
Package ‘clinpubr’
January 8, 2026

Title Clinical Publication

Version 1.2.0

Description Accelerate the process from clinical data to medical publication,
including clinical data cleaning, significant result screening, and the
generation of publish-ready tables and figures.

Maintainer Yue Niu <niuyuesam@163.com>

URL https://github.com/yotasama/clinpubr,

https://gitee.com/yotasama/clinpubr

BugReports https://github.com/yotasama/clinpubr/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Collate 'answer_check.R' 'baseline_table.R' 'calculate_index.R'
'check_nonnum.R' 'classif_model_compare.R' 'combine_files.R'
'cut_by.R' 'data_overview.R' 'exclusion_count.R'
'extract_num.R' 'get_valid.R' 'get_valid_subset.R'
'importance_plot.R' 'initial_cleaning.R' 'interactions.R'
'mark_outlier.R' 'merge.R' 'utils.R' 'misc.R' 'multichoice.R'
'predictor_effect_plot.R' 'rcs_plot.R' 'regressions.R'
'subgroup_forest.R' 'subject_standardize.R' 'time_roc.R'
'to_date.R' 'unit_standardize.R'

Imports broom, car, DescTools, dplyr, fBasics, forestploter, ggplot2,
Hmisc, rlang, rms, stringi, stringr, survival, survminer, tidyr

Suggests caret, dcurves, dtplyr, geepack, pROC, ResourceSelection,
rstatix, tableone, testthat (>= 3.0.0), timeROC, vdiffr, withr

Config/testthat/edition 3

NeedsCompilation no

Author Yue Niu [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-6843-3548>),

Keyun Wang [aut]

Repository CRAN

Date/Publication 2026-01-08 15:50:12 UTC

1

https://github.com/yotasama/clinpubr
https://gitee.com/yotasama/clinpubr
https://github.com/yotasama/clinpubr/issues
https://orcid.org/0000-0001-6843-3548

2 Contents

Contents
add_lists . 3
answer_check . 4
baseline_table . 5
break_at . 6
calculate_index . 7
calc_cindex . 8
check_nonnum . 8
classif_model_compare . 9
combine_files . 11
combine_multichoice . 12
common_prefix . 13
cut_by . 13
data_overview . 15
detect_outliers . 16
df_view_nonnum . 17
emp_colors . 18
exclusion_count . 18
extract_num . 19
fill_with_last . 20
filter_rcs_predictors . 21
first_mode . 22
format_pval . 22
formula_add_covs . 23
get_samples . 24
get_valid . 24
get_valid_subset . 25
get_var_types . 26
importance_plot . 28
indicate_duplicates . 29
interaction_plot . 30
interaction_p_value . 31
interaction_scan . 33
mad_outlier . 34
max_missing_rates . 35
merge_by_substring . 35
merge_ordered_vectors . 36
na2false . 37
na_max . 38
predictor_effect_plot . 38
qq_show . 41
rcs_plot . 42
regression_basic_results . 44
regression_fit . 47
regression_forest . 48
regression_scan . 49
replace_elements . 51

add_lists 3

split_multichoice . 52
str_match_replace . 53
subgroup_forest . 53
subject_view . 55
test_normality . 56
time_roc_plot . 57
to_date . 59
unit_standardize . 59
unit_view . 62
unmake_names . 63
value_initial_cleaning . 64
vec2code . 64

Index 66

add_lists Adding lists element-wise

Description

Combine lists by adding element-wise.

Usage

add_lists(l1, l2)

Arguments

l1, l2 A pair of lists.

Value

A list.

Examples

l1 <- list(a = 1, b = 2)
l2 <- list(a = 3, b = 4, c = 5)
add_lists(l1, l2)

4 answer_check

answer_check Check answers of multiple choice questions

Description

Check answers of multiple choice questions by matching the answers with the correct sequence.

Usage

answer_check(dat, seq, multi_column = FALSE)

Arguments

dat A data frame of answers.

seq A vector of correct answers, one element for each question.

multi_column Logical, whether the multi-answers are in multiple columns.

Details

If multi_column is TRUE, the answers for Multiple-Answer Questions should be in multiple
columns of logicals, with each column representing a choice. The seq should be a string of "T"
and "F". If multi_column is FALSE, the answers for Multiple-Answer Questions should be in one
column, and the function would expect an exact match of seq.

Value

A data frame of boolean values, with ncol equals the number of questions.

Examples

dat <- data.frame(Q1 = c("A", "B", "C"), Q2 = c("AD", "AE", "ABF"))
seq <- c("A", "AE")
answer_check(dat, seq)
dat <- data.frame(

Q1 = c("A", "B", "C"), Q2.A = c(TRUE, TRUE, FALSE),
Q2.B = c(TRUE, FALSE, TRUE), Q2.C = c(FALSE, TRUE, FALSE)

)
seq <- c("A", "TFT")
answer_check(dat, seq, multi_column = TRUE)

baseline_table 5

baseline_table Create a baseline table for a dataset.

Description

Create a baseline table and a table of missing values. If the strata variable has more than 2 levels, a
pairwise comparison table will also be created.

Usage

baseline_table(
data,
var_types = NULL,
strata = NULL,
vars = NULL,
factor_vars = NULL,
exact_vars = NULL,
nonnormal_vars = NULL,
seed = NULL,
omit_missing_strata = FALSE,
save_table = FALSE,
filename = NULL,
multiple_comparison_test = TRUE,
p_adjust_method = "BH",
smd = FALSE,
...

)

Arguments

data A data frame.

var_types An object from class var_types returned by get_var_types function.

strata A variable to stratify the table. Overwrites the strata variable in var_types.

vars A vector of variables to include in the table.

factor_vars A vector of factor variables. Overwrites the factor variables in var_types.

exact_vars A vector of variables to test for exactness. Overwrites the exact variables in
var_types.

nonnormal_vars A vector of variables to test for normality. Overwrites the nonnormal variables
in var_types.

seed A seed for the random number generator. This seed can be set for consistent
simulation when performing fisher exact tests.

omit_missing_strata

A logical value indicating whether to omit missing values in the strata variable.

save_table A logical value indicating whether to save the result tables.

6 break_at

filename The name of the file to save the table. The file names for accompanying ta-
bles will be the same as the main table, but with "_missing" and "_pairwise"
appended.

multiple_comparison_test

A logical value indicating whether to perform multiple comparison tests. Vari-
ables in factor_vars and exact_vars are tested with pairwise chisq.test or
fisher.test, and other variables are tested with rstatix::dunn_test() or
rstatix::games_howell_test().

p_adjust_method

The method to use for p-value adjustment for pairwise comparison. Default is
"BH". See ?p.adjust.methods.

smd A logical value indicating whether to include SMD in the table. Passed to
tableone::print.TableOne().

... Additional arguments passed to tableone::print.TableOne().

Value

A list containing the baseline table and accompanying tables.

Examples

withr::with_tempdir(
{
data(cancer, package = "survival")
var_types <- get_var_types(cancer, strata = "sex")
baseline_table(cancer, var_types = var_types, filename = "baseline.csv")

baseline table with pairwise comparison
cancer$ph.ecog_cat <- factor(cancer$ph.ecog,

levels = c(0:3),
labels = c("0", "1", ">=2", ">=2")

)
var_types <- get_var_types(cancer, strata = "ph.ecog_cat")

baseline_table(cancer, var_types = var_types, save_table = TRUE, filename = "baseline.csv")
print(paste0("files saved to: ", getwd()))

},
clean = FALSE

)

break_at Generate breaks for histogram

Description

Generate breaks for histogram that covers xlim and includes a ref_val.

Usage

break_at(xlim, breaks, ref_val = NULL)

calculate_index 7

Arguments

xlim A vector of length 2.

breaks The number of breaks.

ref_val The reference value to include in breaks.

Value

A vector of breaks of length breaks + 1.

Examples

break_at(xlim = c(0, 10), breaks = 12, ref_val = 3.12)

calculate_index Calculate index based on conditions

Description

Calculate an index based on multiple conditions. Each condition is evaluated and the result is
weighted and summed to produce the final index.

Usage

calculate_index(.df, ..., .weight = 1, .na_replace = 0)

Arguments

.df A data frame

... Conditions to evaluate. See examples for more details.

.weight Weight for each condition, should be of length 1 or equal to the number of
conditions.

.na_replace Value to replace NA, should be of length 1 or equal to the number of conditions.

Value

A numeric vector of index scores

Examples

df <- data.frame(x = c(1, 2, 3, 4, 5), y = c(1, 2, NA, 4, NA))
calculate_index(df, x > 3, y < 3, .weight = c(1, 2), .na_replace = 0)

8 check_nonnum

calc_cindex Calculate C-index for survival data

Description

Calculate C-index for survival data. It’s a wrapper function for Hmisc::rcorr.cens().

Usage

calc_cindex(data, time_var, event_var, marker_var)

Arguments

data A data frame containing the survival time, event indicator, and marker variable.
time_var A string specifying the name of the survival time variable in the data frame.
event_var A string specifying the name of the event indicator variable in the data frame.
marker_var A string specifying the name of the marker variable in the data frame.

Value

The C-index value.

Examples

Calculate C-index using lung dataset from survival package
data(cancer, package = "survival")
Use age as the marker variable
calc_cindex(lung, "time", "status", "age")

check_nonnum Check elements that are not numeric

Description

Finds the elements that cannot be converted to numeric in a character vector. Useful when setting
the strategy to clean numeric values.

Usage

check_nonnum(
x,
return_idx = FALSE,
show_unique = TRUE,
max_count = NULL,
random_sample = FALSE,
fix_len = FALSE

)

classif_model_compare 9

Arguments

x A string vector that stores numerical values.
return_idx A logical value. If TRUE, return the index of the elements that are not numeric.
show_unique A logical value. If TRUE, return the unique elements that are not numeric. Omit-

ted if return_idx is TRUE.
max_count An integer. The maximum number of elements to show. If NULL or 0, show all

elements. Omitted if return_idx is TRUE.
random_sample A logical value. If TRUE, randomly sample the elements to show. Only works if

max_count is not NULL or 0.
fix_len A logical value. If TRUE, fill the vector with NA to fix the length to max_count.

Details

The function uses the as.numeric() function to try to convert the elements to numeric. If the
conversion fails, the element is considered non-numeric.

Value

The (unique) elements that cannot be converted to numeric, and their indexes if return_idx is
TRUE.

Examples

check_nonnum(c("\uFF11\uFF12\uFF13", "11..23", "3.14", "2.131", "35.2."))

classif_model_compare Performance comparison of classification models

Description

Compare the performance of classification models by commonly used metrics, and generate com-
monly used plots including receiver operating characteristic curve plot, decision curve analysis plot,
and calibration plot.

Usage

classif_model_compare(
data,
target_var,
model_names,
colors = NULL,
save_output = FALSE,
figure_type = "png",
output_prefix = "model_compare",
as_probability = FALSE,
auto_order = TRUE

)

10 classif_model_compare

Arguments

data A data frame containing the target variable and the predicted values.

target_var A string specifying the name of the target variable in the data frame.

model_names A vector of strings specifying the names of the models to compare.

colors A vector of colors to use for the plots. The last 2 colors are used for the "Treat
all" and "Treat none" lines in the DCA plot.

save_output A logical value indicating whether to output the results to files.

figure_type A character string of the figure type. Can be "png", "pdf", and other types that
ggplot2::ggsave() support.

output_prefix A string specifying the prefix for the output files.

as_probability A logical or a vector of variable names. The logical value indicates whether
to convert variables not in range 0 to 1 into this range. The vector of variable
names means to convert these variables to the range of 0 to 1.

auto_order A logical value indicating whether to automatically order the models by their
AUCs. If TRUE, the models will be ordered by their AUCs in descending order.
If FALSE, the order in model_names will be retained.

Value

A list of various results. If the output files are not in desired format, these results can be modified
for further use.

• metric_table: A data frame containing the performance metrics for each model.

• roc_plot: A ggplot object of Receiver Operating Characteristic curves.

• pr_plot: A ggplot object of Precision-Recall curves.

• dca_plot: A ggplot object of decision curve analysis plots.

• calibration_plot: A ggplot object of calibration plots.

Metrics

• AUC: Area Under the Receiver Operating Characteristic Curve

• PRAUC: Area Under the Precision-Recall Curve

• Accuracy: Overall accuracy

• Sensitivity: True positive rate

• Specificity: True negative rate

• Pos Pred Value: Positive predictive value

• Neg Pred Value: Negative predictive value

• F1: F1 score

• Kappa: Cohen’s kappa

• Brier: Brier score

• cutoff: Optimal cutoff for classification, metrics that require a cutoff are based on this value.

• Youden: Youden’s J statistic

• HosLem: Hosmer-Lemeshow test p-value

combine_files 11

Examples

data(cancer, package = "survival")
df <- kidney
df$dead <- ifelse(df$time <= 100 & df$status == 0, NA, df$time <= 100)
df <- na.omit(df[, -c(1:3)])

model0 <- glm(dead ~ age + frail, family = binomial(), data = df)
model <- glm(dead ~ ., family = binomial(), data = df)
df$base_pred <- predict(model0, type = "response")
df$full_pred <- predict(model, type = "response")

classif_model_compare(df, "dead", c("base_pred", "full_pred"), save_output = FALSE)

combine_files combine multiple data files into a single data frame

Description

combine multiple data files into a single data frame

Usage

combine_files(
path = ".",
pattern = NULL,
recursive = FALSE,
add_file_name = FALSE,
unique_only = TRUE,
reader_fun = read.csv,
...

)

Arguments

path A string as the path to find the data files.

pattern A file pattern to filter the required data files.

recursive A logical value to indicate whether to search files recursively in subdirectories.

add_file_name A logical value to indicate whether to add the file name as a column. Note that
the added file name will affect the uniqueness of the data.

unique_only A logical value to indicate whether to remove the duplicated rows.

reader_fun A function to read the data files. Can be read.csv, openxlsx::read.xlsx, etc.

... Other parameters passed to the reader_fun.

Value

A data frame. If no data files found, return NULL.

12 combine_multichoice

Examples

library(withr)
with_tempdir({

write.csv(data.frame(x = 1:3, y = 4:6), "file1.csv", row.names = FALSE)
write.csv(data.frame(x = 7:9, y = 10:12), "file2.csv", row.names = FALSE)
dat <- combine_files(pattern = "file")

})
print(dat)

combine_multichoice Combine multi-choice columns into one

Description

Combine multi-choice columns into one, each column consists of booleans whether a choice is
presented.

Usage

combine_multichoice(
df,
quest_cols,
sep = ",",
remove_cols = TRUE,
remove_prefix = TRUE

)

Arguments

df A data frame.

quest_cols A named list where each element is a character vector of column names to com-
bine, or a single character vector.

sep A string to separate the data. Default is ",".

remove_cols If TRUE, remove the original columns.

remove_prefix If TRUE, automatically remove common prefix from column names when com-
bining.

Value

A data frame with additional columns.

common_prefix 13

Examples

Single group (backward compatibility)
df <- data.frame(q1 = c(TRUE, FALSE, TRUE), q2 = c(FALSE, TRUE, TRUE))
combine_multichoice(df, quest_cols = c("q1", "q2"))

Multiple groups with named list
df <- data.frame(

a1 = c(TRUE, FALSE, TRUE), a2 = c(FALSE, TRUE, TRUE),
b1 = c(TRUE, TRUE, FALSE), b2 = c(FALSE, FALSE, TRUE)

)
combine_multichoice(df, quest_cols = list(groupA = c("a1", "a2"), groupB = c("b1", "b2")))

common_prefix Get common prefix of a string vector

Description

Get common prefix of a string vector

Usage

common_prefix(x)

Arguments

x A string vector.

Value

A string that is the common prefix of the input vector.

Examples

common_prefix(c("Q1_a", "Q1_b", "Q1_c"))

cut_by Convert Numeric to Factor

Description

Divide numeric data into different groups. Easier to use than base::cut().

14 cut_by

Usage

cut_by(
x,
breaks,
breaks_as_quantiles = FALSE,
group = NULL,
labels = NULL,
label_type = "ori",
right = FALSE,
drop_empty = TRUE,
verbose = FALSE,
...

)

Arguments

x A numeric vector.

breaks A numeric vector of internal cut points. If breaks_as_quantiles is TRUE, this
is a proportion of the data. See Details.

breaks_as_quantiles

If TRUE, breaks is interpreted as a proportion of the data.

group A character vector of the same length as x, used to group the data before cut.
Only effective when breaks_as_quantiles is TRUE.

labels A vector of labels for the resulting factor levels.

label_type If labels is NULL, this sets the label type. "ori" for original labels, "LMH"
for "Low Medium High" style. "combined" labels that combine "LMH" type or
provided labels with the original range labels. Only "LMH" is supported when
group is specified.

right logical, indicating if the intervals should be closed on the right (and open on
the left) or vice versa. Note that the default is FALSE, which is different from
base::cut().

drop_empty If TRUE, drop empty levels.

verbose If TRUE, print the cut points.

... Other arguments passed to base::cut().

Details

cut_by() is a wrapper for base::cut(). Compared with the argument breaks in base::cut(),
breaks here automatically sets the minimum and maximum. breaks outside the range of x are not
allowed.

Value

A factor.

data_overview 15

Note

The argument right in base::cut() is always set to FALSE, which means the levels follow the left
closed right open convention.

Examples

set.seed(123)
cut_by(rnorm(100), c(0, 1, 2))
cut_by(rnorm(100), c(1 / 3, 2 / 3), breaks_as_quantiles = TRUE, label_type = "LMH")

data_overview Data Overview and Quality Check

Description

This function provides a comprehensive overview of a data.frame, including variable types, sum-
mary statistics, and potential data quality issues. It serves as a starting point for data cleaning by
identifying problems that need attention.

Usage

data_overview(
df,
outlier_method = "iqr",
outlier_threshold = NULL,
verbose = TRUE

)

Arguments

df A data.frame to be analyzed
outlier_method Method for detecting outliers, one of "iqr" (default), "zscore", or "mad"
outlier_threshold

Threshold value for detecting outliers. If NULL (default), uses method-specific
defaults:

• For MAD method: 1.4826 * 3 (approximately 3 standard deviations)
• For IQR method: 1.5 (Tukey’s rule)
• For Z-score method: 3 (3 standard deviations)

verbose If TRUE (default), prints result messages

Value

A list containing:

• variable_types: Classification of variables by type
• summary_stats: Summary statistics for each variable
• quality_issues: Identified data quality problems
• recommendations: Suggestions for data cleaning

16 detect_outliers

Examples

Basic usage
data(mtcars)
overview <- data_overview(mtcars)
print(overview$variable_types)
print(overview$quality_issues)

detect_outliers Detect outliers in a numeric vector.

Description

Detect outliers in a numeric vector using various methods.

Usage

detect_outliers(x, method = "iqr", threshold = NULL)

Arguments

x A numeric vector.

method The method to use for outlier detection. One of "mad", "iqr", or "zscore".

threshold The threshold value for detecting outliers. Defaults depend on the method.

Details

This function provides a unified interface for detecting outliers using different methods.

• "mad": Median absolute deviation method

• "iqr": Interquartile range method

• "zscore": Z-score method

Value

A list containing:

• outlier_mask: Logical vector indicating outliers, NA for missing values

• outlier_count: Number of outliers detected

• outlier_pct: Percentage of outliers in the data

• summary: Summary statistics including:

– Before removing outliers: max, min, variance
– After removing outliers: max, min, variance
– Method-specific details

df_view_nonnum 17

See Also

mad_outlier, iqr_outlier, zscore_outlier

Examples

x <- c(1, 2, 3, 4, 5, 100)
detect_outliers(x, method = "iqr")

df_view_nonnum Show non-numeric elements in a data frame

Description

Shows the non-numeric elements in a data frame. Only character columns are checked. Useful
when setting the strategy to clean numeric values.

Usage

df_view_nonnum(
df,
max_count = 20,
random_sample = FALSE,
long_df = FALSE,
subject_col = NULL,
value_col = NULL

)

Arguments

df A data frame.

max_count An integer. The maximum number of elements to show for each column. If
NULL or 0, show all elements, not recommended due to huge memory waste.

random_sample A logical value. If TRUE, randomly sample the elements to show.

long_df A logical value. If TRUE, the input df is provided in a long format.

subject_col A character string. The name of the column that contains the subject identifier.
Used when long_df is TRUE. If NULL, the subject column is assumed to be the
first column.

value_col A character string. The name of the column that contains the values. Used when
long_df is TRUE. If NULL, the value column is assumed to be the second column.

Value

A data frame of the non-numeric elements.

18 exclusion_count

Examples

df <- data.frame(
x = c("1", "2", "3..3", "4", "6a"),
y = c("1", "ss", "aa.a", "4", "xx"),
z = c("1", "2", "3", "4", "6")

)
df_view_nonnum(df)

emp_colors default color palette for clinpubr plots

Description

default color palette for clinpubr plots

Usage

emp_colors

Format

An object of class character of length 10.

exclusion_count Count the number of excluded samples at each step

Description

This function sequentially applies exclusion criteria to a data frame and counts the number of sam-
ples removed at each step.

Usage

exclusion_count(.df, ..., .criteria_names = NULL, .na_exclude = TRUE)

Arguments

.df A data frame.

... Exclusion criteria. Logical expressions that define which rows to exclude.

.criteria_names

An optional character vector of names for the criteria. If NULL, the expressions
themselves are used as names.

.na_exclude A logical value. If TRUE, rows where the criterion evaluates to NA will be ex-
cluded, and a warning will be issued. Defaults to FALSE, where NA values are
not excluded.

extract_num 19

Value

A data frame with two columns: ’Criteria’ and ’N’, showing the number of samples at the start, the
number excluded at each step, and the final number remaining.

Examples

cohort <- data.frame(
age = c(17, 25, 30, NA, 50, 60),
sex = c("M", "F", "F", "M", "F", "M"),
value = c(1, NA, 3, 4, 5, NA),
dementia = c(TRUE, FALSE, FALSE, FALSE, TRUE, FALSE)

)
exclusion_count(

cohort,
age < 18,
is.na(value),
dementia == TRUE,
.criteria_names = c(
"Age < 18 years",
"Missing value",
"History of dementia"

)
)

extract_num Extract numbers from string.

Description

Extract numerical values from strings. Can be used to filter out the unwanted information coming
along with the numbers.

Usage

extract_num(
x,
res_type = c("first", "range"),
multimatch2na = FALSE,
leq_1 = FALSE,
allow_neg = TRUE,
zero_regexp = NULL,
max_regexp = NULL,
max_quantile = 0.95

)

20 fill_with_last

Arguments

x A character vector.

res_type The type of the result. Can be "first" or "range". If "first", the first number
in the string is extracted. If "range", the mean of the range in the string is
extracted.

multimatch2na If TRUE, multiple matches will be converted to NA. Only works when res_type
is "first".

leq_1 If TRUE, numbers greater than 1 will be converted to NA. Only works when
res_type is "first".

allow_neg If TRUE, negative numbers are allowed. Otherwise, only positive numbers are
allowed.

zero_regexp A regular expression to match the string that indicates zero.

max_regexp A regular expression to match the string that indicates the maximum value.

max_quantile The quantile of values to set the maximum value to.

Details

The function uses regular expressions to extract numbers from strings. The regular expression used
is "-?[0-9]+\\.?[0-9]*|-?\\.[0-9]+", which matches any number that may have a decimal
point and may have a negative sign.

Value

A numeric vector.

Examples

x <- c("1.2(XXX)", "5-8POS", "NS", "FULL", "5.5", "4.2")
extract_num(x)
extract_num(x,

res_type = "first", multimatch2na = TRUE, zero_regexp = "NEG|NS",
max_regexp = "FULL"

)
extract_num(x, res_type = "range", allow_neg = FALSE, zero_regexp = "NEG|NS", max_regexp = "FULL")

fill_with_last Fill NA values with the last valid value

Description

Fill NA values with the last valid value. Can be used to fill excel combined cells.

Usage

fill_with_last(x)

filter_rcs_predictors 21

Arguments

x A vector.

Value

A vector.

Examples

fill_with_last(c(1, 2, NA, 4, NA, 6))

filter_rcs_predictors Filter predictors for RCS

Description

Filter predictors that can be used to fit for RCS models.

Usage

filter_rcs_predictors(data, predictors = NULL)

Arguments

data A data frame.

predictors A vector of predictor names to be filtered.

Value

A vector of predictor names. These variables are numeric and have more than 5 unique values.

Examples

filter_rcs_predictors(mtcars)

22 format_pval

first_mode Calculate the first mode

Description

Calculate the first mode of a vector. Ignore NA values. Can be used if any mode is acceptable.

Usage

first_mode(x, empty_return = NA)

Arguments

x A vector.

empty_return The value to return if the vector is empty.

Value

The first mode of the vector.

Examples

first_mode(c(1, 1, 2, 2, 3, 3, 3, NA, NA, NA))

format_pval Format p-value for publication

Description

Format p-value with modified default settings suitable for publication.

Usage

format_pval(
p,
text_ahead = NULL,
digits = 1,
nsmall = 2,
eps = 0.001,
na_empty = TRUE

)

formula_add_covs 23

Arguments

p The numerical p values to be formatted.

text_ahead A string to be added before the p value. If not NULL, this string will be connected
to the formatted p value with "=" or "<".

digits The number of digits to be used. Same as in base::format.pval.

nsmall The number of digits after the decimal point. Same as in base::format.pval.

eps The threshold for rounding p values to 0. Same as in base::format.pval.

na_empty If TRUE, replace "NA" in result with an empty string.

Value

A string vector of formatted p values.

Examples

format_pval(c(0.001, 0.0001, 0.05, 0.1123456))
format_pval(c(0.001, 0.0001, 0.05, 0.1123456), text_ahead = "p value")

formula_add_covs Add covariates to a formula

Description

Add covariates to a formula. Support both formula and character string.

Usage

formula_add_covs(formula, covars)

Arguments

formula A formula. Should be a formula or a character string of formula.

covars A vector of covariates.

Value

A formula.

Examples

formula_add_covs("y ~ a + b", c("c", "d"))

24 get_valid

get_samples Generate a sample of values from a vector and collapse them.

Description

Generate a string summary of a vector by picking samples.

Usage

get_samples(x, unique_only = FALSE, n_samples = 10, collapse = "\n")

Arguments

x A vector of values.

unique_only A logical value indicating whether to return unique values only.

n_samples The number of samples to return.

collapse The separator to use for collapsing the values.

Value

A character string.

Examples

get_samples(c(1, 2, 3, 4, 5))
get_samples(c(1, 2, 3, 4, 5), n_samples = 2)
get_samples(c(1, 2, 3, 3, 3), n_samples = 2, unique_only = TRUE)
get_samples(c(1, 2, 3, 4, 5), collapse = ", ")

get_valid Get one valid value from vector.

Description

Extract one valid (non-NA) value from a vector.

Usage

get_valid(x, mode = c("first", "mid", "last"), disjoint = FALSE)

get_valid_subset 25

Arguments

x A vector.

mode The mode of the valid value to extract. "first" extracts the first valid value,
"last" extracts the last valid value, and "mid" extracts the middle valid value.

disjoint If TRUE, the values extracted by the three modes are forced to be different. This
behavior might be desired when trying to extract different values with different
modes. The three modes extract values in the sequence: "first", "last", "mid".

Value

A single valid value from the vector. NA if all values are invalid.

Examples

get_valid(c(NA, 1, 2, NA, 3, NA, 4))
get_valid(c(NA, 1, NA), mode = "last", disjoint = TRUE)

get_valid_subset Get the subset that satisfies the missing rate condition.

Description

Get the subset of a data frame that satisfies the missing rate condition using a greedy algorithm.

Usage

get_valid_subset(
df,
row_na_ratio = 0.5,
col_na_ratio = 0.2,
row_priority = 1,
speedup_ratio = 0,
return_index = FALSE

)

Arguments

df A data frame.

row_na_ratio The maximum acceptable missing rate of rows.

col_na_ratio The maximum acceptable missing rate of columns.

row_priority A positive numerical, the priority to keep rows. The higher the value, the higher
the priority, with 1 indicating equal priority for rows and columns.

speedup_ratio A positive numerical, the ratio of speedup. The higher the value, the greedier
the algorithm. Should be in range of [0, 1].

return_index A logical, whether to return only the row and column indices of the subset.

26 get_var_types

Details

The function is based on a greedy algorithm. It iteratively removes the row or column with the
highest excessive missing rate weighted by the inverse of row_priority until the missing rates of
all rows and columns are below the specified threshold. Then it reversely tries to add rows and
columns that do not break the conditions back and finalize the subset. The result depends on the
row_priority parameter drastically, so it’s recommended to try different row_priority values to
find the most satisfying one.

Value

The subset data frame, or a list that contains the row and column indices of the subset.

Examples

data(cancer, package = "survival")
dim(cancer)
max_missing_rates(cancer)

cancer_valid <- get_valid_subset(cancer, row_na_ratio = 0.2, col_na_ratio = 0.1, row_priority = 1)
dim(cancer_valid)
max_missing_rates(cancer_valid)

get_var_types Get variable types for baseline table

Description

Automatic variable type and method determination for baseline table.

Usage

get_var_types(
data,
strata = NULL,
norm_test_by_group = TRUE,
omit_factor_above = 20,
num_to_factor = 5,
save_qqplots = FALSE,
folder_name = "qqplots"

)

Arguments

data A data frame.

strata A character string indicating the column name of the strata variable.
norm_test_by_group

A logical value indicating whether to perform normality tests by group.

get_var_types 27

omit_factor_above

An integer indicating the maximum number of levels for a variable to be con-
sidered a factor.

num_to_factor An integer. Numerical variables with number of unique values below or equal
to this value would be considered a factor.

save_qqplots A logical value indicating whether to save QQ plots. Sometimes the normality
tests do not work well for some variables, and the QQ plots can be used to check
the distribution.

folder_name A character string indicating the folder name for saving QQ plots.

Value

An object from class var_types, which is just list containing the following elements:

factor_vars A character vector of variables that are factors.

exact_vars A character vector of variables that require fisher exact test.

nonnormal_vars A character vector of variables that are nonnormal.

omit_vars A character vector of variables that are excluded form the baseline table.

strata A character vector of the strata variable.

Note

This function performs normality tests on the variables in the data frame and determines whether
they are normal. This is done by performing Shapiro-Wilk, Lilliefors, Anderson-Darling, Jarque-
Bera, and Shapiro-Francia tests. If at least two of these tests indicate that the variable is nonnormal,
then it is considered nonnormal. To alleviate the problem that normality tests become too sensitive
when sample size gets larger, the alpha level is determined by an experience formula that decrease
with sample size.

This function also marks the factor variables that require fisher exact tests if any cell haves expected
frequency less than or equal to 5. Note that this criterion less strict than the commonly used one.

Examples

data(cancer, package = "survival")
get_var_types(cancer, strata = "sex") # set save_qqplots = TRUE to check the QQ plots

var_types <- get_var_types(cancer, strata = "sex")
for some reason we want the variable "pat.karno" ro be considered normal.
var_types$nonnormal_vars <- setdiff(var_types$nonnormal_vars, "pat.karno")

28 importance_plot

importance_plot Importance plot

Description

Creates an importance plot from a named vector of values.

Usage

importance_plot(
x,
x_lab = "Importance",
top_n = NULL,
color = c("#56B1F7", "#132B43"),
show_legend = FALSE,
split_at = NULL,
show_labels = TRUE,
digits = 2,
nsmall = 3,
scientific = TRUE,
label_color = "black",
label_size = 3,
label_hjust = max(x)/10,
save_plot = FALSE,
filename = "importance.png"

)

Arguments

x A named vector of values, typically importance scores from models.

x_lab A character string for the x-axis label.

top_n The number of top values to show. If NULL, all values are shown.

color A length-2 vector of low and high colors, or a single color for the bars.

show_legend A logical value indicating whether to show the legend.

split_at The index at which to split the plot into two halves, usually used to illustrate
variable selection. If NULL, no split is made.

show_labels A logical value indicating whether to show the value labels on the bars.
digits, nsmall, scientific

Controls the formatting of labels. Passed to format().

label_color The color of the labels.

label_size The size of the labels.

label_hjust The horizontal justification of the labels.

save_plot A logical value indicating whether to save the plot.

filename The filename to save the plot as.

indicate_duplicates 29

Details

The importance plot is a bar plot that shows the importance of each variable in a model. The
variables are sorted in descending order of importance, and the top_n variables are shown. If top_n
is NULL, all variables are shown. The plot can be split into two halves at a specified index, which
is useful for illustrating variable selection.

Value

A ggplot object

Examples

set.seed(1)
dummy_importance <- runif(20)^5
names(dummy_importance) <- paste0("var", 1:20)
importance_plot(dummy_importance, top_n = 15, split_at = 10, save_plot = FALSE)

indicate_duplicates Determine duplicate elements including their first occurrence.

Description

If an element is duplicated, all of its occurrence will be labeled TRUE. Useful to list and compare all
duplicates.

Usage

indicate_duplicates(x)

Arguments

x A vector.

Value

A logical vector.

Examples

indicate_duplicates(c(1, 2, NA, NA, 1))
indicate_duplicates(c(1, 2, 3, 4, 4))

Useful to check duplicates in data frames.
df <- data.frame(

id = c(1, 2, 1, 2, 3), year = c(2010, 2011, 2010, 2010, 2011),
value = c(1, 2, 3, 4, 5)

)
df[indicate_duplicates(df[, c("id", "year")]),]

30 interaction_plot

interaction_plot Plot interactions

Description

Plot interactions between variables. Both logistic and Cox proportional hazards regression models
are supported. The predictor variables in the model are can be used both in linear form or in
restricted cubic spline form.

Usage

interaction_plot(
data,
y,
predictor,
group_var,
time = NULL,
time2 = NULL,
covars = NULL,
cluster = NULL,
group_colors = NULL,
save_plot = FALSE,
filename = NULL,
height = 4,
width = 4,
xlab = predictor,
ylab = NULL,
show_n = TRUE,
group_title = group_var,
...

)

Arguments

data A data frame.

y A character string of the outcome variable.

predictor A character string of the predictor variable.

group_var A character string of the group variable. The variable should be categorical. If a
numeric variable is provided, it will be split by the median value.

time A character string of the time variable. If NULL, logistic regression is used.
Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

covars A character vector of covariate names.

interaction_p_value 31

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

group_colors A character vector of colors for the plot. If NULL, the default colors are used.

save_plot A logical value indicating whether to save the plot.

filename The name of the file to save the plot. Support both .png and .pdf formats.

height The height of the saved plot.

width The width of the saved plot.

xlab The label of the x-axis.

ylab The label of the y-axis.

show_n A logical value indicating whether to show the number of observations in the
plot.

group_title The title of the group variable.

... Additional arguments passed to the ggplot function.

Value

A ggplot object.

Examples

data(cancer, package = "survival")
interaction_plot(cancer,

y = "status", time = "time", predictor = "age", group_var = "sex",
save_plot = FALSE

)
interaction_plot(cancer,

y = "status", predictor = "age", group_var = "sex",
save_plot = FALSE

)
interaction_plot(cancer,

y = "wt.loss", predictor = "age", group_var = "sex",
save_plot = FALSE

)

interaction_p_value Calculate interaction p-value

Description

This function calculates the interaction p-value between a predictor and a group variable in a linear,
logistic, or Cox proportional hazards model.

32 interaction_p_value

Usage

interaction_p_value(
data,
y,
predictor,
group_var,
time = NULL,
time2 = NULL,
covars = NULL,
cluster = NULL,
rcs_knots = NULL

)

Arguments

data A data frame.

y A character string of the outcome variable. The variable should be binary or
numeric and determines the type of model to be used. If the variable is binary,
logistic or Cox regression is used. If the variable is numeric, linear regression is
used.

predictor A character string of the predictor variable.

group_var A character string of the group variable. The variable should be categorical. If a
numeric variable is provided, it will be split by the median value.

time A character string of the time variable. If NULL, linear or logistic regression is
used. Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

covars A character vector of covariate names.

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

rcs_knots The number of rcs knots. If NULL, a linear model would be fitted instead.

Value

A numerical, the interaction p-value

Examples

data(cancer, package = "survival")
interaction_p_value(

data = cancer, y = "status", predictor = "age", group_var = "sex",
time = "time", rcs_knots = 4

)

interaction_scan 33

interaction_scan Scan for interactions between variables

Description

Scan for interactions between variables and output results. Both logistic and Cox proportional
hazards regression models are supported. The predictor variables in the model are can be used both
in linear form or in restricted cubic spline form.

Usage

interaction_scan(
data,
y,
time = NULL,
time2 = NULL,
predictors = NULL,
group_vars = NULL,
covars = NULL,
cluster = NULL,
try_rcs = TRUE,
p_adjust_method = "BH",
save_table = FALSE,
filename = NULL

)

Arguments

data A data frame.

y A character string of the outcome variable.

time A character string of the time variable. If NULL, logistic regression is used.
Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

predictors The predictor variables to be scanned for interactions. If NULL, all variables
except y and time are taken as predictors.

group_vars The group variables to be scanned for interactions. If NULL, all variables except
y and time are taken as group variables. The group variables should be categor-
ical. If a numeric variable is included, it will be split by the median value.

covars A character vector of covariate names.

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

try_rcs A logical value indicating whether to perform restricted cubic spline interaction
analysis.

34 mad_outlier

p_adjust_method

The method to use for p-value adjustment for pairwise comparison. Default is
"BH". See ?p.adjust.methods.

save_table A logical value indicating whether to save the results as a table.

filename The name of the file to save the results. File will be saved in .csv format.

Value

A data frame containing the results of the interaction analysis.

Examples

data(cancer, package = "survival")
interaction_scan(cancer, y = "status", time = "time", save_table = FALSE)

mad_outlier Mark possible outliers using different methods.

Description

Mark possible outliers in a numeric vector using various methods. These functions return a logical
vector indicating which values are outliers.

Usage

mad_outlier(x, threshold = 1.4826 * 3)

iqr_outlier(x, threshold = 1.5)

zscore_outlier(x, threshold = 3)

Arguments

x A numeric vector.

threshold The threshold value for detecting outliers. Defaults depend on the method:

• For MAD method: 1.4826 * 3 (approximately 3 standard deviations)
• For IQR method: 1.5 (Tukey’s rule)
• For Z-score method: 3 (3 standard deviations)

Details

• MAD method: Uses median absolute deviation to identify outliers. Values with absolute
deviation from the median greater than the threshold are considered outliers.

• IQR method: Uses interquartile range to identify outliers. Values below Q1 - threshold * IQR
or above Q3 + threshold * IQR are considered outliers.

• Z-score method: Uses standardized Z-scores to identify outliers. Values with an absolute
Z-score greater than the threshold are considered outliers.

max_missing_rates 35

Value

A logical vector indicating which values are outliers.

Examples

x <- c(1, 2, 3, 4, 5, 100, NA)
mad_outlier(x)
iqr_outlier(x, threshold = 2.0)
zscore_outlier(x, threshold = 2.5)

max_missing_rates Get the maximum missing rate of rows and columns.

Description

Get the maximum missing rate of rows and columns.

Usage

max_missing_rates(df)

Arguments

df A data frame.

Value

A list that contains the maximum missing rate of rows and columns.

Examples

data(cancer, package = "survival")
max_missing_rates(cancer)

merge_by_substring Merge Data Frame by String Key Matching

Description

This function merges two data frames based on string key matching. It searches for keys from
key_df[[key_col]] in data[[search_col]] and adds corresponding columns from key_df to
data.

Usage

merge_by_substring(data, key_df, search_col, key_col, value_cols)

36 merge_ordered_vectors

Arguments

data The primary data frame to be enhanced with additional columns

key_df A data frame containing string keys and their corresponding values

search_col Column name in data to search for keys (default: "name")

key_col Column name in key_df containing keys to match (default: "key")

value_cols Column name(s) in key_df to add to data (default: "value") Can be a single
column name or a character vector of column names

Value

A data frame with all columns from data plus matched columns from key_df. Unmatched rows
will have NA values in the added columns.

Examples

Basic usage
main_data <- data.frame(

name = c("AB", "B,C", "A..", "ACD"),
value = c(1, 2, 3, 4),
stringsAsFactors = FALSE

)
key_lookup <- data.frame(

key = c("A", "B", "C", "ACD", "AB"),
category = c("cat1", "cat2", "cat3", "cat4", "cat1"),
code = c("001", "002", "003", "004", "001"),
stringsAsFactors = FALSE

)
result <- merge_by_substring(main_data, key_lookup,

search_col = "name",
key_col = "key", value_cols = c("category", "code")

)
print(result)

merge_ordered_vectors Merging vectors while maintaining order

Description

Merge multiple vectors into one while trying to maintain the order of elements in each vector. The
relative order of elements is compared by their first occurrence in the vectors in the list. This func-
tion is useful when merging slightly different vectors, such as questionnaires of different versions.

Usage

merge_ordered_vectors(vectors)

na2false 37

Arguments

vectors A list of vectors to be merged.

Value

A vector.

Examples

merge_ordered_vectors(list(c(1, 3, 4, 5, 7, 10), c(2, 5, 6, 7, 8), c(1, 7, 5, 10)))

na2false Replace NA values with FALSE

Description

Replace NA values with FALSE in logical vectors. For other vectors, the behavior relies on R’s
automatic conversion rules.

Usage

na2false(x)

Arguments

x A vector.

Value

A vector with NA values replaced by FALSE.

Examples

na2false(c(TRUE, FALSE, NA, TRUE, NA))
na2false(c(1, 2, NA))

38 predictor_effect_plot

na_max Safe min and max functions that return NA if all values are NA

Description

Instead of returning -Inf or Inf, returns NA if all values are NA. It also ignores NA values by de-
fault, which is different from base R functions. This is useful when summarizing data frames with
dplyr::summarise().

Usage

na_max(x, na.rm = TRUE)

na_min(x, na.rm = TRUE)

Arguments

x A numeric vector.

na.rm A logical value indicating whether to remove NA values before computation.
Defaults to TRUE instead of FALSE in base R functions.

Value

The minimum or maximum value of the vector or NA if all values are NA.

Examples

na_max(c(1, 2, 3, NA))
na_min(c(NA, NA, NA))

predictor_effect_plot Plot the effect of a predictor variable

Description

This is a versatile function to plot the relationship between a predictor variable and the outcome. It
supports numeric (linear or RCS) and categorical predictors for logistic, linear, and Cox models. It
can display the distribution of the predictor variable as a histogram (for numeric) or bar plot (for
categorical).

predictor_effect_plot 39

Usage

predictor_effect_plot(
data,
x,
y,
time = NULL,
time2 = NULL,
covars = NULL,
cluster = NULL,
method = "auto",
knot = 4,
add_hist = TRUE,
ref = "x_median",
ref_digits = 3,
show_total_n = TRUE,
group_by_ref = TRUE,
group_title = NULL,
group_labels = NULL,
group_colors = NULL,
breaks = 20,
line_color = "#e23e57",
print_p_ph = TRUE,
trans = "identity",
save_plot = FALSE,
create_dir = FALSE,
filename = NULL,
y_lim = NULL,
hist_max = NULL,
xlim = NULL,
height = 6,
width = 6,
return_details = FALSE

)

Arguments

data A data frame.

x A character string of the predictor variable.

y A character string of the outcome variable.

time A character string of the time variable for Cox models. If NULL, logistic or linear
regression is used.

time2 A character string of the ending time for interval-censored or counting process
data.

covars A character vector of covariate names.

cluster A character string of the cluster variable for robust variance estimation.

40 predictor_effect_plot

method A character string specifying the method for handling the predictor x. Can be
"auto", "rcs", "linear", or "categorical". If "auto", the function decides
based on the type of x.

knot The number of knots for RCS. If NULL, AIC is used to find the optimal number.

add_hist A logical value. If TRUE, add a distribution plot (histogram or bar plot).

ref The reference value for numeric predictors, or the reference level for categorical
predictors. For numeric x, can be "x_median", "x_mean", "ratio_min", or a
numeric value.

ref_digits The number of digits for the reference value label.

show_total_n A logical value. If TRUE, show the total number of samples.

group_by_ref A logical value. If TRUE and x is numeric, split the histogram at the reference
value.

group_title A character string for the group legend title.

group_labels A character vector for group labels.

group_colors A character vector of colors for the distribution plot. If NULL, the default colors
are used. If group_by_ref is FALSE, the first color is used as fill color.

breaks The number of breaks for the histogram.

line_color The color for the effect line/points.

print_p_ph A logical value. If TRUE (and model is Cox), print the p-value for the propor-
tional hazards test.

trans The transformation for the y-axis. Passed to ggplot2::scale_y_continuous(transform
= trans).

save_plot A logical value indicating whether to save the plot.

create_dir A logical value for creating the save directory.

filename A character string for the saved plot filename.

y_lim The y-axis limits.

hist_max The maximum value for the histogram y-axis.

xlim The x-axis limits for numeric predictors. If NULL, the limits are the 0.025 and
0.975 quantiles. The actual plot range might be slightly larger than this range
to fit the histogram.

height The height of the saved plot.

width The width of the saved plot.

return_details A logical value indicating whether to return plot details.

Value

A ggplot object, or a list with the plot and details if return_details is TRUE.

qq_show 41

Examples

data(cancer, package = "survival")
cancer$dead <- cancer$status == 2
cancer <- cancer[!is.na(cancer$inst),]
predictor_effect_plot(

data = cancer,
x = "age",
y = "dead",
method = "linear",
covars = "ph.karno",
add_hist = FALSE,
trans = "log2",
save_plot = FALSE,
cluster = "inst"

)

qq_show QQ plot

Description

QQ plot for a sample.

Usage

qq_show(
x,
title = NULL,
save = FALSE,
filename = "QQplot.png",
width = 2,
height = 2

)

Arguments

x A sample.

title Title of the plot.

save If TRUE, save the plot.

filename Filename of the plot.

width Width of the plot.

height Height of the plot.

Value

A plot.

42 rcs_plot

Examples

qq_show(rnorm(100))

rcs_plot Plot restricted cubic spline

Description

This function is a wrapper for predictor_effect_plot with method = "rcs". It plots a restricted
cubic spline for a predictor in a regression model.

Usage

rcs_plot(
data,
x,
y,
time = NULL,
time2 = NULL,
covars = NULL,
cluster = NULL,
knot = 4,
add_hist = TRUE,
ref = "x_median",
ref_digits = 3,
show_total_n = TRUE,
group_by_ref = TRUE,
group_title = NULL,
group_labels = NULL,
group_colors = NULL,
breaks = 20,
rcs_color = "#e23e57",
print_p_ph = TRUE,
trans = "identity",
save_plot = FALSE,
create_dir = FALSE,
filename = NULL,
y_lim = NULL,
hist_max = NULL,
xlim = NULL,
height = 6,
width = 6,
return_details = FALSE

)

rcs_plot 43

Arguments

data A data frame.

x A character string of the predictor variable.

y A character string of the outcome variable.

time A character string of the time variable for Cox models. If NULL, logistic or linear
regression is used.

time2 A character string of the ending time for interval-censored or counting process
data.

covars A character vector of covariate names.

cluster A character string of the cluster variable for robust variance estimation.

knot The number of knots for RCS. If NULL, AIC is used to find the optimal number.

add_hist A logical value. If TRUE, add a distribution plot (histogram or bar plot).

ref The reference value for numeric predictors, or the reference level for categorical
predictors. For numeric x, can be "x_median", "x_mean", "ratio_min", or a
numeric value.

ref_digits The number of digits for the reference value label.

show_total_n A logical value. If TRUE, show the total number of samples.

group_by_ref A logical value. If TRUE and x is numeric, split the histogram at the reference
value.

group_title A character string for the group legend title.

group_labels A character vector for group labels.

group_colors A character vector of colors for the distribution plot. If NULL, the default colors
are used. If group_by_ref is FALSE, the first color is used as fill color.

breaks The number of breaks for the histogram.

rcs_color The color for the restricted cubic spline. This is passed to line_color in
predictor_effect_plot.

print_p_ph A logical value. If TRUE (and model is Cox), print the p-value for the propor-
tional hazards test.

trans The transformation for the y-axis. Passed to ggplot2::scale_y_continuous(transform
= trans).

save_plot A logical value indicating whether to save the plot.

create_dir A logical value for creating the save directory.

filename A character string for the saved plot filename.

y_lim The y-axis limits.

hist_max The maximum value for the histogram y-axis.

xlim The x-axis limits for numeric predictors. If NULL, the limits are the 0.025 and
0.975 quantiles. The actual plot range might be slightly larger than this range
to fit the histogram.

height The height of the saved plot.

width The width of the saved plot.

return_details A logical value indicating whether to return plot details.

44 regression_basic_results

Value

A ggplot object, or a list containing the ggplot object and other details if return_details is
TRUE.

Examples

data(cancer, package = "survival")
coxph model with time assigned
rcs_plot(cancer, x = "age", y = "status", time = "time", covars = "ph.karno", save_plot = FALSE)

logistic model with time not assigned
cancer$dead <- cancer$status == 2
rcs_plot(cancer, x = "age", y = "dead", covars = "ph.karno", save_plot = FALSE)

regression_basic_results

Basic results of logistic or Cox regression.

Description

Generate the result table of logistic or Cox regression with different settings of the predictor variable
and covariates. Also generate KM curves for Cox regression.

Usage

regression_basic_results(
data,
x,
y,
time = NULL,
time2 = NULL,
model_covs = NULL,
cluster = NULL,
pers = c(0.1, 10, 100),
factor_breaks = NULL,
factor_labels = NULL,
quantile_breaks = NULL,
quantile_labels = NULL,
label_with_range = FALSE,
save_output = FALSE,
figure_type = "png",
ref_levels = "lowest",
est_nsmall = 2,
p_nsmall = 3,
pval_eps = 0.001,
median_nsmall = 0,
colors = NULL,

regression_basic_results 45

xlab = NULL,
legend_title = x,
legend_pos = c(0.8, 0.8),
pval_pos = NULL,
n_y_pos = 0.9,
height = 6,
width = 6,
...

)

Arguments

data A data frame.

x A character string of the predictor variable.

y A character string of the outcome variable.

time A character string of the time variable. If NULL, logistic regression is used.
Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

model_covs A character vector or a named list of covariates for different models. If NULL,
only the crude model is used.

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

pers A numeric vector of the denominators of variable x. Set this denominator to
obtain a reasonable OR or HR.

factor_breaks A numeric vector of the breaks to factorize the x variable.

factor_labels A character vector of the labels for the factor levels.
quantile_breaks

A numeric vector of the quantile breaks to factorize the x variable.
quantile_labels

A character vector of the labels for the quantile levels.
label_with_range

A logical value indicating whether to add the range of the levels to the labels.

save_output A logical value indicating whether to save the results.

figure_type A character string of the figure type. Can be "png", "pdf", and other types that
ggplot2::ggsave() support.

ref_levels A vector of strings of the reference levels of the factor variable. You can use
"lowest" or "highest" to select the lowest or highest level as the reference
level. Otherwise, any level that matches the provided strings will be used as the
reference level.

est_nsmall An integer specifying the precision for the estimates in the plot.

p_nsmall An integer specifying the number of decimal places for the p-values.

pval_eps The threshold for rounding p values to 0.

46 regression_basic_results

median_nsmall The minimum number of digits to the right of the decimal point for the median
survival time.

colors A vector of colors for the KM curves.
xlab A character string of the x-axis label of the survival plot.
legend_title A character string of the title of the legend.
legend_pos A numeric vector of the position of the legend.
pval_pos A numeric vector of the position of the p-value.
n_y_pos A numerical of range 0 to 1 to assign the y position of total sample count. NULL

to hide.
height The height of the plot.
width The width of the plot.
... Additional arguments passed to the survminer::ggsurvplot function for KM

curve.

Details

The function regression_basic_results generates the result table of logistic or Cox regression
with different settings of the predictor variable and covariates. The setting of the predictor variable
includes the original x, the standardized x, the log of x, and x divided by denominators in pers as
continuous variables, and the factorization of the variable including split by median, by quartiles,
and by factor_breaks and quantile_breaks. The setting of the covariates includes different
models with different covariates.

Value

A list of results, including the regression table and the KM curve plots.

Note

For factor variables with more than 2 levels, p value for trend is also calculated.

Examples

data(cancer, package = "survival")
coxph model with time assigned
regression_basic_results(cancer,

x = "age", y = "status", time = "time",
model_covs = list(Crude = c(), Model1 = c("ph.karno"), Model2 = c("ph.karno", "sex")),
save_output = FALSE,
ggtheme = survminer::theme_survminer(font.legend = c(14, "plain", "black")) # theme for KM

)

logistic model with time not assigned
cancer$dead <- cancer$status == 2
regression_basic_results(cancer,

x = "age", y = "dead", ref_levels = c("Q3", "High"),
model_covs = list(Crude = c(), Model1 = c("ph.karno"), Model2 = c("ph.karno", "sex")),
save_output = FALSE

)

regression_fit 47

regression_fit Obtain regression results

Description

This function fit the regression of a predictor in a linear, logistic, or Cox proportional hazards model.

Usage

regression_fit(
data,
y,
predictor,
time = NULL,
time2 = NULL,
covars = NULL,
cluster = NULL,
rcs_knots = NULL,
returned = c("full", "predictor_split", "predictor_combined")

)

Arguments

data A data frame.

y A character string of the outcome variable. The variable should be binary or
numeric and determines the type of model to be used. If the variable is binary,
logistic or cox regression is used. If the variable is numeric, linear regression is
used.

predictor A character string of the predictor variable.

time A character string of the time variable. If NULL, linear or logistic regression is
used. Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

covars A character vector of covariate names.

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

rcs_knots The number of rcs knots. If NULL, a linear model would be fitted instead.

returned The return mode of this function.

• "full": return the full regression result.
• "predictor_split": return the regression parameter of the predictor, could

have multiple lines.
• "predictor_combined": return the regression parameter of the predictor,

test the predictor as a whole and takes only one line.

48 regression_forest

Value

A list containing the regression ratio and p-value of the predictor. If rcs_knots is not NULL, the list
contains the overall p-value and the nonlinear p-value of the rcs model. If return_full_result is
TRUE, the complete result of the regression model is returned.

Examples

data(cancer, package = "survival")
regression_fit(data = cancer, y = "status", predictor = "age", time = "time", rcs_knots = 4)

regression_forest Forest plot of regression results

Description

Generate the forest plot of logistic or Cox regression with different models.

Usage

regression_forest(
data,
model_vars,
y,
time = NULL,
time2 = NULL,
cluster = NULL,
as_univariate = FALSE,
est_nsmall = 2,
p_nsmall = 3,
show_vars = NULL,
save_plot = FALSE,
filename = NULL,
...

)

Arguments

data A data frame.

model_vars A character vector or a named list of predictor variables for different models.

y A character string of the outcome variable.

time A character string of the time variable. If NULL, logistic regression is used.
Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

regression_scan 49

as_univariate A logical value indicating whether to treat the model_vars as univariate.

est_nsmall An integer specifying the precision for the estimates in the plot.

p_nsmall An integer specifying the number of decimal places for the p-values.

show_vars A character vector of variable names to be shown in the plot. If NULL, all vari-
ables are shown.

save_plot A logical value indicating whether to save the plot.

filename A character string specifying the filename for the plot. If NULL, a default file-
name is used.

... Additional arguments passed to the forestploter::forest function.

Value

A gtable object.

Examples

data(cancer, package = "survival")
cancer$ph.ecog_cat <- factor(cancer$ph.ecog, levels = c(0:3), labels = c("0", "1", ">=2", ">=2"))
regression_forest(cancer,
model_vars = c("age", "sex", "wt.loss", "ph.ecog_cat", "meal.cal"), y = "status", time = "time",
as_univariate = TRUE, save_plot = FALSE

)

regression_forest(cancer,
model_vars = c("age", "sex", "wt.loss", "ph.ecog_cat", "meal.cal"), y = "status", time = "time",
show_vars = c("age", "sex", "ph.ecog_cat", "meal.cal"), save_plot = FALSE

)

regression_forest(cancer,
model_vars = list(
M0 = c("age"),
M1 = c("age", "sex", "wt.loss", "ph.ecog_cat", "meal.cal"),
M2 = c("age", "sex", "wt.loss", "ph.ecog_cat", "meal.cal", "pat.karno")

),
y = "status", time = "time",
show_vars = c("age", "sex", "ph.ecog_cat", "meal.cal"), save_plot = FALSE

)

regression_scan Scan for significant regression predictors

Description

Scan for significant regression predictors and output results. Both logistic and Cox proportional
hazards regression models are supported. The predictor variables in the model are can be used both
in linear form or in restricted cubic spline form.

50 regression_scan

Usage

regression_scan(
data,
y,
time = NULL,
time2 = NULL,
predictors = NULL,
covars = NULL,
cluster = NULL,
num_to_factor = 5,
p_adjust_method = "BH",
save_table = FALSE,
filename = NULL

)

Arguments

data A data frame.

y A character string of the outcome variable.

time A character string of the time variable. If NULL, logistic regression is used.
Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

predictors The predictor variables to be scanned for relationships. If NULL, all variables
except y and time are taken as predictors.

covars A character vector of covariate names.

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

num_to_factor An integer. Numerical variables with number of unique values below or equal
to this value would be considered a factor.

p_adjust_method

The method to use for p-value adjustment for pairwise comparison. Default
is "BH". See ?p.adjust.methods. Note that the p-value adjustment is only
applied column wise, not applied among all available p-values in the table.

save_table A logical value indicating whether to save the results as a table.

filename The name of the file to save the results. File will be saved in .csv format.

Details

The function first determines the type of each predictor variable (numerical, factor, num_factor
(numerical but with less unique values than or equal to num_to_factor), or other). Then, it per-
forms regression analysis for available transforms of each predictor variable and saves the results.

Value

A data frame containing the results of the regression analysis.

replace_elements 51

The available transforms for each predictor type are

• numerical: original, logarithm, categorized, rcs

• num_factor: original, categorized

• factor: original

• other: none

The transforms are applied as follows

• original: Fit the regression model with the original variable. Provide HR/OR and p-values
in results.

• logarithm: If the numerical variable is all greater than 0, fit the regression model with the
log-transformed variable. Provide HR/OR and p-values in results.

• categorized: For numerical variables, fit the regression model with the binarized variable
split at the median value. For num_factor variables, fit the regression model with the variable
after as.factor(). Provide HR/OR and p-values in results. If the number of levels is greater
than 2, no single HR/OR is provided, but the p-value of the overall test can be provided with
TYPE-2 ANOVA from car::Anova().

• rcs: Fit the regression model with the restricted cubic spline variable. The overall and nonlin-
ear p-values are provided in results. These p-vals are calculated by anova() of rms::cph()
or rms::Glm.

Examples

data(cancer, package = "survival")
regression_scan(cancer, y = "status", time = "time", save_table = FALSE)

replace_elements Replacing elements in a vector

Description

Replacing elements in a vector

Usage

replace_elements(x, from, to)

Arguments

x A vector.

from A vector of elements to be replaced.

to A vector of elements to replace the original ones.

Value

A vector.

52 split_multichoice

Examples

replace_elements(c("a", "x", "1", NA, "a"), c("a", "b", NA), c("A", "B", "XX"))

split_multichoice Split multi-choice data into columns

Description

Split multi-choice data into columns, each new column consists of booleans whether a choice is
presented.

Usage

split_multichoice(
df,
quest_cols,
split = "",
remove_space = TRUE,
link = "_",
remove_cols = TRUE

)

Arguments

df A data frame.

quest_cols A vector of column names that contain multi-choice data.

split A string to split the data. Default is "".

remove_space If TRUE, remove space in the data.

link A string to link the column name and the option. Default is "_".

remove_cols If TRUE, remove the original columns.

Value

A data frame with additional columns.

Examples

df <- data.frame(q1 = c("ab", "c da", "b a", NA), q2 = c("a b", "a c", "d", "ab"))
split_multichoice(df, quest_cols = c("q1", "q2"))

str_match_replace 53

str_match_replace Match string and replace with corresponding value

Description

Partially match a string and replace with corresponding value. This function is useful to recover the
original names of variables after legalized using make.names or modified by other functions.

Usage

str_match_replace(x, to_match, to_replace)

Arguments

x A vector.

to_match A vector of strings to be matched.

to_replace A vector of strings to replace the matched ones, must have the same length as
to_match.

Value

A vector.

Examples

ori_names <- c("xx (mg/dl)", "b*x", "Covid-19")
modified_names <- c("v1", "v2", "v3")
x <- c("v1.v2", "v3.yy", "v4")
str_match_replace(x, modified_names, ori_names)

subgroup_forest Create subgroup forest plot.

Description

Create subgroup forest plot with glm or coxph models. The interaction p-values are calculated using
likelihood ratio tests.

54 subgroup_forest

Usage

subgroup_forest(
data,
subgroup_vars,
x,
y,
time = NULL,
time2 = NULL,
standardize_x = FALSE,
covars = NULL,
cluster = NULL,
est_nsmall = 2,
p_nsmall = 3,
group_cut_quantiles = 0.5,
save_plot = FALSE,
filename = NULL,
...

)

Arguments

data A data frame.

subgroup_vars A character vector of variable names to be used as subgroups. It’s recommended
that the variables are categorical. If the variables are continuous, they will be
cut into groups.

x A character string of the predictor variable.

y A character string of the outcome variable.

time A character string of the time variable. If NULL, logistic regression is used.
Otherwise, Cox proportional hazards regression is used.

time2 A character string of the ending time of the interval for interval censored or
counting process data only.

standardize_x A logical value. If TRUE, the predictor variable will be standardized.

covars A character vector of covariate names.

cluster A character string of the cluster variable. If set, correct for heteroscedasticity
and for correlated responses from cluster samples using rms::robcov().

est_nsmall An integer specifying the precision for the estimates in the plot.

p_nsmall An integer specifying the number of decimal places for the p-values.
group_cut_quantiles

A vector of numerical values between 0 and 1, specifying the quantile to use for
cutting continuous subgroup variables.

save_plot A logical value indicating whether to save the plot.

filename A character string specifying the filename for the plot. If NULL, a default file-
name is used.

... Additional arguments passed to the forestploter::forest function.

subject_view 55

Value

A gtable object.

Examples

data(cancer, package = "survival")
coxph model with time assigned
subgroup_forest(cancer,

subgroup_vars = c("age", "sex", "wt.loss"), x = "ph.ecog", y = "status",
time = "time", covars = "ph.karno", ticks_at = c(1, 2), save_plot = FALSE

)

logistic model with time not assigned
cancer$dead <- cancer$status == 2
subgroup_forest(cancer,

subgroup_vars = c("age", "sex", "wt.loss"), x = "ph.ecog", y = "dead",
covars = "ph.karno", ticks_at = c(1, 2), save_plot = FALSE

)

cancer$ph.ecog_cat <- factor(cancer$ph.ecog, levels = c(0:3), labels = c("0", "1", ">=2", ">=2"))
subgroup_forest(cancer,

subgroup_vars = c("sex", "wt.loss"), x = "ph.ecog_cat", y = "dead",
covars = "ph.karno", ticks_at = c(1, 2), save_plot = FALSE

)

subject_view Get an overview of different subjects in data.

Description

Get a table of subject details for the clinical data. This table could be labeled and used for subject
name standardization.

Usage

subject_view(
df,
subject_col,
info_cols,
value_col = NULL,
info_n_samples = 10,
info_collapse = "\n",
info_unique = FALSE,
save_table = FALSE,
filename = NULL

)

56 test_normality

Arguments

df A data frame of medical records that contains test subject, value, and unit cols.

subject_col The name of the subject column.

info_cols The names of the columns to get detailed information.

value_col The name of the column that contains values. This column must be numerical.

info_n_samples The number of samples to show in the detailed information columns.

info_collapse The separator to use for collapsing the detailed information.

info_unique A logical value indicating whether to show unique values only.

save_table A logical value indicating whether to save the table to a csv file.

filename The name of the csv file to be saved.

Value

A data frame of subject details.

Examples

df <- data.frame(subject = sample(c("a", "b"), 1000, replace = TRUE), value = runif(1000))
df$unit <- NA
df$unit[df$subject == "a"] <- sample(c("mg/L", "g/l", "g/L"),

sum(df$subject == "a"),
replace = TRUE

)
df$value[df$subject == "a" & df$unit == "mg/L"] <-

df$value[df$subject == "a" & df$unit == "mg/L"] * 1000
df$unit[df$subject == "b"] <- sample(c(NA, "g", "mg"), sum(df$subject == "b"), replace = TRUE)
df$value[df$subject == "b" & df$unit %in% "mg"] <-

df$value[df$subject == "b" & df$unit %in% "mg"] * 1000
df$value[df$subject == "b" & is.na(df$unit)] <- df$value[df$subject == "b" & is.na(df$unit)] *

sample(c(1, 1000), size = sum(df$subject == "b" & is.na(df$unit)), replace = TRUE)
subject_view(
df = df, subject_col = "subject", info_cols = c("value", "unit"), value_col = "value",
save_table = FALSE

)

test_normality Test normality of a numeric variable

Description

Perform multiple normality tests on a numeric variable and determine if it follows normal distribu-
tion.

Usage

test_normality(x, alpha = 0.05, all_positive = NULL)

time_roc_plot 57

Arguments

x A numeric vector to test for normality.

alpha The significance level for normality tests. Default is 0.05.

all_positive A logical value indicating whether all values are non-negative. If TRUE and
standard deviation is less than mean, the variable is considered non-normal
(likely right-skewed).

Value

A logical value indicating whether the variable is normal (TRUE) or non-normal (FALSE).

Note

This function performs Shapiro-Wilk, Lilliefors, Anderson-Darling, Jarque-Bera, and Shapiro-
Francia tests. If at least two of these tests indicate that the variable is nonnormal (p < alpha), then it
is considered nonnormal. For positive variables, if SD < mean, it’s also considered non-normal as
it suggests right skewness.

Examples

Test normal data
normal_data <- rnorm(100)
test_normality(normal_data)

Test non-normal data
skewed_data <- rexp(100)
test_normality(skewed_data)

time_roc_plot Calculate and plot time-dependent ROC curves

Description

Calculate time-dependent ROC curves using the timeROC package and plot them using ggplot2.

Usage

time_roc_plot(
data,
time_var,
event_var,
marker_var,
times = c(12, 36, 60),
weighting = "marginal",
cause = 1,
colors = NULL,
title = FALSE,

58 time_roc_plot

save_plot = FALSE,
filename = "time_roc.png"

)

Arguments

data A data frame containing the survival time, event indicator, and marker variable.

time_var A string specifying the name of the survival time variable in the data frame.

event_var A string specifying the name of the event indicator variable in the data frame.

marker_var A string specifying the name of the marker variable in the data frame.

times A numeric vector of times at which to compute the time-dependent ROC curves.

weighting A character string specifying the weighting method. Default is "marginal". See
timeROC::timeROC() for details.

cause The value of the event indicator that denotes the event of interest. Default is 1.

colors A vector of colors to use for the ROC curves. If NULL, uses default colors.

title A logical value indicating whether to include a title. Default is FALSE.

save_plot A logical value indicating whether to save the plot to a file. Default is FALSE.

filename A string specifying the filename to save the plot. Default is "time_roc.png".

Value

A list containing:

• time_roc: The timeROC result object.

• plot: A ggplot object of the time-dependent ROC curves.

Examples

Plot time-dependent ROC curves using lung dataset from survival package
library(survival)
data(cancer, package = "survival")
Use age as the marker variable, plot at 6, 12, and 24 months
lung$status <- lung$status == 2
result <- time_roc_plot(lung, "time", "status", "age", times = c(180, 365, 730))
result$plot

Save the plot to a file
time_roc_plot(lung, "time", "status", "age", times = c(180, 365, 730), save_plot = TRUE)

to_date 59

to_date Convert numerical or character date to date.

Description

Convert numerical (especially Excel date) or character date to date. Can deal with common formats
and allow different formats in one vector.

Usage

to_date(
x,
from_excel = TRUE,
verbose = TRUE,
try_formats = c("%Y-%m-%d", "%Y/%m/%d", "%Y%m%d", "%Y.%m.%d")

)

Arguments

x A vector that stores dates in numerical or character types.

from_excel If TRUE, treat numerical values as Excel dates.

verbose If TRUE, print the values that cannot be converted.

try_formats A character vector of date formats to try. Same as tryFormats in as.Date.

Value

A single valid value from the vector. NA if all values are invalid.

Examples

to_date(c(43562, "2020-01-01", "2020/01/01", "20200101", "2020.01.01"))

unit_standardize Standardize units of numeric data.

Description

Standardize units of numeric data, especially for data of medical records with different units.

60 unit_standardize

Usage

unit_standardize(
df,
subject_col,
value_col,
unit_col,
change_rules,
extract_numbers = FALSE

)

Arguments

df A data frame of medical records that contains test subject, value, and unit cols.
subject_col The name of the subject column.
value_col The name of the value column.
unit_col The name of the unit column.
change_rules A data frame or a list of lists. See details
extract_numbers

A logical value indicating whether to apply extract_num to extract numeric
values from the value column.

Details

change_rules can accept two formats: If a data frame, it must contain the following columns:

• subject: The subject to be standardized.
• unit: The units of the subject.
• label: The role of the unit, the rule is as follows:

– "t": the target unit to be standardized to. If not specified, the function will use the most
common unit in the data (retrieved by first_mode()).

– "r": The units to be removed, and the corresponding values be set to NA. Set this when
data with this unit cannot be used.

– A number: Set the multiplier of this unit, the standardized value will be value * multiplier.
And NA and "" is considered the same as 1.

If a list of lists, each list contains the following elements:

• subject: The subject to be standardized.
• target_unit: The target unit to be standardized to. If not specified, the function will use the

most common unit in the data (retrieved by first_mode()).
• units2change: The units to be changed. If not specified, the function will use all units except

the target unit. Must be specified to apply different coeffs.
• coeffs: The coefficients to be used for the conversion. If not specified, the function will use

1 for all units to be changed.
• units2remove: The units to be removed, and the corresponding values be set to NA. Set this

when data with this unit cannot be used.

It’s recommended to use the labeled result from unit_view() as the input.

unit_standardize 61

Value

A data frame with subject units standardized.

Examples

Example 1: Using the list as change_rules is more convenient for small datasets.
df <- data.frame(

subject = c("a", "a", "b", "b", "b", "c", "c"), value = c(1, 2, 3, 4, 5, 6, 7),
unit = c(NA, "x", "x", "x", "y", "a", "b")

)
change_rules <- list(

list(subject = "a", target_unit = "x", units2change = c(NA), coeffs = c(20)),
list(subject = "b"),
list(subject = "c", target_unit = "b")

)
unit_standardize(df,

subject_col = "subject", value_col = "value", unit_col = "unit",
change_rules = change_rules

)

Example 2: Using the labeled result from `unit_view()` as the input
is more robust for large datasets.
df <- data.frame(subject = sample(c("a", "b"), 1000, replace = TRUE), value = runif(1000))
df$unit <- NA
df$unit[df$subject == "a"] <- sample(c("mg/L", "g/l", "g/L"),

sum(df$subject == "a"),
replace = TRUE

)
df$value[df$subject == "a" & df$unit == "mg/L"] <-

df$value[df$subject == "a" & df$unit == "mg/L"] * 1000
df$unit[df$subject == "b"] <- sample(c(NA, "m.g", "mg"), sum(df$subject == "b"),

prob = c(0.3, 0.05, 0.65), replace = TRUE
)
df$value[df$subject == "b" & df$unit %in% "mg"] <-

df$value[df$subject == "b" & df$unit %in% "mg"] * 1000
df$value[df$subject == "b" & is.na(df$unit)] <- df$value[df$subject == "b" & is.na(df$unit)] *

sample(c(1, 1000), size = sum(df$subject == "b" & is.na(df$unit)), replace = TRUE)

unit_table <- unit_view(
df = df, subject_col = "subject",
value_col = "value", unit_col = "unit", save_table = FALSE

)
unit_table$label <- c("t", NA, 1e-3, NA, NA, "r") # labeling the units

df_standardized <- unit_standardize(
df = df, subject_col = "subject", value_col = "value",
unit_col = "unit", change_rules = unit_table

)
unit_view(
df = df_standardized, subject_col = "subject", value_col = "value", unit_col = "unit",
save_table = FALSE, conflicts_only = FALSE

)

62 unit_view

unit_view Generate a table of conflicting units.

Description

Get a table of conflicting units for the clinical data, along with the some useful information, this
table could be labeled and used for unit standardization.

Usage

unit_view(
df,
subject_col,
value_col,
unit_col,
quantiles = c(0.025, 0.975),
save_table = FALSE,
filename = NULL,
conflicts_only = TRUE

)

Arguments

df A data frame of medical records that contains test subject, value, and unit cols.

subject_col The name of the subject column.

value_col The name of the value column.

unit_col The name of the unit column.

quantiles A vector of quantiles to be shown in the table.

save_table A logical value indicating whether to save the table to a csv file.

filename The name of the csv file to be saved.

conflicts_only A logical value indicating whether to only show the conflicting units.

Value

A data frame of conflicting units.

Examples

df <- data.frame(subject = sample(c("a", "b"), 1000, replace = TRUE), value = runif(1000))
df$unit <- NA
df$unit[df$subject == "a"] <- sample(c("mg/L", "g/l", "g/L"),

sum(df$subject == "a"),
replace = TRUE

)
df$value[df$subject == "a" & df$unit == "mg/L"] <-

df$value[df$subject == "a" & df$unit == "mg/L"] * 1000

unmake_names 63

df$unit[df$subject == "b"] <- sample(c(NA, "g", "mg"), sum(df$subject == "b"), replace = TRUE)
df$value[df$subject == "b" & df$unit %in% "mg"] <-

df$value[df$subject == "b" & df$unit %in% "mg"] * 1000
df$value[df$subject == "b" & is.na(df$unit)] <- df$value[df$subject == "b" & is.na(df$unit)] *

sample(c(1, 1000), size = sum(df$subject == "b" & is.na(df$unit)), replace = TRUE)
unit_view(

df = df, subject_col = "subject",
value_col = "value", unit_col = "unit", save_table = FALSE

)

unmake_names Unmake names

Description

Inverse function of make.names. You can use make.names to make colnames legal for subsequent
processing and analysis in R. Then use this function to switch back for publication.

Usage

unmake_names(x, ori_names)

Arguments

x A vector of names generated by base::make.names().

ori_names A vector of original names.

Details

The function will try to match the names in x with the names in ori_names. If the names in x are
not in ori_names, the function will return NA.

Value

A vector of original names.

Examples

ori_names <- c("xx (mg/dl)", "b*x", "Covid-19")
x <- c(make.names(ori_names), "aa")
unmake_names(x, ori_names)

64 vec2code

value_initial_cleaning

Preliminarily cleaning string vectors

Description

Cleaning illegal characters in string vectors that store numerical values. The function is useful for
cleaning electrical health records in Chinese.

char_initial_cleaning() will convert full-width characters to half-width characters, removes
whitespace at the start and end, replaces all internal whitespace with a single space, and replace
empty strings with NA.

value_initial_cleaning() will additionally remove all spaces and extra dots.

Usage

value_initial_cleaning(x, remove_inequal = FALSE)

char_initial_cleaning(x)

Arguments

x A string vector.

remove_inequal A logical value. If TRUE, remove comparison symbols such as <, > from the
string

Value

A string vector with less illegal characters.

Examples

x <- c("\uFF11\uFF12\uFF13", "11..23", "\uff41\uff42\uff41\uff4e\uff44\uff4f\uff4e",
"hello world ")

value_initial_cleaning(x)
char_initial_cleaning(x)

vec2code Generate code from string vector

Description

Generate the code that can be used to generate the string vector. name2code() is a wrapper of
vec2code(names(x)) to generate code for names of a vector, list, data frame, or any object with
names.

vec2code 65

Usage

vec2code(x)

name2code(x)

Arguments

x A string vector.

Value

A string that contains the code to generate the vector.

Examples

vec2code(colnames(mtcars))
name2code(mtcars)

Index

∗ datasets
emp_colors, 18

add_lists, 3
answer_check, 4

baseline_table, 5
break_at, 6

calc_cindex, 8
calculate_index, 7
char_initial_cleaning

(value_initial_cleaning), 64
check_nonnum, 8
classif_model_compare, 9
combine_files, 11
combine_multichoice, 12
common_prefix, 13
cut_by, 13

data_overview, 15
detect_outliers, 16
df_view_nonnum, 17

emp_colors, 18
exclusion_count, 18
extract_num, 19

fill_with_last, 20
filter_rcs_predictors, 21
first_mode, 22
format_pval, 22
formula_add_covs, 23

get_samples, 24
get_valid, 24
get_valid_subset, 25
get_var_types, 26

importance_plot, 28
indicate_duplicates, 29

interaction_p_value, 31
interaction_plot, 30
interaction_scan, 33
iqr_outlier, 17
iqr_outlier (mad_outlier), 34

mad_outlier, 17, 34
max_missing_rates, 35
merge_by_substring, 35
merge_ordered_vectors, 36

na2false, 37
na_max, 38
na_min (na_max), 38
name2code (vec2code), 64

predictor_effect_plot, 38

qq_show, 41

rcs_plot, 42
regression_basic_results, 44
regression_fit, 47
regression_forest, 48
regression_scan, 49
replace_elements, 51

split_multichoice, 52
str_match_replace, 53
subgroup_forest, 53
subject_view, 55

test_normality, 56
time_roc_plot, 57
to_date, 59

unit_standardize, 59
unit_view, 62
unmake_names, 63

value_initial_cleaning, 64

66

INDEX 67

vec2code, 64

zscore_outlier, 17
zscore_outlier (mad_outlier), 34

	add_lists
	answer_check
	baseline_table
	break_at
	calculate_index
	calc_cindex
	check_nonnum
	classif_model_compare
	combine_files
	combine_multichoice
	common_prefix
	cut_by
	data_overview
	detect_outliers
	df_view_nonnum
	emp_colors
	exclusion_count
	extract_num
	fill_with_last
	filter_rcs_predictors
	first_mode
	format_pval
	formula_add_covs
	get_samples
	get_valid
	get_valid_subset
	get_var_types
	importance_plot
	indicate_duplicates
	interaction_plot
	interaction_p_value
	interaction_scan
	mad_outlier
	max_missing_rates
	merge_by_substring
	merge_ordered_vectors
	na2false
	na_max
	predictor_effect_plot
	qq_show
	rcs_plot
	regression_basic_results
	regression_fit
	regression_forest
	regression_scan
	replace_elements
	split_multichoice
	str_match_replace
	subgroup_forest
	subject_view
	test_normality
	time_roc_plot
	to_date
	unit_standardize
	unit_view
	unmake_names
	value_initial_cleaning
	vec2code
	Index

