

https://orcid.org/0000-0002-4404-3550

2 Contents

Contents
approx_env . 4
arabian_tractors . 5
Aryani_model . 5
bilinear_lag . 6
bilinear_stationary . 6
calculate_gammas . 7
calculate_gammas_secondary . 7
check_growth_guess . 8
check_primary_pars . 10
check_secondary_pars . 10
check_stochastic_pars . 11
compare_growth_fits . 11
compare_secondary_fits . 15
conditions_pH_temperature . 17
cost_coupled_onestep . 17
cost_coupled_twosteps . 18
CPM_model . 18
dBaranyi . 19
distribution_to_logcount . 19
DynamicGrowth . 20
example_cardinal . 22
example_coupled_onestep . 23
example_coupled_twosteps . 23
example_dynamic_growth . 24
example_env_conditions . 24
example_od . 25
extract_primary_pars . 25
extract_secondary_pars . 26
FitCoupledGrowth . 26
FitDynamicGrowth . 29
FitDynamicGrowthMCMC . 31
FitIsoGrowth . 34
FitMultipleDynamicGrowth . 37
FitMultipleGrowthMCMC . 39
FitSecondaryGrowth . 43
FitSerial . 45
fit_coupled_growth . 47
fit_dynamic_growth . 50
fit_growth . 52
fit_isothermal_growth . 59
fit_MCMC_growth . 61
fit_multiple_growth . 63
fit_multiple_growth_MCMC . 65
fit_secondary_growth . 67
fit_serial_dilution . 69
full_Ratkowski . 70

Contents 3

get_all_predictions . 71
get_dyna_residuals . 71
get_iso_residuals . 72
get_multi_dyna_residuals . 73
get_secondary_residuals . 74
get_TTDs . 74
GlobalGrowthComparison . 75
GlobalGrowthFit . 77
greek_tractors . 80
GrowthComparison . 81
GrowthFit . 82
GrowthPrediction . 86
GrowthUncertainty . 88
growth_pH_temperature . 89
growth_salmonella . 90
inhibitory_model . 90
is.DynamicGrowth . 91
is.FitDynamicGrowth . 91
is.FitDynamicGrowthMCMC . 92
is.FitIsoGrowth . 92
is.FitMultipleDynamicGrowth . 93
is.FitMultipleDynamicGrowthMCMC . 93
is.FitSecondaryGrowth . 94
is.GlobalGrowthFit . 94
is.GrowthFit . 95
is.GrowthPrediction . 95
is.GrowthUncertainty . 96
is.IsothermalGrowth . 96
is.MCMCgrowth . 97
is.StochasticGrowth . 97
IsothermalGrowth . 98
iso_Baranyi . 99
iso_Baranyi_noLag . 100
iso_Baranyi_noStat . 100
iso_repGompertz . 101
lambda_to_Q0 . 101
logistic_model . 102
loglinear_model . 102
make_guess_coupled . 103
make_guess_factor . 104
make_guess_primary . 104
make_guess_secondary . 106
MCMCcoupled . 107
MCMCgrowth . 108
multiple_conditions . 110
multiple_counts . 110
multiple_experiments . 111
predictMCMC . 111

4 approx_env

predictMCMC_coupled . 112
predict_dynamic_growth . 112
predict_growth . 114
predict_growth_uncertainty . 118
predict_isothermal_growth . 121
predict_MCMC_growth . 122
predict_stochastic_growth . 124
pred_coupled_baranyi . 125
pred_lambda . 125
pred_sqmu . 126
primary_model_data . 126
Q0_to_lambda . 127
refrigeratorSpain . 127
residuals_lambda . 128
residuals_sqmu . 128
richards_model . 129
Rossoaw_model . 129
SecondaryComparison . 130
secondary_model_data . 131
show_guess_coupled . 132
show_guess_dynamic . 132
show_guess_primary . 133
StochasticGrowth . 134
TimeDistribution . 136
time_to_logcount . 137
time_to_size . 138
trilinear_model . 140
zwietering_gamma . 141

Index 142

approx_env Generates functions for linear interpolation of environmental condi-
tions

Description

Generates functions for linear interpolation of environmental conditions

Usage

approx_env(env_conditions)

Arguments

env_conditions A tibble describing the variation of the environmental conditions through the
storage time. Must contain a column named time and as many additional columns
as environmental factors.

arabian_tractors 5

Value

A list of functions that return the value of each environmental condition for some storage time

arabian_tractors Number of tractors in the Arab World according to the World Bank

Description

A dataset showing the increase in tractors in the Arab World. It was retrieved from https://data.worldbank.org/indicator/AG.AGR.TRAC.NO?end=2009&start=1961&view=chart.

Usage

arabian_tractors

Format

A tibble with 40 rows (each corresponding to one year) and 7 columns:

year Year for the recording

tractors Number of tractors

Aryani_model Secondary Aryani model

Description

Secondary model as defined by Aryani et al. (2015).

Usage

Aryani_model(x, xmin, xhalf)

Arguments

x Value of the environmental factor.

xmin Minimum value for growth.

xhalf Value where gamma = 0.5

Value

The corresponding gamma factor.

6 bilinear_stationary

bilinear_lag Bilinear model with lag phase

Description

Bilinear model with lag phase

Usage

bilinear_lag(times, logN0, mu, lambda)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

lambda Lag phase duration

bilinear_stationary Bilinear model with stationary phase

Description

Bilinear model with stationary phase

Usage

bilinear_stationary(times, logN0, mu, logNmax)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

logNmax Maximum log microbial count

calculate_gammas 7

calculate_gammas Calculates every gamma factor

Description

A helper function for predict_dynamic_growth() that calculates the value of every gamma factor
corresponding to some storage time.

Usage

calculate_gammas(this_t, env_func, sec_models)

Arguments

this_t Storage time

env_func A list of functions (generated using approxfun) that give the value of each en-
vironmental function for some storage time.

sec_models A nested list describing the secondary models.

Value

A vector of gamma factors (one per environmental factor).

calculate_gammas_secondary

Gamma factors for fitting secondary models

Description

A helper for fitting the secondary gamma models. Calculates the gamma factors corresponding
to the models defined and the experimental conditions. In order for it to work, the environmental
factors must be named identically in the 3 arguments.

Usage

calculate_gammas_secondary(sec_model_names, my_data, secondary_models)

Arguments

sec_model_names

named character vector defining the type of secondary model. Its names corre-
spond to the environmental conditions and its values define the corresponding
type of secondary model.

my_data Tibble of experimental conditions.
secondary_models

A list defining the parameters of the secondary models.

8 check_growth_guess

Value

a numeric vector of length nrow(my_data) with the gamma factor for each experimental condition.

check_growth_guess Visual check of an initial guess of the model parameters

Description

[Stable]

Generates a plot comparing a set of data points against the model prediction corresponding to an
initial guess of the model parameters

Usage

check_growth_guess(
fit_data,
model_keys,
guess,
environment = "constant",
env_conditions = NULL,
approach = "single",
logbase_mu = 10,
formula = logN ~ time

)

Arguments

fit_data Tibble (or data.frame) of data for the fit. It must have two columns, one with the
elapsed time (time by default) and another one with the decimal logarithm of
the populatoin size (logN by default). Different column names can be defined
using the formula argument.

model_keys Named the equations of the secondary model as in fit_growth()

guess Named vector with the initial guess of the model parameters as in fit_growth()

environment type of environment. Either "constant" (default) or "dynamic" (see below for
details on the calculations for each condition)

env_conditions Tibble describing the variation of the environmental conditions for dynamic ex-
periments. See fit_growth(). Ignored when environment = "constant"

approach whether "single" (default) or "global". Please see fit_growth() for details.“

logbase_mu Base of the logarithm the growth rate is referred to. By default, 10 (i.e. log10).
See vignette about units for details.

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

check_growth_guess 9

Value

A ggplot2::ggplot() comparing the model prediction against the data

Examples

Examples under constant environmental conditions -------------------------

We need some data

my_data <- data.frame(time = 0:9,
logN = c(2, 2.1, 1.8, 2.5, 3.1, 3.4, 4, 4.5, 4.8, 4.7)
)

We can directly plot the comparison for some values

check_growth_guess(my_data, list(primary = "modGompertz"),
c(logN0 = 1.5, mu = .8, lambda = 4, C = 3)
)

Ot it can be combined with the automatic initial guess

check_growth_guess(my_data, list(primary = "modGompertz"),
make_guess_primary(my_data, "modGompertz")
)

Examples under dynamic environmental conditions --------------------------

We will use the datasets included in the package

data("example_dynamic_growth")
data("example_env_conditions")

Model equations are assigned as in fit_growth

sec_models <- list(temperature = "CPM", aw = "CPM")

Guesses of model parameters are also defined as in fit_growth

guess <- list(Nmax = 1e4,
N0 = 1e0, Q0 = 1e-3,
mu_opt = 4,
temperature_n = 1,
aw_xmax = 1, aw_xmin = .9, aw_n = 1,
temperature_xmin = 25, temperature_xopt = 35,
temperature_xmax = 40, aw_xopt = .95
)

We can now check our initial guess

check_growth_guess(example_dynamic_growth, sec_models, guess,
"dynamic",
example_env_conditions)

10 check_secondary_pars

check_primary_pars Basic check of parameters for primary models

Description

Checks that: the model name is correct, the right number of model parameters have been defined
and that the parameters have the right names

Usage

check_primary_pars(model_name, pars)

Arguments

model_name Model identifier

pars A named list of model parameters

Value

If there is no error, the model function.

check_secondary_pars Basic checks of secondary parameters

Description

Checks that the model names are correct, that no parameter is defined twice, that every parameter is
defined and that no unknown parameter has been defined. Raises an error if any of these conditions
is not met.

Usage

check_secondary_pars(
starting_point,
known_pars,
sec_model_names,
primary_pars = "mu_opt"

)

check_stochastic_pars 11

Arguments

starting_point Named vector with initial values for the model parameters to estimate from the
data. The growth rate under optimum conditions must be named mu_opt. The
rest must be called ’env_factor’+’_’+’parameter’. For instance, the minimum
pH for growth is ’pH_xmin’.

known_pars Named vector of fixed model parameters. Must be named using the same con-
vention as starting_point.

sec_model_names

Named character vector defining the secondary model for each environmental
factor.

primary_pars Character vector with the parameter names of the primary model.

check_stochastic_pars Model definition checks for predict_stochastic_growth

Description

Does several checks of the model parameters. Besides those by check_primary_pars, it checks that
corr_matrix is square, that pars and corr_matrix have compatible dimensions, and that pars has the
correct names.

Usage

check_stochastic_pars(model_name, pars, corr_matrix)

Arguments

model_name Character describing the primary growth model.

pars A tibble describing the parameter uncertainty (see details).

corr_matrix Correlation matrix of the model parameters. Defined in the same order as in
pars. An identity matrix by default (uncorrelated parameters).

compare_growth_fits Model comparison and selection for growth models

Description

[Experimental]
This function is a constructor for GrowthComparison or GlobalGrowthComparison, a class that
provides several functions for model comparison and model selection for growth models fitted using
fit_growth(). Please see the help pages for GrowthComparison or GlobalGrowthComparison for
further details.

Although it is not necessary, we recommend passing the models as a named list, as these names will
later be kept in plots and tables.

12 compare_growth_fits

Usage

compare_growth_fits(models)

Arguments

models a (we recommend named) list of models fitted using fit_growth(). Every
model should be of the same class. Otherwise, some functions may give unex-
pected results.

Examples

Example 1 - Fitting under static environmental conditions ----------------

We will use the data on growth of Salmonella included in the package

data("growth_salmonella")

We will fit 3 different models to the data

fit1 <- fit_growth(growth_salmonella,
list(primary = "Baranyi"),
start = c(lambda = 0, logNmax = 8, mu = .1, logN0 = 2),
known = c(),
environment = "constant",
)

fit2 <- fit_growth(growth_salmonella,
list(primary = "Baranyi"),
start = c(logNmax = 8, mu = .1, logN0 = 2),
known = c(lambda = 0),
environment = "constant",
)

fit3 <- fit_growth(growth_salmonella,
list(primary = "modGompertz"),
start = c(C = 8, mu = .1, logN0 = 2),
known = c(lambda = 0),
environment = "constant",
)

We can now put them in a (preferably named) list

my_models <- list(`Baranyi` = fit1,
`Baranyi no lag` = fit2,
`Gompertz no lag` = fit3)

And pass them to compare_growth_fits

model_comparison <- compare_growth_fits(my_models)

The instance of GrowthComparison has useful S3 methods

compare_growth_fits 13

print(model_comparison)
plot(model_comparison)
plot(model_comparison, type = 2)
plot(model_comparison, type = 3)

The statistical indexes can be accessed through summary and coef

summary(model_comparison)
coef(model_comparison)

Example 2 - Fitting under dynamic environmental conditions ---------------

We will use one of the example datasets

data("example_dynamic_growth")
data("example_env_conditions")

First model fitted

sec_models <- list(temperature = "CPM", aw = "CPM")

known_pars <- list(Nmax = 1e4,
N0 = 1e0, Q0 = 1e-3,
mu_opt = 4,
temperature_n = 1,
aw_xmax = 1, aw_xmin = .9, aw_n = 1
)

my_start <- list(temperature_xmin = 25, temperature_xopt = 35,
temperature_xmax = 40, aw_xopt = .95)

dynamic_fit <- fit_growth(example_dynamic_growth,
sec_models,
my_start, known_pars,
environment = "dynamic",
env_conditions = example_env_conditions
)

Second model (different secondary model for temperature)

sec_models <- list(temperature = "Zwietering", aw = "CPM")

known_pars <- list(Nmax = 1e4,
N0 = 1e0, Q0 = 1e-3,
mu_opt = 4,
temperature_n = 1,
aw_xmax = 1, aw_xmin = .9, aw_n = 1
)

my_start <- list(temperature_xmin = 25, temperature_xopt = 35,
aw_xopt = .95)

14 compare_growth_fits

dynamic_fit2 <- fit_growth(example_dynamic_growth,
sec_models,
my_start, known_pars,
environment = "dynamic",
env_conditions = example_env_conditions
)

Once both models have been fitted, we can call the function

dynamic_comparison <- compare_growth_fits(list(m1 = dynamic_fit, m2 = dynamic_fit2))

Which also returns an instance of GrowthComparison with the same S3 methods

print(dynamic_comparison)
plot(dynamic_comparison)
plot(dynamic_comparison, type = 2)
plot(dynamic_comparison, type = 3)

The statistical indexes can be accessed through summary and coef

summary(dynamic_comparison)
coef(dynamic_comparison)

Example 3 - Global fitting ---

We use the example data

data("multiple_counts")
data("multiple_conditions")

We need to fit (at least) two models

sec_models <- list(temperature = "CPM", pH = "CPM")

known_pars <- list(Nmax = 1e8, N0 = 1e0, Q0 = 1e-3,
temperature_n = 2, temperature_xmin = 20,
temperature_xmax = 35,
pH_n = 2, pH_xmin = 5.5, pH_xmax = 7.5, pH_xopt = 6.5)

my_start <- list(mu_opt = .8, temperature_xopt = 30)

global_fit <- fit_growth(multiple_counts,
sec_models,
my_start,
known_pars,
environment = "dynamic",
algorithm = "regression",
approach = "global",
env_conditions = multiple_conditions
)

compare_secondary_fits 15

sec_models <- list(temperature = "CPM", pH = "CPM")

known_pars <- list(Nmax = 1e8, N0 = 1e0, Q0 = 1e-3,
temperature_n = 1, temperature_xmin = 20,
temperature_xmax = 35,
pH_n = 2, pH_xmin = 5.5, pH_xmax = 7.5, pH_xopt = 6.5)

my_start <- list(mu_opt = .8, temperature_xopt = 30)

global_fit2 <- fit_growth(multiple_counts,
sec_models,
my_start,
known_pars,
environment = "dynamic",
algorithm = "regression",
approach = "global",
env_conditions = multiple_conditions
)

We can now pass both models to the function as a (named) list

global_comparison <- compare_growth_fits(list(`n=2` = global_fit,
`n=1` = global_fit2)
)

The residuals and model fits plots are divided by experiments

plot(global_comparison)
plot(global_comparison, type = 3)

The remaining S3 methods are the same as before

print(global_comparison)
plot(global_comparison, type = 2)
summary(global_comparison)
coef(global_comparison)

compare_secondary_fits

Model comparison and selection for secondary growth models

Description

[Experimental]
This function is a constructor for SecondaryComparison a class that provides several functions for
model comparison and model selection for growth models fitted using fit_secondary_growth().
Please see the help pages for SecondaryComparison for further details.

16 compare_secondary_fits

Although it is not necessary, we recommend passing the models as a named list, as these names will
later be kept in plots and tables.

Usage

compare_secondary_fits(models)

Arguments

models a (we recommend named) list of models fitted using fit_secondary_growth().

Examples

We first need to fit some models

data("example_cardinal")

sec_model_names <- c(temperature = "Zwietering", pH = "CPM")

known_pars <- list(mu_opt = 1.2, temperature_n = 1,
pH_n = 2, pH_xmax = 6.8, pH_xmin = 5.2)

my_start <- list(temperature_xmin = 5, temperature_xopt = 35,
pH_xopt = 6.5)

fit1 <- fit_secondary_growth(example_cardinal, my_start, known_pars, sec_model_names)

known_pars <- list(mu_opt = 1.2, temperature_n = 2,
pH_n = 2, pH_xmax = 6.8, pH_xmin = 5.2)

fit2 <- fit_secondary_growth(example_cardinal, my_start, known_pars, sec_model_names)

We can now pass the models to the constructor

comparison <- compare_secondary_fits(list(`n=1` = fit1,
`n=2` = fit2))

The function includes several S3 methods for model selection and comparison

print(comparison)

plot(comparison)
plot(comparison, type = 2)

The numerical indexes can be accessed using coef and summary

coef(comparison)
summary(comparison)

conditions_pH_temperature 17

conditions_pH_temperature

Conditions during a dynamic growth experiment

Description

A dataset to demonstrate the use of fit_dynamic_growth. The observations environmental condi-
tions are described in conditions_pH_temperature.

Usage

conditions_pH_temperature

Format

A tibble with 4 rows and 3 columns:

time elapsed time

temperature temperature

pH pH

cost_coupled_onestep Residuals of the coupled Baranyi model

Description

Residuals of the coupled Baranyi model

Usage

cost_coupled_onestep(p, this_data, known)

Arguments

p a numeric vector of model parameters. Must have entries logN0, logNmax,
logC0, b and Tmin

this_data a tibble (or data.frame) with three columns: logN (microbial concentration; in
logCFU/TIME), temp the temperature and time the storage time

known a numeric vector of known model parameters

Value

the vector of model residuals

18 CPM_model

cost_coupled_twosteps Cost for the coupled model fitted in two-steps

Description

Cost for the coupled model fitted in two-steps

Usage

cost_coupled_twosteps(p, this_data, weight = NULL, known)

Arguments

p numeric vector (or list) of model parameters. Must have entries logC0, b and
Tmin

this_data tibble (or data.frame) of data. It must have one column named temp (tempera-
ture), one named lambda (specific growth rate; in ln CFU/TIME) and one named
mu (specific growth rate; in ln CFU/TIME).

weight type of weights to apply. Either NULL (no weights; default), sd (standard devia-
tion) or mean (mean value).

known vector of known model parameters

Value

vector of weighted residuals

CPM_model Secondary Cardinal Parameter (CPM) model

Description

Secondary cardinal parameter model as defined by Rosso et al. (1995).

Usage

CPM_model(x, xmin, xopt, xmax, n)

Arguments

x Value of the environmental factor.

xmin Minimum value for growth.

xopt Optimum value for growth.

xmax Maximum value for growth.

n Order of the CPM model.

dBaranyi 19

Value

The corresponding gamma factor.

dBaranyi Baranyi growth model

Description

Microbial growth model as defined in Baranyi and Roberts (1994). It has been implemented accord-
ing to the requirements of deSolve::ode(). For consistency in the function for isothermal growth,
calculations are done assuming the user input for mu is in log10 scale. In other words, the input is
multiplied by ln(10).

Usage

dBaranyi(time, state, pars, env_func, sec_models)

Arguments

time numeric vector (length 1) of storage time

state named numeric vector with two components: Q and N

pars named numeric vector of model parameters (Nmax and mu_opt)

env_func named list of functions returning the values of the environmental conditions for
time (t)

sec_models named list of parameters of the secondary model

Value

A numeric vector of two components according to the requirements of deSolve::ode().

distribution_to_logcount

Distribution of times to reach a certain microbial count

Description

[Superseded]
The function distribution_to_logcount() has been superseded by function time_to_size(),
which provides more general interface.

Returns the probability distribution of the storage time required for the microbial count to reach
log_count according to the predictions of a stochastic model. Calculations are done using linear
interpolation of the individual model predictions.

20 DynamicGrowth

Usage

distribution_to_logcount(model, log_count)

Arguments

model An instance of StochasticGrowth or MCMCgrowth.

log_count The target microbial count.

Value

An instance of TimeDistribution().

Examples

We need an instance of StochasticGrowth

my_model <- "modGompertz"
my_times <- seq(0, 30, length = 100)
n_sims <- 3000

library(tibble)

pars <- tribble(
~par, ~mean, ~sd, ~scale,
"logN0", 0, .2, "original",
"mu", 2, .3, "sqrt",
"lambda", 4, .4, "sqrt",
"C", 6, .5, "original"

)

stoc_growth <- predict_stochastic_growth(my_model, my_times, n_sims, pars)

DynamicGrowth DynamicGrowth class

Description

[Superseded]
The class DynamicGrowth has been superseded by the top-level class GrowthPrediction, which
provides a unified approach for growth modelling.

Still, it is returned if the superseded predict_dynamic_growth() is called.

A subclass of list with items:

• simulation: A tibble with the model prediction

DynamicGrowth 21

• gammas: A tibble with the value of each gamma factor for each value of times.

• env_conditions: A list of functions interpolating the environmental conditions.

• primary_pars: A list with the model parameters of the primary model.

• sec_models: A nested list defining the secondary models.

Usage

S3 method for class 'DynamicGrowth'
print(x, ...)

S3 method for class 'DynamicGrowth'
plot(
x,
y = NULL,
...,
add_factor = NULL,
ylims = NULL,
label_y1 = "logN",
label_y2 = add_factor,
line_col = "black",
line_size = 1,
line_type = "solid",
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed",
label_x = "time"

)

S3 method for class 'DynamicGrowth'
coef(object, ...)

Arguments

x The object of class DynamicGrowth to plot.

... ignored

y ignored

add_factor whether to plot also one environmental factor. If NULL (default), no environ-
mental factor is plotted. If set to one character string that matches one entry of
x$env_conditions, that condition is plotted in the secondary axis

ylims A two dimensional vector with the limits of the primary y-axis.

label_y1 Label of the primary y-axis.

label_y2 Label of the secondary y-axis.

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

22 example_cardinal

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

line_col2 Same as lin_col, but for the environmental factor.

line_size2 Same as line_size, but for the environmental factor.

line_type2 Same as lin_type, but for the environmental factor.

label_x Label of the x-axis.

object an instance of DynamicGrowth

Methods (by generic)

• print(DynamicGrowth): print of the model

• plot(DynamicGrowth): predicted growth curve under dynamic conditions.

• coef(DynamicGrowth): coefficients of the model

example_cardinal Growth rates obtained for several growth experiments

Description

An example dataset illustrating the requirements of the fit_secondary_growth() function.

Usage

example_cardinal

Format

A data frame with 64 rows and 3 variables:

temperature storage temperature (ºC)

pH pH of the media

mu specific growth rate (log10 CFU/h)

example_coupled_onestep 23

example_coupled_onestep

Example data for two-steps fitting of the Baranyi-Ratkowsky model

Description

This dataset serve as an example of the data input for fit_coupled_growth using the one-step
mode.

Usage

example_coupled_onestep

Format

A tibble with three columns:

• temp: the treatment temperature

• time: the elapsed time of the sample

• logN: the (decimal) log microbial concentration

example_coupled_twosteps

Example data for two-steps fitting of the Baranyi-Ratkowsky model

Description

This dataset serve as an example of the data input for fit_coupled_growth using the two-steps
mode.

Usage

example_coupled_twosteps

Format

A tibble with three columns:

• temp: the treatment temperature

• mu: the value of mu estimated at each temperature

• lambda: the value of lambda estimated at each temperature

24 example_env_conditions

example_dynamic_growth

Microbial growth under dynamic conditions

Description

An example dataset illustrating the requirements of the fit_dynamic_growth() function.

Usage

example_dynamic_growth

Format

A data frame with 30 rows and 2 variables:

time elapsed time (h)

logN log population size (log10 CFU)

example_env_conditions

Environmental conditions during a dynamic experiment

Description

An example dataset illustrating the requirements of the fit_dynamic_growth() function.

Usage

example_env_conditions

Format

A data frame with 3 rows and 3 variables:

time elapsed time (h)

temperature storage temperature (ºC)

aw water activity

example_od 25

example_od Example data for TTD calculation and the serial-dilution method

Description

This dataset serve as an example of the data input for get_TTDs().

Usage

example_od

Format

A tibble with 97 rows and 61 columns:

• the first column (time) presents the time of the reading

• the remaining columns present the OD recorded on each well. They are codified as condition
+ _ + number of dilutions, according to get_TTDs().

extract_primary_pars A helper to build the primary models

Description

Most of the functions for fitting mix in the vectors parameters for the primary and secondary mod-
els, but the functions for making predictions need that they are separated. This one extracts the
parameters of the primary model.

Usage

extract_primary_pars(this_p, known_pars)

Arguments

this_p A named vector of model parameters (usually, the ones fitted).

known_pars Another named vector of model parameters (usually the known ones).

Value

A list with the parameters of the primary model

26 FitCoupledGrowth

extract_secondary_pars

A helper to build the secondary models

Description

Most of the functions for fitting mix in the vectors parameters for the primary and secondary mod-
els, but the functions for making predictions need that they are separated. This one extracts the
parameters of the secondary model.

Usage

extract_secondary_pars(this_p, known_pars, sec_model_names)

Arguments

this_p A named vector of model parameters (usually, the ones fitted).

known_pars Another named vector of model parameters (usually the known ones).
sec_model_names

A named character vector defining for each environmental factor (vector names)
the type of secondary model (vector values).

Value

A nested list defining the secondary models.

FitCoupledGrowth FitCoupledGrowth class

Description

The FitCoupledGrowth class contains a Baranyi model fitted to experimental data considering the
coupling between the primary and secondary models. Its constructor is fit_coupled_growth().

It is a subclass of list with the items:

• fit: object returned by FME::modFit().

• mode: fitting approach.

• weight: type of weights for the two-steps approach.

• logbase_mu: base of the logarithm used for the calculation of mu.

• data: data used for the model fitting.

FitCoupledGrowth 27

Usage

S3 method for class 'FitCoupledGrowth'
print(x, ...)

S3 method for class 'FitCoupledGrowth'
coef(object, ...)

S3 method for class 'FitCoupledGrowth'
summary(object, ...)

S3 method for class 'FitCoupledGrowth'
predict(object, newdata = NULL, ...)

S3 method for class 'FitCoupledGrowth'
residuals(object, ...)

S3 method for class 'FitCoupledGrowth'
vcov(object, ...)

S3 method for class 'FitCoupledGrowth'
deviance(object, ...)

S3 method for class 'FitCoupledGrowth'
fitted(object, ...)

S3 method for class 'FitCoupledGrowth'
logLik(object, ...)

S3 method for class 'FitCoupledGrowth'
AIC(object, ..., k = 2)

S3 method for class 'FitCoupledGrowth'
plot(
x,
y = NULL,
...,
line_col = "black",
line_size = 1,
line_type = 1,
point_col = "black",
point_size = 3,
point_shape = 16,
label_y = NULL,
label_x = NULL

)

S3 method for class 'FitCoupledGrowth'
predictMCMC_coupled(model, niter, newdata = NULL, includecorr = TRUE)

28 FitCoupledGrowth

Arguments

x The object of class FitCoupledGrowth to plot.

... ignored.

object an instance of FitCoupledGrowth

newdata a data.frame (or tibble) describing experimental conditions. If null, the ones
used for the fitting are used (default).

k penalty for the parameters (k=2 by default)

y ignored

line_col colour of the line

line_size size of the line

line_type type of the line

point_col colour of the points

point_size size of the points

point_shape shape of the point

label_y label for the y-axis. By default, NULL (default value depending on the mode)

label_x label for the x-axis. By default, NULL (default value depending on the mode)

model an instance of FitCoupledGrowth

niter Number of MCMC iterations

includecorr whether to include parameter correlation (TRUE by default)

Methods (by generic)

• print(FitCoupledGrowth): print of the model

• coef(FitCoupledGrowth): vector of fitted model parameters.

• summary(FitCoupledGrowth): statistical summary of the fit.

• predict(FitCoupledGrowth): vector of model predictions.

• residuals(FitCoupledGrowth): vector of model residuals.

• vcov(FitCoupledGrowth): variance-covariance matrix of the model, estimated as 1/(0.5*Hes-
sian) for regression

• deviance(FitCoupledGrowth): deviance of the model.

• fitted(FitCoupledGrowth): vector of fitted values.

• logLik(FitCoupledGrowth): loglikelihood of the model

• AIC(FitCoupledGrowth): Akaike Information Criterion

• plot(FitCoupledGrowth): compares the fitted model against the data.

• predictMCMC_coupled(FitCoupledGrowth): prediction including parameter uncertainty

FitDynamicGrowth 29

FitDynamicGrowth FitDynamicGrowth class

Description

[Superseded]
The class FitDynamicGrowth has been superseded by the top-level class GrowthFit, which provides
a unified approach for growth modelling.

Still, it is still returned if the superseded fit_dynamic_growth() is called.

It is a subclass of list with the items:

• fit_results: the object returned by modFit.

• best_prediction: the model prediction for the fitted parameters.

• env_conditions: environmental conditions for the fit.

• data: data used for the fit.

• starting: starting values for model fitting

• known: parameter values set as known.

• sec_models: a named vector with the secondary model for each environmental factor

Usage

S3 method for class 'FitDynamicGrowth'
print(x, ...)

S3 method for class 'FitDynamicGrowth'
plot(
x,
y = NULL,
...,
add_factor = NULL,
ylims = NULL,
label_y1 = "logN",
label_y2 = add_factor,
line_col = "black",
line_size = 1,
line_type = 1,
point_col = "black",
point_size = 3,
point_shape = 16,
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed"

)

30 FitDynamicGrowth

S3 method for class 'FitDynamicGrowth'
summary(object, ...)

S3 method for class 'FitDynamicGrowth'
residuals(object, ...)

S3 method for class 'FitDynamicGrowth'
coef(object, ...)

S3 method for class 'FitDynamicGrowth'
vcov(object, ...)

S3 method for class 'FitDynamicGrowth'
deviance(object, ...)

S3 method for class 'FitDynamicGrowth'
fitted(object, ...)

S3 method for class 'FitDynamicGrowth'
predict(object, times = NULL, newdata = NULL, ...)

S3 method for class 'FitDynamicGrowth'
logLik(object, ...)

S3 method for class 'FitDynamicGrowth'
AIC(object, ..., k = 2)

Arguments

x The object of class FitDynamicGrowth to plot.

... ignored

y ignored

add_factor whether to plot also one environmental factor. If NULL (default), no environ-
mental factor is plotted. If set to one character string that matches one entry of
x$env_conditions, that condition is plotted in the secondary axis

ylims A two dimensional vector with the limits of the primary y-axis.

label_y1 Label of the primary y-axis.

label_y2 Label of the secondary y-axis.

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

point_col Aesthetic parameter to change the colour of the point geom, see: ggplot2::geom_point()

point_size Aesthetic parameter to change the size of the point geom, see: ggplot2::geom_point()

FitDynamicGrowthMCMC 31

point_shape Aesthetic parameter to change the shape of the point geom, see: ggplot2::ggplot2::geom_point()
line_col2 Same as lin_col, but for the environmental factor.
line_size2 Same as line_size, but for the environmental factor.
line_type2 Same as lin_type, but for the environmental factor.
object an instance of FitDynamicGrowth
times A numeric vector with the time points for the simulations. NULL by default

(using the same time points as those for the simulation).
newdata a tibble describing the environmental conditions (as env_conditions) in predict_dynamic_growth().

If NULL (default), uses the same conditions as those for fitting.
k penalty for the parameters (k=2 by default)

Methods (by generic)

• print(FitDynamicGrowth): comparison between the fitted model and the data.
• plot(FitDynamicGrowth): comparison between the fitted model and the data.
• summary(FitDynamicGrowth): statistical summary of the fit.
• residuals(FitDynamicGrowth): residuals of the model.
• coef(FitDynamicGrowth): vector of fitted parameters.
• vcov(FitDynamicGrowth): (unscaled) variance-covariance matrix of the model, calculated

as 1/(0.5*Hessian)
• deviance(FitDynamicGrowth): deviance of the model.
• fitted(FitDynamicGrowth): fitted values.
• predict(FitDynamicGrowth): model predictions.
• logLik(FitDynamicGrowth): loglikelihood of the model
• AIC(FitDynamicGrowth): Akaike Information Criterion

FitDynamicGrowthMCMC FitDynamicGrowthMCMC class

Description

[Superseded]
The class FitDynamicGrowthMCMC has been superseded by the top-level class GrowthFit, which
provides a unified approach for growth modelling.

Still, it is returned if the superseded fit_MCMC_growth() is called.

It is a subclass of list with the items:

• fit_results: the object returned by modMCMC.
• best_prediction: the model prediction for the fitted parameters.
• env_conditions: environmental conditions for the fit.
• data: data used for the fit.
• starting: starting values for model fitting
• known: parameter values set as known.
• sec_models: a named vector with the secondary model for each environmental factor

32 FitDynamicGrowthMCMC

Usage

S3 method for class 'FitDynamicGrowthMCMC'
print(x, ...)

S3 method for class 'FitDynamicGrowthMCMC'
plot(
x,
y = NULL,
...,
add_factor = NULL,
ylims = NULL,
label_y1 = "logN",
label_y2 = add_factor,
line_col = "black",
line_size = 1,
line_type = 1,
point_col = "black",
point_size = 3,
point_shape = 16,
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed"

)

S3 method for class 'FitDynamicGrowthMCMC'
summary(object, ...)

S3 method for class 'FitDynamicGrowthMCMC'
residuals(object, ...)

S3 method for class 'FitDynamicGrowthMCMC'
coef(object, ...)

S3 method for class 'FitDynamicGrowthMCMC'
vcov(object, ...)

S3 method for class 'FitDynamicGrowthMCMC'
deviance(object, ...)

S3 method for class 'FitDynamicGrowthMCMC'
fitted(object, ...)

S3 method for class 'FitDynamicGrowthMCMC'
predict(object, times = NULL, newdata = NULL, ...)

S3 method for class 'FitDynamicGrowthMCMC'
logLik(object, ...)

FitDynamicGrowthMCMC 33

S3 method for class 'FitDynamicGrowthMCMC'
AIC(object, ..., k = 2)

S3 method for class 'FitDynamicGrowthMCMC'
predictMCMC(
model,
times,
env_conditions,
niter,
newpars = NULL,
formula = . ~ time

)

Arguments

x The object of class FitDynamicGrowthMCMC to plot.

... ignored

y ignored

add_factor whether to plot also one environmental factor. If NULL (default), no environ-
menta factor is plotted. If set to one character string that matches one entry of
x$env_conditions, that condition is plotted in the secondary axis

ylims A two dimensional vector with the limits of the primary y-axis.

label_y1 Label of the primary y-axis.

label_y2 Label of the secondary y-axis.

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

point_col Aesthetic parameter to change the colour of the point geom, see: ggplot2::geom_point()

point_size Aesthetic parameter to change the size of the point geom, see: ggplot2::geom_point()

point_shape Aesthetic parameter to change the shape of the point geom, see: ggplot2::geom_point()

line_col2 Same as lin_col, but for the environmental factor.

line_size2 Same as line_size, but for the environmental factor.

line_type2 Same as lin_type, but for the environmental factor.

object an instance of FitDynamicGrowthMCMC

times Numeric vector of storage times for the predictions.

newdata a tibble describing the environmental conditions (as env_conditions) in predict_dynamic_growth().
If NULL (default), uses the same conditions as those for fitting.

k penalty for the parameters (k=2 by default)

model An instance of FitDynamicGrowthMCMC

34 FitIsoGrowth

env_conditions Tibble with the (dynamic) environmental conditions during the experiment. It
must have one column named ’time’ with the storage time and as many columns
as required with the environmental conditions.

niter Number of iterations.

newpars A named list defining new values for the some model parameters. The name
must be the identifier of a model already included in the model. These param-
eters do not include variation, so defining a new value for a fitted parameters
"fixes" it. NULL by default (no new parameters).

formula A formula stating the column named defining the elapsed time in env_conditions.
By default, . ~ time.

Value

An instance of MCMCgrowth().

Methods (by generic)

• print(FitDynamicGrowthMCMC): print of the model

• plot(FitDynamicGrowthMCMC): compares the model fitted against the data.

• summary(FitDynamicGrowthMCMC): statistical summary of the fit.

• residuals(FitDynamicGrowthMCMC): model residuals.

• coef(FitDynamicGrowthMCMC): vector of fitted model parameters.

• vcov(FitDynamicGrowthMCMC): variance-covariance matrix of the model, estimated as the
variance of the samples from the Markov chain.

• deviance(FitDynamicGrowthMCMC): deviance of the model, calculated as the sum of squared
residuals for the parameter values resulting in the best fit.

• fitted(FitDynamicGrowthMCMC): vector of fitted values.

• predict(FitDynamicGrowthMCMC): vector of model predictions.

• logLik(FitDynamicGrowthMCMC): loglikelihood of the model

• AIC(FitDynamicGrowthMCMC): Akaike Information Criterion

• predictMCMC(FitDynamicGrowthMCMC): prediction including parameter uncertainty

FitIsoGrowth FitIsoGrowth class

Description

[Superseded]
The class FitIsoGrowth has been superseded by the top-level class GrowthFit, which provides a
unified approach for growth modelling.

Still, it is still returned if the superseded fit_isothermal_growth() is called.

It is a subclass of list with the items:

FitIsoGrowth 35

• data: data used for model fitting

• model: name of the primary inactivation model

• starting_point: initial value of the model parameters

• known: fixed model parameters

• fit: object returned by FME::modFit()

• best_prediction: model prediction for the model fitted.

Usage

S3 method for class 'FitIsoGrowth'
print(x, ...)

S3 method for class 'FitIsoGrowth'
plot(
x,
y = NULL,
...,
line_col = "black",
line_size = 1,
line_type = 1,
point_col = "black",
point_size = 3,
point_shape = 16

)

S3 method for class 'FitIsoGrowth'
summary(object, ...)

S3 method for class 'FitIsoGrowth'
residuals(object, ...)

S3 method for class 'FitIsoGrowth'
coef(object, ...)

S3 method for class 'FitIsoGrowth'
vcov(object, ...)

S3 method for class 'FitIsoGrowth'
deviance(object, ...)

S3 method for class 'FitIsoGrowth'
fitted(object, ...)

S3 method for class 'FitIsoGrowth'
predict(object, times = NULL, ...)

S3 method for class 'FitIsoGrowth'

36 FitIsoGrowth

logLik(object, ...)

S3 method for class 'FitIsoGrowth'
AIC(object, ..., k = 2)

Arguments

x The object of class FitIsoGrowth to plot.

... ignored

y ignored

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

point_col Aesthetic parameter to change the colour of the point geom, see: ggplot2::geom_point()

point_size Aesthetic parameter to change the size of the point geom, see: ggplot2::geom_point()

point_shape Aesthetic parameter to change the shape of the point geom, see: ggplot2::geom_point()

object an instance of FitIsoGrowth

times numeric vector describing the time points for the prediction. If NULL (default),
uses the same points as those used for fitting.

k penalty for the parameters (k=2 by default)

Methods (by generic)

• print(FitIsoGrowth): print of the model

• plot(FitIsoGrowth): compares the fitted model against the data.

• summary(FitIsoGrowth): statistical summary of the fit.

• residuals(FitIsoGrowth): vector of model residuals.

• coef(FitIsoGrowth): vector of fitted model parameters.

• vcov(FitIsoGrowth): variance-covariance matrix of the model, estimated as 1/(0.5*Hes-
sian)

• deviance(FitIsoGrowth): deviance of the model.

• fitted(FitIsoGrowth): vector of fitted values.

• predict(FitIsoGrowth): vector of model predictions.

• logLik(FitIsoGrowth): loglikelihood of the model

• AIC(FitIsoGrowth): Akaike Information Criterion

FitMultipleDynamicGrowth 37

FitMultipleDynamicGrowth

FitMultipleDynamicGrowth class

Description

[Superseded]

The class FitMultipleDynamicGrowth has been superseded by the top-level class GlobalGrowthFit,
which provides a unified approach for growth modelling.

Still, it is still returned if the superseded fit_multiple_growth() is called.

It is a subclass of list with the items:

• fit_results: the object returned by modFit.

• best_prediction: a list with the models predictions for each condition.

• data: a list with the data used for the fit.

• starting: starting values for model fitting

• known: parameter values set as known.

• sec_models: a named vector with the secondary model for each environmental factor.

Usage

S3 method for class 'FitMultipleDynamicGrowth'
print(x, ...)

S3 method for class 'FitMultipleDynamicGrowth'
plot(
x,
y = NULL,
...,
add_factor = NULL,
ylims = NULL,
label_x = "time",
label_y1 = "logN",
label_y2 = add_factor,
line_col = "black",
line_size = 1,
line_type = "solid",
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed",
point_size = 3,
point_shape = 16,
subplot_labels = "AUTO"

)

38 FitMultipleDynamicGrowth

S3 method for class 'FitMultipleDynamicGrowth'
summary(object, ...)

S3 method for class 'FitMultipleDynamicGrowth'
residuals(object, ...)

S3 method for class 'FitMultipleDynamicGrowth'
coef(object, ...)

S3 method for class 'FitMultipleDynamicGrowth'
vcov(object, ...)

S3 method for class 'FitMultipleDynamicGrowth'
deviance(object, ...)

S3 method for class 'FitMultipleDynamicGrowth'
fitted(object, ...)

S3 method for class 'FitMultipleDynamicGrowth'
predict(object, env_conditions, times = NULL, ...)

S3 method for class 'FitMultipleDynamicGrowth'
logLik(object, ...)

S3 method for class 'FitMultipleDynamicGrowth'
AIC(object, ..., k = 2)

Arguments

x an instance of FitMultipleDynamicGrowth.

... ignored

y ignored

add_factor whether to plot also one environmental factor. If NULL (default), no environ-
mental factor is plotted. If set to one character string that matches one entry of
x$env_conditions, that condition is plotted in the secondary axis

ylims A two dimensional vector with the limits of the primary y-axis.

label_x label of the x-axis

label_y1 Label of the primary y-axis.

label_y2 Label of the secondary y-axis.

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

FitMultipleGrowthMCMC 39

line_col2 Same as lin_col, but for the environmental factor.

line_size2 Same as line_size, but for the environmental factor.

line_type2 Same as lin_type, but for the environmental factor.

point_size Size of the data points

point_shape shape of the data points

subplot_labels labels of the subplots according to plot_grid.

object an instance of FitMultipleDynamicGrowth

env_conditions a tibble describing the environmental conditions (as in fit_multiple_growth().

times A numeric vector with the time points for the simulations. NULL by default
(using the same time points as the ones defined in env_conditions).

k penalty for the parameters (k=2 by default)

Methods (by generic)

• print(FitMultipleDynamicGrowth): print of the model

• plot(FitMultipleDynamicGrowth): comparison between the fitted model and the experi-
mental data.

• summary(FitMultipleDynamicGrowth): statistical summary of the fit.

• residuals(FitMultipleDynamicGrowth): calculates the model residuals. Returns a tibble
with 4 columns: time (storage time), logN (observed count), exp (name of the experiment)
and res (residual).

• coef(FitMultipleDynamicGrowth): vector of fitted parameters.

• vcov(FitMultipleDynamicGrowth): (unscaled) variance-covariance matrix, estimated as
1/(0.5*Hessian).

• deviance(FitMultipleDynamicGrowth): deviance of the model.

• fitted(FitMultipleDynamicGrowth): fitted values. They are returned as a tibble with 3
columns: time (storage time), exp (experiment identifier) and fitted (fitted value).

• predict(FitMultipleDynamicGrowth): vector of model predictions

• logLik(FitMultipleDynamicGrowth): loglikelihood of the model

• AIC(FitMultipleDynamicGrowth): Akaike Information Criterion

FitMultipleGrowthMCMC FitMultipleGrowthMCMC class

40 FitMultipleGrowthMCMC

Description

[Superseded]
The class FitMultipleGrowthMCMC has been superseded by the top-level class GlobalGrowthFit,
which provides a unified approach for growth modelling.

Still, it is still returned if the superseded fit_multiple_growth_MCMC() is called.

It is a subclass of list with the items:

• fit_results: the object returned by modFit.

• best_prediction: a list with the models predictions for each condition.

• data: a list with the data used for the fit.

• starting: starting values for model fitting

• known: parameter values set as known.

• sec_models: a named vector with the secondary model for each environmental factor.

Usage

S3 method for class 'FitMultipleGrowthMCMC'
print(x, ...)

S3 method for class 'FitMultipleGrowthMCMC'
plot(
x,
y = NULL,
...,
add_factor = NULL,
ylims = NULL,
label_x = "time",
label_y1 = "logN",
label_y2 = add_factor,
line_col = "black",
line_size = 1,
line_type = "solid",
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed",
point_size = 3,
point_shape = 16,
subplot_labels = "AUTO"

)

S3 method for class 'FitMultipleGrowthMCMC'
summary(object, ...)

S3 method for class 'FitMultipleGrowthMCMC'
residuals(object, ...)

FitMultipleGrowthMCMC 41

S3 method for class 'FitMultipleGrowthMCMC'
coef(object, ...)

S3 method for class 'FitMultipleGrowthMCMC'
vcov(object, ...)

S3 method for class 'FitMultipleGrowthMCMC'
deviance(object, ...)

S3 method for class 'FitMultipleGrowthMCMC'
fitted(object, ...)

S3 method for class 'FitMultipleGrowthMCMC'
predict(object, env_conditions, times = NULL, ...)

S3 method for class 'FitMultipleGrowthMCMC'
logLik(object, ...)

S3 method for class 'FitMultipleGrowthMCMC'
AIC(object, ..., k = 2)

S3 method for class 'FitMultipleGrowthMCMC'
predictMCMC(
model,
times,
env_conditions,
niter,
newpars = NULL,
formula = . ~ time

)

Arguments

x an instance of FitMultipleGrowthMCMC.
... ignored
y ignored
add_factor whether to plot also one environmental factor. If NULL (default), no environ-

mental factor is plotted. If set to one character string that matches one entry of
x$env_conditions, that condition is plotted in the secondary axis

ylims A two dimensional vector with the limits of the primary y-axis.
label_x label of the x-axis
label_y1 Label of the primary y-axis.
label_y2 Label of the secondary y-axis.
line_col Aesthetic parameter to change the colour of the line geom in the plot, see:

ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

42 FitMultipleGrowthMCMC

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

line_col2 Same as lin_col, but for the environmental factor.

line_size2 Same as line_size, but for the environmental factor.

line_type2 Same as lin_type, but for the environmental factor.

point_size Size of the data points

point_shape shape of the data points

subplot_labels labels of the subplots according to plot_grid.

object an instance of FitMultipleGrowthMCMC

env_conditions Tibble with the (dynamic) environmental conditions during the experiment. It
must have one column named ’time’ with the storage time and as many columns
as required with the environmental conditions.

times Numeric vector of storage times for the predictions.

k penalty for the parameters (k=2 by default)

model An instance of FitMultipleGrowthMCMC

niter Number of iterations.

newpars A named list defining new values for the some model parameters. The name
must be the identifier of a model already included in the model. These param-
eters do not include variation, so defining a new value for a fitted parameters
"fixes" it. NULL by default (no new parameters).

formula A formula stating the column named defining the elapsed time in env_conditions.
By default, . ~ time.

Value

An instance of MCMCgrowth().

Methods (by generic)

• print(FitMultipleGrowthMCMC): print of the model

• plot(FitMultipleGrowthMCMC): comparison between the model fitted and the data.

• summary(FitMultipleGrowthMCMC): statistical summary of the fit.

• residuals(FitMultipleGrowthMCMC): model residuals. They are returned as a tibble with
4 columns: time (storage time), logN (observed count), exp (name of the experiment) and res
(residual).

• coef(FitMultipleGrowthMCMC): vector of fitted model parameters.

• vcov(FitMultipleGrowthMCMC): variance-covariance matrix of the model, estimated as the
variance of the samples from the Markov chain.

• deviance(FitMultipleGrowthMCMC): deviance of the model, calculated as the sum of squared
residuals of the prediction with the lowest standard error.

• fitted(FitMultipleGrowthMCMC): fitted values of the model. They are returned as a tibble
with 3 columns: time (storage time), exp (experiment identifier) and fitted (fitted value).

FitSecondaryGrowth 43

• predict(FitMultipleGrowthMCMC): model predictions. They are returned as a tibble with 3
columns: time (storage time), logN (observed count), and exp (name of the experiment).

• logLik(FitMultipleGrowthMCMC): loglikelihood of the model

• AIC(FitMultipleGrowthMCMC): Akaike Information Criterion

• predictMCMC(FitMultipleGrowthMCMC): prediction including parameter uncertainty

FitSecondaryGrowth FitSecondaryGrowth class

Description

The FitSecondaryGrowth class contains a model fitted to a set of growth rates gathered under a
variety of static conditions. Its constructor is fit_secondary_growth().

It is a subclass of list with the items:

• fit_results: object returned by FME::modFit().

• secondary_model: secondary model fitted to the data.

• mu_opt_fit: estimated growth rate under optimum conditions.

• data: data used for the fit.

• transformation: type of transformation of mu for the fit.

Usage

S3 method for class 'FitSecondaryGrowth'
print(x, ...)

S3 method for class 'FitSecondaryGrowth'
plot(x, y = NULL, ..., which = 1, add_trend = FALSE, add_segment = FALSE)

S3 method for class 'FitSecondaryGrowth'
summary(object, ...)

S3 method for class 'FitSecondaryGrowth'
residuals(object, ...)

S3 method for class 'FitSecondaryGrowth'
coef(object, ...)

S3 method for class 'FitSecondaryGrowth'
vcov(object, ...)

S3 method for class 'FitSecondaryGrowth'
deviance(object, ...)

S3 method for class 'FitSecondaryGrowth'

44 FitSecondaryGrowth

fitted(object, ...)

S3 method for class 'FitSecondaryGrowth'
predict(object, newdata = NULL, ...)

S3 method for class 'FitSecondaryGrowth'
logLik(object, ...)

S3 method for class 'FitSecondaryGrowth'
AIC(object, ..., k = 2)

Arguments

x An instance of FitSecondaryGrowth.

... ignored

y ignored.

which A numeric with the type of plot. 1 for obs versus predicted (default), 2 for
gamma curve

add_trend Whether to add a trend line (only for which=2)

add_segment Whether to join the observed and fitted points (only for which=2)

object an instance of FitSecondaryGrowth

newdata A tibble describing the environmental conditions as in fit_secondary_growth().
If NULL, it uses the same conditions as for model fitting (default).

k penalty for the parameters (k=2 by default)

Methods (by generic)

• print(FitSecondaryGrowth): print of the model

• plot(FitSecondaryGrowth): plots to evaluate the goodness of the fit.

• summary(FitSecondaryGrowth): statistical summary of the fit.

• residuals(FitSecondaryGrowth): vector of model residuals.

• coef(FitSecondaryGrowth): vector of fitted model parameters.

• vcov(FitSecondaryGrowth): variance-covariance matrix of the model, estimated as 1/(0.5*Hes-
sian)

• deviance(FitSecondaryGrowth): deviance of the model.

• fitted(FitSecondaryGrowth): vector of fitted values.
The fitted values are returned in the same scale as the one used for the fitting (sqrt, log or
none).

• predict(FitSecondaryGrowth): vector of model predictions.

• logLik(FitSecondaryGrowth): loglikelihood of the model

• AIC(FitSecondaryGrowth): Akaike Information Criterion

FitSerial 45

FitSerial FitSerial class

Description

The FitSerial class contains growth rates estimated using the function fit_serial_dilution().

It is a subclass of list with the items:

• fit: object returned by nls().

• mode: fitting approach.

• data: data used for the model fitting.

Usage

S3 method for class 'FitSerial'
print(x, ...)

S3 method for class 'FitSerial'
coef(object, ...)

S3 method for class 'FitSerial'
summary(object, ...)

S3 method for class 'FitSerial'
predict(object, newdata = NULL, ...)

S3 method for class 'FitSerial'
residuals(object, ...)

S3 method for class 'FitSerial'
vcov(object, ...)

S3 method for class 'FitSerial'
deviance(object, ...)

S3 method for class 'FitSerial'
fitted(object, ...)

S3 method for class 'FitSerial'
logLik(object, ...)

S3 method for class 'FitSerial'
AIC(object, ..., k = 2)

S3 method for class 'FitSerial'
plot(

46 FitSerial

x,
y = NULL,
...,
line_col = "black",
line_size = 1,
line_type = 1,
point_col = "black",
point_size = 3,
point_shape = 16,
label_y = NULL,
label_x = NULL

)

Arguments

x The object of class FitSerial to plot.
... ignored.
object an instance of FitSerial
newdata tibble (or data.frame) with the conditions for the prediction. If NULL (default),

the fitting conditions.
k penalty for the parameters (k=2 by default)
y ignored
line_col colour of the line
line_size size of the line
line_type type of the line
point_col colour of the points
point_size size of the points
point_shape shape of the point
label_y label for the y-axis. By default, NULL (default value depending on the mode)
label_x label for the x-axis. By default, NULL (default value depending on the mode)

Methods (by generic)

• print(FitSerial): print of the model
• coef(FitSerial): vector of fitted model parameters.
• summary(FitSerial): statistical summary of the fit.
• predict(FitSerial): vector of model predictions.
• residuals(FitSerial): vector of model residuals.
• vcov(FitSerial): variance-covariance matrix of the model
• deviance(FitSerial): deviance of the model.
• fitted(FitSerial): vector of fitted values.
• logLik(FitSerial): loglikelihood of the model
• AIC(FitSerial): Akaike Information Criterion
• plot(FitSerial): compares the fitted model against the data.

fit_coupled_growth 47

fit_coupled_growth Growth fitting considering link between mu and lambda for the
Baranyi-Ratkowsky model

Description

[Experimental]

This function implements the methodology suggested by Garre et al. (2025; doi: 10.1016/j.ijfoodmicro.2025.111078)
for the Baranyi-Ratkowsky model. Rather than fitting independent models for mu and lambda, this
approach considers a link between both secondary models, reducing the number of unknown pa-
rameters from 3 to 4.

The function implements too modes of fitting: two-steps and one-step. Please see the respective
sections for further information.

Usage

fit_coupled_growth(
fit_data,
start,
known = c(),
mode = "two_steps",
weight = "sd",
...,
logbase_mu = exp(1),
logbase_logN = 10

)

Arguments

fit_data a tibble (or data.frame) with the data for the fit. The content must be different
depending on the fitting mode (see relevant sections within the help page).

start a numeric vector of initial guesses for the parameter estimates

known a numeric vector of known mode parameters. An empty vector by default (no
knonw parameter)

mode the type of model fitting approach. Either two_steps (fitted from the values of
mu and lambda) or one_step (fitted from logN)

weight weights to apply for the two_steps fit. Either NULL (no weights), sd (standard
deviation; default) or mean (mean value).

... ignored

logbase_mu Base for the definition of mu. By default, exp(1) (natural logarithm).

logbase_logN Base for the definition of logN. By default, 10 (decimal logarithm).

48 fit_coupled_growth

Two-steps fitting

In this mode, it is assumed that primary models have been already fitted to each experiment. There-
fore, the data is available as a table of values of mu and lambda estimated at each temperature.
Hence, fit_data must be a tibble (or data.frame) with three columns: temp (storage temperature),
mu (specific growth rate) and lambda (lag phase duration). By default, mu must be defined in the
scale of natural logarithm, although this can be modified using the logbase_mu argument. The
package includes the dataset example_coupled_twosteps as an illustration of the type of data.

One-step fitting

In this mode, secondary models are directly fitted to the observed (log) microbial counts. Hence,
fit_data must be a tibble (or data.frame) with three columns: temp (storage temperature), time
(the elapsed time) and logN (the log-microbial concentration). By default, logN must be defined in
the scale of decimal logarithm, although this can be modified using the logbase_logN argument.
The package includes the dataset example_coupled_onestep as an illustration of the type of data.

Examples

Example 1: Two-steps fitting---

We can use the example dataset

data(example_coupled_twosteps)

We need to define initial guesses for every parameter

guess <- c(logC0 = -1, b = .1, Tmin = 5)

We can now call the fitting function

my_fit <- fit_coupled_growth(example_coupled_twosteps,
start = guess,
mode = "two_steps")

Common S3 methods are included

print(my_fit)
coef(my_fit)
summary(my_fit)
plot(my_fit)

Any model parameter can be fixed using the known argument

known <- c(b = .01)

Please note that the guess must be updated, as now parameter can appear both as a guess and known

guess <- c(logC0 = -1, Tmin = 0)

fixed_fit <- fit_coupled_growth(example_coupled_twosteps,

fit_coupled_growth 49

start = guess,
known = known,
mode = "two_steps")

print(fixed_fit)
coef(fixed_fit)
summary(fixed_fit)
plot(fixed_fit)

Example 2: One-step fitting--

We can use an example dataset with the right format

data("example_coupled_onestep")

The function requires initial guesses for every model parameter

guess <- c(logN0 = 2, logNmax = 8, b = 0.05, logC0 = -3, Tmin = 5)

We can now call the fitting function

my_fit <- fit_coupled_growth(example_coupled_onestep,
start = guess,
mode = "one_step")

The package includes common S3 methods

print(my_fit)
coef(my_fit)
summary(my_fit)
plot(my_fit)

Any model parameter can be fixed before fitting

known <- c(logNmax = 7)

Guesses must be updated, so no parameter appears twice

guess <- c(logN0 = 2, b = 0.04, logC0 = -4, Tmin = 5)

We can now call the fitting function

my_fit <- fit_coupled_growth(example_coupled_onestep,
start = guess,
known = known,
mode = "one_step")

The package includes common S3 methods

print(my_fit)
coef(my_fit)
summary(my_fit)
plot(my_fit)

50 fit_dynamic_growth

fit_dynamic_growth Fit dynamic growth models

Description

[Superseded]

The function fit_dynamic_growth() has been superseded by the top-level function fit_growth(),
which provides a unified approach for growth modelling.

Nonetheless, it can still fit a growth model to data obtained under dynamic conditions using the
one-step approach (non-linear regression).

Usage

fit_dynamic_growth(
fit_data,
env_conditions,
starting_point,
known_pars,
sec_model_names,
...,
check = TRUE,
logbase_mu = logbase_logN,
logbase_logN = 10,
formula = logN ~ time

)

Arguments

fit_data Tibble with the data to use for model fit. It must contain a column with the
elapsed time (named "time" by default) and another one with the decimal log-
arithm of the observed population size (named "logN" by default). Different
column names can be specified using the "formula" argument.

env_conditions Tibble with the (dynamic) environmental conditions during the experiment. It
must have one column with the elapsed time (named "time" by default) and as
many columns as required with the environmental conditions. A different col-
umn name can be specified using the "formula" argument, although it must be
the same one as in "fit_data". Note that only those defined in "sec_model_names"
will be considered for the model fit.

starting_point A named vector of starting values for the model parameters. Parameters for the
primary model must be named in the usual way. Parameters for the secondary
model are named as env_factor+’_’+parameter. For instance, the maximum
growth temperature shall be named ’temperature_xmax’.

fit_dynamic_growth 51

known_pars A named vector of known model parameters (i.e. not fitted). They must be
named using the same convention as for starting_point.

sec_model_names

A named character vector defining the secondary model for each environmental
factor. The names define the factor and the value the type of model. Names must
match columns in fit_data and env_conditions.

... Additional arguments passed to modFit.

check Whether to check model parameters (TRUE by default).

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

Value

An instance of FitDynamicGrowth().

Examples

We use the datasets included in the package

data("example_dynamic_growth")
data("example_env_conditions")

Define the secondary models

sec_model_names <- c(temperature = "CPM", aw= "CPM")

Any model parameter can be fixed

known_pars <- list(Nmax = 1e4, # Primary model
N0 = 1e0, Q0 = 1e-3, # Initial values of the primary model
mu_opt = 4, # mu_opt of the gamma model
temperature_n = 1, # Secondary model for temperature
aw_xmax = 1, aw_xmin = .9, aw_n = 1 # Secondary model for water activity
)

The remaining parameters need initial values

my_start <- list(temperature_xmin = 25, temperature_xopt = 35,
temperature_xmax = 40, aw_xopt = .95)

We can now call the fitting function

my_dyna_fit <- fit_dynamic_growth(example_dynamic_growth, example_env_conditions,
my_start, known_pars, sec_model_names)

summary(my_dyna_fit)

52 fit_growth

We can compare the data and the fitted curve

plot(my_dyna_fit)

We can plot any environmental condition using add_factor

plot(my_dyna_fit, add_factor = "aw",
label_y1 = "Log count (log CFU/ml)",
label_y2 = "Water activity")

fit_growth Fitting microbial growth

Description

[Stable]
This function provides a top-level interface for fitting growth models to data describing the variation
of the population size through time, either under constant or dynamic environment conditions. See
below for details on the calculations.

Usage

fit_growth(
fit_data,
model_keys,
start,
known,
environment = "constant",
algorithm = "regression",
approach = "single",
env_conditions = NULL,
niter = NULL,
...,
check = TRUE,
logbase_mu = logbase_logN,
logbase_logN = 10,
formula = logN ~ time

)

Arguments

fit_data observed microbial growth. The format varies depending on the type of model
fit. See the relevant sections (and examples) below for details.

model_keys a named list assigning equations for the primary and secondary models. See the
relevant sections (and examples) below for details.

fit_growth 53

start a named numeric vector assigning initial guesses to the model parameters to
estimate from the data. See relevant section (and examples) below for details.

known named numeric vector of fixed model parameters, using the same conventions
as for "start".

environment type of environment. Either "constant" (default) or "dynamic" (see below for
details on the calculations for each condition)

algorithm either "regression" (default; Levenberg-Marquard algorithm) or "MCMC" (Adap-
tive Monte Carlo algorithm).

approach approach for model fitting. Either "single" (the model is fitted to a unique ex-
periment) or "global" (the model is fitted to several dynamic experiments).

env_conditions Tibble describing the variation of the environmental conditions for dynamic ex-
periments. See the relevant sections (and examples) below for details. Ignored
for environment="constant".

niter number of iterations of the MCMC algorithm. Ignored when algorithm!="MCMC".

... Additional arguments for FME::modFit().

check Whether to check the validity of the models. TRUE by default.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

formula An object of class "formula" defining the names of the x and y variables in the
data. logN ~ time as a default.

Value

If approach="single, an instance of GrowthFit. If approach="multiple", an instance of Glob-
alGrowthFit

Please check the help pages of each class for additional information.

Fitting under constant conditions

When environment="constant", the functions fits a primary growth model to the population size
observed during an experiment. In this case, the data has to be a tibble (or data.frame) with two
columns:

• time: the elapsed time

• logN: the logarithm of the observed population size Nonetheless, the names of the columns
can be modified with the formula argument.

The model equation is defined through the model_keys argument. It must include an entry named
"primary" assigned to a model. Valid model keys can be retrieved calling primary_model_data().

The model is fitted by non-linear regression (using FME::modFit()). This algorithm needs initial
guesses for every model parameter. This are defined as a named numeric vector. The names must
be valid model keys, which can be retrieved using primary_model_data() (see example below).
Apart from that, any model parameter can be fixed using the "known" argument. This is a named
numeric vector, with the same convenctions as "start".

54 fit_growth

Fitting under dynamic conditions to a single experiment

When environment="constant" and approach="single", a dynamic growth model combining the
Baranyi primary growth model with the gamma approach for the effect of the environmental condi-
tions on the growth rate is fitted to an experiment gathered under dynamic conditions. In this case,
the data is similar to fitting under constant conditions: a tibble (or data.frame) with two columns:

• time: the elapsed time

• logN: the logarithm of the observed population size Note that these default names can be
changed using the formula argument.

The values of the experimental conditions during the experiment are defined using the "env_conditions"
argument. It is a tibble (or data.frame) with one column named ("time") defining the elapsed time.
Note that this default name can be modified using the formula argument of the function. The tib-
ble needs to have as many additional columns as environmental conditions included in the model,
providing the values of the environmental conditions.

The model equations are defined through the model_keys argument. It must be a named list where
the names match the column names of "env_conditions" and the values are model keys. These can
be retrieved using secondary_model_data().

The model can be fitted using regression (FME::modFit()) or an adaptive Monte Carlo algorithm
(FME::modMCMC()). Both algorithms require initial guesses for every model parameter to fit. These
are defined through the named numeric vector "start". Each parameter must be named as fac-
tor+"_"+parameter, where factor is the name of the environmental factor defined in "model_keys".
The parameter is a valid key that can be retrieved from secondary_model_data(). For instance,
parameter Xmin for the factor temperature would be defined as "temperature_xmin".

Note that the argument ... allows passing additional arguments to the fitting functions.

Fitting under dynamic conditions to multiple experiments (global fitting)

When environment="constant" and approach="global", fit_growth tries to find the vector of model
parameters that best describe the observations of several growth experiments.

The input requirements are very similar to the case when approach="single". The models (equa-
tions, initial guesses, known parameters, algorithms...) are identical. The only difference is that
"fit_data" must be a list, where each element describes the results of an experiment (using the
same conventions as when approach="single"). In a similar fashion, "env_conditions" must be a
list describing the values of the environmental factors during each experiment. Although it is not
mandatory, it is recommended that the elements of both lists are named. Otherwise, the function
assigns automatically-generated names, and matches them by order.#’

Examples

Example 1 - Fitting a primary model --------------------------------------

A dummy dataset describing the variation of the population size

my_data <- data.frame(time = c(0, 25, 50, 75, 100),
logN = c(2, 2.5, 7, 8, 8))

A list of model keys can be gathered from

fit_growth 55

primary_model_data()

The primary model is defined as a list

models <- list(primary = "Baranyi")

The keys of the model parameters can also be gathered from primary_model_data

primary_model_data("Baranyi")$pars

Any model parameter can be fixed

known <- c(mu = .2)

The remaining parameters need initial guesses

start <- c(logNmax = 8, lambda = 25, logN0 = 2)

primary_fit <- fit_growth(my_data, models, start, known,
environment = "constant",
)

The instance of FitIsoGrowth includes several useful methods

print(primary_fit)
plot(primary_fit)
coef(primary_fit)
summary(primary_fit)

time_to_size can be used to calculate the time for some concentration

time_to_size(primary_fit, 4)

Example 2 - Fitting under dynamic conditions------------------------------

We will use the example data included in the package

data("example_dynamic_growth")

And the example environmental conditoins (temperature & aw)

data("example_env_conditions")

Valid keys for secondary models can be retrived from

secondary_model_data()

We need to assign a model equation (secondary model) to each environmental factor

sec_models <- list(temperature = "CPM", aw = "CPM")

The keys of the model parameters can be gathered from the same function

56 fit_growth

secondary_model_data("CPM")$pars

Any model parameter (of the primary or secondary models) can be fixed

known_pars <- list(Nmax = 1e4, # Primary model
N0 = 1e0, Q0 = 1e-3, # Initial values of the primary model
mu_opt = 4, # mu_opt of the gamma model
temperature_n = 1, # Secondary model for temperature

aw_xmax = 1, aw_xmin = .9, aw_n = 1 # Secondary model for water activity
)

The rest, need initial guesses (you know, regression)

my_start <- list(temperature_xmin = 25, temperature_xopt = 35,
temperature_xmax = 40, aw_xopt = .95)

We can now fit the model

dynamic_fit <- fit_growth(example_dynamic_growth,
sec_models,
my_start, known_pars,
environment = "dynamic",
env_conditions = example_env_conditions
)

The instance of FitDynamicGrowth has several S3 methods

plot(dynamic_fit, add_factor = "temperature")
summary(dynamic_fit)

We can use time_to_size to calculate the time required to reach a given size

time_to_size(dynamic_fit, 3)

Example 3- Fitting under dynamic conditions using MCMC -------------------

We can reuse most of the arguments from the previous example
We just need to define the algorithm and the number of iterations

set.seed(12421)
MCMC_fit <- fit_growth(example_dynamic_growth,

sec_models,
my_start, known_pars,
environment = "dynamic",
env_conditions = example_env_conditions,
algorithm = "MCMC",
niter = 1000
)

fit_growth 57

The instance of FitDynamicGrowthMCMC has several S3 methods

plot(MCMC_fit, add_factor = "aw")
summary(MCMC_fit)

We can use time_to_size to calculate the time required to reach a given size

time_to_size(MCMC_fit, 3)

It can also make growth predictions including uncertainty

uncertain_growth <- predictMCMC(MCMC_fit,
seq(0, 10, length = 1000),
example_env_conditions,
niter = 1000)

The instance of MCMCgrowth includes several nice S3 methods

plot(uncertain_growth)
print(uncertain_growth)

time_to_size can calculate the time to reach some count

time_to_size(uncertain_growth, 2)
time_to_size(uncertain_growth, 2, type = "distribution")

Example 4 - Fitting a unique model to several dynamic experiments --------

We will use the data included in the package

data("multiple_counts")
data("multiple_conditions")

We need to assign a model equation for each environmental factor

sec_models <- list(temperature = "CPM", pH = "CPM")

Any model parameter (of the primary or secondary models) can be fixed

known_pars <- list(Nmax = 1e8, N0 = 1e0, Q0 = 1e-3,
temperature_n = 2, temperature_xmin = 20,
temperature_xmax = 35,
pH_n = 2, pH_xmin = 5.5, pH_xmax = 7.5, pH_xopt = 6.5)

The rest, need initial guesses

my_start <- list(mu_opt = .8, temperature_xopt = 30)

We can now fit the model

58 fit_growth

global_fit <- fit_growth(multiple_counts,
sec_models,
my_start,
known_pars,
environment = "dynamic",
algorithm = "regression",
approach = "global",
env_conditions = multiple_conditions
)

The instance of FitMultipleDynamicGrowth has nice S3 methods

plot(global_fit)
summary(global_fit)
print(global_fit)

We can use time_to_size to calculate the time to reach a given size

time_to_size(global_fit, 4.5)

Example 5 - MCMC fitting a unique model to several dynamic experiments ---

Again, we can re-use all the arguments from the previous example
We just need to define the right algorithm and the number of iterations
On top of that, we will also pass upper and lower bounds to modMCMC

set.seed(12421)
global_MCMC <- fit_growth(multiple_counts,

sec_models,
my_start,
known_pars,
environment = "dynamic",
algorithm = "MCMC",
approach = "global",
env_conditions = multiple_conditions,
niter = 1000,
lower = c(.2, 29), # lower limits of the model parameters
upper = c(.8, 34) # upper limits of the model parameters
)

The instance of FitMultipleDynamicGrowthMCMC has nice S3 methods

plot(global_MCMC)
summary(global_MCMC)
print(global_MCMC)

We can use time_to_size to calculate the time to reach a given size

time_to_size(global_MCMC, 3)

fit_isothermal_growth 59

It can also be used to make model predictions with parameter uncertainty

uncertain_prediction <- predictMCMC(global_MCMC,
seq(0, 50, length = 1000),
multiple_conditions[[1]],
niter = 100
)

The instance of MCMCgrowth includes several nice S3 methods

plot(uncertain_growth)
print(uncertain_growth)

time_to_size can calculate the time to reach some count

time_to_size(uncertain_growth, 2)
time_to_size(uncertain_growth, 2, type = "distribution")

fit_isothermal_growth Fit primary growth models

Description

[Superseded]

The function fit_isothermal_growth() has been superseded by the top-level function fit_growth(),
which provides a unified approach for growth modelling.

Nonetheless, it can still fit a primary growth model to data obtained under static environmental
conditions.

Usage

fit_isothermal_growth(
fit_data,
model_name,
starting_point,
known_pars,
...,
check = TRUE,
formula = logN ~ time,
logbase_mu = logbase_logN,
logbase_logN = 10

)

60 fit_isothermal_growth

Arguments

fit_data Tibble of data for the fit. It must have two columns, one with the elapsed time
(time by default) and another one with the decimal logarithm of the popula-
toin size (logN by default). Different column names can be defined using the
formula argument.

model_name Character defining the primary growth model

starting_point Named vector of initial values for the model parameters.

known_pars Named vector of known model parameters (not fitted).

... Additional arguments passed to FME::modFit().

check Whether to do some basic checks (TRUE by default).

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Value

An instance of FitIsoGrowth().

Examples

Some dummy data

library(tibble)

my_data <- tibble(time = c(0, 25, 50, 75, 100),
logN = c(2, 2.5, 7, 8, 8))

Choose the model

my_model <- "Baranyi"

Initial values for the model parameters

start = c(logNmax = 8, lambda = 25, logN0 = 2)

Any model parameter can be fixed

known <- c(mu = .2)

Now, we can call the function

static_fit <- fit_isothermal_growth(my_data, my_model, start, known)

summary(static_fit)

fit_MCMC_growth 61

We can plot the fitted model against the observations

plot(static_fit)

fit_MCMC_growth Fit growth models using MCMC

Description

[Superseded]

The function fit_MCMC_growth() has been superseded by the top-level function fit_growth(),
which provides a unified approach for growth modelling.

But, it can still fit a growth model to a data obtained under dynamic conditions using the one-step
approach (MCMC algorithm).

Usage

fit_MCMC_growth(
fit_data,
env_conditions,
starting_point,
known_pars,
sec_model_names,
niter,
...,
check = TRUE,
formula = logN ~ time,
logbase_mu = logbase_logN,
logbase_logN = 10

)

Arguments

fit_data Tibble with the data to use for model fit. It must contain a column with the
elapsed time (named "time" by default) and another one with the decimal log-
arithm of the observed population size (named "logN" by default). Different
column names can be specified using the "formula" argument.

env_conditions Tibble with the (dynamic) environmental conditions during the experiment. It
must have one column with the elapsed time (named "time" by default) and as
many columns as required with the environmental conditions. A different col-
umn name can be specified using the "formula" argument, although it must be
the same one as in "fit_data". Note that only those defined in "sec_model_names"
will be considered for the model fit.

62 fit_MCMC_growth

starting_point A named vector of starting values for the model parameters. Parameters for the
primary model must be named in the usual way. Parameters for the secondary
model are named as env_factor+’_’+parameter. For instance, the maximum
growth temperature shall be named ’temperature_xmax’.

known_pars A named vector of known model parameters (i.e. not fitted). They must be
named using the same convention as for starting_point.

sec_model_names

A named character vector defining the secondary model for each environmental
factor. The names define the factor and the value the type of model. Names must
match columns in fit_data and env_conditions.

niter number of iterations of the MCMC algorithm.

... Additional arguments passed to modFit.

check Whether to check model parameters (TRUE by default).

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Value

An instance of FitDynamicGrowthMCMC().

Examples

We use the example data included in the package

data("example_dynamic_growth")
data("example_env_conditions")

Definition of the secondary models
sec_model_names <- c(temperature = "CPM", aw= "CPM")

Any model parameter can be fixed
known_pars <- list(Nmax = 1e4, # Primary model

N0 = 1e0, Q0 = 1e-3, # Initial values of the primary model
mu_opt = 4, # mu_opt of the gamma model
temperature_n = 1, # Secondary model for temperature
aw_xmax = 1, aw_xmin = .9, aw_n = 1 # Secondary model for water activity
)

We need starting values for the remaining parameters

my_start <- list(temperature_xmin = 25, temperature_xopt = 35,
temperature_xmax = 40,
aw_xopt = .95)

We can now call the fitting function

fit_multiple_growth 63

set.seed(12124) # Setting seed for repeatability

my_MCMC_fit <- fit_MCMC_growth(example_dynamic_growth, example_env_conditions,
my_start, known_pars, sec_model_names, niter = 3000)

Always check the MCMC chain!!

plot(my_MCMC_fit$fit_results)

We can compare data against fitted curve

plot(my_MCMC_fit)

Any environmental factor can be included using add_factor

plot(my_MCMC_fit, add_factor = "temperature",
label_y1 = "Count (log CFU/ml)", label_y2 = "Temperature (C)")

fit_multiple_growth Fitting growth models to multiple dynamic experiments

Description

[Superseded]

The function fit_multiple_growth() has been superseded by the top-level function fit_growth(),
which provides a unified approach for growth modelling.

But, if you so wish, this function still enables fitting a growth model using a dataset comprised
of several experiments with potentially different dynamic experimental conditions. Note that the
definition of secondary models must comply with the secondary_model_data function.

Usage

fit_multiple_growth(
starting_point,
experiment_data,
known_pars,
sec_model_names,
...,
check = TRUE,
formula = logN ~ time,
logbase_mu = logbase_logN,
logbase_logN = 10

)

64 fit_multiple_growth

Arguments

starting_point a named vector of starting values for the model parameters.
experiment_data

a nested list with the experimental data. Each entry describes one experiment
as a list with two elements: data and conditions. data is a tibble with a column
giving the elapsed time (named "time" by default) and another one with the dec-
imal logarithm of the population size (named "logN" by default). conditions is
a tibble with one column giving the elapsed time (using the same name as data)
and as many additional columns as environmental factors. The default column
names can be changed with the formula argument.

known_pars named vector of known model parameters
sec_model_names

named character vector with names of the environmental conditions and values
of the secondary model (see secondary_model_data).

... additional arguments for FME::modFit().

check Whether to check the validity of the models. TRUE by default.

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Value

An instance of FitMultipleDynamicGrowth().

Examples

We will use the multiple_experiments data set

data("multiple_experiments")

For each environmental factor, we need to defined a model

sec_names <- c(temperature = "CPM", pH = "CPM")

Any model parameter can be fixed

known <- list(Nmax = 1e8, N0 = 1e0, Q0 = 1e-3,
temperature_n = 2, temperature_xmin = 20, temperature_xmax = 35,
pH_n = 2, pH_xmin = 5.5, pH_xmax = 7.5, pH_xopt = 6.5)

The rest require starting values for model fitting

start <- list(mu_opt = .8, temperature_xopt = 30)

We can now call the fitting function

fit_multiple_growth_MCMC 65

global_fit <- fit_multiple_growth(start, multiple_experiments, known, sec_names)

Parameter estimates can be retrieved with summary

summary(global_fit)

We can compare fitted model against observations

plot(global_fit)

Any single environmental factor can be added to the plot using add_factor

plot(global_fit, add_factor = "temperature")

fit_multiple_growth_MCMC

Fitting growth models to multiple dynamic experiments using MCMC

Description

[Superseded]

The function fit_multiple_growth_MCMC() has been superseded by the top-level function fit_growth(),
which provides a unified approach for growth modelling.

However, this functions can still be used to fit a growth model using a dataset comprised of several
experiments with potentially different dynamic experimental conditions.

Usage

fit_multiple_growth_MCMC(
starting_point,
experiment_data,
known_pars,
sec_model_names,
niter,
...,
check = TRUE,
formula = logN ~ time,
logbase_mu = logbase_logN,
logbase_logN = 10

)

Arguments

starting_point a named vector of starting values for the model parameters.

66 fit_multiple_growth_MCMC

experiment_data

a nested list with the experimental data. Each entry describes one experiment
as a list with two elements: data and conditions. data is a tibble with a column
giving the elapsed time (named "time" by default) and another one with the dec-
imal logarithm of the population size (named "logN" by default). conditions is
a tibble with one column giving the elapsed time (using the same name as data)
and as many additional columns as environmental factors. The default column
names can be changed with the formula argument.

known_pars named vector of known model parameters
sec_model_names

named character vector with names of the environmental conditions and values
of the secondary model (see secondary_model_data).

niter number of samples of the MCMC algorithm.

... additional arguments for FME::modMCMC (e.g. upper and lower bounds).

check Whether to check the validity of the models. TRUE by default.

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Value

An instance of FitMultipleGrowthMCMC().

Examples

We will use the multiple_experiments data set

data("multiple_experiments")

For each environmental factor, we need to defined a model

sec_names <- c(temperature = "CPM", pH = "CPM")

Any model parameter can be fixed

known <- list(Nmax = 1e8, N0 = 1e0, Q0 = 1e-3,
temperature_n = 2, temperature_xmin = 20, temperature_xmax = 35,
pH_n = 2, pH_xmin = 5.5, pH_xmax = 7.5, pH_xopt = 6.5)

The rest require starting values for model fitting

start <- list(mu_opt = .8, temperature_xopt = 30)

We can now call the fitting function

set.seed(12412)

fit_secondary_growth 67

global_MCMC <- fit_multiple_growth_MCMC(start, multiple_experiments, known, sec_names, niter = 1000,
lower = c(.2, 29), # lower limits of the model parameters
upper = c(.8, 34)) # upper limits of the model parameters

Parameter estimates can be retrieved with summary

summary(global_MCMC)

We can compare fitted model against observations

plot(global_MCMC)

Any single environmental factor can be added to the plot using add_factor

plot(global_MCMC, add_factor = "temperature")

fit_secondary_growth Fit secondary growth models

Description

[Stable]
Fits a secondary growth model to a set of growth rates obtained experimentally. Modelling is done
according to the gamma concept proposed by Zwietering (1992) and cardinal parameter models.

Usage

fit_secondary_growth(
fit_data,
starting_point,
known_pars,
sec_model_names,
transformation = "sq",
...,
check = TRUE,
formula = mu ~ .

)

Arguments

fit_data Tibble with the data used for the fit. It must have one column with the observed
growth rate (named mu by default; can be changed using the "formula" argument)
and as many columns as needed with the environmental factors.

starting_point Named vector with initial values for the model parameters to estimate from the
data. The growth rate under optimum conditions must be named mu_opt. The
rest must be called ’env_factor’+’_’+’parameter’. For instance, the minimum
pH for growth is ’pH_xmin’.

68 fit_secondary_growth

known_pars Named vector of fixed model parameters. Must be named using the same con-
vention as starting_point.

sec_model_names

Named character vector defining the secondary model for each environmental
factor.

transformation Character defining the transformation of mu for model fitting. One of sq (square
root; default), log (log-transform) or none (no transformation).

... Additional arguments passed to FME::modFit().

check Whether to do some basic checks (TRUE by default).

formula an object of class "formula" describing the y variable. The right hand side must
be ".". By default mu ~ ..

Value

An instance of FitSecondaryGrowth().

Examples

We use the data included in the package

data("example_cardinal")

Define the models to fit

sec_model_names <- c(temperature = "Zwietering", pH = "CPM")

Any model parameter can be fixed

known_pars <- list(mu_opt = 1.2, temperature_n = 1,
pH_n = 2, pH_xmax = 6.8, pH_xmin = 5.2)

Initial values must be given for every other parameter

my_start <- list(temperature_xmin = 5, temperature_xopt = 35,
pH_xopt = 6.5)

We can now call the fitting function

fit_cardinal <- fit_secondary_growth(example_cardinal, my_start, known_pars, sec_model_names)

With summary, we can look at the parameter estimates

summary(fit_cardinal)

The plot function compares predictions against observations

plot(fit_cardinal)

Passing which = 2, generates a different kind of plot

fit_serial_dilution 69

plot(fit_cardinal, which = 2)
plot(fit_cardinal, which = 2, add_trend = TRUE)
plot(fit_cardinal, which = 2, add_segment = TRUE)

fit_serial_dilution Serial-fold dilution method

Description

Model fitting by the serial-fold dilution method

Usage

fit_serial_dilution(
TTD_data,
start,
dil_factor = 2,
mode = "intercept",
logN_det = NULL,
logN_dil0 = NULL,
max_dil = NULL

)

Arguments

TTD_data a tibble (or data.frame) with the TTD observed for different dilutions. It must
have two columns: TTD (the TTD) and dil the number of serial dilutions.

start named numeric vector of initial guesses for the model parameters

dil_factor dilution factor. By default, 2

mode one of "intercept" (serial dilution method with a generic intercept; default) or
"lambda" (able to estimate also the value of the lag phase duration)

logN_det log10 microbial concentration at the detection OD (only for mode = "lambda")

logN_dil0 log10 microbial concentration at wells where dilution = 0 (only for mode =
"lambda")

max_dil maximum number of dilutions to include. By default, NULL (no limit)

Examples

We can use the example data set

data("example_od")

We first need to estimate the TTDs

library(tidyverse)

70 full_Ratkowski

my_TTDs <- get_TTDs(example_od, target_OD = 0.2, codified = TRUE)
my_data <- filter(my_TTDs, condition == "S/6,5/35/R1")

Fitting using the "intercept" mode

guess <- c(a = 0, mu = .1) # we need initial guesses for the model parameters

my_fit <- fit_serial_dilution(my_data, start = guess)

The class returned implements common S3 methods

my_fit
summary(my_fit)
plot(my_fit)

The fitting can define a maximum number of dilutions

my_fit <- fit_serial_dilution(my_data, start = guess, max_dil = 4)
plot(my_fit)

Fitting using the "lambda" mode

logNdet <- 7.5 # this mode requires the microbial concentration at the detection OD
logN_dil0 <- 4 # and the concentration at the well with dilution 0
guess <- c(lambda = 0, mu = .1) # the guess must be defined now on lambda instead of a

my_fit2 <- fit_serial_dilution(my_data,
start = guess,
mode = "lambda",
logN_det = logNdet,
logN_dil0 = logN_dil0)

The instance implements the same S3 methods as before

my_fit2
summary(my_fit2)
plot(my_fit2)

full_Ratkowski Full Ratkowsky model

Description

Gamma model adapted from the one by Ratkowsky et al. (1983).

Usage

full_Ratkowski(x, xmin, xmax, c)

get_all_predictions 71

Arguments

x Value of the environmental factor.

xmin Minimum value for growth

xmax Maximum value for growth

c Parameter defining the speed of the decline

get_all_predictions A helper for making the plots

Description

A helper for making the plots

Usage

get_all_predictions(model)

Arguments

model An instance of FitMultipleDynamicGrowth

get_dyna_residuals Residuals of dynamic prediction

Description

Function for calculating residuals of a dynamic prediction according to the requirements of FME::modFit().

Usage

get_dyna_residuals(
this_p,
fit_data,
env_conditions,
known_pars,
sec_model_names,
cost = NULL,
logbase_mu = logbase_logN,
logbase_logN = 10

)

72 get_iso_residuals

Arguments

this_p named vector of model parameters
fit_data tibble with the data for the fit
env_conditions tibble with the environmental conditions
known_pars named vector of known model parameters
sec_model_names

named character vector with names the environmental conditions and values the
secondary model (e.g. ’CPM’).

cost an instance of modCost to be combined (to fit multiple models).
logbase_mu Base of the logarithm of the growthrate. By default, the same as logbase_logN.

See vignette about units for details.
logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See

vignette about units for details.

Value

An instance of FME::modCost().

get_iso_residuals Residuals of isothermal prediction

Description

Residuals of isothermal prediction

Usage

get_iso_residuals(
this_p,
fit_data,
model_name,
known_pars,
logbase_mu = logbase_logN,
logbase_logN = 10

)

Arguments

this_p named vector of model parameters to fit
fit_data tibble with the data for the fit
model_name character defining the primary growth model
known_pars named vector of fixed model parameters
logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as

logbase_logN. See vignette about units for details.
logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See

vignette about units for details.

get_multi_dyna_residuals 73

Value

An instance of modCost.

get_multi_dyna_residuals

Residuals of multiple dynamic predictions

Description

Function for calculating residuals of dynamic predictions under different conditions for the same
model parameters according to the requirements of FME::modFit().

Usage

get_multi_dyna_residuals(
this_p,
experiment_data,
known_pars,
sec_model_names,
logbase_mu = logbase_logN,
logbase_logN = 10

)

Arguments

this_p named vector of model parameters
experiment_data

a nested list with the experimental data. Each entry describes one experiment as
a list with two elements: data and conditions. data is a tibble with two columns:
time and logN. conditions is a tibble with one column named time and as many
additional columns as environmental factors.

known_pars named vector of known model parameters
sec_model_names

named character vector with names of the environmental conditions and values
of the secondary model (see secondary_model_data).

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Value

an instance of modCost.

74 get_TTDs

get_secondary_residuals

Residuals of secondary models

Description

Residual function for fit_secondary_growth().

Usage

get_secondary_residuals(
this_p,
my_data,
known_pars,
sec_model_names,
transformation

)

Arguments

this_p Named vector of model parameter values.

my_data Tibble with the data used for the fit.

known_pars Named vector of fixed model paramaters.
sec_model_names

Named character vector defining the secondary model for each environmental
factor.

transformation Character defining the tranformation of mu for model fitting. One of sq (square
root), log (log-transform) or none (no transformation).

Value

A numeric vector of residuals.

get_TTDs Estimation of the Time to Detection of OD measurements

Description

The function uses linear interpolation to identify the time at which different wells reached a target
optical density

Usage

get_TTDs(OD_data, target_OD, codified = FALSE)

GlobalGrowthComparison 75

Arguments

OD_data a tibble (or data.frame) with the readings of the equipment. It must have a
column named time with the time of the rading and as many additional columns
as conditions

target_OD target OD for the calculation of the TTD

codified whether the columns are codified. If FALSE (default), the TTD estimated for each
condition is returned as such. If TRUE, it is assumed that each column is codified
as condition_number-of-dilutions. Therefore, the results are separated to
simplify the application of fit_serial_dilution()

Value

A tibble with two or three columns. If codified = FALSE, the tibble has two columns: condition
(the name of the well according to OD_data) and TTD (the estimated time to detection). If the
target_OD was not reached for some well, it assigns NA. If codified = TRUE, the code returns an
additional column with the number of dilutions

Examples

data("example_od") # example dataset included int he package

get_TTDs(example_od, target_OD = 0.2) # default behaviour, returns two columns
get_TTDs(example_od, target_OD = 0.2, codified = TRUE) # extracts also the number of dilutions

GlobalGrowthComparison

GlobalGrowthComparison class

Description

The GlobalGrowthComparison class contains several functions for model comparison and model
selection of growth models. It should not be instanced directly. Instead, it should be constructed
using compare_growth_fits(). It is similar to GrowthComparison, although with specific tools
to deal with several experiments.

It includes two type of tools for model selection and comparison: statistical indexes and visual
analyses. Please check the sections below for details.

Note that all these tools use the names defined in compare_growth_fits(), so we recommend
passing a named list to that function.

76 GlobalGrowthComparison

Usage

S3 method for class 'GlobalGrowthComparison'
coef(object, ...)

S3 method for class 'GlobalGrowthComparison'
summary(object, ...)

S3 method for class 'GlobalGrowthComparison'
print(x, ...)

S3 method for class 'GlobalGrowthComparison'
plot(x, y, ..., type = 1, add_trend = TRUE)

Arguments

object an instance of GlobalGrowthComparison

... ignored

x an instance of GlobalGrowthComparison

y ignored

type if type==1, the plot compares the model predictions. If type ==2, the plot com-
pares the parameter estimates. If type==3, the plot shows the residuals

add_trend should a trend line of the residuals be added for type==3? TRUE by default

Methods (by generic)

• coef(GlobalGrowthComparison): table of parameter estimates

• summary(GlobalGrowthComparison): summary table for the comparison

• print(GlobalGrowthComparison): print of the model comparison

• plot(GlobalGrowthComparison): illustrations comparing the fitted models

Statistical indexes

GlobalGrowthComparison implements two S3 methods to obtain numerical values to facilitate
model comparison and selection.

• the coef method returns a tibble with the values of the parameter estimates and their corre-
sponding standard errors for each model.

• the summary returns a tibble with the AIC, number of degrees of freedom, mean error and root
mean squared error for each model.

Visual analyses

The S3 plot method can generate three types of plots:

• when type = 1, the plot compares the fitted growth curves against the experimental data used
to fit the model.

GlobalGrowthFit 77

• when type = 2, the plot compares the parameter estimates using error bars, where the limits
of the error bars are the expected value +/- one standard error. In case one model does not
has some model parameter (i.e. either because it is not defined or because it was fixed), the
parameter is not included in the plot.

• when type=3, the plot shows the tendency of the residuals for each model. This plot can be
used to detect deviations from independence.

These plots are divided by facets for each experiment.

GlobalGrowthFit GlobalGrowthFit class

Description

[Stable]

The GlobalGrowthFit class contains a growth model fitted to data using a global approach. Its
constructor is fit_growth().

It is a subclass of list with the items:

• algorithm: type of algorithm as in fit_growth()

• data: data used for model fitting

• start: initial guess of the model parameters

• known: fixed model parameters

• primary_model: a character describing the primary model

• fit_results: an instance of modFit or modMCMC with the results of the fit

• best_prediction: Instance of GrowthPrediction with the best growth fit

• sec_models: a named vector with the secondary models assigned for each environmental fac-
tor. NULL for environment="constant"

• env_conditions: a list with the environmental conditions used for model fitting. NULL for
environment="constant"

• niter: number of iterations of the Markov chain. NULL if algorithm != "MCMC"

• logbase_mu: base of the logarithm for the definition of parameter mu (check the relevant
vignette)

• logbase_logN: base of the logarithm for the definition of the population size (check the rele-
vant vignette)

• environment: "dynamic". Always

78 GlobalGrowthFit

Usage

S3 method for class 'GlobalGrowthFit'
print(x, ...)

S3 method for class 'GlobalGrowthFit'
coef(object, ...)

S3 method for class 'GlobalGrowthFit'
summary(object, ...)

S3 method for class 'GlobalGrowthFit'
predict(object, env_conditions, times = NULL, ...)

S3 method for class 'GlobalGrowthFit'
residuals(object, ...)

S3 method for class 'GlobalGrowthFit'
vcov(object, ...)

S3 method for class 'GlobalGrowthFit'
deviance(object, ...)

S3 method for class 'GlobalGrowthFit'
fitted(object, ...)

S3 method for class 'GlobalGrowthFit'
logLik(object, ...)

S3 method for class 'GlobalGrowthFit'
AIC(object, ..., k = 2)

S3 method for class 'GlobalGrowthFit'
plot(
x,
y = NULL,
...,
add_factor = NULL,
ylims = NULL,
label_x = "time",
label_y1 = NULL,
label_y2 = add_factor,
line_col = "black",
line_size = 1,
line_type = "solid",
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed",
point_size = 3,

GlobalGrowthFit 79

point_shape = 16,
subplot_labels = "AUTO"

)

S3 method for class 'GlobalGrowthFit'
predictMCMC(
model,
times,
env_conditions,
niter,
newpars = NULL,
formula = . ~ time

)

Arguments

x an instance of GlobalGrowthFit

... ignored

object an instance of GlobalGrowthFit

env_conditions Tibble with the (dynamic) environmental conditions during the experiment. It
must have one column named ’time’ with the storage time and as many columns
as required with the environmental conditions.

times Numeric vector of storage times for the predictions.

k penalty for the parameters (k=2 by default)

y ignored

add_factor whether to plot also one environmental factor. If NULL (default), no environ-
mental factor is plotted. If set to one character string that matches one entry of
x$env_conditions, that condition is plotted in the secondary axis

ylims A two dimensional vector with the limits of the primary y-axis.

label_x label of the x-axis

label_y1 Label of the primary y-axis.

label_y2 Label of the secondary y-axis.

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

line_col2 Same as lin_col, but for the environmental factor.

line_size2 Same as line_size, but for the environmental factor.

line_type2 Same as lin_type, but for the environmental factor.

point_size Size of the data points

point_shape shape of the data points

80 greek_tractors

subplot_labels labels of the subplots according to plot_grid.

model An instance of GlobalGrowthFit

niter Number of iterations.

newpars A named list defining new values for the some model parameters. The name
must be the identifier of a model already included in the model. These param-
eters do not include variation, so defining a new value for a fitted parameters
"fixes" it. NULL by default (no new parameters).

formula A formula stating the column named defining the elapsed time in env_conditions.
By default, . ~ time.

Value

An instance of MCMCgrowth.

Methods (by generic)

• print(GlobalGrowthFit): print of the model

• coef(GlobalGrowthFit): vector of fitted model parameters.

• summary(GlobalGrowthFit): statistical summary of the fit.

• predict(GlobalGrowthFit): vector of model predictions

• residuals(GlobalGrowthFit): model residuals. They are returned as a tibble with 4 columns:
time (storage time), logN (observed count), exp (name of the experiment) and res (residual).

• vcov(GlobalGrowthFit): variance-covariance matrix of the model, estimated as 1/(0.5*Hes-
sian) for regression and as the variance-covariance of the draws for MCMC

• deviance(GlobalGrowthFit): deviance of the model.

• fitted(GlobalGrowthFit): fitted values. They are returned as a tibble with 3 columns: time
(storage time), exp (experiment identifier) and fitted (fitted value).

• logLik(GlobalGrowthFit): loglikelihood of the model

• AIC(GlobalGrowthFit): Akaike Information Criterion

• plot(GlobalGrowthFit): comparison between the fitted model and the experimental data.

• predictMCMC(GlobalGrowthFit): prediction including parameter uncertainty

greek_tractors Number of tractors in Greece according to the World Bank

Description

A dataset showing the increase in tractors in Greece. It was retrieved from https://data.worldbank.org/indicator/AG.AGR.TRAC.NO?end=2009&start=1961&view=chart.

Usage

greek_tractors

GrowthComparison 81

Format

A tibble with 46 rows (each corresponding to one year) and 7 columns:

year Year for the recording

tractors Number of tractors

GrowthComparison GrowthComparison class

Description

The GrowthComparison class contains several functions for model comparison and model selection
of growth models. It should not be instanced directly. Instead, it should be constructed using
compare_growth_fits().

It includes two type of tools for model selection and comparison: statistical indexes and visual
analyses. Please check the sections below for details.

Note that all these tools use the names defined in compare_growth_fits(), so we recommend
passing a named list to that function.

Usage

S3 method for class 'GrowthComparison'
plot(x, y, ..., type = 1, add_trend = TRUE)

S3 method for class 'GrowthComparison'
coef(object, ...)

S3 method for class 'GrowthComparison'
print(x, ...)

S3 method for class 'GrowthComparison'
summary(object, ...)

Arguments

x an instance of GrowthComparison

y ignored

... ignored

type if type==1, the plot compares the model predictions. If type ==2, the plot com-
pares the parameter estimates. If type==3, the plot shows the residuals

add_trend should a trend line of the residuals be added for type==3? TRUE by default

object an instance of GrowthComparison

82 GrowthFit

Methods (by generic)

• plot(GrowthComparison): illustrations comparing the fitted models

• coef(GrowthComparison): table of parameter estimates

• print(GrowthComparison): print of the model comparison

• summary(GrowthComparison): summary table for the comparison

Statistical indexes

GrowthComparison implements two S3 methods to obtain numerical values to facilitate model
comparison and selection.

• the coef method returns a tibble with the values of the parameter estimates and their corre-
sponding standard errors for each model.

• the summary returns a tibble with the AIC, number of degrees of freedom, mean error and root
mean squared error for each model.

Visual analyses

The S3 plot method can generate three types of plots:

• when type = 1, the plot compares the fitted growth curves against the experimental data used
to fit the model.

• when type = 2, the plot compares the parameter estimates using error bars, where the limits
of the error bars are the expected value +/- one standard error. In case one model does not
have some model parameter (i.e. either because it is not defined or because it was fixed), the
parameter is not included in the plot.

• when type=3, the plot shows the tendency of the residuals for each model. This plot can be
used to detect deviations from independence.

GrowthFit GrowthFit class

Description

[Stable]
The GrowthFit class contains a growth model fitted to data under static or dynamic conditions. Its
constructor is fit_growth().

It is a subclass of list with the items:

• environment: type of environment as in fit_growth()

• algorithm: type of algorithm as in fit_growth()

• data: data used for model fitting

• start: initial guess of the model parameters

• known: fixed model parameters

GrowthFit 83

• primary_model: a character describing the primary model

• fit_results: an instance of modFit or modMCMC with the results of the fit

• best_prediction: Instance of GrowthPrediction with the best growth fit

• sec_models: a named vector with the secondary models assigned for each environmental fac-
tor. NULL for environment="constant"

• env_conditions: a tibble with the environmental conditions used for model fitting. NULL for
environment="constant"

• niter: number of iterations of the Markov chain. NULL if algorithm != "MCMC"

• logbase_mu: base of the logarithm for the definition of parameter mu (check the relevant
vignette)

• logbase_logN: base of the logarithm for the definition of the population size (check the rele-
vant vignette)

Usage

S3 method for class 'GrowthFit'
print(x, ...)

S3 method for class 'GrowthFit'
coef(object, ...)

S3 method for class 'GrowthFit'
summary(object, ...)

S3 method for class 'GrowthFit'
predict(object, times = NULL, env_conditions = NULL, ...)

S3 method for class 'GrowthFit'
residuals(object, ...)

S3 method for class 'GrowthFit'
vcov(object, ...)

S3 method for class 'GrowthFit'
deviance(object, ...)

S3 method for class 'GrowthFit'
fitted(object, ...)

S3 method for class 'GrowthFit'
logLik(object, ...)

S3 method for class 'GrowthFit'
AIC(object, ..., k = 2)

S3 method for class 'GrowthFit'
plot(

84 GrowthFit

x,
y = NULL,
...,
add_factor = NULL,
line_col = "black",
line_size = 1,
line_type = 1,
point_col = "black",
point_size = 3,
point_shape = 16,
ylims = NULL,
label_y1 = NULL,
label_y2 = add_factor,
label_x = "time",
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed"

)

S3 method for class 'GrowthFit'
predictMCMC(
model,
times,
env_conditions,
niter,
newpars = NULL,
formula = . ~ time

)

Arguments

x The object of class GrowthFit to plot.

... ignored.

object an instance of GrowthFit

times Numeric vector of storage times for the predictions.

env_conditions Tibble with the (dynamic) environmental conditions during the experiment. It
must have one column named ’time’ with the storage time and as many columns
as required with the environmental conditions.

k penalty for the parameters (k=2 by default)

y ignored

add_factor whether to plot also one environmental factor. If NULL (default), no environ-
mental factor is plotted. If set to one character string that matches one entry
of x$env_conditions, that condition is plotted in the secondary axis. Ignored if
environment="constant"

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

GrowthFit 85

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

point_col Aesthetic parameter to change the colour of the point geom, see: ggplot2::geom_point()
point_size Aesthetic parameter to change the size of the point geom, see: ggplot2::geom_point()
point_shape Aesthetic parameter to change the shape of the point geom, see: ggplot2::geom_point()
ylims A two dimensional vector with the limits of the primary y-axis. NULL by default
label_y1 Label of the primary y-axis.
label_y2 Label of the secondary y-axis. Ignored if environment="constant"
label_x Label of the x-axis
line_col2 Same as lin_col, but for the environmental factor. Ignored if environment="constant"
line_size2 Same as line_size, but for the environmental factor. Ignored if environment="constant"
line_type2 Same as lin_type, but for the environmental factor. Ignored if environment="constant"
model An instance of GrowthFit
niter Number of iterations.
newpars A named list defining new values for the some model parameters. The name

must be the identifier of a model already included in the model. These param-
eters do not include variation, so defining a new value for a fitted parameters
"fixes" it. NULL by default (no new parameters).

formula A formula stating the column named defining the elapsed time in env_conditions.
By default, . ~ time.

Value

An instance of MCMCgrowth.

Methods (by generic)

• print(GrowthFit): print of the model
• coef(GrowthFit): vector of fitted model parameters.
• summary(GrowthFit): statistical summary of the fit.
• predict(GrowthFit): vector of model predictions.
• residuals(GrowthFit): vector of model residuals.
• vcov(GrowthFit): variance-covariance matrix of the model, estimated as 1/(0.5*Hessian) for

regression and as the variance-covariance of the draws for MCMC
• deviance(GrowthFit): deviance of the model.
• fitted(GrowthFit): vector of fitted values.
• logLik(GrowthFit): loglikelihood of the model
• AIC(GrowthFit): Akaike Information Criterion
• plot(GrowthFit): compares the fitted model against the data.
• predictMCMC(GrowthFit): prediction including parameter uncertainty

86 GrowthPrediction

GrowthPrediction GrowthPrediction class

Description

[Stable]
The GrowthPrediction class contains the results of a growth prediction. Its constructor is predict_growth().

It is a subclass of list with the items:

• simulation: a tibble with the model simulation

• primary model: a list describing the primary model as in predict_growth()

• environment: a character describing the type of environmental conditions as in predict_growth()

• env_conditions: a named list with the functions used to approximate the (dynamic) environ-
mental conditions. NULL if environment="constant".

• sec_models: a named list describing the secondary models as in predict_growth(). NULL if
environment="constant".

• gammas: a tibble describing the variation of the gamma factors through the experiment. NUll
if environment="constant".

• logbase_mu: the log-base for the definition of parameter mu (see the relevant vignette)

• logbase_logN: the log-base for the definition of the logarithm of the population size

Usage

S3 method for class 'GrowthPrediction'
print(x, ...)

S3 method for class 'GrowthPrediction'
summary(object, ...)

S3 method for class 'GrowthPrediction'
plot(
x,
y = NULL,
...,
add_factor = NULL,
ylims = NULL,
label_y1 = NULL,
label_y2 = add_factor,
line_col = "black",
line_size = 1,
line_type = "solid",
line_col2 = "black",
line_size2 = 1,
line_type2 = "dashed",

GrowthPrediction 87

label_x = "time"
)

S3 method for class 'GrowthPrediction'
coef(object, ...)

Arguments

x The object of class GrowthPrediction to plot.

... ignored

object an instance of GrowthPrediction

y ignored

add_factor whether to plot also one environmental factor. If NULL (default), no environ-
mental factor is plotted. If set to one character string that matches one entry of
x$env_conditions, that condition is plotted in the secondary axis. Ignored for
environment="constant".

ylims A two dimensional vector with the limits of the primary y-axis.

label_y1 Label of the primary y-axis.

label_y2 Label of the secondary y-axis.

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

line_col2 Same as lin_col, but for the environmental factor.

line_size2 Same as line_size, but for the environmental factor.

line_type2 Same as lin_type, but for the environmental factor.

label_x Label of the x-axis.

Methods (by generic)

• print(GrowthPrediction): print of the model

• summary(GrowthPrediction): summary of the model

• plot(GrowthPrediction): predicted growth curve.

• coef(GrowthPrediction): coefficients of the model

88 GrowthUncertainty

GrowthUncertainty GrowthUncertainty class

Description

[Stable]
The GrowthUncertainty class contains the results of a growth prediction under isothermal condi-
tions considering parameter uncertainty. Its constructor is predict_growth_uncertainty().

It is a subclass of list with the items:

• sample: parameter sample used for the calculations.

• simulations: growth curves predicted for each parameter.

• quantiles: limits of the credible intervals (5%, 10%, 50%, 90%, 95%) for each time point.

• model: Model used for the calculations.

• mus: Mean parameter values used for the simulations.

• sigma: Variance-covariance matrix used for the simulations.

• logbase_mu: base of the logarithm for the definition of parameter mu (check the relevant
vignette)

• logbase_logN: base of the logarithm for the definition of the population size (check the rele-
vant vignette)

Usage

S3 method for class 'GrowthUncertainty'
print(x, ...)

S3 method for class 'GrowthUncertainty'
plot(
x,
y = NULL,
...,
line_col = "black",
line_size = 0.5,
line_type = "solid",
ribbon80_fill = "grey",
ribbon90_fill = "grey",
alpha80 = 0.5,
alpha90 = 0.4

)

Arguments

x The object of class GrowthUncertainty to plot.

... ignored.

growth_pH_temperature 89

y ignored

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

ribbon80_fill fill colour for the space between the 10th and 90th quantile, see: ggplot2::geom_ribbon()

ribbon90_fill fill colour for the space between the 5th and 95th quantile, see: ggplot2::geom_ribbon()

alpha80 transparency of the ribbon aesthetic for the space between the 10th and 90th
quantile. Takes a value between 0 (fully transparant) and 1 (fully opaque)

alpha90 transparency of the ribbon aesthetic for the space between the 5th and 95th quan-
tile. Takes a value between 0 (fully transparant) and 1 (fully opaque).

Methods (by generic)

• print(GrowthUncertainty): print of the model

• plot(GrowthUncertainty): Growth prediction (prediction band) considering parameter un-
certainty.

growth_pH_temperature Example of dynamic growth

Description

A dataset to demonstrate the use of fit_dynamic_growth. The values of the environmental conditions
are described in conditions_pH_temperature.

Usage

growth_pH_temperature

Format

A tibble with 20 rows and 2 columns:

time elapsed time

logN decimal logarithm of the population size

90 inhibitory_model

growth_salmonella Growth of Salmonella spp in broth

Description

An example dataset to illustrate fit_isothermal_growth(). It describes the growth of Salmonella
spp. in broth. It was retrieved from ComBase (ID: B092_10).

Usage

growth_salmonella

Format

A tibble with 21 rows and 2 columns:

time elapsed time in hours.

logN observed population size (log CFU/g).

inhibitory_model Secondary model for inhibitory compounds

Description

Secondary model for the effect of inhibitory compounds.

Usage

inhibitory_model(x, MIC, alpha)

Arguments

x Value of the environmental factor (in principle, concentration of compound).

MIC Minimum Inhibitory Concentration

alpha shape factor of the miodel

Value

The corresponding gamma factor.

is.DynamicGrowth 91

is.DynamicGrowth Test of DynamicGrowth object

Description

Tests if an object is of class DynamicGrowth.

Usage

is.DynamicGrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class DynamicGrowth

is.FitDynamicGrowth Test of FitDynamicGrowth object

Description

Tests if an object is of class FitDynamicGrowth.

Usage

is.FitDynamicGrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class FitDynamicGrowth

92 is.FitIsoGrowth

is.FitDynamicGrowthMCMC

Test of FitDynamicGrowthMCMC object

Description

Tests if an object is of class FitDynamicGrowthMCMC.

Usage

is.FitDynamicGrowthMCMC(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class FitDynamicGrowthMCMC

is.FitIsoGrowth Test of FitIsoGrowth object

Description

Tests if an object is of class FitIsoGrowth.

Usage

is.FitIsoGrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class FitIsoGrowth

is.FitMultipleDynamicGrowth 93

is.FitMultipleDynamicGrowth

Test of FitMultipleDynamicGrowth object

Description

Tests if an object is of class FitMultipleDynamicGrowth.

Usage

is.FitMultipleDynamicGrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class FitMultipleDynamicGrowth

is.FitMultipleDynamicGrowthMCMC

Test of FitMultipleDynamicGrowthMCMC object

Description

Tests if an object is of class FitMultipleDynamicGrowthMCMC.

Usage

is.FitMultipleDynamicGrowthMCMC(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class FitMultipleDynamicGrowthMCMC

94 is.GlobalGrowthFit

is.FitSecondaryGrowth Test of FitSecondaryGrowth object

Description

Tests if an object is of class FitSecondaryGrowth.

Usage

is.FitSecondaryGrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class FitSecondaryGrowth

is.GlobalGrowthFit Test of GlobalGrowthFit object

Description

Tests if an object is of class GlobalGrowthFit

Usage

is.GlobalGrowthFit(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class GlobalGrowthFit

is.GrowthFit 95

is.GrowthFit Test of GrowthFit object

Description

Tests if an object is of class GrowthFit

Usage

is.GrowthFit(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class GrowthFit

is.GrowthPrediction Test of GrowthPrediction object

Description

Tests if an object is of class GrowthPrediction

Usage

is.GrowthPrediction(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class GrowthPrediction

96 is.IsothermalGrowth

is.GrowthUncertainty Test of GrowthUncertainty object

Description

Tests if an object is of class GrowthUncertainty

Usage

is.GrowthUncertainty(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class GrowthUncertainty

is.IsothermalGrowth Test of IsothermalGrowth object

Description

Tests if an object is of class IsothermalGrowth.

Usage

is.IsothermalGrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class IsothermalGrowth

is.MCMCgrowth 97

is.MCMCgrowth Test of MCMCgrowth object

Description

Tests if an object is of class MCMCgrowth.

Usage

is.MCMCgrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class MCMCgrowth

is.StochasticGrowth Test of StochasticGrowth object

Description

Tests if an object is of class StochasticGrowth.

Usage

is.StochasticGrowth(x)

Arguments

x object to be checked.

Value

A boolean specifying whether x is of class StochasticGrowth

98 IsothermalGrowth

IsothermalGrowth IsothermalGrowth class

Description

[Superseded]
The class IsothermalGrowth has been superseded by the top-level class GrowthPrediction, which
provides a unified approach for growth modelling.

Still, it is still returned if the superseded predict_isothermal_growth() is called.

It is a subclass of list with the items:

• simulation: A tibble with the model simulation.

• model: The name of the model used for the predictions.

• pars: A list with the values of the model parameters.

Usage

S3 method for class 'IsothermalGrowth'
print(x, ...)

S3 method for class 'IsothermalGrowth'
plot(
x,
y = NULL,
...,
line_col = "black",
line_size = 1,
line_type = "solid",
ylims = NULL,
label_y = NULL,
label_x = "time"

)

S3 method for class 'IsothermalGrowth'
coef(object, ...)

Arguments

x The object of class IsothermalGrowth to plot.

... ignored

y ignored

line_col Aesthetic parameter to change the colour of the line, see: ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line, see: ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line, takes numbers (1-6) or strings
("solid") see: ggplot2::geom_line()

iso_Baranyi 99

ylims Two-dimensional numeric vector with the limits of the y-axis (or NULL, which is
the default)

label_y Title of the y-axis

label_x Title of the x-axis

object an instance of IsothermalGrowth

Methods (by generic)

• print(IsothermalGrowth): print of the model

• plot(IsothermalGrowth): plot of the predicted growth curve.

• coef(IsothermalGrowth): coefficients of the model

iso_Baranyi Isothermal Baranyi model

Description

Baranyi growth model as defined by Baranyi and Roberts (1994). We use the solution calcu-
lated by Poschet et al. (2005, doi: https://doi.org/10.1016/j.ijfoodmicro.2004.10.008) after log-
transformation according to MONTE CARLO ANALYSIS FOR MICROBIAL GROWTH CURVES,
by Oksuz and Buzrul.

Usage

iso_Baranyi(times, logN0, mu, lambda, logNmax)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

lambda Lag phase duration

logNmax Maximum log microbial count

Value

Numeric vector with the predicted microbial count.

100 iso_Baranyi_noStat

iso_Baranyi_noLag Isothermal Baranyi model without lag phase

Description

Baranyi growth model as defined by Baranyi and Roberts (1994). We use the solution calcu-
lated by Poschet et al. (2005, doi: https://doi.org/10.1016/j.ijfoodmicro.2004.10.008) after log-
transformation according to MONTE CARLO ANALYSIS FOR MICROBIAL GROWTH CURVES,
by Oksuz and Buzrul.

Usage

iso_Baranyi_noLag(times, logN0, mu, logNmax)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

logNmax Maximum log microbial count

Value

Numeric vector with the predicted microbial count.

iso_Baranyi_noStat Isothermal Baranyi model without stationary phase

Description

Baranyi growth model as defined by Baranyi and Roberts (1994). We use the solution calcu-
lated by Poschet et al. (2005, doi: https://doi.org/10.1016/j.ijfoodmicro.2004.10.008) after log-
transformation according to MONTE CARLO ANALYSIS FOR MICROBIAL GROWTH CURVES,
by Oksuz and Buzrul.

Usage

iso_Baranyi_noStat(times, logN0, mu, lambda)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

lambda Lag phase duration

iso_repGompertz 101

Value

Numeric vector with the predicted microbial count.

iso_repGompertz Reparameterized Gompertz model

Description

Reparameterized Gompertz growth model defined by Zwietering et al. (1990).

Usage

iso_repGompertz(times, logN0, C, mu, lambda)

Arguments

times Numeric vector of storage times
logN0 Initial log microbial count
C Difference between logN0 and the maximum log-count.
mu Maximum specific growth rate (in ln CFU/t)
lambda Lag phase duration

Value

Numeric vector with the predicted microbial count.

lambda_to_Q0 Q0 from lag phase duration

Description

[Stable]
Convenience function to calculate the value of Q0 for the Baranyi model from the duration of the
lag phase

Usage

lambda_to_Q0(lambda, mu, logbase_mu = 10)

Arguments

lambda Duration of the lag phase.
mu Specific growth rate in the exponential phase.
logbase_mu Base of the logarithm the growth rate is referred to. By default, 10 (i.e. log10).

See vignette about units for details.

102 loglinear_model

logistic_model Logistic growth model

Description

Logistic growth model

Usage

logistic_model(times, logN0, mu, lambda, C)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

lambda Lag phase duration

C Difference between logN0 and the maximum log-count.

Value

Numeric vector with the predicted microbial count

loglinear_model Loglinear model

Description

Loglinear model

Usage

loglinear_model(times, logN0, mu)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

make_guess_coupled 103

make_guess_coupled Initial guesses for fitting the Baranyi-Ratkowsky model

Description

[Experimental]
The function uses some heuristics to provide initial guesses for the parameters of the Baranyi-
Ratkowsky model selected that can be used with fit_coupled_growth().

Usage

make_guess_coupled(fit_data, mode = "two_steps")

Arguments

fit_data Tibble (or data.frame) of data for the fit. The shape of the data will depend on
the fitting mode (see fit_coupled_growth())

mode the type of model fitting approach. Either two_steps (fitted from the values of
mu and lambda) or one_step (fitted from logN)

Value

A named numeric vector of initial guesses for the model parameters

Examples

Example 1: Two-steps fitting---

data(example_coupled_twosteps)

guess <- make_guess_coupled(example_coupled_twosteps)

show_guess_coupled(example_coupled_twosteps, guess)

my_fit <- fit_coupled_growth(example_coupled_twosteps,
start = guess,
mode = "two_steps")

print(my_fit)
coef(my_fit)
summary(my_fit)
plot(my_fit)

Example 2: One-step fitting--

data("example_coupled_onestep")

guess <- make_guess_coupled(example_coupled_onestep, mode = "one_step")

104 make_guess_primary

show_guess_coupled(example_coupled_onestep,
guess,
"one_step")

my_fit <- fit_coupled_growth(example_coupled_onestep,
start = guess,
mode = "one_step")

print(my_fit)
coef(my_fit)
summary(my_fit)
plot(my_fit)

make_guess_factor Initial guesses for the secondary model of one factor

Description

Initial guesses for the secondary model of one factor

Usage

make_guess_factor(fit_data, sec_model, factor)

Arguments

fit_data Tibble with the data used for the fit. It must have one column with the observed
growth rate (named mu by default; can be changed using the "formula" argument)
and as many columns as needed with the environmental factors.

sec_model character defining the secondary model equation according to secondary_model_data()

factor character defining the environmental factor

make_guess_primary Initial guesses for fitting primary growth models

Description

[Experimental]

The function uses some heuristics to provide initial guesses for the parameters of the growth model
selected that can be used with fit_growth().

make_guess_primary 105

Usage

make_guess_primary(
fit_data,
primary_model,
logbase_mu = 10,
formula = logN ~ time

)

Arguments

fit_data the experimental data. A tibble (or data.frame) with a column named time with
the elapsed time and one called logN with the logarithm of the population size

primary_model a string defining the equation of the primary model, as defined in primary_model_data()

logbase_mu Base of the logarithm the growth rate is referred to. By default, 10 (i.e. log10).
See vignette about units for details.

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

Value

A named numeric vector of initial guesses for the model parameters

Examples

An example of experimental data

my_data <- data.frame(time = 0:9,
logN = c(2, 2.1, 1.8, 2.5, 3.1, 3.4, 4, 4.5, 4.8, 4.7))

We just need to pass the data and the model equation

make_guess_primary(my_data, "Logistic")

We can use this together with fit_growth()

fit_growth(my_data,
list(primary = "Logistic"),
make_guess_primary(my_data, "Logistic"),
c()
)

The parameters returned by the function are adapted to the model

make_guess_primary(my_data, "Baranyi")

It can express mu in other logbases

make_guess_primary(my_data, "Baranyi", logbase_mu = exp(1)) # natural
make_guess_primary(my_data, "Baranyi", logbase_mu = 2) # base2

106 make_guess_secondary

make_guess_secondary Initial guesses for the parameters of a secondary model

Description

[Experimental]

Uses some heuristic rules to generate an initial guess of the model parameters of secondary growth
models that can be used for model fitting with fit_secondary_growth().

Usage

make_guess_secondary(fit_data, sec_model_names)

Arguments

fit_data Tibble with the data used for the fit. It must have one column with the observed
growth rate (named mu by default; can be changed using the "formula" argument)
and as many columns as needed with the environmental factors.

sec_model_names

Named character vector defining the secondary model for each environmental
factor.

Examples

We can use the example dataset included in the package

data("example_cardinal")

We assign model equations to factors as usual

sec_model_names <- c(temperature = "Zwietering", pH = "fullRatkowsky")

We can then calculate the initial guesses

make_guess_secondary(example_cardinal, sec_model_names)

We can pass these parameters directly to fit_secondary_growth

fit_secondary_growth(example_cardinal,
make_guess_secondary(example_cardinal, sec_model_names),
c(),
sec_model_names)

MCMCcoupled 107

MCMCcoupled MCMCcoupled class

Description

[Stable]
The MCMCcoupled class contains the results of a growth prediction consider parameter variability
based on a model fitted using fit_coupled_growth()

It is a subclass of list with items:

• sample: Parameter sample used for the calculations.

• simulations: Individual growth curves calculated based on the parameter sample.

• quantiles: Tibble with the limits of the credible intervals (5%, 10%, 50%, 90% and 95%) for
each time point.

Usage

S3 method for class 'MCMCcoupled'
plot(
x,
y = NULL,
...,
add_factor = NULL,
alpha_conf = 0.5,
fill_conf = "grey",
linetype_conf = 2,
linecol_conf = "grey45",
linetype_pred = 1,
alpha_pred = 0.5,
fill_pred = "grey",
linecol_pred = "grey45",
line_col = "black",
line_type = 1,
line_size = 0.5,
label_y = "logN",
label_x = "time"

)

Arguments

x The object of class MCMCcoupled to plot.

y ignored

... ignored.

add_factor Includes the variation of one environmental factor in the plot. It must be one of
the column names in x$env_conditions.

108 MCMCgrowth

alpha_conf transparency of the ribbon for the confidence interval. .5 by default.

fill_conf fill colour of the ribbon for the confidence interval. "grey" by default.

linetype_conf linetype for the line of the confidence interval. solid by default.

linecol_conf colour of the line for the confidence interval. "black" by default.

linetype_pred linetype for the line of the prediction interval. solid by default.

alpha_pred transparency of the ribbon for the prediction interval. .5 by default.

fill_pred fill colour of the ribbon for the prediction interval. "grey" by default.

linecol_pred colour of the line for the prediction interval. "grey45" by default.

line_col color of the line representing the median ("black" by default).

line_type type for the line representing the median (solid by default).

line_size size of the line representing the median. 1 by default.

label_y label of the y axis. "logN" by default.

label_x label for the x-label ("time" by default).

Methods (by generic)

• plot(MCMCcoupled): plot of predicted growth (prediction band).

MCMCgrowth MCMCgrowth class

Description

[Stable]

The MCMCgrowth class contains the results of a growth prediction consider parameter variability
based on a model fitted using an MCMC algorithm.

It is a subclass of list with items:

• sample: Parameter sample used for the calculations.

• simulations: Individual growth curves calculated based on the parameter sample.

• quantiles: Tibble with the limits of the credible intervals (5%, 10%, 50%, 90% and 95%) for
each time point.

• model: Instance of FitDynamicGrowthMCMC used for predictions.

• env_conditions: A tibble with the environmental conditions of the simulation.

MCMCgrowth 109

Usage

S3 method for class 'MCMCgrowth'
print(x, ...)

S3 method for class 'MCMCgrowth'
plot(
x,
y = NULL,
...,
add_factor = NULL,
alpha_80 = 0.5,
fill_80 = "grey",
alpha_90 = 0.5,
fill_90 = "grey",
label_y1 = "logN",
label_y2 = add_factor,
line_col = "black",
line_type = 1,
line_size = 1,
line_type2 = 2,
line_col2 = "black",
line_size2 = 1,
ylims = NULL

)

Arguments

x The object of class MCMCgrowth to plot.

... ignored.

y ignored

add_factor Includes the variation of one environmental factor in the plot. It must be one of
the column names in x$env_conditions.

alpha_80 transparency of the ribbon for the 80th posterior. .5 by default.

fill_80 fill colour of the ribbon for the 80th posterior. "grey" by default.

alpha_90 transparency of the ribbon for the 90th posterior. .5 by default.

fill_90 fill colour of the ribbon for the 90th posterior. "grey" by default.

label_y1 label of the primary y axis. "logN" by default.

label_y2 label of the secondary y axis. The name of the environmental factor by default.

line_col colour of the line representing the median. "black" by default.

line_type linetype for the line representing the median. solid by default.

line_size size of the line representing the median. 1 by default.

line_type2 linetype for the line representing the environmental condition. Dashed by de-
fault.

line_col2 colour of the line representing the environmental condition. "black" by default.

110 multiple_counts

line_size2 size of the line representing the environmental condition. 1 by default.

ylims limits of the primary y-axis. NULL by default (let ggplot choose).

Methods (by generic)

• print(MCMCgrowth): print of the model

• plot(MCMCgrowth): plot of predicted growth (prediction band).

multiple_conditions Environmental conditions during several dynamic experiments

Description

This dataset is paired with multiple_counts to illustrate the global fitting of fit_growth().

Usage

multiple_conditions

Format

A nested list with two elements, each one corresponding to one experiment. Each element is a
data.frame with three columns:

• time: elapsed time

• temperature: observed temperature

• pH: observed pH

multiple_counts Population growth observed in several dynamic experiments

Description

This dataset is paired with multiple_conditions to illustrate the global fitting of fit_growth().

Usage

multiple_counts

Format

A nested list with two elements, each one corresponding to one experiment. Each element is a
data.frame with two columns:

• time: elapsed time

• logN: log10 of the microbial concentration

multiple_experiments 111

multiple_experiments A set of growth experiments under dynamic conditions

Description

An example dataset illustrating the requirements of fit_multiple_growth() and fit_multiple_growth_MCMC().

Usage

multiple_experiments

Format

A nested list with two elements. Each element corresponds to one experiment and is described by a
list with two data frames:

data a tibble describing the microbial counts. It has 2 columns: time (elapsed time) and logN
(logarithm of the microbial count).

conditions a tibble describing the environmental conditions. It has 3 columns: time (elapsed time),
temperature (storage temperature) and pH (pH of the media).

predictMCMC Generic for calculating predictions with uncertainty from fits

Description

Generic for calculating predictions with uncertainty from fits

Usage

predictMCMC(
model,
times,
env_conditions,
niter,
newpars = NULL,
formula = . ~ time

)

112 predict_dynamic_growth

Arguments

model Fit object

times see specific methods for each class

env_conditions see specific methods for each class

niter see specific methods for each class

newpars see specific methods for each class

formula A formula stating the column named defining the elapsed time in env_conditions.
By default, . ~ time.

predictMCMC_coupled Generic for calculating predictions with uncertainty from fits

Description

Generic for calculating predictions with uncertainty from fits

Usage

predictMCMC_coupled(model, niter, newdata = NULL, includecorr = TRUE)

Arguments

model An instance of FitCoupledGrowth

niter number of MC simulations

newdata a tibble (or data.frame) with two columns (time and temperature) for the predic-
tion. By default, NULL (the fitting conditions)

includecorr whether to include parameter correlation (TRUE by default)

predict_dynamic_growth

Growth under dynamic conditions

Description

[Superseded]
The function predict_dynamic_growth() has been superseded by the top-level function predict_growth(),
which provides a unified approach for growth modelling.

Regardless on that, it can still predict population growth under dynamic conditions based on the
Baranyi model (Baranyi and Roberts, 1994) and secondary models based on the gamma concept
(Zwietering et al. 1992).

Model predictions are done by linear interpolation of the environmental conditions defined in
env_conditions.

predict_dynamic_growth 113

Usage

predict_dynamic_growth(
times,
env_conditions,
primary_pars,
secondary_models,
...,
check = TRUE,
logbase_logN = 10,
logbase_mu = logbase_logN,
formula = . ~ time

)

Arguments

times Numeric vector of storage times to make the predictions

env_conditions Tibble (or data.frame) describing the variation of the environmental conditions
during storage. It must have with the elapsed time (named time by default; can
be changed with the "formula" argument), and as many additional columns as
environmental factors.

primary_pars A named list defining the parameters of the primary model and the initial values
of the model variables. That is, with names mu_opt, Nmax, N0, Q0.

secondary_models

A nested list describing the secondary models.

... Additional arguments for deSolve::ode().

check Whether to check the validity of the models. TRUE by default.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

formula An object of class "formula" describing the x variable. . ~ time as a default.

Value

An instance of DynamicGrowth().

Examples

Definition of the environmental conditions

library(tibble)

my_conditions <- tibble(time = c(0, 5, 40),
temperature = c(20, 30, 35),
pH = c(7, 6.5, 5)
)

114 predict_growth

Definition of the model parameters

my_primary <- list(mu_opt = 2,
Nmax = 1e8,N0 = 1e0,
Q0 = 1e-3)

sec_temperature <- list(model = "Zwietering",
xmin = 25, xopt = 35, n = 1)

sec_pH = list(model = "CPM",
xmin = 5.5, xopt = 6.5,
xmax = 7.5, n = 2)

my_secondary <- list(
temperature = sec_temperature,
pH = sec_pH
)

my_times <- seq(0, 50, length = 1000)

Do the simulation

dynamic_prediction <- predict_dynamic_growth(my_times,
my_conditions, my_primary,
my_secondary)

Plot the results

plot(dynamic_prediction)

We can plot some environmental factor with add_factor

plot(dynamic_prediction, add_factor = "temperature", ylims= c(0, 8),
label_y1 = "Microbial count (log CFU/ml)",
label_y2 = "Storage temperature (C)")

predict_growth Prediction of microbial growth

Description

[Stable]

This function provides a top-level interface for predicting population growth. Predictions can be
made either under constant or dynamic environmental conditions. See below for details on the
calculations.

predict_growth 115

Usage

predict_growth(
times,
primary_model,
environment = "constant",
secondary_models = NULL,
env_conditions = NULL,
...,
check = TRUE,
logbase_mu = logbase_logN,
logbase_logN = 10,
formula = . ~ time

)

Arguments

times numeric vector of time points for making the predictions

primary_model named list defining the values of the parameters of the primary growth model

environment type of environment. Either "constant" (default) or "dynamic" (see below for
details on the calculations for each condition)

secondary_models

a nested list describing the secondary models. See below for details

env_conditions Tibble describing the variation of the environmental conditions for dynamic ex-
periments. It must have with the elapsed time (named time by default; can
be changed with the "formula" argument), and as many additional columns as
environmental factors. Ignored for "constant" environments.

... Additional arguments for deSolve::ode().

check Whether to check the validity of the models. TRUE by default.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

formula An object of class "formula" describing the x variable for predictions under
dynamic conditions. . ~ time as a default.

Details

To ease data input, the functions can convert between parameters defined in different scales. Namely,
for predictions in constant environments (environment="constant"):

• "logN0" can be defined as "N0". The function automatically calculates the log-transformation.

• "logNmax" can be defined as "Nmax". The function automatically calculates the log-transformation.

• "mu" can be defined as "mu_opt". The function assumes the prediction is under optimal
growth conditions.

• "lambda" can be defined by "Q0". The duration of the lag phase is calculated using Q0_to_lambda().

116 predict_growth

And, for predictions in dynamic environments (environment="dynamic"):

• "N0" can be defined as "N0". The function automatically calculates the antilog-transformation.

• "Nmax" can be defined as "logNmax". The function automatically calculates the antilog-
transformation.

• "mu" can be defined as "mu_opt". The function assumes mu was calculated under optimal
growth conditions.

• "Q0" can be defined by the value of "lambda" under dynamic conditions. Then, the value of
Q0 is calculated using lambda_to_Q0().

Value

An instance of GrowthPrediction.

Predictions in constant environments

Predictions under constant environments are calculated using only primary models. Consequently,
the arguments "secondary_models" and "env_conditions" are ignored. If these were passed, the
function would return a warning. In this case, predictions are calculated using the algebraic form of
the primary model (see vignette for details).

The growth model is defined through the "primary_model" argument using a named list. One
of the list elements must be named "model" and must take take one of the valid keys returned by
primary_model_data(). The remaining entries of the list define the values of the parameters of the
selected model. A list of valid keys can be retrieved using primary_model_data() (see example
below). Note that the functions can do some operations to facilitate the compatibility between
constant and dynamic environments (see Details).

Predictions in dynamic environments

Predictions under dynamic environments are calculated by solving numerically the differential
equation of the Baranyi growth model. The effect of changes in the environmental conditions in
the growth rate are calculated according to the gamma approach. Therefore, one must define both
primary and secondary models.

The dynamic environmental conditions are defined using a tibble (or data.frame) through the "env_conditions"
argument. It must include one column named "time" stating the elapsed time and as many additional
columns as environmental conditions included in the prediction. For values of time not included in
the tibble, the values of the environmental conditions are calculated by linear interpolation.

Primary models are defined as a named list through the "primary_model" argument. It must include
the following elements:

• N0: initial population size

• Nmax: maximum population size in the stationary growth phase

• mu_opt: growth rate under optimal growth conditions

• Q0: value defining the duration of the lag phase Additional details on these parameters can be
found in the package vignettes.

predict_growth 117

Secondary models are defined as a nested list through the "secondary_models" argument. The
list must have one entry per environmental condition, whose name must match those used in the
"env_conditions" argument. Each of these entries must be a named list defining the secondary
model for each environmental condition. The model equation is defined in an entry named "model"
(valid keys can be retrieved from secondary_model_data()). Then, additional entries defined the
values of each model parameters (valid keys can be retrieved from secondary_model_data())

For additional details on how to define the secondary models, please see the package vignettes (and
examples below).

Examples

Example 1 - Growth under constant conditions -----------------------------

Valid model keys can be retrieved calling primary_model_data()

primary_model_data()

my_model <- "modGompertz" # we will use the modified-Gompertz

The keys of the model parameters can also be obtained from primary_model_data()

primary_model_data(my_model)$pars

We define the primary model as a list

my_model <- list(model = "modGompertz", logN0 = 0, C = 6, mu = .2, lambda = 20)

We can now make the predictions

my_time <- seq(0, 100, length = 1000) # Vector of time points for the calculations

my_prediction <- predict_growth(my_time, my_model, environment = "constant")

The instance of IsothermalGrowth includes several S3 methods

print(my_prediction)
plot(my_prediction)
coef(my_prediction)

Example 2 - Growth under dynamic conditions ------------------------------

We will consider the effect of two factors: temperature and pH

my_conditions <- data.frame(time = c(0, 5, 40),
temperature = c(20, 30, 35),
pH = c(7, 6.5, 5)
)

The primary model is defined as a named list

my_primary <- list(mu = 2, Nmax = 1e7, N0 = 1, Q0 = 1e-3)

118 predict_growth_uncertainty

The secondary model is defined independently for each factor

sec_temperature <- list(model = "Zwietering",
xmin = 25, xopt = 35, n = 1)

sec_pH = list(model = "CPM",
xmin = 5.5, xopt = 6.5,
xmax = 7.5, n = 2)

Then, they are assigned to each factor using a named list

my_secondary <- list(
temperature = sec_temperature,
pH = sec_pH
)

We can call the function now

my_times <- seq(0, 50, length = 1000) # Where the output is calculated

dynamic_prediction <- predict_growth(environment = "dynamic",
my_times, my_primary, my_secondary,
my_conditions
)

The instance of DynamicGrowth includes several useful S3 methods

print(dynamic_prediction)
plot(dynamic_prediction)
plot(dynamic_prediction, add_factor = "pH")
coef(dynamic_prediction)

The time_to_size function can predict the time to reach a population size

time_to_size(my_prediction, 3)

predict_growth_uncertainty

Isothermal growth with parameter uncertainty

Description

[Stable]

Simulation of microbial growth considering uncertianty in the model parameters. Calculations
are based on Monte Carlo simulations, considering the parameters follow a multivariate normal
distribution.

predict_growth_uncertainty 119

Usage

predict_growth_uncertainty(
model_name,
times,
n_sims,
pars,
corr_matrix = diag(nrow(pars)),
check = TRUE,
logbase_mu = logbase_logN,
logbase_logN = 10

)

Arguments

model_name Character describing the primary growth model.

times Numeric vector of storage times for the simulations.

n_sims Number of simulations.

pars A tibble describing the parameter uncertainty (see details).

corr_matrix Correlation matrix of the model parameters. Defined in the same order as in
pars. An identity matrix by default (uncorrelated parameters).

check Whether to do some tests. FALSE by default.

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Details

The distributions of the model parameters are defined in the pars argument using a tibble with 4
columns:

• par: identifier of the model parameter (according to primary_model_data()),

• mean: mean value of the model parameter.,

• sd: standard deviation of the model parameter.,

• scale: scale at which the model parameter is defined. Valid values are ’original’ (no transfor-
mation), ’sqrt’ square root or ’log’ log-scale. The parameter sample is generated considering
the parameter follows a marginal normal distribution at this scale, and is later converted to the
original scale for calculations.

Value

An instance of GrowthUncertainty().

120 predict_growth_uncertainty

Examples

Definition of the simulation settings

my_model <- "Baranyi"
my_times <- seq(0, 30, length = 100)
n_sims <- 3000

library(tibble)

pars <- tribble(
~par, ~mean, ~sd, ~scale,
"logN0", 0, .2, "original",
"mu", 2, .3, "sqrt",
"lambda", 4, .4, "sqrt",
"logNmax", 6, .5, "original"

)

Calling the function

stoc_growth <- predict_growth_uncertainty(my_model, my_times, n_sims, pars)

We can plot the results

plot(stoc_growth)

Adding parameter correlation

my_cor <- matrix(c(1, 0, 0, 0,
0, 1, 0.7, 0,
0, 0.7, 1, 0,
0, 0, 0, 1),
nrow = 4)

stoc_growth2 <- predict_growth_uncertainty(my_model, my_times, n_sims, pars, my_cor)

plot(stoc_growth2)

The time_to_size function can calculate the median growth curve to reach a size

time_to_size(stoc_growth, 4)

Or the distribution of times

dist <- time_to_size(stoc_growth, 4, type = "distribution")
plot(dist)

predict_isothermal_growth 121

predict_isothermal_growth

Isothermal microbial growth

Description

[Superseded]
The function predict_isothermal_growth() has been superseded by the top-level function predict_growth(),
which provides a unified approach for growth modelling.

Regardless of that, it can still be used to predict population growth under static environmental
conditions (i.e. using primary models).

Usage

predict_isothermal_growth(
model_name,
times,
model_pars,
check = TRUE,
logbase_mu = 10,
logbase_logN = 10

)

Arguments

model_name Character defining the growth model.

times Numeric vector of storage times for the predictions.

model_pars Named vector or list defining the values of the model parameters.

check Whether to do basic checks (TRUE by default).

logbase_mu Base of the logarithm the growth rate is referred to. By default, the same as
logbase_logN. See vignette about units for details.

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Value

An instance of IsothermalGrowth().

Examples

Define the simulations parameters

my_model <- "modGompertz"
my_pars <- list(logN0 = 2, C = 6, mu = .2, lambda = 25)
my_time <- seq(0, 100, length = 1000)

122 predict_MCMC_growth

Do the simulation

static_prediction <- predict_isothermal_growth(my_model, my_time, my_pars)

Plot the results

plot(static_prediction)

predict_MCMC_growth Stochastic growth of MCMC fit

Description

[Superseded]
The function predict_MCMC_growth() has been superseded by predictMCMC() S3 methods of the
relevant classes.

Nonetheless, it can still make a prediction of microbial growth including parameter uncertainty
based on a growth model fitted using fit_MCMC_growth() or fit_multiple_growth_MCMC().
This function predicts growth curves for niter samples (with replacement) of the samples of the
MCMC algorithm. Then, credible intervals are calculated based on the quantiles of the model
predictions at each time point.

Usage

predict_MCMC_growth(
MCMCfit,
times,
env_conditions,
niter,
newpars = NULL,
formula = . ~ time

)

Arguments

MCMCfit An instance of FitDynamicGrowthMCMC or FitMultipleGrowthMCMC.

times Numeric vector of storage times for the predictions.

env_conditions Tibble with the (dynamic) environmental conditions during the experiment. It
must have one column named ’time’ with the storage time and as many columns
as required with the environmental conditions.

niter Number of iterations.

newpars A named list defining new values for the some model parameters. The name
must be the identifier of a model already included in the model. These param-
eters do not include variation, so defining a new value for a fitted parameters
"fixes" it. NULL by default (no new parameters).

predict_MCMC_growth 123

formula A formula stating the column named defining the elapsed time in env_conditions.
By default, . ~ time.

Value

An instance of MCMCgrowth().

Examples

We need a FitDynamicGrowthMCMC object

data("example_dynamic_growth")
data("example_env_conditions")

sec_model_names <- c(temperature = "CPM", aw= "CPM")

known_pars <- list(Nmax = 1e4, # Primary model
N0 = 1e0, Q0 = 1e-3, # Initial values of the primary model
mu_opt = 4, # mu_opt of the gamma model
temperature_n = 1, # Secondary model for temperature
aw_xmax = 1, aw_xmin = .9, aw_n = 1 # Secondary model for water activity
)

my_start <- list(temperature_xmin = 25, temperature_xopt = 35,
temperature_xmax = 40,
aw_xopt = .95)

set.seed(12124) # Setting seed for repeatability

my_MCMC_fit <- fit_MCMC_growth(example_dynamic_growth, example_env_conditions,
my_start, known_pars, sec_model_names, niter = 3000)

Define the conditions for the simulation

my_times <- seq(0, 15, length = 50)
niter <- 2000

newpars <- list(N0 = 1e-1, # A parameter that was fixed
temperature_xmax = 120 # A parameter that was fitted
)

Make the simulations

my_MCMC_prediction <- predict_MCMC_growth(my_MCMC_fit,
my_times,
example_env_conditions, # It could be different from the one used for fitting
niter,
newpars)

We can plot the prediction interval

plot(my_MCMC_prediction)

124 predict_stochastic_growth

We can also get the quantiles at each time point

print(my_MCMC_prediction$quantiles)

predict_stochastic_growth

Deprecated isothermal growth with parameter uncertainty

Description

[Deprecated]

predict_stochastic_growth() was renamed predict_growth_uncertainty() because the orig-
inal function name may be misleading, as this is not a stochastic differential equation

Usage

predict_stochastic_growth(
model_name,
times,
n_sims,
pars,
corr_matrix = diag(nrow(pars)),
check = TRUE

)

Arguments

model_name Character describing the primary growth model.

times Numeric vector of storage times for the simulations.

n_sims Number of simulations.

pars A tibble describing the parameter uncertainty (see details).

corr_matrix Correlation matrix of the model parameters. Defined in the same order as in
pars. An identity matrix by default (uncorrelated parameters).

check Whether to do some tests. FALSE by default.

pred_coupled_baranyi 125

pred_coupled_baranyi Predictions of the coupled Baranyi model

Description

Predictions of the coupled Baranyi model

Usage

pred_coupled_baranyi(p, temp, times)

Arguments

p a numeric vector of model parameters. Must have entries logN0, logNmax,
logC0, b and Tmin

temp a numeric vector of temperature values

times a numeric vector of time points for the prediction

Value

a numeric vector of predicted logN (in log CFU/TIME)

pred_lambda Prediction of lambda for the coupled model

Description

Prediction of lambda for the coupled model

Usage

pred_lambda(p, temp)

Arguments

p numeric vector (or list) of model parameters. Must have entries logC0, b and
Tmin

temp numeric vector of temperatures

Value

the values of lambda

126 primary_model_data

pred_sqmu Prediction of the square root of mu for the coupled model

Description

Prediction of the square root of mu for the coupled model

Usage

pred_sqmu(p, temp)

Arguments

p numeric vector (or list) of model parameters. Must have entries b and Tmin

temp numeric vector of temperatures

Value

the values of the square root of mu (in ln CFU/TIME)

primary_model_data Metainformation of primary growth models

Description

[Stable]

Provides different types of meta-data about the primary growth models included in biogrowth. This
information is the basis of the automatic checks, and can also help in the definition of models for
predict_growth() and fit_growth().

Usage

primary_model_data(model_name = NULL)

Arguments

model_name The name of the model or NULL (default).

Value

If model_name is NULL, returns a character string with the available models. If is a valid identifier,
it returns a list with metainformation about the model. If model_name name is not a valid identifier,
raises an error.

Q0_to_lambda 127

Q0_to_lambda Lag phase duration from Q0

Description

[Stable]
Convenience function to calculate the lag phase duration (lambda) of the Baranyi model from the
maximum specific growth rate and the initial value of the variable Q.

Note that this function uses the unit system of biogrowth (i.e. log10). Care must be taken when
using parameters obtained from other sources.

Usage

Q0_to_lambda(q0, mu, logbase_mu = 10)

Arguments

q0 Initial value of the variable Q.

mu Specific growth rate in the exponential phase.

logbase_mu Base of the logarithm the growth rate is referred to. By default, 10 (i.e. log10).
See vignette about units for details.

refrigeratorSpain Temperature recorded in refrigerators

Description

This dataset includes the temperature recorded in refrigerators in households of the Catalonia re-
gion. The data was published as part of Jofre et al. (2019) Domestic refrigerator temperatures
in Spain: Assessment of its impact on the safety and shelf-life of cooked meat products. Food
Research International, 126, 108578. And was kindly provided by the original authors of the study.

Usage

refrigeratorSpain

Format

A tibble with three columns:

• time: elapsed time in hours

• A1: temperature observed in refrigerator "1"

• A2: temperature observed in refrigerator "2"

128 residuals_sqmu

residuals_lambda Residuals for lambda for the coupled model

Description

Residuals for lambda for the coupled model

Usage

residuals_lambda(p, my_d)

Arguments

p numeric vector (or list) of model parameters. Must have entries logC0, b and
Tmin

my_d tibble (or data.frame) of data. It must have one column named temp (tempera-
ture) and one named lambda (specific growth rate; in ln CFU/TIME).

Value

vector of residuals

residuals_sqmu Residuals for the square root of mu for the coupled model

Description

Residuals for the square root of mu for the coupled model

Usage

residuals_sqmu(p, my_d)

Arguments

p numeric vector (or list) of model parameters. Must have entries b and Tmin

my_d tibble (or data.frame) of data. It must have one column named temp (tempera-
ture) and one named mu (specific growth rate; in ln CFU/TIME).

Value

vector of residuals

richards_model 129

richards_model Richards growth model

Description

Richards growth model

Usage

richards_model(times, logN0, mu, lambda, C, nu)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

lambda Lag phase duration

C Difference between logN0 and the maximum log-count.

nu Parameter describing the transition between growth phases

Rossoaw_model Secondary Rosso model for water activity

Description

Secondary model for water activity as defined by Aryani et al. (2001).

Usage

Rossoaw_model(x, xmin)

Arguments

x Value of the environmental factor (in principle, aw).

xmin Minimum value for growth (in principle, aw).

Value

The corresponding gamma factor.

130 SecondaryComparison

SecondaryComparison SecondaryComparison class

Description

The SecondaryComparison class contains several functions for model comparison and model se-
lection of growth models. It should not be instanced directly. Instead, it should be constructed using
compare_secondary_fits().

It includes two type of tools for model selection and comparison: statistical indexes and visual
analyses. Please check the sections below for details.

Note that all these tools use the names defined in compare_secondary_fits(), so we recommend
passing a named list to that function.

Usage

S3 method for class 'SecondaryComparison'
coef(object, ...)

S3 method for class 'SecondaryComparison'
summary(object, ...)

S3 method for class 'SecondaryComparison'
print(x, ...)

S3 method for class 'SecondaryComparison'
plot(x, y, ..., type = 1, add_trend = TRUE)

Arguments

object an instance of SecondaryComparison

... ignored

x an instance of SecondaryComparison

y ignored

type if type==1, the plot compares the model predictions. If type ==2, the plot com-
pares the parameter estimates.

add_trend should a trend line of the residuals be added for type==3? TRUE by default

Methods (by generic)

• coef(SecondaryComparison): table of parameter estimates

• summary(SecondaryComparison): summary table for the comparison

• print(SecondaryComparison): print of the model comparison

• plot(SecondaryComparison): illustrations comparing the fitted models

secondary_model_data 131

Statistical indexes

SecondaryComparison implements two S3 methods to obtain numerical values to facilitate model
comparison and selection.

• the coef method returns a tibble with the values of the parameter estimates and their corre-
sponding standard errors for each model.

• the summary returns a tibble with the AIC, number of degrees of freedom, mean error and root
mean squared error for each model.

Visual analyses

The S3 plot method can generate three types of plots:

• when type = 1, the plot compares the observations against the model predictions for each
model. The plot includes a linear model fitted to the residuals. In the case of a perfect fit, the
line would have slope=1 and intercept=0 (shown as a black, dashed line).

• when type = 2, the plot compares the parameter estimates using error bars, where the limits
of the error bars are the expected value +/- one standard error. In case one model does not
has some model parameter (i.e. either because it is not defined or because it was fixed), the
parameter is not included in the plot.

secondary_model_data Metainformation of secondary growth models

Description

[Stable]

Provides different types of meta-data about the secondary growth models included in biogrowth.
This information is the basis of the automatic checks, and can also help in the definition of models
for predict_growth() and fit_growth().

Usage

secondary_model_data(model_name = NULL)

Arguments

model_name The name of the model or NULL (default).

Value

If model_name is NULL, returns a character string with the available models. If is a valid identifier,
it returns a list with metainformation about the model. If model_name name is not a valid identifier,
raises an error.

132 show_guess_dynamic

show_guess_coupled Plot of the initial guess for the Baranyi-Ratkowsky model

Description

Compares the prediction corresponding to a guess of the parameters of the Baranyi-Ratkowsky
model against experimental data

Usage

show_guess_coupled(
fit_data,
guess,
mode = "two_steps",
logbase_mu = exp(1),
logbase_logN = 10

)

Arguments

fit_data Tibble (or data.frame) of data for the fit. The shape of the data will depend on
the fitting mode (see fit_coupled_growth())

guess Named vector with the initial guess of the model parameters

mode the type of model fitting approach. Either two_steps (fitted from the values of
mu and lambda) or one_step (fitted from logN)

logbase_mu Base for the definition of mu. By default, exp(1) (natural logarithm).

logbase_logN Base for the definition of logN. By default, 10 (decimal logarithm).

Value

A ggplot2::ggplot() comparing the model prediction against the data

show_guess_dynamic Plot of the initial guess for growth under dynamic environmental con-
ditions

Description

Compares the prediction corresponding to a guess of the parameters of the model against experi-
mental data

show_guess_primary 133

Usage

show_guess_dynamic(
fit_data,
model_keys,
guess,
env_conditions,
logbase_mu = 10,
formula = logN ~ time

)

Arguments

fit_data Tibble (or data.frame) of data for the fit. It must have two columns, one with the
elapsed time (time by default) and another one with the decimal logarithm of
the populatoin size (logN by default). Different column names can be defined
using the formula argument.

model_keys Named the equations of the secondary model as in fit_growth()

guess Named vector with the initial guess of the model parameters as in fit_growth()

env_conditions Tibble describing the variation of the environmental conditions for dynamic ex-
periments. See fit_growth().

logbase_mu Base of the logarithm the growth rate is referred to. By default, 10 (i.e. log10).
See vignette about units for details.

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

Value

A ggplot2::ggplot() comparing the model prediction against the data

show_guess_primary Plot of the initial guess for growth under constant environmental con-
ditions

Description

Compares the prediction corresponding to a guess of the parameters of the primary model against
experimental data

Usage

show_guess_primary(
fit_data,
model_name,
guess,
logbase_mu = 10,
formula = logN ~ time

)

134 StochasticGrowth

Arguments

fit_data Tibble (or data.frame) of data for the fit. It must have two columns, one with the
elapsed time (time by default) and another one with the decimal logarithm of
the populatoin size (logN by default). Different column names can be defined
using the formula argument.

model_name Character defining the primary growth model as per primary_model_data()

guess Named vector with the initial guess of the model parameters

logbase_mu Base of the logarithm the growth rate is referred to. By default, 10 (i.e. log10).
See vignette about units for details.

formula an object of class "formula" describing the x and y variables. logN ~ time as a
default.

Value

A ggplot2::ggplot() comparing the model prediction against the data

StochasticGrowth StochasticGrowth class

Description

[Deprecated]

The class StochasticGrowth has been deprecated by class GrowthUncertainty, which provides less
misleading name.

Still, it is still returned if the deprecated predict_stochastic_growth() is called.

The StochasticGrowth class contains the results of a growth prediction under isothermal condi-
tions considering parameter unceratinty. Its constructor is predict_stochastic_growth().

It is a subclass of list with the items:

• sample: parameter sample used for the calculations.

• simulations: growth curves predicted for each parameter.

• quantiles: limits of the credible intervals (5%, 10%, 50%, 90%, 95%) for each time point.

• model: Model used for the calculations.

• mus: Mean parameter values used for the simulations.

• sigma: Variance-covariance matrix used for the simulations.

StochasticGrowth 135

Usage

S3 method for class 'StochasticGrowth'
print(x, ...)

S3 method for class 'StochasticGrowth'
plot(
x,
y = NULL,
...,
line_col = "black",
line_size = 0.5,
line_type = "solid",
ribbon80_fill = "grey",
ribbon90_fill = "grey",
alpha80 = 0.5,
alpha90 = 0.4

)

Arguments

x The object of class StochasticGrowth to plot.

... ignored.

y ignored

line_col Aesthetic parameter to change the colour of the line geom in the plot, see:
ggplot2::geom_line()

line_size Aesthetic parameter to change the thickness of the line geom in the plot, see:
ggplot2::geom_line()

line_type Aesthetic parameter to change the type of the line geom in the plot, takes num-
bers (1-6) or strings ("solid") see: ggplot2::geom_line()

ribbon80_fill fill colour for the space between the 10th and 90th quantile, see: ggplot2::geom_ribbon()

ribbon90_fill fill colour for the space between the 5th and 95th quantile, see: ggplot2::geom_ribbon()

alpha80 transparency of the ribbon aesthetic for the space between the 10th and 90th
quantile. Takes a value between 0 (fully transparant) and 1 (fully opaque)

alpha90 transparency of the ribbon aesthetic for the space between the 5th and 95th quan-
tile. Takes a value between 0 (fully transparant) and 1 (fully opaque).

Details

FitIsoGrowth class

Methods (by generic)

• print(StochasticGrowth): print of the model

• plot(StochasticGrowth): Growth prediction (prediction band) considering parameter un-
certainty.

136 TimeDistribution

TimeDistribution TimeDistribution class

Description

The TimeDistribution class contains an estimate of the probability distribution of the time to
reach a given microbial count. Its constructor is distribution_to_logcount().

It is a subclass of list with the items:

• distribution Sample of the distribution of times to reach log_count.

• summary Summary statistics of distribution (mean, sd, median, q10 and q90).

Usage

S3 method for class 'TimeDistribution'
print(x, ...)

S3 method for class 'TimeDistribution'
summary(object, ...)

S3 method for class 'TimeDistribution'
plot(x, y = NULL, ..., bin_width = NULL)

Arguments

x The object of class TimeDistribution to plot.

... ignored.

object An instance of TimeDistribution.

y ignored.

bin_width A number that specifies the width of a bin in the histogram, see: ggplot2::geom_histogram().
NULL by default.

Methods (by generic)

• print(TimeDistribution): print of the model

• summary(TimeDistribution): summary of the model

• plot(TimeDistribution): plot of the distribution of the time to reach a microbial count.

time_to_logcount 137

time_to_logcount Time to reach a given microbial count

Description

[Superseded]

The function time_to_logcount() has been superseded by function time_to_size(), which pro-
vides a more general interface.

But it still returns the storage time required for the microbial count to reach log_count according to
the predictions of model. Calculations are done using linear interpolation of the model predictions.

Usage

time_to_logcount(model, log_count)

Arguments

model An instance of IsothermalGrowth or DynamicGrowth.

log_count The target log microbial count.

Value

The predicted time to reach log_count.

Examples

First of all, we will get an IsothermalGrowth object

my_model <- "modGompertz"
my_pars <- list(logN0 = 2, C = 6, mu = .2, lambda = 25)
my_time <- seq(0, 100, length = 1000)

static_prediction <- predict_isothermal_growth(my_model, my_time, my_pars)
plot(static_prediction)

And now we calculate the time to reach a microbial count

time_to_logcount(static_prediction, 2.5)

If log_count is outside the range of the predicted values, NA is returned

time_to_logcount(static_prediction, 20)

138 time_to_size

time_to_size Time for the population to reach a given size

Description

[Experimental]
Calculates the elapsed time required for the population to reach a given size (in log scale)

Usage

time_to_size(model, size, type = "discrete", logbase_logN = NULL)

Arguments

model An instance of GrowthPrediction, GrowthFit, GlobalGrowthFit, GrowthUncer-
tainty or MCMCgrowth.

size Target population size (in log scale)

type Tye of calculation, either "discrete" (default) or "distribution"

logbase_logN Base of the logarithm for the population size. By default, 10 (i.e. log10). See
vignette about units for details.

Details

The calculation method differs depending on the value of type. If type="discrete" (default),
the function calculates by linear interpolation a discrete time to reach the target population size. If
type="distribution", this calculation is repeated several times, generating a distribution of the
time. Note that this is only possible for instances of GrowthUncertainty or MCMCgrowth.

Value

If type="discrete", a number. If type="distribution", an instance of TimeDistribution.

Examples

Example 1 - Growth predictions ---

The model is defined as usual with predict_growth

my_model <- list(model = "modGompertz", logN0 = 0, C = 6, mu = .2, lambda = 20)

my_time <- seq(0, 100, length = 1000) # Vector of time points for the calculations

my_prediction <- predict_growth(my_time, my_model, environment = "constant")

plot(my_prediction)

We just have to pass the model and the size (in log10)

time_to_size 139

time_to_size(my_prediction, 3)

If the size is not reached, it returns NA

time_to_size(my_prediction, 8)

By default, it considers the population size is defined in the same log-base
as the prediction. But that can be changed using logbase_logN

time_to_size(my_prediction, 3)
time_to_size(my_prediction, 3, logbase_logN = 10)
time_to_size(my_prediction, log(100), logbase_logN = exp(1))

Example 2 - Model fit --

my_data <- data.frame(time = c(0, 25, 50, 75, 100),
logN = c(2, 2.5, 7, 8, 8))

models <- list(primary = "Baranyi")

known <- c(mu = .2)

start <- c(logNmax = 8, lambda = 25, logN0 = 2)

primary_fit <- fit_growth(my_data, models, start, known,
environment = "constant",
)

plot(primary_fit)

time_to_size(primary_fit, 4)

Example 3 - Global fitting ---

We need a model first

data("multiple_counts")
data("multiple_conditions")

sec_models <- list(temperature = "CPM", pH = "CPM")

known_pars <- list(Nmax = 1e8, N0 = 1e0, Q0 = 1e-3,
temperature_n = 2, temperature_xmin = 20,
temperature_xmax = 35,
temperature_xopt = 30,
pH_n = 2, pH_xmin = 5.5, pH_xmax = 7.5, pH_xopt = 6.5)

my_start <- list(mu_opt = .8)

global_fit <- fit_growth(multiple_counts,
sec_models,
my_start,

140 trilinear_model

known_pars,
environment = "dynamic",
algorithm = "regression",
approach = "global",
env_conditions = multiple_conditions
)

plot(global_fit)

The function calculates the time for each experiment

time_to_size(global_fit, 3)

It returns NA for the particular experiment if the size is not reached

time_to_size(global_fit, 4.5)

trilinear_model Trilinear growth model

Description

Trilinear growth model defined by Buchanan et al. (1997).

Usage

trilinear_model(times, logN0, mu, lambda, logNmax)

Arguments

times Numeric vector of storage times

logN0 Initial log microbial count

mu Maximum specific growth rate (in ln CFU/t)

lambda Lag phase duration

logNmax Maximum log microbial count

Value

Numeric vector with the predicted microbial count.

zwietering_gamma 141

zwietering_gamma Zwietering gamma model

Description

Gamma model as defined by Zwietering et al. (1992). To avoid unreasonable predictions, it has
been modified setting gamma=0 for values of x outside (xmin, xopt)

Usage

zwietering_gamma(x, xmin, xopt, n)

Arguments

x Value of the environmental factor.

xmin Minimum value of the environmental factor for growth.

xopt Maximum value for growth

n Exponent of the secondary model

Value

The corresponding gamma factor.

Index

∗ datasets
arabian_tractors, 5
conditions_pH_temperature, 17
example_cardinal, 22
example_coupled_onestep, 23
example_coupled_twosteps, 23
example_dynamic_growth, 24
example_env_conditions, 24
example_od, 25
greek_tractors, 80
growth_pH_temperature, 89
growth_salmonella, 90
multiple_conditions, 110
multiple_counts, 110
multiple_experiments, 111
refrigeratorSpain, 127

AIC.FitCoupledGrowth
(FitCoupledGrowth), 26

AIC.FitDynamicGrowth
(FitDynamicGrowth), 29

AIC.FitDynamicGrowthMCMC
(FitDynamicGrowthMCMC), 31

AIC.FitIsoGrowth (FitIsoGrowth), 34
AIC.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
AIC.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
AIC.FitSecondaryGrowth

(FitSecondaryGrowth), 43
AIC.FitSerial (FitSerial), 45
AIC.GlobalGrowthFit (GlobalGrowthFit),

77
AIC.GrowthFit (GrowthFit), 82
approx_env, 4
arabian_tractors, 5
Aryani_model, 5

bilinear_lag, 6
bilinear_stationary, 6

calculate_gammas, 7
calculate_gammas_secondary, 7
check_growth_guess, 8
check_primary_pars, 10
check_secondary_pars, 10
check_stochastic_pars, 11
coef.DynamicGrowth (DynamicGrowth), 20
coef.FitCoupledGrowth

(FitCoupledGrowth), 26
coef.FitDynamicGrowth

(FitDynamicGrowth), 29
coef.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
coef.FitIsoGrowth (FitIsoGrowth), 34
coef.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
coef.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
coef.FitSecondaryGrowth

(FitSecondaryGrowth), 43
coef.FitSerial (FitSerial), 45
coef.GlobalGrowthComparison

(GlobalGrowthComparison), 75
coef.GlobalGrowthFit (GlobalGrowthFit),

77
coef.GrowthComparison

(GrowthComparison), 81
coef.GrowthFit (GrowthFit), 82
coef.GrowthPrediction

(GrowthPrediction), 86
coef.IsothermalGrowth

(IsothermalGrowth), 98
coef.SecondaryComparison

(SecondaryComparison), 130
compare_growth_fits, 11
compare_growth_fits(), 75, 81
compare_secondary_fits, 15
compare_secondary_fits(), 130
conditions_pH_temperature, 17

142

INDEX 143

cost_coupled_onestep, 17
cost_coupled_twosteps, 18
CPM_model, 18

dBaranyi, 19
deSolve::ode(), 19, 113, 115
deviance.FitCoupledGrowth

(FitCoupledGrowth), 26
deviance.FitDynamicGrowth

(FitDynamicGrowth), 29
deviance.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
deviance.FitIsoGrowth (FitIsoGrowth), 34
deviance.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
deviance.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
deviance.FitSecondaryGrowth

(FitSecondaryGrowth), 43
deviance.FitSerial (FitSerial), 45
deviance.GlobalGrowthFit

(GlobalGrowthFit), 77
deviance.GrowthFit (GrowthFit), 82
distribution_to_logcount, 19
distribution_to_logcount(), 19, 136
DynamicGrowth, 20, 20, 22
DynamicGrowth(), 113

example_cardinal, 22
example_coupled_onestep, 23
example_coupled_twosteps, 23
example_dynamic_growth, 24
example_env_conditions, 24
example_od, 25
extract_primary_pars, 25
extract_secondary_pars, 26

fit_coupled_growth, 47
fit_coupled_growth(), 26, 103, 132
fit_dynamic_growth, 50
fit_dynamic_growth(), 24, 29, 50
fit_growth, 52
fit_growth(), 8, 11, 12, 50, 59, 61, 63, 65,

77, 82, 104, 110, 126, 131, 133
fit_isothermal_growth, 59
fit_isothermal_growth(), 34, 59, 90
fit_MCMC_growth, 61
fit_MCMC_growth(), 31, 61, 122
fit_multiple_growth, 63

fit_multiple_growth(), 37, 39, 63, 111
fit_multiple_growth_MCMC, 65
fit_multiple_growth_MCMC(), 40, 65, 111,

122
fit_secondary_growth, 67
fit_secondary_growth(), 15, 16, 22, 43, 44,

74, 106
fit_serial_dilution, 69
fit_serial_dilution(), 45, 75
FitCoupledGrowth, 26, 28
FitDynamicGrowth, 29, 29
FitDynamicGrowth(), 51
FitDynamicGrowthMCMC, 31, 31, 33
FitDynamicGrowthMCMC(), 62
FitIsoGrowth, 34, 34
FitIsoGrowth(), 60
FitMultipleDynamicGrowth, 37, 37
FitMultipleDynamicGrowth(), 64
FitMultipleGrowthMCMC, 39, 40, 42
FitMultipleGrowthMCMC(), 66
FitSecondaryGrowth, 43
FitSecondaryGrowth(), 68
FitSerial, 45, 46
fitted.FitCoupledGrowth

(FitCoupledGrowth), 26
fitted.FitDynamicGrowth

(FitDynamicGrowth), 29
fitted.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
fitted.FitIsoGrowth (FitIsoGrowth), 34
fitted.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
fitted.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
fitted.FitSecondaryGrowth

(FitSecondaryGrowth), 43
fitted.FitSerial (FitSerial), 45
fitted.GlobalGrowthFit

(GlobalGrowthFit), 77
fitted.GrowthFit (GrowthFit), 82
FME::modCost(), 72
FME::modFit(), 26, 35, 43, 53, 54, 60, 64, 68,

71, 73
FME::modMCMC, 66
FME::modMCMC(), 54
full_Ratkowski, 70

get_all_predictions, 71
get_dyna_residuals, 71

144 INDEX

get_iso_residuals, 72
get_multi_dyna_residuals, 73
get_secondary_residuals, 74
get_TTDs, 74
get_TTDs(), 25
ggplot2::geom_histogram(), 136
ggplot2::geom_line(), 21, 22, 30, 33, 36,

38, 41, 42, 79, 84, 85, 87, 89, 98, 135
ggplot2::geom_point(), 30, 31, 33, 36, 85
ggplot2::geom_ribbon(), 89, 135
ggplot2::ggplot(), 9, 132–134
GlobalGrowthComparison, 11, 75
GlobalGrowthFit, 37, 40, 53, 77, 79, 80, 94,

138
gompertz (iso_repGompertz), 101
greek_tractors, 80
growth_pH_temperature, 89
growth_salmonella, 90
GrowthComparison, 11, 75, 81, 81
GrowthFit, 29, 31, 34, 53, 82, 84, 85, 95, 138
GrowthPrediction, 20, 77, 83, 86, 87, 95, 98,

116, 138
GrowthUncertainty, 88, 96, 134, 138
GrowthUncertainty(), 119

inhibitory_model, 90
is.DynamicGrowth, 91
is.FitDynamicGrowth, 91
is.FitDynamicGrowthMCMC, 92
is.FitIsoGrowth, 92
is.FitMultipleDynamicGrowth, 93
is.FitMultipleDynamicGrowthMCMC, 93
is.FitSecondaryGrowth, 94
is.GlobalGrowthFit, 94
is.GrowthFit, 95
is.GrowthPrediction, 95
is.GrowthUncertainty, 96
is.IsothermalGrowth, 96
is.MCMCgrowth, 97
is.StochasticGrowth, 97
iso_Baranyi, 99
iso_Baranyi_noLag, 100
iso_Baranyi_noStat, 100
iso_repGompertz, 101
IsothermalGrowth, 98, 98, 99
IsothermalGrowth(), 121

lambda_to_Q0, 101
lambda_to_Q0(), 116

logistic_model, 102
logLik.FitCoupledGrowth

(FitCoupledGrowth), 26
logLik.FitDynamicGrowth

(FitDynamicGrowth), 29
logLik.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
logLik.FitIsoGrowth (FitIsoGrowth), 34
logLik.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
logLik.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
logLik.FitSecondaryGrowth

(FitSecondaryGrowth), 43
logLik.FitSerial (FitSerial), 45
logLik.GlobalGrowthFit

(GlobalGrowthFit), 77
logLik.GrowthFit (GrowthFit), 82
loglinear_model, 102

make_guess_coupled, 103
make_guess_factor, 104
make_guess_primary, 104
make_guess_secondary, 106
MCMCcoupled, 107
MCMCgrowth, 80, 85, 108, 138
MCMCgrowth(), 34, 42, 123
modGompertz (iso_repGompertz), 101
multiple_conditions, 110, 110
multiple_counts, 110, 110
multiple_experiments, 111

nls(), 45

plot.DynamicGrowth (DynamicGrowth), 20
plot.FitCoupledGrowth

(FitCoupledGrowth), 26
plot.FitDynamicGrowth

(FitDynamicGrowth), 29
plot.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
plot.FitIsoGrowth (FitIsoGrowth), 34
plot.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
plot.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
plot.FitSecondaryGrowth

(FitSecondaryGrowth), 43
plot.FitSerial (FitSerial), 45

INDEX 145

plot.GlobalGrowthComparison
(GlobalGrowthComparison), 75

plot.GlobalGrowthFit (GlobalGrowthFit),
77

plot.GrowthComparison
(GrowthComparison), 81

plot.GrowthFit (GrowthFit), 82
plot.GrowthPrediction

(GrowthPrediction), 86
plot.GrowthUncertainty

(GrowthUncertainty), 88
plot.IsothermalGrowth

(IsothermalGrowth), 98
plot.MCMCcoupled (MCMCcoupled), 107
plot.MCMCgrowth (MCMCgrowth), 108
plot.SecondaryComparison

(SecondaryComparison), 130
plot.StochasticGrowth

(StochasticGrowth), 134
plot.TimeDistribution

(TimeDistribution), 136
pred_coupled_baranyi, 125
pred_lambda, 125
pred_sqmu, 126
predict.FitCoupledGrowth

(FitCoupledGrowth), 26
predict.FitDynamicGrowth

(FitDynamicGrowth), 29
predict.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
predict.FitIsoGrowth (FitIsoGrowth), 34
predict.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
predict.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
predict.FitSecondaryGrowth

(FitSecondaryGrowth), 43
predict.FitSerial (FitSerial), 45
predict.GlobalGrowthFit

(GlobalGrowthFit), 77
predict.GrowthFit (GrowthFit), 82
predict_dynamic_growth, 112
predict_dynamic_growth(), 7, 20, 31, 33,

112
predict_growth, 114
predict_growth(), 86, 112, 121, 126, 131
predict_growth_uncertainty, 118
predict_growth_uncertainty(), 88, 124

predict_isothermal_growth, 121
predict_isothermal_growth(), 98, 121
predict_MCMC_growth, 122
predict_MCMC_growth(), 122
predict_stochastic_growth, 124
predict_stochastic_growth(), 124, 134
predictMCMC, 111
predictMCMC(), 122
predictMCMC.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
predictMCMC.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
predictMCMC.GlobalGrowthFit

(GlobalGrowthFit), 77
predictMCMC.GrowthFit (GrowthFit), 82
predictMCMC_coupled, 112
predictMCMC_coupled.FitCoupledGrowth

(FitCoupledGrowth), 26
primary_model_data, 126
primary_model_data(), 53, 105, 116, 119,

134
print.DynamicGrowth (DynamicGrowth), 20
print.FitCoupledGrowth

(FitCoupledGrowth), 26
print.FitDynamicGrowth

(FitDynamicGrowth), 29
print.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
print.FitIsoGrowth (FitIsoGrowth), 34
print.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
print.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
print.FitSecondaryGrowth

(FitSecondaryGrowth), 43
print.FitSerial (FitSerial), 45
print.GlobalGrowthComparison

(GlobalGrowthComparison), 75
print.GlobalGrowthFit

(GlobalGrowthFit), 77
print.GrowthComparison

(GrowthComparison), 81
print.GrowthFit (GrowthFit), 82
print.GrowthPrediction

(GrowthPrediction), 86
print.GrowthUncertainty

(GrowthUncertainty), 88
print.IsothermalGrowth

146 INDEX

(IsothermalGrowth), 98
print.MCMCgrowth (MCMCgrowth), 108
print.SecondaryComparison

(SecondaryComparison), 130
print.StochasticGrowth

(StochasticGrowth), 134
print.TimeDistribution

(TimeDistribution), 136

Q0_to_lambda, 127
Q0_to_lambda(), 115

refrigeratorSpain, 127
residuals.FitCoupledGrowth

(FitCoupledGrowth), 26
residuals.FitDynamicGrowth

(FitDynamicGrowth), 29
residuals.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31
residuals.FitIsoGrowth (FitIsoGrowth),

34
residuals.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
residuals.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
residuals.FitSecondaryGrowth

(FitSecondaryGrowth), 43
residuals.FitSerial (FitSerial), 45
residuals.GlobalGrowthFit

(GlobalGrowthFit), 77
residuals.GrowthFit (GrowthFit), 82
residuals_lambda, 128
residuals_sqmu, 128
richards_model, 129
Rossoaw_model, 129

secondary_model_data, 131
secondary_model_data(), 54, 104, 117
SecondaryComparison, 15, 130
show_guess_coupled, 132
show_guess_dynamic, 132
show_guess_primary, 133
StochasticGrowth, 134, 134
summary.FitCoupledGrowth

(FitCoupledGrowth), 26
summary.FitDynamicGrowth

(FitDynamicGrowth), 29
summary.FitDynamicGrowthMCMC

(FitDynamicGrowthMCMC), 31

summary.FitIsoGrowth (FitIsoGrowth), 34
summary.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
summary.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
summary.FitSecondaryGrowth

(FitSecondaryGrowth), 43
summary.FitSerial (FitSerial), 45
summary.GlobalGrowthComparison

(GlobalGrowthComparison), 75
summary.GlobalGrowthFit

(GlobalGrowthFit), 77
summary.GrowthComparison

(GrowthComparison), 81
summary.GrowthFit (GrowthFit), 82
summary.GrowthPrediction

(GrowthPrediction), 86
summary.SecondaryComparison

(SecondaryComparison), 130
summary.TimeDistribution

(TimeDistribution), 136

t, 6, 99–102, 129, 140
time_to_logcount, 137
time_to_logcount(), 137
time_to_size, 138
time_to_size(), 19, 137
TimeDistribution, 136, 138
TimeDistribution(), 20
trilinear_model, 140

vcov.FitCoupledGrowth
(FitCoupledGrowth), 26

vcov.FitDynamicGrowth
(FitDynamicGrowth), 29

vcov.FitDynamicGrowthMCMC
(FitDynamicGrowthMCMC), 31

vcov.FitIsoGrowth (FitIsoGrowth), 34
vcov.FitMultipleDynamicGrowth

(FitMultipleDynamicGrowth), 37
vcov.FitMultipleGrowthMCMC

(FitMultipleGrowthMCMC), 39
vcov.FitSecondaryGrowth

(FitSecondaryGrowth), 43
vcov.FitSerial (FitSerial), 45
vcov.GlobalGrowthFit (GlobalGrowthFit),

77
vcov.GrowthFit (GrowthFit), 82

zwietering_gamma, 141

	approx_env
	arabian_tractors
	Aryani_model
	bilinear_lag
	bilinear_stationary
	calculate_gammas
	calculate_gammas_secondary
	check_growth_guess
	check_primary_pars
	check_secondary_pars
	check_stochastic_pars
	compare_growth_fits
	compare_secondary_fits
	conditions_pH_temperature
	cost_coupled_onestep
	cost_coupled_twosteps
	CPM_model
	dBaranyi
	distribution_to_logcount
	DynamicGrowth
	example_cardinal
	example_coupled_onestep
	example_coupled_twosteps
	example_dynamic_growth
	example_env_conditions
	example_od
	extract_primary_pars
	extract_secondary_pars
	FitCoupledGrowth
	FitDynamicGrowth
	FitDynamicGrowthMCMC
	FitIsoGrowth
	FitMultipleDynamicGrowth
	FitMultipleGrowthMCMC
	FitSecondaryGrowth
	FitSerial
	fit_coupled_growth
	fit_dynamic_growth
	fit_growth
	fit_isothermal_growth
	fit_MCMC_growth
	fit_multiple_growth
	fit_multiple_growth_MCMC
	fit_secondary_growth
	fit_serial_dilution
	full_Ratkowski
	get_all_predictions
	get_dyna_residuals
	get_iso_residuals
	get_multi_dyna_residuals
	get_secondary_residuals
	get_TTDs
	GlobalGrowthComparison
	GlobalGrowthFit
	greek_tractors
	GrowthComparison
	GrowthFit
	GrowthPrediction
	GrowthUncertainty
	growth_pH_temperature
	growth_salmonella
	inhibitory_model
	is.DynamicGrowth
	is.FitDynamicGrowth
	is.FitDynamicGrowthMCMC
	is.FitIsoGrowth
	is.FitMultipleDynamicGrowth
	is.FitMultipleDynamicGrowthMCMC
	is.FitSecondaryGrowth
	is.GlobalGrowthFit
	is.GrowthFit
	is.GrowthPrediction
	is.GrowthUncertainty
	is.IsothermalGrowth
	is.MCMCgrowth
	is.StochasticGrowth
	IsothermalGrowth
	iso_Baranyi
	iso_Baranyi_noLag
	iso_Baranyi_noStat
	iso_repGompertz
	lambda_to_Q0
	logistic_model
	loglinear_model
	make_guess_coupled
	make_guess_factor
	make_guess_primary
	make_guess_secondary
	MCMCcoupled
	MCMCgrowth
	multiple_conditions
	multiple_counts
	multiple_experiments
	predictMCMC
	predictMCMC_coupled
	predict_dynamic_growth
	predict_growth
	predict_growth_uncertainty
	predict_isothermal_growth
	predict_MCMC_growth
	predict_stochastic_growth
	pred_coupled_baranyi
	pred_lambda
	pred_sqmu
	primary_model_data
	Q0_to_lambda
	refrigeratorSpain
	residuals_lambda
	residuals_sqmu
	richards_model
	Rossoaw_model
	SecondaryComparison
	secondary_model_data
	show_guess_coupled
	show_guess_dynamic
	show_guess_primary
	StochasticGrowth
	TimeDistribution
	time_to_logcount
	time_to_size
	trilinear_model
	zwietering_gamma
	Index

