Package ‘cheapr’

January 8, 2026

Title Simple Functions to Save Time and Memory
Version 1.5.0
Maintainer Nick Christofides <nick.christofides.r@gmail.com>

Description Fast and memory-efficient (or 'cheap’) tools to facilitate
efficient programming, saving time and memory. It aims to provide
'cheaper’ alternatives to common base R functions, as well as some
additional functions.

License MIT + file LICENSE

BugReports https://github.com/NicChr/cheapr/issues
Depends R (>=4.1.0)

Imports collapse (>=2.0.0)

Suggests bench, data.table, testthat (>= 3.0.0)

LinkingTo cppll

SystemRequirements C++17

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Nick Christofides [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9743-7342>)

Repository CRAN
Date/Publication 2026-01-08 11:50:22 UTC

Contents

cheapr-package . . . . . . . ..
address . . . .. e


https://github.com/NicChr/cheapr/issues
https://orcid.org/0000-0002-9743-7342

2 cheapr-package
CASE . v v v e e e e e e e e e e e e e 8
0 ) 9
cheapr_table . . . . . . . .. 10
COPY « v v e e e e e e e e e e e e e e e e 11
cpp_rebuild . . . ... 12
G e e e e 13
factor_ . . . . . e e e 14
ged . Lo e 17
get_breaks . . . . . L L e e 19
get_max_threads . . . . . . . ... 21
1 elSe . . e 21
IN_SIGN . . . L e e e e e e e e 22
IS_NA . . o o e e e e e e e e e e e e 22
is_whole_number . . . . . . . ... 25
lag_ . . e 26
list_lengths . . . . . . . . e 30
math . . . . . e e e e e e e 31
named_liSt. . . . . . .. L e e e e e e 32
NAa_INIt . . . . . L e e e e e 33
new_df . .o s 33
new_logical . . . . ... 35
OVEIVIEW . . . v o o i i e et e e e e e e e e e e e e e e e e 35
rebuild . . . . . L 37
recycle . . ..o L e 38
TED © v v e e e e e e e e e e 39
replace . . . .. L L 40
SEQUENICES . .« « v v v e e e e e e e e e e e e e e e e e e e 41
setdiff_ . . . L e e e 44
SEL_ADS . . . . e e e e 46
SSBL . . e e e e e e e e e 48
sset_df . . . L e 49
SIENGS . . o v o 50
SIr_CoaleSCe . . . . . e e e 52
SWItCh_args . . . . . . e e e e 53
UDIQUE_  + . v v o v e e e e e e e e e e e e e e e e e e e e e 54
val_count . . ... e e 55
which_ . . . . . e e e 57

Index 58

cheapr-package cheapr: Simple Functions to Save Time and Memory

Description

In this package, ’cheap’ means fast and efficient.

cheapr aims to provide a set of functions for programmers to write cheaper code, saving time and
memory.



address 3

Author(s)

Maintainer: Nick Christofides <nick.christofides.r@gmail.com> (ORCID)

See Also

Useful links:

* Report bugs at https://github.com/NicChr/cheapr/issues

address Memory address of R object

Description

Memory address of R object

Usage

address(x)

Arguments

X An R object.

Value

Memory address of R object.

as_discrete Turn continuous data into discrete bins

Description

This is a cheapr version of cut.numeric() which is more efficient and prioritises pretty-looking
breaks by default through the use of get_breaks (). Out-of-bounds values can be included naturally
through the include_oob argument. Left-closed (right-open) intervals are returned by default in
contrast to cut’s default right-closed intervals. Furthermore there is flexibility in formatting the
interval bins, allowing the user to specify formatting functions and symbols for the interval close
and open symbols.


https://orcid.org/0000-0002-9743-7342
https://github.com/NicChr/cheapr/issues

Usage

as_discrete(x,

as_discrete

.2

## S3 method for class 'numeric'

as_discrete(
X,

breaks = if (left_closed) get_breaks(x) else rev_(-get_breaks(-x)),

left_closed =

TRUE,

include_endpoint = FALSE,

include_oob =

FALSE,

ordered = FALSE,
intv_start_fun = prettyNum,

intv_end_fun
intv_closers
intv_openers

n

intv_sep = ",

= prettyNum,
= C("[“, II]!I),
= C("(“, II)H),

n
’

inf_label = NULL,

)

## S3 method for class 'integer64'

as_discrete(x,

Arguments

X

breaks

left_closed

.2

A numeric vector.
Extra arguments passed onto methods.

Break-points. The default option creates pretty looking breaks. Unlike cut(),
the breaks arg cannot be a number denoting the number of breaks you want. To
generate breakpoints this way use get_breaks().

Left-closed intervals or right-closed intervals?

include_endpoint

include_oob

ordered
intv_start_fun

intv_end_fun

Include endpoint? Default is FALSE.

Include out-of-bounds values? Default is FALSE. This is equivalent to breaks
= c(breaks, Inf) or breaks = c(-Inf, breaks) when left_closed = FALSE.
If include_endpoint = TRUE, the endpoint interval is prioritised before the out-
of-bounds interval. This behaviour cannot be replicated easily with cut (). For
example, these 2 expressions are not equivalent:

cut(10, c(9, 10, Inf), right = F, include.lowest = T) !=
as_discrete(10, c(9, 10), include_endpoint = T, include_oob = T)

Should result be an ordered factor? Default is FALSE.
Function used to format interval start points.

Function used to format interval end points.



as_discrete

intv_closers

intv_openers

intv_sep
inf_label
Value

A length 2 character vector denoting the symbol to use for closing either left or
right closed intervals.

A length 2 character vector denoting the symbol to use for opening either left or
right closed intervals.

A length 1 character vector used to separate the start and end points.

Label to use for intervals that include infinity. If left NULL the Unicode infinity
symbol is used.

A factor of discrete bins (intervals of start/end pairs).

See Also

bin get_breaks

Examples

library(cheapr)

# ~as_discrete()”

is very similar to “cut()”

# but more flexible as it allows you to supply
# formatting functions and symbols for the discrete bins

# Here is an example of how to use the formatting functions to

# categorise age

ages <- 1:100

groups nicely

age_group <- function(x, breaks){
age_groups <- as_discrete(

X,

breaks = breaks,

intv_sep =
intv_end_fun
intv_openers
intv_closers

include_oob =

n

”
’

= function(x) x - 1,

= oo,y
= o my
TRUE,

ordered = TRUE

)

# Below is just renaming the last age group

lvls <- levels(age_groups)

n_lvls <- length(lvls)

max_ages <- paste@(max(breaks), "+")

attr(age_groups, "levels") <- c(lvls[-n_lvls], max_ages)

age_groups

age_group(ages, seq(@, 80, 20))



6 attrs

age_group(ages, seq(@, 25, 5))
age_group(ages, 5)

# To closely replicate “cut()” with “as_discrete()” we can use the following

cheapr_cut <- function(x, breaks, right = TRUE,
include.lowest = FALSE,
ordered.result = FALSE){
if (length(breaks) == 1){
breaks <- get_breaks(x, breaks, pretty = FALSE,
expand_min = FALSE, expand_max = FALSE)
adj <- diff(range(breaks)) * 0.001
breaks[1] <- breaks[1] - adj
breaks[length(breaks)] <- breaks[length(breaks)] + adj
}
as_discrete(x, breaks, left_closed = !right,
include_endpoint = include.lowest,
ordered = ordered.result,
intv_start_fun = function(x) formatC(x, digits = 3, width = 1),
intv_end_fun = function(x) formatC(x, digits = 3, width = 1))
3

X <= rnorm(100)
cheapr_cut(x, 10)
identical(cut(x, 10), cheapr_cut(x, 10))

attrs Add and remove attributes

Description

Simple tools to add and remove attributes, both normally and in-place. To remove specific attributes,
set those attributes to NULL.

Usage
attrs_modify(x, ..., .set = FALSE, .args = NULL)
attrs_add(x, ..., .set = FALSE, .args = NULL)

attrs_clear(x, .set = FALSE)

attrs_rm(x, .set = FALSE)

Arguments

X Object to add/remove attributes.

Named attributes, e.g "key = value’.



bin 7

.set Should attributes be added in-place without shallow-copying x? Default is FALSE.

.args An alternative to . .. so you can supply arguments directly in a list.
This is equivalent to do.call(f, .args) but much more efficient.

Value

The object x with attributes removed or added.

See Also

shallow_copy

bin A sometimes cheaper but argument richer alternative to .bincode()

Description

When x is an integer vector, bin() is cheaper than .bincode() as no coercion to a double vector
occurs. This alternative also has more arguments that allow you to return the start values of the
binned vector, as well as including out-of-bounds intervals.

Usage

bin(
X,
breaks,
left_closed = TRUE,
include_endpoint = FALSE,
include_oob = FALSE,

codes = TRUE
)
Arguments
X A numeric vector.
breaks A numeric vector of breaks.

left_closed Should intervals be left-closed (and right-open)? Default is TRUE. If FALSE they
are left-open (and right-closed).

include_endpoint
Equivalent to include. lowest in ?.bincode.

include_oob Should out-of-bounds interval be included? Default is FALSE. This is the equiv-
alent of adding Inf as the last value of the breaks, or -Inf as the first value
of the breaks if left_closed = FALSE. When TRUE, this essentially becomes
findInterval().

codes Should an integer vector indicating which bin the values fall into be returned?
Default is TRUE. If FALSE the start values of the respective bin intervals are re-
turned, i.e the corresponding breaks.



8 case

Value

Either an integer vector of codes indicating which bin the values fall into, or the start of the intervals
for which each value falls into.

See Also

get_breaks as_discrete

case A cheapr case-when and switch

Description

case and val_match are cheaper alternatives to dplyr: :case_when and dplyr::case_match re-

spectively.
Usage
case(..., .default = NULL)
val_match(.x, ..., .default = NULL)
Arguments
Logical expressions or scalar values in the case of val_match.
.default Catch-all value or vector.
X Vector used to switch values.
Details

val_match() is a very efficient special case of the case() function when all lhs expressions are
scalars, i.e. length-1 vectors. RHS expressions can be vectors the same length as . x. The below 2
expressions are equivalent.

val_match(
X!
1 ~ "one",
2 ~ "two",
.default = "Unknown”
)
case(
x == 1 ~ "one",
x == 2 ~ "two",

.default = "Unknown"

)



cast 9

Value

A vector the same length as . x or same length as the first condition in the case of case, unless the
condition length is smaller than the rhs, in which case the length of the rhs is used.

See Also

if else

cast Fast casting/coercing of R objects

Description

cast_common() is type-commutative, meaning the order of objects doesn’t affect the outcome type.
cast () will attempt to cast x into an object similar to archetype.

Usage

cast(x, archetype)

cast_common(..., .args = NULL)
archetype(x)
archetype_common(..., .args = NULL)
r_type(x)
r_type_common(..., .args = NULL)
Arguments
X A vector.
archetype An archetype vector.
Vectors.
.args An alternative to . .. so you can supply arguments directly in a list.

This is equivalent to do.call(f, .args) but much more efficient.

Value

cast () will attempt to cast x into an object similar to archetype.

cast_common() coerces all supplied vectors into a common type between them.

archetype() returns the zero-length template/archetype of x.

archetype_common() returns the common zero-length template between all supplied vectors.
r_type() will return the internal cheapr-defined type of x as a character vector of length 1. This
will usually match class(x) but not always.

r_type_common() returns the common type between all objects.



10 cheapr_table

cheapr_table Fast frequency tables - Still experimental

Description

This is not a one-to-one copy of base: : table() as some behaviours differ. It is more flexible as it
accepts inputs such as data frames and vctrs_rcrd objects.

Usage

cheapr_table(
names = TRUE,
order = FALSE,
na_exclude = FALSE,
classed = FALSE

)

counts(x, sort = is.factor(x))

table_(..., names = TRUE, order = FALSE, na_exclude = FALSE, classed = FALSE)

Arguments

>=1 objects that can be converted to a factor through cheapr: :factor_().

names Should level names be kept? Default is TRUE.
order Should result be ordered by level names? Default is FALSE.
na_exclude Should NA values be excluded? Default is FALSE.
classed Should a table object be returned? Default is FALSE
X A vector.
sort Should groups be sorted? Default is FALSE.
Details

cheapr_table() tries to match the behaviour of table() where possible. counts() is an alterna-
tive that returns a data. frame of unique keys and counts.

Value

A named integer vector if one object is supplied, otherwise an array.



copy 11

copy Copy R objects

Description

shallow_copy () and deep_copy () are just wrappers to the R C API functions Rf _shallow_duplicate()
and Rf_duplicate() respectively. semi_copy() is something in between whereby it fully copies
the data but only shallow copies the attributes.

Usage

shallow_copy(x)
semi_copy(x)

deep_copy (x)

Arguments

X An object to shallow, semi, or deep copy.

Details

Shallow duplicates are mainly useful for adding attributes to objects in-place as well assigning
vectors to shallow copied lists in-place.

Deep copies are generally useful for ensuring an object is fully duplicated, including all attributes
associated with it. Deep copies are generally expensive and should be used with care.

semi_copy () deep copies everything except the attributes. This is experimental but in theory should
be much more efficient and generally preferred to deep_copy ().

To summarise:

* shallow_copy - Shallow copies data and attributes
* semi_copy - Deep copies data and shallow copies attributes

* deep_copy - Deep copies both data and attributes

It is recommended to use these functions only if you know what you are doing.

Value

A shallow, semi or deep copied R object.



12 cpp_rebuild

Examples
library(cheapr)
library(bench)
df <- new_df(x = sample.int(10"4))
# Note the memory allocation
mark (shallow_copy(df), iterations = 1)
mark (deep_copy(df), iterations = 1)
# In both cases the address of df changes
address(df) ;address(shallow_copy(df));address(deep_copy(df))
# When shallow-copying attributes are not duplicated
address(attr(df, "names"));address(attr(shallow_copy(df), "names"))
# They are when deep-copying
address(attr(df, "names"));address(attr(deep_copy(df), "names"))
# Adding an attribute in place with and without shallow copy
invisible(attrs_add(df, key = TRUE, .set = TRUE))

attr(df, "key™)

# Remove attribute in-place
invisible(attrs_add(df, key = NULL, .set = TRUE))

# With shallow copy
invisible(attrs_add(shallow_copy(df), key = TRUE, .set = TRUE))

# 'key' attr was only added to the shallow copy, and not the original df
attr(df, "key")

cpp_rebuild Low-level attribute re-constructor

Description

Low-level attribute re-constructor

Usage

cpp_rebuild(target, source, target_attr_names, source_attr_names, shallow_copy)

Arguments

target Target object you wish to rebuild attributes on.



source Source object to copy attributes from.
target_attr_names

[character(n)] Names of target attributes to keep.
source_attr_names

[character(n)] Names of source attributes to copy onto target.
shallow_copy [logical(1)] Should target be shallow copied before re-building? If FALSE

attributes are added in-place.
Details

cpp_rebuild() is mostly a convenience function to help with choosing exactly which attributes
to copy onto the target object. rebuild() is a related generic function with rebuild methods for
common objects (currently only tbl_df, data.frame and data.table). For examples of further
rebuild methods, see the fastplyr package.

To modify attributes yourself you can of course use base R attribute functions like attr() and
attributes() or cheapr’s more convenient attrs_modify.

Value

An object similar to source.

See Also

rebuild attrs_modify

C A cheapr version of c()

Description

cheapr’s version of c(). It is quite a bit faster for atomic vectors and combines data frame rows
instead of cols.

Usage
c_(..., .args = NULL)
cheapr_c(..., .args = NULL)
Arguments
Objects to combine.
.args An alternative to . .. so you can supply arguments directly in a list.
This is equivalent to do.call(f, .args) but much more efficient.
Value

Combined objects.



14 factor_

Examples

library(cheapr)

# Combine just like “c()°
c_(1, 2, 3:5)

# It combines rows by default instead of cols
c_(new_df(x = 1:3), new_df(x = 4:10))

# If you have a list of objects you want to combine
# use ~.args” instead of “do.call® as it's more efficient

list_of_objs <- rep_(list(@), 10%4)

bench: :mark(
do.call(c, list_of_objs),
do.call(c_, list_of_objs),
c_(.args = list_of_objs) # Fastest
)

factor_ A cheaper version of factor() along with cheaper utilities

Description

A fast version of factor () using the collapse package.

There are some additional utilities, most of which begin with the prefix ’levels_’, such as as_factor ()
which is an efficient way to coerce both vectors and factors, levels_factor() which returns the
levels of a factor, as a factor, levels_used() which returns the used levels of a factor, levels_unused()
which returns the unused levels of a factor, levels_add() adds the specified levels onto the exist-

ing levels, levels_rm() removes the specified levels, levels_add_na() which adds an explicit

NA level, levels_drop_na() which drops the NA level, levels_drop() which drops unused fac-

tor levels, levels_rename() for renaming levels, levels_lump() which returns top n levels and
lumps all others into the same category,

levels_count() which returns the counts of each level, and finally levels_reorder() which
reorders the levels of x based on y using the ordered median values of y for each level.

Usage

factor_(
X = integer(),
levels = NULL,
order = TRUE,
na_exclude = TRUE,
ordered = is.ordered(x)



factor_ 15

as_factor(x)

levels_factor(x)

levels_used(x)

levels_unused(x)

levels_rm(x, levels)

levels_add(x, levels, where = c("last”, "first"))
levels_add_na(x, name = NA, where = c("last”, "first"))
levels_drop_na(x)

levels_drop(x)

levels_reorder(x, order_by, decreasing = FALSE)
levels_rename(x, ..., .fun = NULL)

levels_lump(

X)

n,

prop,

other_category = "Other”,

ties = c¢("min", "average"”, "first"”, "last”, "random”, "max")

)

levels_count(x)

Arguments
X A vector.
levels Optional factor levels.
order Should factor levels be sorted? Default is TRUE. It typically is faster to set this
to FALSE, in which case the levels are sorted by order of first appearance.
na_exclude Should NA values be excluded from the factor levels? Default is TRUE.
ordered Should the result be an ordered factor?
where Where should NA level be placed? Either first or last.
name Name of NA level.
order_by A vector to order the levels of x by using the medians of order_by.

decreasing Should the reordered levels be in decreasing order? Default is FALSE.



16 factor_

Key-value pairs where the key is the new name and value is the name to replace
that with the new name. For example levels_rename(x, new = old) replaces
the level "old" with the level "new".

.fun Renaming function applied to each level.

n Top n number of levels to calculate.

prop Top proportion of levels to calculate. This is a proportion of the total unique
levels in x.

other_category Name of ’other’ category.

ties Ties method to use. See ?rank.

Details

This operates similarly to collapse: :qF ().

The main difference internally is that collapse: : funique() is used and therefore s3 methods can

be written for it.

Furthermore, for date-times factor_ differs in that it differentiates all instances in time whereas
factor differentiates calendar times. Using a daylight savings example where the clocks go back:
factor(as.POSIXct (1729984360, tz = "Europe/London™) + 3600 *(1:5)) produces 4 levels whereas
factor_(as.POSIXct(1729984360, tz = "Europe/London") + 3600 *(1:5)) produces 5 levels.

levels_lump() is a cheaper version of forcats: :lump_n() but returns levels in order of highest
frequency to lowest. This can be very useful for plotting.

Value
A factor or character in the case of levels_used and levels_unused. levels_count returns

a data frame of counts and proportions for each level.

Examples

library(cheapr)
x <- factor_(sample(letters[sample.int(26, 10)], 100, TRUE), levels = letters)
X

# Used/unused levels

levels_used(x)
levels_unused(x)

# Drop unused levels
levels_drop(x)

# Top 3 letters by by frequency
lumped_letters <- levels_lump(x, 3)
levels_count(lumped_letters)

# To remove the "other"” category, use ~levels_rm()"

levels_count(levels_rm(lumped_letters, "Other"))



gcd 17

# We can use levels_lump to create a generic top n function for non-factors too

get_top_n <- function(x, n){
f <- levels_lump(factor_(x, order = FALSE), n = n)
levels_count(f)

3
get_top_n(x, 3)

# A neat way to order the levels of a factor by frequency
# is the following:

levels(levels_lump(x, prop = 1)) # Highest to lowest
levels(levels_lump(x, prop = -1)) # Lowest to highest

gcd Greatest common divisor and smallest common multiple

Description

Fast greatest common divisor and smallest common multiple using the Euclidean algorithm.

gcd() returns the greatest common divisor.

scm() returns the smallest common multiple.
gcd2() is a vectorised binary version of gcd.
scm2() is a vectorised binary version of scm.

Usage

ged(
X,
tol = sqrt(.Machine$double.eps),
na_rm = TRUE,
round = TRUE,
break_early = TRUE

)

scm(x, tol = sqgrt(.Machine$double.eps), na_rm = TRUE)

gcd2(x, y, tol = sgrt(.Machine$double.eps), na_rm = TRUE)

scm2(x, y, tol = sqrt(.Machine$double.eps), na_rm = TRUE)
Arguments
X A numeric vector.

tol Tolerance. This must be a single positive number strictly less than 1.



18 gcd

na_rm If TRUE the default, NA values are ignored.

round If TRUE the output is rounded as round(gcd, digits) where digitsis ceiling(abs(logl@(tol)))
+1.
This can potentially reduce floating point errors on further calculations.
The default is TRUE.

break_early This is experimental and applies only to floating-point numbers. When TRUE the

algorithm will end once gcd > @ && gcd < 2 * tol. This can offer a tremendous
speed improvement. If FALSE the algorithm finishes once it has gone through all
elements of x. The default is TRUE.

For integers, the algorithm always breaks early once gcd > 0 && ged <= 1.

y A numeric vector.

Details

Method:

GCD (Greatest Common Divisor):

The GCD is calculated using a binary function that takes input GCD(gcd, x[i + 1]) where the
output of this function is passed as input back into the same function iteratively along the length
of x. The first gcd value is x[1].

Zeroes are handled in the following way:

GCD(0, 0) = 0

GCD(a, @) = a

This has the nice property that zeroes are essentially ignored.

SCM (Smallest Common Multiple):

This is calculated using the GCD and the formula is:

SCM(x, y) = (abs(x) / GCD(x, y) ) * abs(y)

If you want to calculate the gcd & lem for 2 values or across 2 vectors of values, use gcd2 and
scm2.

A note on performance:

A very common solution to finding the GCD of a vector of values is to use Reduce () along with
a binary function like gcd2().

e.g. Reduce(gcd2, seq(5, 20, 5)).

This is exactly identical to gcd(seq(5, 20, 5)), with gcd() being much faster and overall
cheaper as it is written in C++ and heavily optimised. Therefore it is recommended to always
use gcd().

For example we can compare the two approaches below,

x <- seq(5L, length =106, by =5L)

bench: :mark(Reduce(gcd2, x), gcd(x))

This example code shows gcd() being ~200x faster on my machine than the Reduce + gcd?2
approach, even though gcd? itself is written in C++ and has little overhead.

Value

A number representing the GCD or SCM.



get_breaks

Examples

library(cheapr)
library(bench)

# Binary versions
gcd2(15, 25)

gcd2(15, seq(5, 25, 5))
scm2(15, seq(5, 25, 5))
scm2(15, 25)

# GCD across a vector
ged(c(@, 5, 25))
mark(gcd(c(@, 5, 25)))

X <= rnorm(10*5)
ged(x)

gcd(x, round = FALSE)
mark(gcd(x))

get_breaks Pretty break-points for continuous (numeric) data

Description

The distances between break-points are always equal in this implementation.

Usage

get_breaks(x, n =10, ...)

## Default S3 method:
get_breaks(x, n =10, ...)

## S3 method for class 'numeric'
get_breaks(

X,

n =10,

pretty = TRUE,

expand_min = FALSE,

expand_max = pretty,

)

## S3 method for class 'integer64'
get_breaks(x, n =10, ...)



20

Arguments

X

n

pretty

expand_min

expand_max

Value

get_breaks

A numeric vector.
Number of breakpoints. You may get less or more than requested.
Extra arguments passed onto methods.

Should pretty break-points be prioritised? Default is TRUE. If FALSE bin-widths
will be calculated as diff(range(x)) / n.

Should smallest break be extended beyond the minimum of the data? Default is
FALSE. If TRUE then min(get_breaks(x)) is ensured to be less than min(x).

Should largest break be extended beyond the maximum of the data? Default is
TRUE. If TRUE then max (get_breaks(x)) is ensured to be greater than max (x).

A numeric vector of break-points.

See Also

bin as_discrete

Examples

library(cheapr)

set.seed(123)

ages <- sample(0:80, 100, TRUE)

# Pretty

get_breaks(ages, n = 10)

# Not-pretty

# bin-width is diff(range(ages)) / n_breaks
get_breaks(ages, n = 10, pretty = FALSE)

# “get_breaks()” is left-biased in a sense, meaning that
# the first break is always <= “min(x)~ but the last break
# may be < “max(x)’

# To get right-biased breaks we can use a helper like so..

right_breaks <- function(x, ...){

-get_breaks(-x,

3

)

get_breaks(4:24, 10)
right_breaks(4:24, 10)

# Use “rev()" to ensure they are in ascending order
rev(right_breaks(4:24, 10))



get_max_threads 21

get_max_threads Get and set the number of OpenMP threads to be used in cheapr

Description

The default number of threads in cheapr is 2 (if your system has at least 2 available threads). You
can change the number of threads via set_threads(). To see the number of threads currently
being used, run get_threads(). To see the maximum number of threads your machine can use,
run get_max_threads()

Usage

get_max_threads()
set_threads(n)

get_threads()

Arguments

n [integer (1)1 - Number of threads to use.

Value

get_max_threads() returns the max number of threads you can use.
get_threads() returns the number of threads that are being used.
set_threads() invisibly sets the number of threads to be used.

if_else Cheaper version of ifelse()

Description

Cheaper version of ifelse()

Usage

if_else_(condition, true, false, na = NULL)

cheapr_if_else(condition, true, false, na = NULL)

Arguments
condition logical A condition which will be used to evaluate the if else operation.
true Value(s) to replace TRUE instances.
false Value(s) to replace FALSE instances.

na Catch-all value(s) to replace all other instances, where is.na(condition).



22 iS_na

Value

A vector the same length as condition, using a common type between true, false and na.

See Also

case val_match

int_sign A fast and integer-based sign()

Description

A fast and integer-based sign()

Usage

int_sign(x)

Arguments

X Integer or double vector.

Value

An integer vector denoting the sign, -1 for negatives, 1 for positives and O for when x == 0.

is_na Efficient functions for dealing with missing values.

Description

is_na() is a parallelised alternative to is.na().

num_na(x) is a faster and more efficient sum(is.na(x)).

which_na(x) is a more efficient which(is.na(x))

which_not_na(x) is a more efficient which(!is.na(x))

row_na_counts(x) is a more efficient rowSums(is.na(x))

row_all_na() returns a logical vector indicating which rows are empty and have only NA values.
row_any_na() returns a logical vector indicating which rows have at least 1 NA value.

The col_ variants are the same, but operate by-column.



iS_na 23

Usage
is_na(x)

## Default S3 method:
is_na(x)

## S3 method for class 'POSIX1t'
is_na(x)

## S3 method for class 'vctrs_rcrd'
is_na(x)

## S3 method for class 'data.frame'
is_na(x)

num_na(x, recursive = TRUE)
which_na(x)

which_not_na(x)

any_na(x, recursive = TRUE)
all_na(x, recursive = TRUE)

row_na_counts(x, names = FALSE)

col_na_counts(x, names = FALSE)

row_all_na(x, names = FALSE)
col_all_na(x, names = FALSE)

row_any_na(x, names = FALSE)

col_any_na(x, names = FALSE)

Arguments
X A vector, list, data frame or matrix.
recursive Should the function be applied recursively to lists? The default is TRUE. Set-

ting this to TRUE is actually much cheaper because when FALSE, the other NA
functions rely on calling is_na(), therefore allocating a vector. This is so that
alternative objects with is.na methods can be supported.

names Should row/col names be added?



24 iS_na

Details

These functions are designed primarily for programmers, to increase the speed and memory-efficiency
of NA handling.
Most of these functions can be parallelised through options(cheapr.cores).

Common use-cases:

To replicate complete.cases(x), use !row_any_na(x).

To find rows with any empty values, use which_(row_any_na(df)).

To find empty rows use which_(row_all_na(df)) or which_na(df). To drop empty rows use
na_rm(df) or sset(df, which_(row_all_na(df), TRUE)).

is_na:

is_naIs an S3 generic function. It will internally fall back on using is.na if it can’t find a suitable
method. Alternatively you can write your own is_na method. For example there is a method for
vctrs_rcrd objects that simply converts it to a data frame and then calls row_all_na(). There
is also a POSIX1t method for is_na that is much faster than is.na.

Lists:

When x is a list, num_na, any_na and all_na will recursively search the list for NA values. If
recursive = F then is_na() is used to find NA values.
is_na differs to is.nain 2 ways:
¢ List elements are counted as NA if either that value is NA, or if it’s a list, then all values of that
list are NA.

e When called on a data frame, it returns TRUE for empty rows that contain only NA values.

Value

Number or location of NA values.

Examples

library(cheapr)
library(bench)

x <- 1:10

x[c(1, 5, 10)]1 <- NA
num_na(x)
which_na(x)
which_not_na(x)

row_nas <- row_na_counts(airquality, names = TRUE)
col_nas <- col_na_counts(airquality, names = TRUE)
row_nas
col_nas

df <- sset(airquality, j = 1:2)

# Number of NAs in data
num_na(df)



is_whole_number 25

# Which rows are empty?
row_na <- row_all_na(df)
sset(df, row_na)

# Removing the empty rows

sset(df, which_(row_na, invert = TRUE))
# Or

na_rm(df)

# Or

sset(df, row_na_counts(df) < ncol(df))

is_whole_number Very fast check that numeric vector consists only of whole numbers

Description

Very fast check that numeric vector consists only of whole numbers

Usage

is_whole_number(x, tol = sqrt(.Machine$double.eps), na.rm = TRUE)

Arguments

X [numeric(n)] - A numeric vector.

tol [numeric(1)1] - Tolerance.

na.rm [logical(1)1] - Should NA values be ignored? Default is TRUE.
Details

is_whole_number () will return NA when these 3 conditions are met:

* na.rmis FALSE
e x contains at least 1 NA value

* x contains only a mix of whole numbers and/or NA values. If any values are not whole numbers
then we can return FALSE even with the presence of NA values.

If x is not numeric then is_whole_number () always returns FALSE.

Value

TRUE, FALSE, or NA (see Details)



26 lag_

lag_ Lagged operations.

Description

Fast lags and leads optionally using dynamic vectorised lags, ordering and run lengths.

Usage

lag_(x, n =1L, fill = NULL, set = FALSE, recursive = TRUE)

lag2_(
X ’
n =1L,
order = NULL,
run_lengths = NULL,
fill = NULL,
recursive = TRUE
)
Arguments
X A vector or data frame.
n Number of lags. Negative values are accepted.
lag2_ accepts a vector of dynamic lags and leads which gets recycled to the
length of x.
fill Value used to fill first n values. Default is NA.
set Should x be updated by reference? If TRUE no copy is made and x is updated in
place. The default is FALSE.
recursive Should list elements be lagged as well? If TRUE, this is useful for data frames
and will return row lags. If FALSE this will return a plain lagged list.
order Optionally specify an ordering with which to apply the lags. This is useful for
example when applying lags chronologically using an unsorted time variable.
run_lengths Optional integer vector of run lengths that defines the size of each lag run. For
example, supplying c(5, 5) applies lags to the first 5 elements and then essen-
tially resets the bounds and applies lags to the next 5 elements as if they were an
entirely separate and standalone vector.
This is particularly useful in conjunction with the order argument to perform a
by-group lag. See the examples for details.
Details

For most applications, it is more efficient and recommended to use lag_(). For anything that
requires dynamic lags, lag by order of another variable, or by-group lags, one can use lag2_().
To do cyclic lags, see the examples below for an implementation.



lag_ 27

lag2_:
lag2_ is a generalised form of lag_ that by default performs simple lags and leads.
It has 3 additional features but does not support updating by reference or long vectors.

These extra features include:

* n - This shares the same name as the n argument in 1lag_ for consistency. The difference is that
lag_ accepts a lag vector of length 1 whereas this accepts a vector of dynamic lags allowing
for flexible combinations of variable sized lags and leads. These are recycled to the length
of the data and will always align with the data, meaning that if you supply a custom order
argument, this ordering is applied both to x and the recycled lag vector n simultaneously.

e order - Apply lags in any order you wish. This can be useful for reverse order lags, lags
against unsorted time variables, and by-group lags.

* run_lengths - Specify the size of individual lag runs. For example, if you specify run_lengths
=c(3, 4, 2), this will apply your lags to the first 3 elements and then reset, applying lags
to the next 4 elements, to reset again and apply lags to the final 2 elements. Each time the
reset occurs, it treats each run length sized *chunk’ as a unique and separate vector. See the
examples for a showcase.

Table of differences between lag_ and lag2_:

Description lag_ lag2_
Lags Yes Yes
Leads Yes Yes
Long vector support Yes No
Lag by reference Yes No
Dynamic vectorised lags ~ No Yes
Data frame row lags Yes Yes
Alternative order lags No Yes

Value

A lagged object the same size as X.

Examples

library(cheapr)
library(bench)

# A use-case for data.table
# Adding @ because can't update ALTREP by reference
df <- data.frame(x = 1:10%5 + QL)

# Normal data frame lag
sset(lag_(df), 1:10)

# Lag these behind by 3 rows
sset(lag_(df, 3, set = TRUE), 1:10)



28

df$x[1:10] # x variable was updated by reference!

# The above can be used naturally in data.table to lag data
# without any copies

# To perform regular R row lags, just make sure set is “FALSE"
sset(lag_(as.data.frame(EuStockMarkets), 5), 1:10)

# lag2_ is a generalised version of lag_ that allows
# for much more complex lags

x <- 1:10

# lag every 2nd element
lag2_(x, n = c(1, 0)) # lag vector is recycled

# Explicit Lag(3) using a vector of lags
lags <- lag_sequence(length(x), 3, partial = FALSE)
lag2_(x, n = lags)

# Alternating lags and leads
lag2_(x, c(1, -1))

# Lag only the 3rd element
lags <- integer(length(x))
lags[3] <- 1L
lag2_(x, lags)

# lag in descending order (same as a lead)
lag2_(x, order = 10:1)

# lag that resets after index 5
lag2_(x, run_lengths = c(5, 5))

# lag with a time index
years <- sample(2011:2020)
lag2_(x, order = order(years))

# Example of how to do a cyclical lag
n <- length(x)

# When k >= @

k <= min(3, n)

lag2_(x, c(rep(-n + k, k), rep(k, n - k)))
# When k < 0

k <= max(-3, -n)

lag2_(x, c(rep(k, n + k), rep(n + k, -k)))

# As it turns out, we can do a grouped lag

# by supplying group sizes as run lengths and group order as the order

lag_



lag_

set.seed(45)
g <- sample(c("a”, "b"), 10, TRUE)

# NOTE: collapse::flag will not work unless g is already sorted!
# This is not an issue with lag2_()
collapse::flag(x, g = g)

lag2_(x, order = order(g), run_lengths = collapse::GRP(g)$group.sizes)

# For production code, we can of course make
# this more optimised by using collapse::radixorderv()
# Which calculates the order and group sizes all at once

0 <- collapse::radixorderv(g, group.sizes = TRUE)
lag2_(x, order = o, run_lengths = attr(o, "group.sizes"))

# Let's finally wrap this up in a nice grouped-lag function

grouped_lag <- function(x, n = 1, g = integer(length(x))){

0 <- collapse::radixorderv(g, group.sizes = TRUE, sort = FALSE)

lag2_(x, n, order = o, run_lengths = attr(o, "group.sizes"))

}

# And voila!
grouped_lag(x, g = g)

# A method to extract this information from dplyr

## We can actually get this information easily from a ~grouped_df" object

## Uncomment the below code to run the implementation

# Let's compare this to data.table

library(data. table)
default_threads <- getDTthreads()
setDTthreads(1)

group_sizes)) |>

# library(dplyr)

# library(timeplyr)

# eu_stock <- EuStockMarkets |>

# ts_as_tibble() |>

#  group_by(stock_index = group)

# groups <- group_data(eu_stock) # Group information

# group_order <- unlist(groups$.rows) # Order of groups

# group_sizes <- lengths_(groups$.rows) # Group sizes

#

# # by-stock index lag

# lag2_(eu_stock$value, order = group_order, run_lengths = group_sizes)
#

# # Verifying this output is correct

# eu_stock |>

#  ungroup() |>

# mutate(lagl = lag_(value), .by = stock_index) |>

# mutate(lag2 = lag2_(value, order = group_order, run_lengths
#  summarise(lags_are_equal = identical(lagl, lag2))

29



30

dt <- data.table(x = 1:10"5,
g = sample.int(10*4, 105, TRUE))

bench: :mark(dt[, y := shift(x), by = gI[J[["y"1],
grouped_lag(dt$x, g = dt$g),
iterations = 10)

setDTthreads(default_threads)

list_lengths

list_lengths List utilities

Description

Functions to help work with lists.

Usage
list_lengths(x, names = FALSE)
lengths_(x, names = FALSE)
unlisted_length(x)
new_list(length = oL, default = NULL)
list_assign(x, values)
list_modify(x, values)
list_combine(..., .args = NULL)
list_drop_null(x)

Arguments

X A list.

names Should names of list elements be added? Default is FALSE.
length Length of list.

default Default value for each list element.

values A named list

Objects to combine into a list.

.args An alternative to . .. so you can supply arguments directly in a list.

This is equivalent to do.call(f, .args) but much more efficient.



math 31

Value

list_lengths() returns the list lengths.

unlisted_length() is a fast alternative to length(unlist(x)).

new_list() is like vector(”list”, length) but also allows you to specify a default value for
each list element. This can be useful for initialising with a catch-all value so that when you unlist
you’re guaranteed a list of length >= to the specified length.

list_assign() is vectorised version of [[<- that concatenates values to x or modifies x where
the names match. Can be useful for modifying data frame variables.

list_combine() combines each element of a set of lists into a single list. If an element is not a list,
it is treated as a length-one list. This happens to be very useful for combining data frame cols.

list_drop_null() removes NULL list elements very quickly.

Examples

library(cheapr)
1 <- list(1:10,
NULL,
list(integer(), NA_integer_, 2:10))

lengths_(1) # Faster lengths()
unlisted_length(l) # length of vector if we unlist
paste@("length: ", length(print(unlist(1l))))

unlisted_length(l) - na_count(l) # Number of non-NA elements

# We can create and initialise a new list with a default value
1 <- new_list(20, oL)

1[1:5]

# This works well with vctrs_list_of objects

math Parallelised math operations

Description

Parallelised math operations

Usage
abs_(x)

floor_(x)
ceiling_(x)

trunc_(x)



32 named_list

negate_(x)

exp_(x)

sqrt_(x)

sign_(x)

log_(x, base = exp(1))
log10_(x)

round_(x, digits = @)
signif_(x, digits = 6)
add_(x, y)
subtract_(x, y)
multiply_(x, y)

divide_(x, y)

pow_(x, y)
Arguments
X [numeric(n)] vector.
base [numeric(n)] - Logarithm base.
digits [numeric(n)] - Number of digits to round to.
y [numeric(n)] vector.
Value

A transformed integer or double vector.

named_list Turn dot-dot-dot (. . .) into a named list

Description

A fast and useful function for always returning a named list from . . .

Usage
named_list(..., .keep_null = TRUE)



na_init
Arguments
Key-value pairs.
.keep_null Should NULL entries be kept? Default is TRUE.
Value

A named list.

33

na_init Fast NA initialisation

Description

Fast NA initialisation

Usage

na_init(x, n = 0L)

Arguments

X A vector.

n Vector length to initialise.
Value

Initialises NA values of the same type as x.

See Also

rep_len_

new_df Cheap data frame utilities

Description

Cheap data frame utilities



34 new_df

Usage
new_df (..., .nrows = NULL, .recycle = TRUE, .name_repair = TRUE, .args = NULL)
as_df (x)
fast_df (..., .args = NULL)

df_modify(x, cols)

list_as_df(x)

name_repair(x, dup_sep = "_", empty_sep = "col_")

non

unique_name_repair(x, dup_sep = "_", empty_sep = "col_")

col_c(..., .recycle = TRUE, .name_repair = TRUE, .args = NULL)
row_c(..., .args = NULL)
Arguments

Key-value pairs.

.nrows [integer(1)] - (Optional) number of rows.
Commonly used to initialise a 0-column data frame with rows.

.recycle [logical(1)] - Should arguments be recycled? Default is TRUE.
.name_repair [logical(1)1] - Should duplicate and empty names repaired and made unique?
Default is TRUE.

.args An alternative to . .. so you can supply arguments directly in a list.
This is equivalent to do.call(f, .args) but much more efficient.

X An object to coerce to a data. frame or a character vector for unique_name_repair().

cols A list of values to add or modify data frame x.

dup_sep [character(1)] A separator to use between duplicate column names and their
locations. Defaultis '_'

empty_sep [character(1)] A separator to use between the empty column names and their

locations. Defaultis 'col_"

Details

fast_df () is a very fast bare-bones version of new_df () that performs no checks and no recycling
or name tidying, making it appropriate for very tight loops.

Value

A data.frame.
name_repair takes a character vector and returns unique strings by appending duplicate string
locations to the duplicates. This is mostly used to create unique col names.



new_logical

35

new_logical Fast multi-threaded vector initialisation

Description

Fast multi-threaded vector initialisation

Usage

new_logical(n = @L, names = NULL, default = FALSE)

new_integer(n = OL, names = NULL, default = QL)
new_double(n = @L, names = NULL, default = 0)
new_character(n = 0L, names = NULL, default = "")
new_complex(n = OL, names = NULL, default = complex(real = @, imaginary = 0))
new_raw(n = OL, names = NULL, default = as.raw(Q))
Arguments

n [integer(1)] - Length of vector.

names [character(n)] - Names of initialised vector.

default Default value to initialise the vector with.

Value

New vector.

See Also

new_list

overview An alternative to summary () inspired by the skimr package

Description

A cheaper summary () function, designed for larger data.



36 overview

Usage

overview(x, digits = getOption("cheapr.digits”, 2), ...)

## Default S3 method:
overview(x, digits = getOption("cheapr.digits”, 2), ...)

## S3 method for class 'logical'
overview(x, digits = getOption("cheapr.digits”, 2), ...)

## S3 method for class 'integer'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)

## S3 method for class 'numeric'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)

## S3 method for class 'integer64'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)

## S3 method for class 'character'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

## S3 method for class 'factor'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

## S3 method for class 'Date’

overview(x, digits = getOption("”cheapr.digits”, 2), ...)

## S3 method for class 'POSIXt'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

## S3 method for class 'ts'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

## S3 method for class 'zoo'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

## S3 method for class 'data.frame'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)
Arguments

X A vector or data frame.

digits How many decimal places should the summary statistics be printed as? Default

is 2.
Further arguments passed onto methods. Currently unused.

hist Should in-line histograms be returned? Default is FALSE.



rebuild 37

Details

No rounding of statistics is done except in printing which can be controlled either through the
digits argument in overview(), or by setting the option options(cheapr.digits).
To access the underlying data, for example the numeric summary, just use $numeric, e.g. overview(rnorm(30))$numeric.

Value

An object of class "overview". Under the hood this is just a list of data frames. Key summary
statistics are reported in each data frame.

Examples

library(cheapr)
overview(iris)

# With histograms
overview(airquality, hist = TRUE)

# Round to @ decimal places
overview(airquality, digits = @)

# We can set an option for all overviews
options(cheapr.digits = 1)
overview(rnorm(100))
options(cheapr.digits = 2) # The default

rebuild Rebuild an object from a template

Description

Rebuild an object from a template
Usage
rebuild(x, template, ...)

## S3 method for class 'data.frame'
rebuild(x, template, shallow_copy = TRUE, ...)

## S3 method for class 'data.table'
rebuild(x, template, shallow_copy = TRUE, ...)

## S3 method for class 'tbl_df'
rebuild(x, template, shallow_copy = TRUE, ...)

## S3 method for class 'sf'
rebuild(x, template, shallow_copy

TRUE, ...)



38 recycle

Arguments
X An object in which carefully selected attributes will be copied into from template.
template A template object used to copy attributes into x.

Further arguments passed onto methods.

shallow_copy Should x be shallow copied before rebuilding? Default is TRUE.

Details

In R attributes are difficult to work with. One big reason for this is that attributes may or may not
be independent of the data. Date vectors for example have attributes completely independent of the
data and hence if the attributes are removed at any point, they can easily be re-added without any
calculations. Factors have almost data-independent attributes with an exception being when factors
are combined. In some cases it is not possible to rebuild attributes from the data alone.

You can add your own rebuild method for an object not covered by the methods here.

Value

An object similar to template.

recycle Recycle objects to a common size

Description

A convenience function to recycle R objects to either a common or specified size.

Usage
recycle(..., length = NULL, .args = NULL)
Arguments
Objects to recycle.
length Optional length to recycle objects to.
.args An alternative to . .. so you can supply arguments directly in a list.
This is equivalent to do.call(f, .args) but much more efficient.
Details

Data frames are recycled by recycling their rows.
recycle() is optimised to only recycle objects that need recycling.
NULL objects are ignored and not recycled or returned.

Value

A list of recycled R objects.



rep 39
Examples
library(cheapr)

# Recycles both to size 10
recycle(Sys.Date(), 1:10)

# Any vectors of zero-length are all recycled to zero-length
recycle(integer(), 1:10)

# Unless length is supplied
recycle(integer(), 1:10, length = 10)

# Data frame rows are recycled
recycle(sset(iris, 1:3), length

9

# To recycle objects in a list, use ~.args”
my_list <- list(from = 1L, to = 10L, by = seq(@.1, 1, 0.1))
recycle(.args = my_list)

rep cheapr style repeat functions

Description

cheapr style repeat functions

Usage

cheapr_rep(x, times)
rep_(x, times)
cheapr_rep_len(x, length)
rep_len_(x, length)
cheapr_rep_each(x, each)

rep_each_(x, each)

Arguments
X A vector or data frame.
times [integer(n)] A vector of times to repeat elements of x. Can be length 1 or the
same length as vector_length(x).
length [integer(1)1] - Length of the recycled result.

each [integer(n)] - How many times to repeat out each element of x.



40 replace

Value

Repeated out object.

replace Fast vector replacement, an alternative to [<-

Description

Fast vector replacement, an alternative to [<-

Usage

replace_(x, where, with, in_place = FALSE, quiet = FALSE)

Arguments
X A vector.
where [integer(n)] - Where to assign replacement values. This can be an integer
vector of locations, a logical vector (passed to which_()), or a character vector
of names.
with Replacement values. These will be recycled against the resulting where integer
locations.
in_place [logical(1)] - Should assignment be done in-place (no copies)? Default is
FALSE. Please note that assignment will occur in-place where possible even if
in_place is set to FALSE.
quiet Should warnings be suppressed when in_place = TRUE and x is shared my mul-
tiple objects? Default is FALSE.
Value

A vector whose values are replaced with with at locations specified by where.

Examples

library(cheapr)
x <- set_round(seq_(-2, 2, by = 0.5))

X |>

replace_(1, with = 100) # Assign value 100 at location 1
# Base R casts to “x~ and replacement to a common type
T[<=7(x, x== 0, "42")

# “assign_at® only casts replacement to type of x
X |>
replace_(x == @, with = "42") # Assign value 42 where x ==



sequences 41

sequences Utilities for creating many sequences

Description

seq_ is a vectorised version of seq with some additional features.
seq_size returns sequence sizes.

seq_start returns sequence start points.

seq_end returns sequence end points.
seg_increment returns sequence increments.

sequence_ is an extension to sequence which accepts decimal number increments.
seq_id can be paired with sequence_ to group individual sequences.
window_sequence creates a vector of window sizes for rolling calculations.
lag_sequence creates a vector of lags for rolling calculations.

lead_sequence creates a vector of leads for rolling calculations.

Usage

sequence_(size, from = 1L, by = 1L, add_id = FALSE, as_list = FALSE)
seq_id(size)

seq_(
from = NULL,
to = NULL,
by = NULL,
size = NULL,
add_id = FALSE,
as_list = FALSE

seq_size(from, to, by = 1L)

seq_start(size, to, by = 1L)
seq_end(size, from, by = 1L)
seq_increment(size, from, to)
window_sequence(size, k, partial = TRUE, ascending = TRUE, add_id = FALSE)

lag_sequence(size, k, partial = TRUE, add_id = FALSE)

lead_sequence(size, k, partial = TRUE, add_id = FALSE)



42 sequences
Arguments
size Vector of sequence lengths.
from Start of sequence(s).
by Unit increment of sequence(s).
add_id Should the ID numbers of the sequences be added as names? Default is FALSE.
as_list Should a list of sequences be returned? Setting to TRUE would place each distinct
sequence vector into a distinct list element. The default is FALSE.
to End of sequence(s).
k Window/lag size.
partial Should partial windows/lags be returned? Default is TRUE.
ascending Should window sequence be ascending? Default is TRUE.
Details

seq_() is a fast vectorised version of seq() with powerful features. It can return many sequences
as a single vector of combined sequences or a list of sequences.

sequence_() works in the same way as sequence() but can accept non-integer by values. This is
the workhorse function of seq_().

Unlike sequence(), sequence_() recycles all its arguments, including size.

If any of the sequences contain values > .Machine$integer.max, then the result will always be a
double vector.

Value

A vector of length sum(size) except for seq_ which returns a vector of size sum((to - from) /
(by +1))

Examples

library(cheapr)

# These two functions are similar
sequence(1:3);sequence_(1:3)

# sequence_() can handle any numeric vector sequence
sequence(1:3, by = 0.1);sequence_(1:3, by = 0.1)

# Alternatively return as a list of sequences
sequence_(1:3, by = 0.1, as_list = TRUE)

# Add IDs to the sequences

sequence_(1:3, by = 0.1, add_id = TRUE)

# Turn this quickly into a data frame

seqs <- sequence_(1:3, by = 0.1, add_id = TRUE)
new_df (name = names(seqs), seq = seqs)



sequences 43

sequence(c(3, 2), by = c(-0.1, 0.1));sequence_(c(3, 2), by = c(-0.1, 0.1))

# Vectorised version of seq()
seq_(1, 10, by = c(1, 0.5))

# Same as above

c(seq(1, 10, 1), seq(l, 10, 0.5))

# Again, as a list of sequences
# 2 different start points and 2 different increments
seq_(from = c(-1, 1), 3, by = c(1, 0.5), as_list = TRUE)

# Programmers may use seq_size() to determine final sequence lengths

sizes <- seq_size(1, 10, by = c(1, 0.5))
print(paste(c(”sequence sizes: (", sizes, ") total size:", sum(sizes)),
collapse = " "))

# Or return as a list of sequences

# Note that these lengths will match the above line of code

seq_(1, 10, by = c(1, 0.5), as_list = TRUE) |>
list_lengths()

# Sequences of dates with different increments

from <- Sys.Date()

to <- from + 10

by <- c(1, 2, 3)

date_seqgs <- seq_(from, to, by, as_list = TRUE)
lapply(date_seqs, function(x) “class<-"(x, "Date"))

# Utilities for rolling calculations

# A window sequence of size 3 for a vector of size 10

# This tells us how big the window should be when looking backwards
window_sequence(1@, 3, partial = FALSE)

window_sequence(10, 3, partial = TRUE)

window_sequence(c(3, 5), 3)
window_sequence(c(3, 5), 3, partial = FALSE)
window_sequence(c(3, 5), 3, partial = TRUE, ascending = FALSE)

# Lag sequence of size 3 for a vector of size 10

# This tells us how for we should look backwards at any given point
lag_sequence(10, 3, partial = FALSE)

# How far to look forwards

lead_sequence(10, 3, partial = FALSE)

lag_sequence(10, 3, partial = TRUE)
lead_sequence(10, 3, partial = TRUE)
# One can for example use these in data.table::frollsum



44 setdiff_

setdiff_ Extra utilities

Description

Extra utilities

Usage
setdiff_(x, y, dups = TRUE)

intersect_(x, y, dups = TRUE)

X %in_% table

X %!'in_% table

sample_(x, size = vector_length(x), replace = FALSE, prob = NULL)
val_insert(x, value, n = NULL, prop = NULL)
na_insert(x, n = NULL, prop = NULL)
vector_length(x)

cheapr_var(x, na.rm = TRUE)

cheapr_rev(x)

cheapr_sd(x, na.rm = TRUE)

rev_(x)

sd_(x, na.rm = TRUE)

var_(x, na.rm = TRUE)

with_local_seed(expr, .seed = NULL, .envir = environment(), ...)
Arguments

X A vector or data frame.

y A vector or data frame.

dups Should duplicates be kept? Default is TRUE.

table See ?collapse: :fmatch

size See ?sample.



setdiff 45

replace See ?sample.

prob See ?sample.

value The column name to assign the values of a vector.

n Number of scalar values (or NA) to insert randomly into your vector.

prop Proportion of scalar values (or NA) values to insert randomly into your vector.
na.rm Should NA values be ignored in var_() Default is TRUE.

expr Expression that will be evaluated with a local seed that is independent and has

absolutely no effect on the global RNG state.

.seed A local seed to set which is only used inside with_local_seed(). After the
execution of the expression the original seed is reset.

.envir Environment to evaluate expression.

Further arguments passed onto cut or set. seed.

Value

intersect_() returns a vector of common values between x and y.

setdiff_() returns a vector of values in x but not y.

%in_% and %!in_% both return a logical vector signifying if the values of x exist or don’t exist in
table respectively.

sample_() is an alternative to sample() that natively samples data frame rows through sset(). It
also does not have a special case when length(x) is 1.

val_insert inserts scalar values randomly into your vector. Useful for replacing lots of data with
a single value.

na_insert inserts NA values randomly into your vector. Useful for generating missing data.

var_ returns the variance of a numeric vector. No coercion happens for integer vectors and so is
very cheap.

rev_ is a much cheaper version of rev().

with_local_seed offers no speed improvements but is extremely handy in executing random num-
ber based expressions like rnorm() without affecting the global RNG state. It allows you to run
these expressions in a sort of independent ’container’ and with an optional seed for that ’container’
for reproducibility. The rationale for including this in *cheapr’ is that it can reduce the need to set
many seed values, especially for multiple output comparisons of RNG expressions. Another way of
thinking about it is that with_local_seed() is a helper that allows you to write reproducible code
without side-effects, which traditionally cannot be avoided when calling set.seed() directly.

Examples
library(cheapr)
# Using “with_local_seed()"
# The below 2 statements are equivalent
# Statement 1

set.seed(123456789)
res <- rnorm(10)



46 set_abs

# Statement 2
res2 <- with_local_seed(rnorm(10), .seed = 123456789)

# They are the same
identical(res, res2)

# As an example we can see that the RNG is unaffected by generating
# random uniform deviates in batches between calls to “with_local_seed()"
# and comparing to the first result

set.seed(123456789)
batch1 <- rnorm(2)

with_local_seed(runif(10))
batch2 <- rnorm(2)
with_local_seed(runif(10))
batch3 <- rnorm(1)
with_local_seed(runif(10))
batch4 <- rnorm(5)

# Combining the batches produces the same result
# therefore “with_local_seed™ did not interrupt the rng sequence
identical(c(batch1, batch2, batch3, batch4), res)

# It can be useful in multiple comparisons
out1l <- with_local_seed(rnorm(5))
out2 <- with_local_seed(rnorm(5))
out3 <- with_local_seed(rnorm(5))

identical(out1, out2)
identical(out1, out3)

set_abs Math operations by reference - Experimental

Description

These functions transform your variable by reference, with no copies being made. It is advisable to
only use these if you know what you are doing.

Usage

set_abs(x)
set_floor(x)
set_ceiling(x)

set_trunc(x)



set_abs 47

set_exp(x)

set_sqrt(x)
set_change_sign(x)
set_round(x, digits = @)
set_log(x, base = exp(1))
set_pow(x, y)

set_add(x, y)
set_subtract(x, y)
set_multiply(x, y)

set_divide(x, y)

Arguments
X [numeric(n)] vector.
digits [numeric(n)] - Number of digits to round to.
base [numeric(n)] - Logarithm base.
y [numeric(n)] vector.
Details

These functions are particularly useful for situations where you have made a copy and then wish to
perform further operations without creating more copies.

NA and NaN values are ignored though in some instances NaN values may be replaced with NA. These
functions will not work on any classed objects, meaning they only work on standard integer and
numeric vectors and matrices.

When a copy has to be made:

A copy is only made in certain instances, e.g. when passing an integer vector to set_log(). A
warning will always be thrown in this instance alerting the user to assign the output to an object
because x has not been updated by reference.

To ensure consistent and expected outputs, always assign the output to the same object,

e.g. x <- set_log(x) (do this)

set_log(x) (don’t do this)

x2 <- set_log(x) (Don’t do this either)

No copy is made here unless x is an integer vector.



48

sset

Value

The exact same object with no copy made, just transformed.

Examples

library(cheapr)
library(bench)

X <- rnorm(2e@5)
mark (

base = exp(log(abs(x))),

cheapr = set_exp(set_log(set_abs(x)))
)

sset Cheaper subset sset ()

Description

sset() is a cheaper alternative to [.

It consistently subsets data frame rows for any data frame class including tibble and data.table.

Usage
sset(x, i = NULL, j = NULL, ...)
Arguments
X Vector or data frame.
i A logical vector or integer vector of locations.
j Column indices, names or logical vector.
Further parameters passed to [.
Details
S3 dispatching:

sset will internally dispatch the correct method and will call [ if it can’t find an appropriate
method. This means one can define their own [ method for custom S3 objects.

To speed up subsetting for common objects likes Dates and POSIX1t an internal generic function
is used which overwrites the [ method for that common object. This is why subsetting POSIX1t
is much faster with sset an internal method has been defined. For more details see the code for
cheapr: ::cheapr_sset.



sset_df 49

Difference to base R:

When i is a logical vector, it is passed directly to which_().

This means that NA values are ignored and this also means that i is not recycled, so it is good
practice to make sure the logical vector matches the length of x. To return NA values, use sset(x,
NA_integer_).

ALTREP range subsetting:

When i is an ALTREP compact sequence which can be commonly created using e.g. 1:10 or
using seq_len, seq_along and seq.int, sset internally uses a range-based subsetting method
which is faster and doesn’t allocate i into memory.

Value

A new vector, data frame, list, matrix or other R object.

Examples

library(cheapr)
library(bench)

# Selecting columns
sset(airquality, j = "Temp")
sset(airquality, j = 1:2)

# Selecting rows
sset(iris, 1:5)

# Rows and columns
sset(iris, 1:5, 1:5)
sset(iris, iris$Sepal.Length > 7, c("Species”, "Sepal.Length"))

# Comparison against base
X <= rnorm(10*4)

mark(x[1:10%3], sset(x, 1:10%3))
mark(x[x > @], sset(x, x > 0))

df <- data.frame(x = x)
mark (df[df$x > @, , drop = FALSE],

sset(df, df$x > 0),
check = FALSE) # Row names are different

sset_df Fast functions for data frame subsetting

Description

These functions are for developers that need minimal overhead when filtering on rows and/or cols.



50 strings

Usage
sset_df(x, i = NULL, j = NULL, ...)
sset_row(x, i = NULL)

sset_col(x, j = NULL)

Arguments
X A data.frame.
i Rows - If NULL all rows are returned.
j Cols - If NULL all cols are returned.
Unused.
Details

If you are unsure which functions to use then it is recommended to use sset (). These low-overhead
helpers do not work well with data.tables but should work well with basic data frames and basic tib-
bles. The only real difference between sset_df and sset_row/sset_col is that sset_df attempts
to return a similar type of data frame as the input, whereas sset_row and sset_col always return
a plain data frame.

Value

A data frame subsetted on rows i and cols j.

strings Fast string concatenation using C++

Description

Fast string concatenation using C++

Usage
paste_(..., sep = "", collapse = NULL, .args = NULL)
Arguments
Character vectors to concatenate.
sep [character(1)] - A string to separate the supplied strings.
collapse Optional string to collapse concatenated strings into one string (character vector
of length 1).
.args An alternative to . .. so you can supply arguments directly in a list.

This is equivalent to do.call(f, .args) but much more efficient.



strings

Examples

library(cheapr)

# Normal usage

paste_("Hello"”, "and", "Goodbye", sep = " ")
paste_(100, "%")

paste_(letters, LETTERS)
paste_(letters, LETTERS, collapse = "")

# Both concatenating and collapsing

paste_(letters, LETTERS, sep = ",", collapse = " next letter ")
# This is the same as above
paste_(letters, LETTERS, collapse = ", next letter ")

# Recycling with zero-length vectors
paste_("hello"”, character(), letters)
paste_("hello"”, character(), letters, collapse = "")

library(bench)
sampled_letters <- sample_(letters, 5e04, TRUE)

# Pasting multiple character vectors
mark(
paste_(sampled_letters, sep = ","),
paste(sampled_letters, sep = ","),
iterations = 50
)
# Collapsing is very fast compared to base R
mark (
paste_(sampled_letters, collapse = ""),
paste(sampled_letters, collapse = ""),
iterations = 50

)

# Concatenating many objects is very fast via ~.args”
strings <- sampled_letters |>

with_local_seed(1) |>

as.list()

strings <- lapply(strings, rep_len_, 3)

mark(
paste_(.args = strings),
do.call(paste®@, strings),
iterations = 15

)

mark (
paste_(.args = strings, collapse = ""),
do.call(paste_, c(strings, list(collapse = ""))),
do.call(paste®@, c(strings, list(collapse = ""))),



52 str_coalesce

iterations = 10

str_coalesce Coalesce character vectors

Description

nn

str_coalesce() find the first non empty string "". This is particularly useful for assigning and

fixing the names of R objects.

In this implementation, the empty string "" has priority over NA which means NA is only returned
when all values are NA, e.g. str_coalesce(NA, NA).

Usage
str_coalesce(..., .args = NULL)
Arguments
Character vectors to coalesce.
.args An alternative to . .. so you can supply arguments directly in a list.
This is equivalent to do.call(f, .args) but much more efficient.
Details
str_coalesce(x, y) is equivalent to if_else(x !="" & lis.na(x), x, y).
Value

A coalesced character vector of length corresponding to the recycled size of supplied character
vectors. See ?recycle for details.

Examples
library(cheapr)
# Normal examples

str_coalesce("", "hello")
str_coalesce("", NA, "goodbye")

# '' always preferred
str_coalesce(”"”, NA)
str_coalesce(NA, "")

# Unless there are only NAs
str_coalesce(NA, NA)

# ~str_coalesce™ is vectorised



switch_args 53

nn

x <- val_insert(letters, , h=10)
y <- val_insert(LETTERS, "", n = 10)

str_coalesce(x, y)

# Using ~.args™ instead of “do.call” is much more efficient
library(bench)
x <- rep_len_(list(letters), 10%3)

mark(do.call(str_coalesce, x),
str_coalesce(.args = x),
iterations = 50)

switch_args Switch between dot-dot-dot and a list of args

Description

switch_args() is primarily used as a helper when writing functions that use the dot-dot-dot argu-
ment . . ..

cheapr uses it frequently to give more freedom to the user in how they pass arguments to functions
that take a variable number of arguments.

See examples for info.

Usage
switch_args(..., .args = NULL)
Arguments
Arguments passed individually.
.args Alternative list of arguments. Either . .. or .args can be used, not both.
Details

Using switch_args simply allows the user to avoid having to use do.call(fn, args). This can be
advantageous for developers who write compiled (C/C++) functions that accept lists of arguments.
cheapr internally uses this framework for performance critical functions such as cheapr::c_()
which internally calls cheapr:::cpp_c(), a function that takes one list of vectors and combines
them into one vector. The equivalent of cheapr::c_(.args = args) would be the less efficient
do.call(cheapr::c_, args).

Value

A list of arguments



54

Examples

library(cheapr)

# Flexibly create a data frame

base_new_df <- function(..., .args = NULL){
args <- switch_args(..., .args = .args)
list2DF(args)

}

# Normal usage
base_new_df(x =1, y = 2)

# Alternatively supplying a list of args instead
base_new_df (.args = list(x =1, y = 2))

# cheapr::new_df does something similar
new_df(x =1, y = 2)
new_df(.args = list(x =1, y = 2))

unique_

unique_

An alternative unique function

Description

unique_() is a usually faster alternative to unique() with optional sorting included. The internal
API of this function is designed to be simple and generic to allow for working with all kinds of

objects that can be reduced to a unique set.

Internally unique_() calculates unique group IDs for the given vector in the range [1, n] where
1 denotes the first group and n denotes the nth group. This function will work correctly as long
as there is a correctly implemented collapse: :GRP method and a [ method for the object. In the
future cheapr will include a group_id S3 generic to replace the use of collapse: :GRP here, of

which is arguably more difficult to write correct methods for.

Usage

Arguments

X A vector (or data frame).

sort Should unique result be sorted? Default is FALSE.
Value

unique_(x, sort = FALSE)

A unique vector (or data frame).



val_count 55

Examples

library(cheapr)
X <= rep_(3:1, 3)
unique_(x)

unique_(x, sort = TRUE)

# Unique rows

iris |>
sset(j = c("Petal.Width", "Species”)) |>
unique_(Q)
val_count Efficient functions for counting, finding, replacing and removing
scalars
Description

These are primarily intended as very fast scalar-based functions for developers. They are particu-
larly useful for working with NA values in a fast and efficient manner.

Usage

val_count(x, value, recursive = TRUE)
val_find(x, value, invert = FALSE)

which_val(x, value, invert = FALSE)
val_replace(x, value, replace, recursive = TRUE)
na_replace(x, replace, recursive = TRUE)
val_rm(x, value)

na_count(x, recursive = TRUE)

na_find(x, invert = FALSE)

na_rm(x)
Arguments
X A vector, list, data frame or matrix.
value A scalar value to count, find, replace or remove.
recursive Should values in a list be counted or replaced recursively? Default is TRUE and

very useful for data frames.



56 val_count

invert Should which_val find locations of everything except specified value? Default
is FALSE.
replace Replacement scalar value.
Details

The val_ functions allow you to very efficiently work with scalars, i.e length 1 vectors. Many
common common operations like counting the occurrence of NA or zeros, e.g. sum(x ==@) or
sum(is.na(x)) can be replaced more efficiently with val_count(x, @) and na_count(x) respec-
tively.

At the moment these functions only work for integer, double and character vectors with the excep-
tion of the NA functions. They are intended mainly for developers who wish to write cheaper code
and reduce expensive vector operations.

¢ val_count() - Counts occurrences of a value
e val_find() Finds locations (indices) of a value

* val_replace() - Replaces value with another value

* val_rm() - Removes occurrences of value from an object
There are NA equivalent convenience functions.

* na_count() ==val_count(x, NA)
e na_find() ==val_find(x, NA)
* na_replace() ==val_replace(x, NA)

e na_rm() ==val_rm(x, NA)

val_count() and val_replace() can work recursively. For example, when applied to a data
frame, na_replace will replace NA values across the entire data frame with the specified replace-
ment value.

In ’cheapr’ function-naming conventions have not been consistent but going forward all scalar func-
tions (including the NA convenience functions) will be prefixed with *val_’ and ’na_’ respectively.
Functions named with the older naming scheme like which_na may be removed at some point in
the future.

Value

val_count () returns the number of times a scalar value appears in a vector or list.

val_find() returns the index locations of that scalar value.

val_replace() replaces a specified scalar value with a replacement scalar value. If no instances of
said value are found then the input x is returned as is.

na_replace() is a convenience function equivalent to val_replace(x, NA, ...).

val_rm() removes all instances of a specified scalar value. If no instances are found, the original
input x is returned as is.



which_ 57

which_ Memory-efficient alternative to which()

Description

Exactly the same as which() but more memory efficient.

Usage
which_(x, invert = FALSE)

Arguments
X A logical vector.
invert If TRUE, indices of values that are not TRUE are returned (including NA). If FALSE
(the default), only TRUE indices are returned.
Details

This implementation is similar in speed to which() but usually more memory efficient.

Value

An unnamed integer vector.

Examples

library(cheapr)
library(bench)
x <- sample(c(TRUE, FALSE), 1e@5, TRUE)
x[sample.int(1e@5, round(1e@5/3))] <- NA

mark(which_(TRUE), which(TRUE))

mark (which_(FALSE), which(FALSE))

mark(which_(logical()), which(logical()))

mark(which_(x), which(x), iterations = 20)

mark(base = which(is.na(match(x, TRUE))),
collapse = collapse::whichv(x, TRUE, invert = TRUE),
cheapr = which_(x, invert = TRUE),
iterations = 20)



Index

%'in_% (setdiff_), 44
%in_% (setdiff_), 44

abs_ (math), 31

add_ (math), 31

address, 3
all_na(is_na), 22
any_na (is_na), 22
archetype (cast), 9
archetype_common (cast), 9
as_df (new_df), 33
as_discrete, 3, 8, 20
as_factor (factor_), 14
attrs, 6

attrs_add (attrs), 6
attrs_clear (attrs), 6
attrs_modify, I3
attrs_modify (attrs), 6
attrs_rm(attrs), 6

bin, 5,7, 20

c_, 13

case, §, 22

cast, 9

cast_common (cast), 9
ceiling_ (math), 31

cheapr (cheapr-package), 2
cheapr-package, 2
cheapr_c (c_), 13

cheapr_if_else (if_else), 21

cheapr_rep (rep), 39
cheapr_rep_each (rep), 39
cheapr_rep_len (rep), 39
cheapr_rev (setdiff_), 44
cheapr_sd (setdiff_), 44
cheapr_table, 10
cheapr_var (setdiff_), 44
col_all_na(is_na), 22
col_any_na(is_na), 22

58

col_c (new_df), 33
col_na_counts (is_na), 22
copy, 11

counts (cheapr_table), 10
cpp_rebuild, 12

deep_copy (copy), 11
df_modify (new_df), 33
divide_ (math), 31

exp_ (math), 31

factor_, 14
fast_df (new_df), 33
floor_ (math), 31

ged, 17

gcd2 (ged), 17

get_breaks, 5, 8, 19
get_max_threads, 21

get_threads (get_max_threads), 21

if_else, 21

if_else_, 9
if_else_(if_else), 21
int_sign, 22

intersect_ (setdiff_), 44
is_na, 22
is_whole_number, 25

lag2_(lag_), 26

lag_, 26

lag_sequence (sequences), 41
lead_sequence (sequences), 41
lengths_ (list_lengths), 30
levels_add (factor_), 14
levels_add_na (factor_), 14
levels_count (factor_), 14
levels_drop (factor_), 14
levels_drop_na (factor_), 14
levels_factor (factor_), 14



INDEX

levels_lump (factor_), 14
levels_rename (factor_), 14
levels_reorder (factor_), 14
levels_rm(factor_), 14
levels_unused (factor_), 14
levels_used (factor_), 14
list_as_df (new_df), 33
list_assign(list_lengths), 30
list_combine (list_lengths), 30
list_drop_null (list_lengths), 30
list_lengths, 30

list_modify (list_lengths), 30
logl10_ (math), 31

log_ (math), 31

logical, 21, 57

math, 31
multiply_ (math), 31

na_count (val_count), 55
na_find (val_count), 55
na_init, 33

na_insert (setdiff_), 44
na_replace (val_count), 55
na_rm(val_count), 55
name_repair (new_df), 33
named_list, 32

negate_ (math), 31
new_character (new_logical), 35
new_complex (new_logical), 35
new_df, 33

new_double (new_logical), 35
new_integer (new_logical), 35
new_list, 35

new_list (list_lengths), 30
new_logical, 35

new_raw (new_logical), 35
num_na (is_na), 22

numeric, 17, 18

overview, 35

paste_ (strings), 50
pow_ (math), 31

r_type (cast), 9
r_type_common (cast), 9
rebuild, 13, 37
recycle, 38

59

rep, 39

rep_ (rep), 39
rep_each_ (rep), 39
rep_len_, 33

rep_len_ (rep), 39
replace, 40

replace_ (replace), 40
rev_ (setdiff_), 44
round_ (math), 31
row_all_na (is_na), 22
row_any_na (is_na), 22
row_c (new_df), 33
row_na_counts (is_na), 22

sample_ (setdiff_), 44

scm (ged), 17

scm2 (ged), 17

sd_ (setdiff_), 44
semi_copy (copy), 11

seq, 41

seq_ (sequences), 41
seg_end (sequences), 41
seq_id (sequences), 41
seq_increment (sequences), 41
seq_size (sequences), 41
seq_start (sequences), 41
sequence, 41

sequence_ (sequences), 41
sequences, 41

set_abs, 46

set_add (set_abs), 46
set_ceiling (set_abs), 46
set_change_sign (set_abs), 46
set_divide (set_abs), 46
set_exp (set_abs), 46
set_floor (set_abs), 46
set_log (set_abs), 46
set_multiply (set_abs), 46
set_pow (set_abs), 46
set_round (set_abs), 46
set_sqrt (set_abs), 46
set_subtract (set_abs), 46
set_threads (get_max_threads), 21
set_trunc (set_abs), 46
setdiff_, 44
shallow_copy, 7
shallow_copy (copy), 11
sign_ (math), 31

signif_ (math), 31



60

sqrt_ (math), 31

sset, 48

sset_col (sset_df), 49
sset_df, 49

sset_row (sset_df), 49
str_coalesce, 52
strings, 50

subtract_ (math), 31
switch_args, 53

table_ (cheapr_table), 10
trunc_ (math), 31

unique_, 54
unique_name_repair (new_df), 33
unlisted_length (list_lengths), 30

val_count, 55

val_find (val_count), 55
val_insert (setdiff_), 44
val_match, 22

val_match (case), 8
val_replace (val_count), 55
val_rm(val_count), 55

var_ (setdiff_), 44
vector_length (setdiff_), 44

which_, 57

which_na (is_na), 22
which_not_na (is_na), 22
which_val (val_count), 55
window_sequence (sequences), 41
with_local_seed (setdiff_), 44

INDEX



	cheapr-package
	address
	as_discrete
	attrs
	bin
	case
	cast
	cheapr_table
	copy
	cpp_rebuild
	c_
	factor_
	gcd
	get_breaks
	get_max_threads
	if_else
	int_sign
	is_na
	is_whole_number
	lag_
	list_lengths
	math
	named_list
	na_init
	new_df
	new_logical
	overview
	rebuild
	recycle
	rep
	replace
	sequences
	setdiff_
	set_abs
	sset
	sset_df
	strings
	str_coalesce
	switch_args
	unique_
	val_count
	which_
	Index

