
Package ‘conleyreg’
January 7, 2026

Type Package

Title Estimations using Conley Standard Errors

Version 0.1.9

Description Functions calculating Conley (1999) <doi:10.1016/S0304-4076(98)00084-
0> standard errors. The package started by merging and extending multiple packages and
other published scripts on this econometric technique. It strongly emphasizes computational opti-
mization. Details are available in the function documentation and in
the vignette.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/cdueben/conleyreg

BugReports https://github.com/cdueben/conleyreg/issues

Imports stats, sf, Rcpp, data.table, lmtest, foreach, parallel,
doParallel, Rdpack, fixest, Matrix, lwgeom, s2, methods

Suggests rmarkdown, knitr

LinkingTo Rcpp, RcppArmadillo

RdMacros Rdpack

SystemRequirements GNU make

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation yes

Author Christian Düben [aut, cre],
Richard Bluhm [cph],
Luis Calderon [cph],
Darin Christensen [cph],
Timothy Conley [cph],
Thiemo Fetzer [cph],
Leander Heldring [cph]

Maintainer Christian Düben <cdueben.ml+cran@proton.me>

Repository CRAN

Date/Publication 2026-01-07 19:20:07 UTC

1

https://doi.org/10.1016/S0304-4076(98)00084-0
https://doi.org/10.1016/S0304-4076(98)00084-0
https://github.com/cdueben/conleyreg
https://github.com/cdueben/conleyreg/issues

2 conleyreg

Contents
conleyreg . 2
dist_mat . 7
rnd_locations . 10

Index 12

conleyreg Conley standard error estimations

Description

This function estimates ols, logit, probit, and poisson models with Conley standard errors.

Usage

conleyreg(
formula,
data,
dist_cutoff,
model = c("ols", "logit", "probit", "poisson"),
unit = NULL,
time = NULL,
lat = NULL,
lon = NULL,
kernel = c("bartlett", "uniform"),
lag_cutoff = 0,
intercept = TRUE,
verbose = TRUE,
ncores = NULL,
par_dim = c("cross-section", "time", "r", "cpp"),
dist_comp = NULL,
crs = NULL,
st_distance = FALSE,
dist_which = NULL,
sparse = FALSE,
batch = TRUE,
batch_ram_opt = NULL,
float = FALSE,
rowwise = FALSE,
reg_ram_opt = FALSE,
dist_mat = NULL,
dist_mat_conv = TRUE,
vcov = FALSE,
gof = FALSE

)

conleyreg 3

Arguments

formula regression equation as formula or character string. Avoid interactions and trans-
formations inside the equation. I.e. use y ~ x1 + x1_2, data = dplyr::mutate(data,
x1_2 = x1^2) instead of y ~ x1 + x1^2, data = data).

data input data. Either (i) in non-spatial data frame format (includes tibbles and data
tables) with columns denoting coordinates or (ii) in sf format. In case of an sf
object, all non-point geometry types are converted to spatial points, based on the
feature’s centroid. When using a non-spatial data frame format with projected,
i.e. non-longlat, coordinates, crs must be specified. Note that the projection
can influence the computed distances, which is a general phenomenon in GIS
software and not specific to conleyreg. The computationally fastest option is
to use a data table with coordinates in the crs in which the distances are to be
derived (longlat for spherical and projected for planar), and with time and unit
set as keys in the panel case. An sf object as input is the slowest option.

dist_cutoff the distance cutoff in km

model the applied model. Either "ols" (default), "logit", "probit" or "poisson".
"logit", "probit", and "poisson" are currently restricted to cross-sectional
applications.

unit the variable identifying the cross-sectional dimension. Only needs to be speci-
fied, if data is not cross-sectional. Assumes that units do not change their loca-
tion over time.

time the variable identifying the time dimension. Only needs to be specified, if data
is not cross-sectional.

lat the variable specifying the latitude

lon the variable specifying the longitude

kernel the kernel applied within the radius. Either "bartlett" (default) or "uniform".

lag_cutoff the cutoff along the time dimension. Defaults to 0, meaning that standard errors
are only adjusted cross-sectionally.

intercept logical specifying whether to include an intercept. Defaults to TRUE. Fixed ef-
fects models omit the intercept automatically.

verbose logical specifying whether to print messages on intermediate estimation steps.
Defaults to TRUE.

ncores the number of CPU cores to use in the estimations. Defaults to the machine’s
number of CPUs.

par_dim the dimension along which the function parallelizes in panel applications. Can
be set to "cross-section" (default) or "time". With the former option, the
function parallelizes the spatial correlation code in C++ using OpenMP and the
serial correlation part in R using the parallel package. With the latter option, it
is the other way around. Use "r" and "cpp" to define parallelization based on
the language rather than the dimension. Some MAC users do not have access to
OpenMP by default. par_dim is then always set to "r". Thus, depending on the
application, the function can be notably faster on Windows and Linux than on
MACs.

4 conleyreg

dist_comp choice between "spherical" and "planar" distance computations. When un-
specified, the input data determines the method: longlat uses spherical (Haver-
sine) distances, alternatives (projected data) use planar (Euclidean) distances.
When inserting projected data but specifying dist_comp = "spherical", the
data is transformed to longlat. Combining unprojected data with dist_comp =
"planar" transforms the data to an azimuthal equidistant format centered at the
data’s centroid.

crs the coordinate reference system, if the data is projected. Object of class crs or
input string to sf::st_crs. This parameter can be omitted, if the data is in
longlat format (EPSG: 4326), i.e. not projected. If the projection does not use
meters as units, this function converts to units to meters.

st_distance logical specifying whether distances should be computed via sf::st_distance
(TRUE) or via conleyreg’s internal, computationally optimized distance functions
(FALSE). The default (FALSE) produces the same distances as sf::st_distance
does with S2 enabled. I.e. it uses Haversine (great circle) distances for longlat
data and Euclidean distances otherwise. Cases in which you might want to set
this argument to TRUE are e.g. when you want enforce the GEOS approach to
computing distances or when you are using an peculiar projection, for which
the sf package might include further procedures. Cross-sectional paralleliza-
tion is not available when st_distance = TRUE and the function automatically
switches to parallelization along the time dimension, if the data is a panel and
ncores != 1. Third and fourth dimensions, termed Z and M in sf, are not ac-
counted for in any case. Note that sf::st_distance is considerably slower
than conleyreg’s internal distance functions.

dist_which the type of distance to use when st_distance = TRUE. If unspecified, the func-
tion defaults to great circle distances for longlat data and to Euclidean distances
otherwise. See sf::st_distance for options.

sparse logical specifying whether to use sparse rather than dense (regular) matrices in
distance computations. Defaults to FALSE. Only has an effect when st_distance
= FALSE. Sparse matrices are more efficient than dense matrices, when the dis-
tance matrix has a lot of zeros arising from points located outside the respective
dist_cutoff. It is recommended to keep the default unless the machine is un-
able to allocate enough memory.

batch logical specifying whether distances are inserted into a sparse matrix element
by element (FALSE) or all at once as a batch (TRUE). Defaults to TRUE. This
argument only has an effect when st_distance = FALSE and sparse = TRUE.
Batch insertion is faster than element-wise insertion, but requires more memory.

batch_ram_opt the degree to which batch insertion should be optimized for RAM usage. Can be
set to one out of the three levels: "none", "moderate" (default), and "heavy".
Higher levels imply lower RAM usage, but also lower speeds.

float logical specifying whether distance matrices should use the float (TRUE) rather
than the double (FALSE) data type. Floats are less precise and than doubles and
thereby occupy less space than doubles do. They should only be used when the
machine’s RAM is insufficient for both the dense and the sparse matrix cases, as
they affect the precision of distance values. The float option only has an effect
in Bartlett kernel cases because uniform kernel applications store the data in a
smaller integer data type.

conleyreg 5

rowwise logical specifying whether to store individual rows of the distance matrix only,
instead of the full matrix. If TRUE, the function uses these rows directly in the
standard error correction. This option’s advantage is that it induces the function
to store only N x ncores cells, instead of the full N x N matrix, lowering RAM
requirements. The disadvantage is that the function needs to compute twice as
many distance values as in the default case (FALSE), since the symmetry of the
matrix is not utilized. It hence sacrifices speed for lower RAM utilization. This
parameter only has an effect in cross-sectional and unbalanced panel applica-
tions with st_distance = FALSE and sparse = FALSE.

reg_ram_opt logical specifying whether the regression should be optimized for RAM usage.
Defaults to FALSE. Changing it to TRUE slows down the function. This argument
only affects the baseline estimation, not the standard error correction.

dist_mat a distance matrix. Pre-computing a distance matrix and passing it to this ar-
gument is only more efficient than having conleyreg derive it, if you execute
conleyreg multiple times with the same input data. In that case, it is recom-
mended to compute the distance matrix via dist_mat, which is optimized for
this purpose and also evaluates various other steps that are identical across re-
gressions on the same input data. Generally, you must not modify the input data
between deriving the distance matrix and running conleyreg. That includes
dropping observations or changing values of the unit, time, or coordinate vari-
ables. In cross-sectional settings, you must not re-order rows either. If you com-
pute distances through a function other than dist_mat, there are a few additional
issues to account for. (i) In the panel scenario, you must order observations by
time and unit in ascending order. I.e. cells [1, 2] and [2, 1] of the distance matrix
must refer to the distance between unit 1 and unit 2, cells [2, 3] and [3, 2] to the
distance between unit 2 and unit 3 etc. The unit numbers in this example refer to
their rank when they are sorted. (ii) dist_cutoff does not refer to kilometers,
but to the units of the matrix. (iii) While in a balanced panel you only enter one
matrix that is applied to all periods, you supply distances as a list of matrices
in the unbalanced case. The matrices must be sorted, with the first list element
containing the first period’s distance matrix etc. (iv) Zeros in sparse matrices are
interpreted as values above the distance cutoff and NaN values are interpreted
as zeros. (v) The matrices in the list must all be of the same type - all dense or
all sparse. (vi) Distance matrices must only contain non-missing, finite numbers
(and NaN in the case of sparse matrices).

dist_mat_conv logical specifying whether to convert the distance matrix to a list, if the panel
turns out to be unbalanced because of missing values. This setting is only rele-
vant, if you enter a balanced panel’s distance matrix not derived via dist_mat. If
TRUE (the default), the function only drops rows with missing values. If FALSE,
the function maintains the panel’s balanced character by dropping units with
missing values in at least one period from the entire data set.

vcov logical specifying whether to return variance-covariance matrix (TRUE) rather
than the default lmtest::coeftest matrix of coefficient estimates and standard
errors (FALSE).

gof logical specifying whether to return goodness of fit measures. Defaults to FALSE.
If TRUE, the function produces a list.

6 conleyreg

Details

This code is an extension and modification of earlier Conley standard error implementations by
(i) Richard Bluhm, (ii) Luis Calderon and Leander Heldring, (iii) Darin Christensen and Thiemo
Fetzer, and (iv) Timothy Conley. Results vary across implementations because of different distance
functions and buffer shapes.

This function has reasonable defaults. If your machine has insufficent RAM to allocate the default
dense matrices, try sparse matrices. If the RAM error persists, try setting a lower dist_cutoff, use
floats, select a uniform kernel, experiment with batch_ram_opt, reg_ram_opt, or batch.

Consult the vignette, vignette("conleyreg_introduction", "conleyreg"), for a more exten-
sive discussion.

Value

Returns a lmtest::coeftest matrix of coefficient estimates and standard errors by default. Can
be changed to the variance-covariance matrix by specifying vcov = TRUE.

References

Calderon L, Heldring L (2020). “Spatial standard errors for several commonly used M-estimators.”
Mimeo.

Conley TG (1999). “GMM estimation with cross sectional dependence.” Journal of Economet-
rics, 92(1), 1-45.

Conley TG (2008). “Spatial Econometrics.” In Durlauf SN, Blume LE (eds.), Microeconometrics,
303-313. London: Palgrave Macmillan.

Examples

Not run:
Generate cross-sectional example data
data <- rnd_locations(100, output_type = "data.frame")
data$y <- sample(c(0, 1), 100, replace = TRUE)
data$x1 <- stats::runif(100, -50, 50)

Estimate ols model with Conley standard errors using a 1000 km radius
conleyreg(y ~ x1, data, 1000, lat = "lat", lon = "lon")

Estimate logit model
conleyreg(y ~ x1, data, 1000, "logit", lat = "lat", lon = "lon")

Estimate ols model with fixed effects
data$x2 <- sample(1:5, 100, replace = TRUE)
conleyreg(y ~ x1 | x2, data, 1000, lat = "lat", lon = "lon")

Estimate ols model using panel data
data$time <- rep(1:10, each = 10)
data$unit <- rep(1:10, times = 10)
conleyreg(y ~ x1, data, 1000, unit = "unit", time = "time", lat = "lat", lon = "lon")

dist_mat 7

Estimate same model with an sf object of another projection as input
data <- sf::st_as_sf(data, coords = c("lon", "lat"), crs = 4326) |>

sf::st_transform(crs = "+proj=aeqd")
conleyreg(y ~ x1, data, 1000)

End(Not run)

dist_mat Distance matrix estimation

Description

This function estimates the distance matrix separately from Conley standard errors. Such step
can be helpful when running multiple Conley standard error estimations based on the same distance
matrix. A pre-requisite of using this function is that the data must not be modified between applying
this function and inserting the results into conleyreg.

Usage

dist_mat(
data,
unit = NULL,
time = NULL,
lat = NULL,
lon = NULL,
dist_comp = NULL,
dist_cutoff = NULL,
crs = NULL,
verbose = TRUE,
ncores = NULL,
par_dim = c("cross-section", "time", "r", "cpp"),
sparse = FALSE,
batch = TRUE,
batch_ram_opt = NULL,
dist_round = FALSE,
st_distance = FALSE,
dist_which = NULL

)

Arguments

data input data. Either (i) in non-spatial data frame format (includes tibbles and data
tables) with columns denoting coordinates or (ii) in sf format. In case of an sf
object, all non-point geometry types are converted to spatial points, based on
the feature’s centroid. When using a non-spatial data frame format the with pro-
jected, i.e. non-longlat, coordinates, crs must be specified. Note that the pro-
jection can influence the computed distances, which is a general phenomenon in

8 dist_mat

GIS software and not specific to conleyreg. The computationally fastest option
is to use a data table with coordinates in the crs in which the distances are to be
derived (longlat for spherical and projected for planar), and with time and unit
set as keys in the panel case. An sf object as input is the slowest option.

unit the variable identifying the cross-sectional dimension. Only needs to be speci-
fied, if data is not cross-sectional. Assumes that units do not change their loca-
tion over time.

time the variable identifying the time dimension. Only needs to be specified, if data
is not cross-sectional.

lat the variable specifying the latitude

lon the variable specifying the longitude

dist_comp choice between spherical and planar distance computations. When unspec-
ified, the input data determines the method: longlat uses spherical (Haversine)
distances, alternatives (projected data) use planar (Euclidean) distances. When
inserting projected data but specifying dist_comp = "spherical", the data is
transformed to longlat. Combining unprojected data with dist_comp = "planar"
transforms the data to an azimuthal equidistant format centered at the data’s cen-
troid.

dist_cutoff the distance cutoff in km. If not specified, the distances matrices contain all bi-
lateral distances. If specified, the cutoff most be as least as large as the largest
distance cutoff in the Conley standard error corrections in which you use the
resulting matrix. If you e.g. specify distance cutoffs of 100, 200, and 500 km in
the subsequent conleyreg calls, dist_cutoff in this function must be set to at
least 500. dist_cutoff allows to pre-compute distance matrices also in appli-
cations where a full distance matrix would not fit into the computer’s memory -
conditional on that sparse = TRUE.

crs the coordinate reference system, if the data is projected. Object of class crs or
input string to sf::st_crs. This parameter can be omitted, if the data is in
longlat format (EPSG: 4326), i.e. not projected. If the projection does not use
meters as units, this function converts to units to meters.

verbose logical specifying whether to print messages on intermediate estimation steps.
Defaults to TRUE.

ncores the number of CPU cores to use in the estimations. Defaults to the machine’s
number of CPUs.

par_dim the dimension along which the function parallelizes in unbalanced panel applica-
tions. Can be set to "cross-section" (default) or "time". Use "r" and "cpp"
to define parallelization based on the language rather than the dimension. In this
function, "r" is equivalent to "time" and parallelizes along the time dimension
using the parallel package. "cross-section" is equivalent to "cpp" and paral-
lelizes along the cross-sectional dimension using OpenMP in C++. Some MAC
users do not have access to OpenMP by default. par_dim is then always set
to "r". Thus, depending on the application, the function can be notably faster
on Windows and Linux than on MACs. When st_distance = TRUE, par_dim
defaults to "time".

sparse logical specifying whether to use sparse rather than dense (regular) matrices in
distance computations. Defaults to FALSE. Only has an effect when st_distance

dist_mat 9

= FALSE. Sparse matrices are more efficient than dense matrices, when the dis-
tance matrix has a lot of zeros arising from points located outside the respective
dist_cutoff. It is recommended to keep the default unless the machine is un-
able to allocate enough memory. The function always uses dense matrices when
dist_cutoff is not specified.

batch logical specifying whether distances are inserted into a sparse matrix element
by element (FALSE) or all at once as a batch (TRUE). Defaults to FALSE. This
argument only has an effect when st_distance = FALSE and sparse = TRUE.
Batch insertion is faster than element-wise insertion, but requires more memory.

batch_ram_opt the degree to which batch insertion should be optimized for RAM usage. Can be
set to one out of the three levels: "none", "moderate" (default), and "heavy".
Higher levels imply lower RAM usage, but also lower speeds.

dist_round logical specifying whether to round distances to full kilometers. This further
reduces memory consumption and can be a solution when even sparse matrices
cannot accomodate the data. Note, though, that this rounding introduces a bias.

st_distance logical specifying whether distances should be computed via sf::st_distance
(TRUE) or via conleyreg’s internal, computationally optimized distance functions
(FALSE). The default (FALSE) produces the same distances as sf::st_distance
does with S2 enabled. I.e. it uses Haversine (great circle) distances for longlat
data and Euclidean distances otherwise. Cases in which you might want to set
this argument to TRUE are e.g. when you want enforce the GEOS approach
to computing distances or when you are using a peculiar projection, for which
the sf package might include further procedures. Cross-sectional paralleliza-
tion is not available when st_distance = TRUE and the function automatically
switches to parallelization along the time dimension, if the data is a panel and
ncores != 1. Third and fourth dimensions, termed Z and M in sf, are not ac-
counted for in any case. Note that sf::st_distance is considerably slower
than conleyreg’s internal distance functions.

dist_which the type of distance to use when st_distance = TRUE. If unspecified, the func-
tion defaults to great circle distances for longlat data and to Euclidean distances
otherwise. See sf::st_distance for options.

Details

This function runs the distance matrix estimations separately from the Conley standard error cor-
rection. You can pass the resulting object to the dist_mat argument in conleyreg, skipping the
distance matrix computations and various checks in that function. Pre-computing the distance ma-
trix is only more efficient than deriving it via conleyreg when estimating various models that use
the same distance matrices. The input data must not be modified between calling this function and
inserting the results into conleyreg. Do not reorder the observations, add or delete variables, or
undertake any other operation on the data.

Value

Returns an object of S3 class conley_dist. It contains modified distance matrices, the used
dist_cutoff, a sparse matrix identifier, and information on the potential panel structure. In the
cross-sectional case and the balanced panel case, the distances are stored in one matrix, while in

10 rnd_locations

unbalanced panel applications, distances come as a list of matrices. The function optimizes the dis-
tance matrices with respect to computational performance, setting distances beyond dist_cutoff
to zero and actual off-diagonal zeros to NaN. Hence, these objects are only to be used in conleyreg.

Examples

Not run:
Generate cross-sectional example data
data <- rnd_locations(100, output_type = "data.frame")
data$y <- sample(c(0, 1), 100, replace = TRUE)
data$x1 <- stats::runif(100, -50, 50)

Compute distance matrix in cross-sectional case
dm <- dist_mat(data, lat = "lat", lon = "lon")

Compute distance matrix in panel case
data$time <- rep(1:10, each = 10)
data$unit <- rep(1:10, times = 10)
dm <- dist_mat(data, unit = "unit", time = "time", lat = "lat", lon = "lon")

Use distance matrix in conleyreg function
conleyreg(y ~ x1, data, 1000, dist_mat = dm)

End(Not run)

rnd_locations Random location drawing

Description

This function draws random locations in longlat format.

Usage

rnd_locations(
nobs,
xmin = -180,
xmax = 180,
ymin = -90,
ymax = 90,
output_type = c("data.table", "data.frame", "sf")

)

Arguments

nobs number of observations

xmin minimum longitude

rnd_locations 11

xmax maximum longitude

ymin minimum latitude

ymax maximum latitude

output_type type of output object. Either "data.table" (default), "data.frame", or "sf".

Details

By default, this function draws a global sample of random locations. You can restrict it to a certain
region via specifying xmin, xmax, ymin, and ymax. The function draws from a uniform spatial
distribution that assumes the planet to be a perfect sphere. The spherical assumption is common in
GIS functions, but deviates from Earth’s exact shape.

Value

Returns a data.table, data.frame, or sf object of unprojected (longlat) points.

Examples

data <- rnd_locations(1000)

Index

conleyreg, 2

dist_mat, 5, 7

rnd_locations, 10

12

	conleyreg
	dist_mat
	rnd_locations
	Index

