Package ‘cpr’

January 8, 2026
Title Control Polygon Reduction
Version 0.4.1

Description Implementation of the Control Polygon Reduction and Control Net
Reduction methods for finding parsimonious B-spline regression models.

Depends R (>=3.5.0)
License GPL (>=2)
Encoding UTF-8

URL https://github.com/dewittpe/cpr/, http://www.peteredewitt.com/cpr/

BugReports https://github.com/dewittpe/cpr/issues
Language en-us
LazyData true

Imports ggplot2 (>=3.0.0), Ime4 (>=1.1.35.1), plot3D, Rcpp (>=
1.0.11), rgl, scales

LinkingTo Rcpp, ReppArmadillo

Suggests Matrix (>= 1.6-4), geepack, ggpubr, knitr, qwraps2 (>= 0.6.0)
RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation yes

Author Peter DeWitt [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6391-0795>),
Samantha MaWhinney [ths],
Nichole Carlson [ths]

Maintainer Peter DeWitt <dewittpe@gmail.com>
Repository CRAN
Date/Publication 2026-01-08 04:00:08 UTC

https://github.com/dewittpe/cpr/
http://www.peteredewitt.com/cpr/
https://github.com/dewittpe/cpr/issues
https://orcid.org/0000-0002-6391-0795

2 Contents

Contents
bsplineD 3
bsplines 5
Btensor. 7
build_tensor 8
CIL ot v et e e e e e 9
0] 1 11
coef_VCOV . . L e 12
CD o o e e e e e e 13
CPT « o o e e e e e e e e e 14
cpr-defunct L e e e 17
ep_diff . . . e 18
cp_value e e e 19
generate_cp_formula_datao 20
get_spline e e 21
get_surface e 23
iknots_or_df e 25
influence_of 1knots e e 26
Insert_a Knot L e s e 27
KNnot_eXpr e e e e e e 28
loglikelihood 29
matrix_rank e 30
NEWKNOLS e e e e e e 31
order_Statistics e 32
plotepr_bs 34
ploteprocn 35
PIOLCPI_CIT o o e e e e e e e e e e 37
PIOLCPI_CP . o o o o o o e e e e 38
PIOLCPT_CPT . . . o o o e e e e e e e 39
plot.cpr_SumMmAary_CPr_CPr v v v it e e e e 40
PrediCtCpr_Cp . . o v o o e e e e 42
Print.cpr_bs e 42
sign_changes L e 43
SPAZ . . 44
SUMMATY.CPT_CIL « « . v v o v v e e v e e e e e e e e e e e e e e e e e e e 45
SUMMATY.CPT_CIT + . v v v v v e e v e e e e e e e e e e e e e e e e e e e 46
SUMMATY.CPI_CP « « v v v v e 46
SUMMATY.CPT_CPT « o v v v v v e e v e e e e e e e e e e e e e e e e 47
trimmed_quantile 48
update_bsplines e 49
US_COVIA_CASES . . . v v o e e e e e 50
wiggle . . .o 51

Index 53

bsplineD 3

bsplineD B-spline Derivatives

Description

Generate the first and second derivatives of a B-spline Basis.

Usage
bsplineD(
X,
iknots = NULL,
df = NULL,
bknots = range(x),
order = 4L,
derivative = 1L
)
Arguments
X a numeric vector
iknots internal knots
df degrees of freedom: sum of the order and internal knots. Ignored if iknots is
specified.
bknots boundary knot locations, defaults to range(x).
order order of the piecewise polynomials, defaults to 4L.
derivative (integer) first or second derivative
Value

a numeric matrix

References

C. de Boor, "A practical guide to splines. Revised Edition," Springer, 2001.
H. Prautzsch, W. Boehm, M. Paluszny, "Bezier and B-spline Techniques," Springer, 2002.

See Also

bsplines for bspline basis. get_spline will give you the spline or the derivative thereof for a
control polygon.

4 bsplineD

Examples

AR AR AR AR A
Example 1 - perfectly fitting a cubic function
f <- function(x) {

X*3 -2 % x"2-5%x+6

}

fprime <- function(x) { # first derivatives of f(x)
3% x*2-4*%x-5

3

fdoubleprime <- function(x) { # second derivatives of f(x)
6 x x - 4

3

Build a spline to fit
bknots = c(-3, 5)

X <- seq(-3, 4.999, length.out = 200)
bmat <- bsplines(x, bknots = bknots)
theta <- matrix(coef(Im(f(x) ~ bmat + @)), ncol = 1)

bmatD1 <- bsplineD(x, bknots = bknots, derivative = 1L)
bmatD2 <- bsplineD(x, bknots = bknots, derivative 2L)

Verify that we have perfectly fitted splines to the function and its
derivatives.

check that the function f(x) is recovered

all.equal(f(x), as.numeric(bmat %*% theta))

all.equal(fprime(x), as.numeric(bmatD1 %*% theta))
all.equal(fdoubleprime(x), as.numeric(bmatD2 %*% theta))

Plot the results

old_par <- par()

par(mfrow = c(1, 3))

plot(x, f(x), type = "1", main = bquote(f(x)), ylab = "", xlab = "")
points(x, bmat %*% theta, col = 'blue')

grid()

plot(
X

, fprime(x)

, type = "1"

, main = bquote(frac(d,dx)~f(x))

, ylab = ""

, xlab = ""
)
points(x, bmatD1 %x% theta, col = 'blue')
grid()

plot(
X

bsplines

, fdoubleprime(x)

, type = "1”

, main = bquote(frac(d*2,dx*2)~f(x))

, ylab = ""

, xlab = ""
)
points(x, bmatD2 %*% theta, col = 'blue')
grid()

par(old_par)

AR AR R AR
Example 2
set.seed(42)

xvec <- seq(@.1, 9.9, length = 1000)
iknots <- sort(runif(rpois(1, 3), 1, 9))
bknots <- c(@, 10)

basis matrix and the first and second derivatives thereof, for cubic
(order = 4) b-splines

bmat <- bsplines(xvec, iknots, bknots
bmat1 <- bsplineD(xvec, iknots, bknots
bmat2 <- bsplineD(xvec, iknots, bknots

bknots)
bknots, derivative = 1)
bknots, derivative = 2)

control polygon ordinates
theta <- runif(length(iknots) + 4L, -5, 5)

plot data
plot_data <-
data. frame(
Spline as.numeric(bmat %x% theta)
, First_Derivative as.numeric(bmatl %*% theta)
, Second_Derivative = as.numeric(bmat2 %x% theta)

)
plot_data <- stack(plot_data)
plot_data <- cbind(plot_data, data.frame(x = xvec))

ggplot2::ggplot(plot_data) +

ggplot2::theme_bw() +

ggplot2::aes(x = x, y = values, color = ind) +
ggplot2::geom_line() +

ggplot2::geom_hline(yintercept = @) +
ggplot2::geom_vline(xintercept = iknots, linetype = 3)

bsplines B-Splines

Description

An implementation of Carl de Boor’s recursive algorithm for building B-splines.

Usage

bsplines

bsplines(x, iknots = NULL, df = NULL, bknots = range(x), order = 4L)

Arguments

X
iknots
df

bknots

order

Details

a numeric vector
internal knots

degrees of freedom: sum of the order and internal knots. Ignored if iknots is
specified.

boundary knot locations, defaults to range(x).

order of the piecewise polynomials, defaults to 4L.

There are several differences between this function and bs.

The most important difference is how the two methods treat the right-hand end of the support.
bs uses a pivot method to allow for extrapolation and thus returns a basis matrix where non-zero
values exist on the max (Boundary.knots) (bs version of bsplines’s bknots). bsplines use a
strict definition of the splines where the support is open on the right hand side, that is, bsplines
return right-continuous functions.

Additionally, the attributes of the object returned by bsplines are different from the attributes of
the object returned by bs. See the vignette(topic = "cpr”, package = "cpr") for a detailed
comparison between the bsplines and bs calls and notes about B-splines in general.

References

C. de Boor, "A practical guide to splines. Revised Edition," Springer, 2001.

H. Prautzsch, W. Boehm, M. Paluszny, "Bezier and B-spline Techniques," Springer, 2002.

See Also

plot.cpr_bs for plotting the basis, bsplineD for building the basis matrices for the first and second
derivative of a B-spline.

See update_bsplines for info on a tool for updating a cpr_bs object. This is a similar method to
the update function from the stats package.

vignette(topic = "cpr"”, package = "cpr") for details on B-splines and the control polygon re-

duction method.

Examples

build a vector of values to transform
xvec <- seq(-3, 4.9999, length = 100)

cubic b-spline

bmat <- bsplines(xvec, iknots = c(-2, @, 1.2, 1.2, 3.0), bknots = c(-3, 5))

bmat

btensor

plot the splines

plot(bmat)
plot(bmat, color
plot(bmat, color

Axes
The x-axis, by
values, and/or

each spline will be colored by default
= FALSE) # black and white plot
= FALSE) + ggplot2::aes(linetype = spline) # add a linetype

default, show the knot locations. Other options are numeric
to use a second x-axis

plot(bmat, show_xi = TRUE, show_x = FALSE) # default, knot, symbols, on lower

axis

plot(bmat, show_xi = FALSE, show_x = TRUE) # Numeric value for the knot

locations

plot(bmat, show_xi = TRUE, show_x = TRUE) # symbols on bottom, numbers on top

quadratic splines
bmat <- bsplines(xvec, iknots = c(-2, @, 1.2, 1.2, 3.0), order = 3L)

bmat

plot(bmat) + ggplot2::ggtitle("Quadratic B-splines"”)

btensor

btensor

Description

Tensor products of B-splines.

Usage

btensor(x, df =

Arguments

X

df

iknots

bknots

order

NULL, iknots = NULL, bknots, order)

a list of variables to build B-spline transforms of. The tensor product of these
B-splines will be returned.

degrees of freedom. A list of the degrees of freedom for each marginal.

a list of internal knots for each x. If omitted, the default is to place no internal
knots for all x. If specified, the list needs to contain the internal knots for all x.
If df and iknots are both given, the df will take precedence.

a list of boundary knots for each x. As with the iknots, if omitted the default
will be to use the range of each x. If specified, the user must specify the bknots
for each x.

a list of the order for each x; defaults to 4L for all x.

build_tensor

Details

The return from this function is the tensor product of the B-splines transformations for the given
variables. Say we have variables X, Y, and Z to build the tensor product of. The columns of the
returned matrix correspond to the column products of the three B-splines:

xlylzl x2ylz1 x3ylzl x4ylzl x1y2z1 x2y2z1 ... x4y4z4

for three fourth order B-splines with no internal knots. The columns of X cycle the quickest,
followed by Y, and then Z. This would be the same result as model.matrix(~ bsplines(X) :
bsplines(Y) : bsplines(Z) +0) .

See vignette(topic = "cnr"”, package = "cpr") for more details.

Value

A matrix with a class cpr_bt

See Also

bsplines, vignette(topic ="cnr", package = "cpr")

Examples

tp <- with(mtcars,
btensor(x = list(d = disp, h = hp, m = mpg),
iknots = list(numeric(@), c(100, 150), numeric(@)))

)
tp
build_tensor Build Tensor
Description

Tensor products of Matrices.

Usage

build_tensor(x = NULL, y = NULL, ...)
Arguments

X a matrix

y a matrix

additional numeric matrices to build the tensor product

cn

Value

a matrix

A matrix

See Also

vignette("cnr”, package = "cpr") for details on tensor products.

Examples
A <- matrix(1:4, nrow = 10, ncol = 20)
B <- matrix(1:6, nrow = 10, ncol = 6)

Two ways of building the same tensor product
tensor1 <- build_tensor(A, B)

tensor2 <- do.call(build_tensor, list(A, B))
all.equal(tensorl, tensor2)

a three matrix tensor product
tensor3 <- build_tensor(A, B, B)
str(tensor3)

cn Control Nets

Description

Generate the control net for a univariate B-spline

Usage

cn(x, ...)

S3 method for class 'cpr_bt'
cn(x, theta, ...)

S3 method for class 'formula’
cn(

formula,

data,

method = stats::1m,

method.args = list(),

keep_fit = TRUE,

check_rank = TRUE,

10

Arguments
X
theta
formula
data
method

method. args
keep_fit

check_rank

Details

cn

a cpr_bt object

pass through

a vector of (regression) coefficients, the ordinates of the control net.
a formula that is appropriate for regression method being used.
arequired data.frame

the regression method such as 1m, glm, 1mer, etc.

a list of additional arguments to pass to the regression method.

(logical, defaults to FALSE). If TRUE the regression model fit is retained and
returned in the fit element. If FALSE the regression model is not saved and the
fit element will be NA.

(logical, defaults to TRUE) if TRUE check that the design matrix is full rank.

cn generates the control net for the given B-spline function. There are several methods for building

a control net.

Value

a cpr_cn object. This is a list with the following elements. Some of the elements are omitted when
using the cn.cpr_bt method.

cn the control net, data. frame with each row defining a vertex of the control net

bspline_list A list of the marginal B-splines

call the call

keep_fit logical, indicates if the regression model was retained

fit if isTRUE (keep_fit) then the regression model is here, else NA.

coefficients regression coefficients, only the fixed effects if a mixed effects model was used.

veov The variance-covariance matrix for the coefficients

loglik The log-likelihood for the regression model

rse the residual standard error for the regression model

See Also

summary.cpr_cn, cnr, plot.cpr_cn for plotting control nets

Examples

acn <- cn(logleo(pdg) ~

’

bte

)
data

nsor(x = list(day, age)

, df = list(30, 4)

, bknots = list(c(-1, 1), c(44, 53))
= spdg)

str(acn, max.level = 1)

cnr 11

cnr Control Net Reduction

Description

Run the Control Net Reduction Algorithm.

Usage
cnr(x, margin, n_polycoef = 20L, progress = c("cnr”, "influence"”, "none"), ...)
Arguments
X a cnr_cn object
margin the margins to apply the CNR algorithm to. Passed to influence_weights.
n_polycoef the number of polynomial coefficients to use when assessing the influence of
each internal knot.
progress controls the level of progress messaging.
not currently used
Details

cnr runs the control net reduction algorithm.

keep will keep the regression fit as part of the cnr_cp object for models with up to and including
keep fits. For example, if keep = 10 then the resulting cnr_cnr object will have the regression fit
stored in the first keep + 1 (zero internal knots, one internal knot, ..., keep internal knots) cnr_cp
objects in the list. The limit on the number of stored regression fits is to keep memory usage down.

Value

A cpr_cnr object. This is a list of cpr_cn objects.

See Also

cn for defining a control net, influence_weights for finding the influence of the internal knots,
cpr for the univariate version, Control Polygon Reduction.

vignette(topic = "cnr", package = "cpr")

Examples

acn <- cn(logl@(pdg) ~ btensor(list(day, age)
, df = list(10, 8)
, bknots = list(c(-1, 1), c(44, 53)))
, data = spdg)
cnr@ <- cnr(acn)
cnro
summary (cnro)

12 coef_vcov

plot(cnro)
coef_vcov Extract Regression Coefficients for B-Splines and Tensor Products of
B-splines
Description

An S3 method for extracting the regression coefficients of the bsplines and btensor terms. By
Default this uses stats::coef to extract all the regression coefficients. A specific method for
1merMod objects has been provided. If you are using a regression method which stats: : coef will
not return the regression coefficients, you’ll need to define an S3 method for stats: : coef to do so.

Usage

coef_vcov(fit, theta_idx)

Arguments

fit a regression model fit

theta_idx numeric index for the theta related coefficients
Details

These functions are called in the cp and cn calls.

Value
A list with four elements

theta theta regression coefficients
coef all regression coefficients
veov_theta subsection of variance-covariance matrix pertaining to the theta values

veov full variance-covariance matrix

See Also

coef cp cn

Examples

cpd <- cp(loglo(pdg) ~ bsplines(day, df = 6, bknots = c(-1, 1)) + age + ttm, data = spdg)
cv <- cpr:::coef_vcov(cp0$fit)

summary (cv)

cp 13

cp Control Polygons

Description

Generate the control polygon for a univariate B-spline

Usage
cp(x, ...)

S3 method for class 'cpr_bs'
cp(x, theta, ...)

S3 method for class 'formula’
cp(

formula,

data,

method = stats::1m,

method.args = list(),

keep_fit = TRUE,

check_rank = TRUE,

Arguments
X a cpr_bs object
pass through
theta a vector of (regression) coefficients, the ordinates of the control polygon.
formula a formula that is appropriate for regression method being used.
data arequired data.frame
method the regression method such as 1m, glm, 1mer, etc.
method.args a list of additional arguments to pass to the regression method.
keep_fit (logical, default value is TRUE). If TRUE the regression model fit is retained and
returned in as the fit element. If FALSE the fit element will be NA.
check_rank (logical, defaults to TRUE) if TRUE check that the design matrix is full rank.
Details

cp generates the control polygon for the given B-spline function.

14 cpr

Value

a cpr_cp object, this is a list with the element cp, a data.frame reporting the x and y coordinates of
the control polygon. Additional elements include the knot sequence, polynomial order, and other
metadata regarding the construction of the control polygon.

Examples

Support
xvec <- runif(n = 500, min = @, max = 6)
bknots <- c(@, 6)

Define the basis matrix
bmat1 <- bsplines(x = xvec, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = bknots)
bmat2 <- bsplines(x = xvec, bknots = bknots)

Define the control vertices ordinates
thetal <- c(1, 0, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5)
theta2 <- c(1, 3.4, -2, 1.7)

build the two control polygons
cpl <- cp(bmat1, thetal)
cp2 <- cp(bmat2, theta2)

black and white plot
plot(cp1)
plot(cpl, show_spline = TRUE)

multiple control polygons

plot(cpl, cp2, show_spline = TRUE)

plot(cpl, cp2, color = TRUE)

plot(cpl, cp2, show_spline = TRUE, color = TRUE)

via formula
DF <- data.frame(x = xvec, y = sin((xvec - 2)/pi) + 1.4 * cos(xvec/pi))
cp3 <- cp(y ~ bsplines(x, bknots = bknots), data = DF)

plot the spline and target data.
plot(cp3, show_cp = FALSE, show_spline = TRUE) +
ggplot2::geom_line(mapping = ggplot2::aes(x = x, y =y, color = "Target"),
data = DF, linetype = 2)

cpr Control Polygon Reduction

Description

Run the Control Polygon Reduction Algorithm.

cpr 15

Usage
cpr(x, progress = c("cpr”, "influence”, "none"”), ...)
Arguments
X a cpr_cp object
progress controls the level of progress messaging. See Details.
not currently used
Details

cpr runs the control polygon reduction algorithm.

The algorithm is generally speaking fast, but can take a long time to run if the number of interior
knots of initial control polygon is high. To help track the progress of the execution you can have
progress = "cpr"” which will show a progress bar incremented for each iteration of the CPR algo-
rithm. progress = "influence” will use a combination of messages and progress bars to report on
each step in assessing the influence of all the internal knots for each iteration of the CPR algorithm.
See influence_of_iknots for more details.

Value

a list of cpr_cp objects

See Also

influence_of_iknots

Examples

S HHHHHHHEEHHHH AR R PR HHH R R HHHE R R
Example 1: find a model for logl@(pdg) = f(day) from the spdg data set

need the lme4 package to fit a mixed effect model
require(lme4)

construct the initial control polygon. Forth order spline with fifty

internal knots. Remember degrees of freedom equal the polynomial order

plus number of internal knots.

init_cp <- cp(logl@(pdg) ~ bsplines(day, df = 24, bknots = c(-1, 1)) + (1]id),
data = spdg, method = 1lme4::1lmer)

cpr_run <- cpr(init_cp)

plot(cpr_run, color = TRUE)

s <- summary(cpr_run)
s
plot(s, type = "rse")

preferable model is in index 5 by eye
preferable_cp <- cpr_run[["cps"]1L[5]]

16

HHHHHHARHEEH A A R
Example 2: logistic regression

simulate a binary response Pr(y =1 | x) = p(x)

p <- function(x) { 0.65 * sin(x * 0.70) + 0.3 * cos(x * 4.2) }

set.seed(42)
X <- runif(2500, 0.00, 4.5)
sim_data <- data.frame(x = x, y = rbinom(2500, 1, p(x)))

Define the initial control polygon
init_cp <- cp(formula = y ~ bsplines(x, df = 24, bknots = c(0, 4.5)),
data = sim_data,
method = glm,
method.args = list(family = binomial())
)

run CPR
cpr_run <- cpr(init_cp)

preferable model is in index 6
s <- summary(cpr_run)
plot(s, color = TRUE, type = "rse")

plot(
cpr_run
, color = TRUE
, from =5
, to =17
, show_spline = TRUE
, show_cp = FALSE

plot the fitted spline and the true p(x)
sim_data$pred_select_p <- plogis(predict(cpr_run[[7]], newdata = sim_data))
ggplot2::ggplot(sim_data) +
ggplot2::theme_bw() +
ggplot2::aes(x = x) +
ggplot2::geom_point(mapping = ggplot2::aes(y = y), alpha = 0.1) +
ggplot2::geom_line(

mapping = ggplot2::aes(y = pred_select_p, color = "pred_select_p")

) +

ggplot2::stat_function(fun = p, mapping = ggplot2::aes(color = 'p(x)"))

compare to gam and a binned average
sim_data$x2 <- round(sim_data$x, digits
bin_average <-
lapply(split(sim_data, sim_data$x2), function(x) {
data.frame(x = x$x2[1], y = mean(x$y))
b))

bin_average <- do.call(rbind, bin_average)

»

cpr

cpr-defunct 17

ggplot2::ggplot(sim_data) +
ggplot2::theme_bw() +
ggplot2::aes(x = x) +
ggplot2::stat_function(fun = p, mapping = ggplot2::aes(color = 'p(x)')) +
ggplot2::geom_line(

mapping = ggplot2::aes(y

) +
ggplot2::stat_smooth(mapping = ggplot2::aes(y = y, color = "gam"),
method = "gam”,

pred_select_p, color = "pred_select_p")

formula =y ~ s(x, bs = "cs"),
se = FALSE,
n = 1000) +

ggplot2::geom_line(data = bin_average
, mapping = ggplot2::aes(y =y, color = "bin_average"))

cpr-defunct Defunct Functions

Description

A major refactor of the package between v0.3.0 and v.0.4.0 took place and many functions were
made defunct. The refactor was so extensive that moving the functions to deprecated was not a
viable option.

Usage
refine_ordinate(...)
coarsen_ordinate(...)
hat_ordinate(...)
insertion_matrix(...)
wiegh_iknots(...)
influence_of(...)
influence_weights(...)

Arguments

pass through

18 cp_diff

cp_diff Vertical Difference between two Control Polygons

Description

Vertical Difference between two Control Polygons

Usage
cp_diff(cpl, cp2)

Arguments
cpl a cpr_cp object
cp2 a cpr_cp object
Value

the vertical distance between the control vertices of cpl to the control polygon cp2.

See Also

cp, cp_value

Examples
xvec <- runif(n = 500, min = @, max = 6)
Define the basis matrix

bmat1 <- bsplines(x = xvec, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(@, 6))
bmat2 <- bsplines(x = xvec, bknots = c(@, 6))

Define the control vertices ordinates
thetal <- c(1, o, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5)
theta2 <- c(1, 3.4, -2, 1.7)

build the two control polygons
cpl <- cp(bmatl, thetal)
cp2 <- cp(bmat2, theta2)

cp_diff(cpl, cp2)

df <- data.frame(x = cplcpxi_star,
y = cplscpstheta,
yend = cplcptheta + cp_diff(cpl, cp2))

plot(cpl, cp2) +
ggplot2: :geom_segment(data = df

cp_value 19

, mapping = ggplot2::aes(x = x, xend = x, y =y, yend = yend)
, color = "red”
, inherit.aes = FALSE)

cp_value Control Polygon Value

Description

Find the y value of a Control Polygon for a given x

Usage

cp_value(obj, x)

Arguments
obj a cpr_cp object or data.frame where the first column is the abscissa and the
second column is the ordinate for the control polygon vertices.
X abscissa at which to determine the ordinate on control polygon cp
Value

cp_value returns the ordinate on the control polygon line segment for the abscissa x given. x could
be a control vertex or on a line segment defined by two control vertices of the control polygon
provided.

cp_diff returns the vertical distance between the control vertices of cpl to the control polygon cp2.

See Also
cp, cp_diff

Examples

xvec <- seq(@, 6, length = 500)

Define the basis matrix
bmat1 <- bsplines(x = xvec, iknots = c(1, 1.5, 2.3, 4, 4.5))
bmat2 <- bsplines(x = xvec)

Define the control vertices ordinates
thetal <- c(1, o, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5)
theta2 <- c(1, 3.4, -2, 1.7)

build the two control polygons
cpl <- cp(bmatl, thetal)
cp2 <- cp(bmat2, theta2)

20

x <- c(0.2, 0.8, 1.3, 1.73, 2.15, 3.14, 4.22, 4.88, 5.3, 5.9)

cp_value(cpl, x = x)
df <- data.frame(x = x, y = cp_value(cpl, x = x))

plot(cpl, show_x = TRUE, show_spline = TRUE) +
ggplot2::geom_point(data = df

, mapping = ggplot2::aes(x = x, y = y)

, color = "red”

, shape = 4

, size = 3

, inherit.aes = FALSE)

generate_cp_formula_data

generate_cp_formula_data
Generate Control Polygon Formula and Data

Description

Construct a data. frame and formula to be passed to the regression modeling tool to generate a

control polygon.

Usage

Arguments
f a formula
data the data set containing the variables in the formula

generate_cp_formula_data(f, data, formula_only = FALSE, envir = parent.frame())

formula_only if TRUE then only generate the formula, when FALSE, then generate and assign

the data set too.

envir the environment the generated formula and data set will be assigned too.

Details

This function is expected to be called from within the cp function and is not expected to be called

by the end user directly.

generate_cp_data exists because of the need to build what could be considered a varying means
model. y ~ bsplines(x1) + x2 will generate a rank deficient model matrix—the rows of the bspline
basis matrix sum to one with is perfectly collinear with the implicit intercept term. Specifying a
formula y ~ bsplines(x1) + x2 - 1 would work if x2 is a continuous variable. If, however, x2 is a
factor, or coerced to a factor, then the model matrix will again be rank deficient as a column for all
levels of the factor will be generated. We need to replace the intercept column of the model matrix
with the bspline. This also needs to be done for a variety of possible model calls, 1m, 1Imer, etc.

get_spline 21

By returning an explicit formula and data. frame for use in the fit, we hope to reduce memory use
and increase the speed of the cpr method.

We need to know the method and method. args to build the data set. For example, for a geeglm the
id variable is needed in the data set and is part of the method. args not the formula.
Value

TRUE, invisibly. The return isn’t needed as the assignment happens within the call.

Examples

data <-
data.frame(
x1 = runif(20)

, X2 = runif(20)

, X3 = runif(20)

, xf = factor(rep(c(”11","12","13","14"), each = 5))
, xc = rep(c(”"c1”,"c2","c3","c4", "c5"), each = 4)

pid = gl(n = 2, k = 10)
pid2 = rep(1:2, each = 10)

)
f <- ~ bsplines(x1, bknots = c(0,1)) + x2 + xf + xc + (x3 | pid2)
cpr:::generate_cp_formula_data(f, data)

stopifnot(isTRUE(
all.equal(
f_for_use
. ~ bsplines(x1, bknots = c(0, 1)) + x2 + (x3 | pid2) + xfl2 +
xfl3 + xfl4 + xcc2 + xcc3 + xccd + xcch - 1

)

stopifnot(isTRUE(identical(
names(data_for_use)

’

c("x1", "x2", "x3", "pid”, "pid2", "xfl2", "xfl13", "xfl4"

| "xcc2” , "xcc3”, "xcca”, "xcc5")
)
get_spline Get the Control Polygon and the Spline Function
Description

Generate data.frames for interpolating and plotting a spline function, given a cpr_cp or cpr_cn
object.

22 get_spline

Usage

get_spline(x, margin = 1, at, n = 100, se = FALSE, derivative = 0)

Arguments
X a cpr_cp or cpr_cn object.
margin an integer identifying the marginal of the control net to slice along. Only used
when working with x as a cpr_cn object.
at a point value for marginals not defined in the margin. Only used when x is a
cpr_cn object. Expected input is a list of length length(attr(x, "bspline_list")).
Entries for elements marginal are ignored. If omitted, the midpoint between the
boundary knots for each marginal is used.
n the length of sequence to use for interpolating the spline function.
se if TRUE return the estimated standard error for the spline or the derivative.
derivative A value of 0 (default) returns the spline, 1 the first derivative, 2 the second
derivative.
Details

A control polygon, cpr_cp object, has a spline function f(x). get_spline returns a list of two
data.frames. The cp element is a data.frame with the (X, y) coordinates of control points and
the spline element is a data. frame with n rows for interpolating f(x).

For a control net, cpr_cn object, the return is the same as for a cpr_cp object, but concep-
tually different. Where cpr_cp objects have a univariate spline function, cpr_cn objects have
multivariate spline surfaces. get_spline returns a "slice" of the higher-dimensional object. For
example, consider a three-dimensional control net defined on the unit cube with marginals x1, x2,
and x3. The implied spline surface is the function f(x1, x2, x3). get_spline(x, margin=2, at =
list (0.2, NA, @.5)) would return the control polygon and spline surface for (0.2, x, 0.5).

See get_surface for taking a two-dimensional slice of a three-plus dimensional control net, or, for
generating a useful data set for plotting the surface of a two-dimensional control net.

Value
a data.frame n rows and two columns x and y, the values for the spline. A third column with the
standard error is returned if requested.

See Also

get_surface

Examples
data(spdg, package = "cpr")
Extract the control polygon and spline for plotting. We'll use base R

graphics for this example.
a_cp <- cp(pdg ~ bsplines(day, df = 10, bknots = c(-1, 1)), data = spdg)

get_surface 23

spline <- get_spline(a_cp)
plot(spline$x, spline$y, type = "1")

compare to the plot.cpr_cp method
plot(a_cp, show_spline = TRUE)

derivatives

fo <- function(x) {
#(x +2) * (x - 1) * (x - 3)
X*3 -2 *x"2-5*%xx+6

3

f1 <= function(x) {

3% x*2 -4*%x-5
3
f2 <= function(x) {
6 x x - 4
3
x <= sort(runif(n = 100, min = -3, max = 5))

bknots = c(-3, 5)
bmat <- bsplines(x, bknots = bknots)
theta <- coef(Im(fo(x) ~ bsplines(x, bknots = bknots) + @))

cp@ <- cp(bmat, theta)

spline@ <- get_spline(cp@, derivative = @)
splinel <- get_spline(cp@, derivative = 1)
spline2 <- get_spline(cp@, derivative = 2)

old_par <- par()

par(mfrow = c(1, 3))

plot(x, fo(x), type = "1", main = "spline")
points(spline@$x, spline@$y, pch = 2, col = 'blue')

plot(x, f1(x), type = "1", main = "first derivative")
points(spline1$x, splinel$y, pch = 2, col = 'blue')

plot(x, f2(x), type = "1", main = "second derivative")
points(spline2$x, spline2$y, pch = 2, col = 'blue')

par(old_par)

get_surface Get Surface

Description

Get Two-Dimensional Control Net and Surface from n-dimensional Control Nets

24

Usage

get_surface(x,

Arguments

X

margin

at

Value

get_surface

margin = 1:2, at, n = 100)

a cpr_cn object
an integer identifying the marginal of the control net to slice along. Only used
when working x is a cpr_cn object.

point value for marginals not defined in the margin. Only used when x is a
cpr_cn object. Expected input is a list of length length(attr(x, "bspline_list")).
Entries for elements marginal are ignored. If omitted, the midpoint between the
boundary knots for each marginal is used.

the length of sequence to use for interpolating the spline function.

a list with two elements

cn the control net

surface a data.frame with three columns to define the surface

See Also

get_spline

Examples

Extract the control net and surface from a cpr_cn object.
a_cn <- cn(logl1@(pdg) ~ btensor(list(day, age, ttm)

, df

= 1ist(15, 3, 5)

, bknots = list(c(-1, 1), c(45, 53), c(-9, -1))
, order = list(3, 2, 3))
, data = spdg)

cn_and_surface <- get_surface(a_cn, n = 50)
str(cn_and_surface, max.level = 2)

old_par <- par()
par(mfrow = c(1,

2))

with(cn_and_surfaces$cn,
plot3D: :persp3D(unique(Varl),

)

unique(Var2),
matrix(z,
nrow = length(unique(Varl)),
ncol = length(unique(Var2))),
main = "Control Net")

with(cn_and_surface$surface,
plot3D::persp3D(unique(Varl),

unique(Var2),

iknots_or_df 25

matrix(z,
nrow = length(unique(Varl)),
ncol = length(unique(Var2))),
main = "Surface")

)

par(old_par)

iknots_or_df Internal Knots or Degrees of Freedom

Description

Check order, degrees of freedom (df) and iknots

Usage

iknots_or_df(x, iknots, df, order)

Arguments
X the support - a numeric vector
iknots internal knots - a numeric vector
df degrees of freedom - a numeric value of length 1
order polynomial order
Details

This is an internal function, not to be exported, and used in the calls for bsplines and bsplineD.

Use iknots preferentially. If iknots are not provided then return the trimmed_quantile for the
appropriate df and order

Value

a numeric vector to use as the internal knots defining a B-spline.

See Also

bsplines, bsplineD, trimmed_quantile

26 influence_of iknots

Examples

xvec <- runif (600, min = @, max = 3)

return the iknots
cpr:::iknots_or_df(x = xvec, iknots = 1:2, df = NULL, order = NULL)

return the iknots even when the df and order are provided
cpr:::iknots_or_df(x = xvec, iknots = 1:2, df = 56, order = 12)

return numeric(@) when df <= order (df < order will also give a warning)
cpr:::iknots_or_df(x = xvec, iknots = NULL, df = 6, order = 6)

return trimmed_quantile when df > order

probs = (df - order) / (df - order + 1)

cpr:::iknots_or_df(x = xvec, iknots = NULL, df = 10, order = 4)
cpr::trimmed_quantile(xvec, probs = 1:6 / 7)

influence_of_iknots Determine the influence of the internal knots of a control polygon

Description

Determine the influence of the internal knots of a control polygon

Usage

influence_of_iknots(x, verbose = FALSE, ...)

S3 method for class 'cpr_cn'
influence_of_iknots(
X,
verbose = FALSE,
margin = seq_along(x$bspline_list),
n_polycoef = 20L,

)
Arguments
X cpr_cp or cpr_cn object
verbose print status messages
pass through
margin which margin(s) to consider the influence of iknots

n_polycoef number of polynomial coefficients to use when assessing the influence of a iknot

insert_a_knot

Value
a cpr_influence_of_iknots object. A list of six elements:
original_cp
coarsened_cps
restored_cps
d
influence

chisq

Examples

x <- seq(@ + 1/5000, 6 - 1/5000, length.out = 5000)

bmat <- bsplines(x, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(@, 6))
theta <- matrix(c(1, 0, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5), ncol = 1)
cpd <- cp(bmat, theta)

icp@ <- influence_of_iknots(cp®@)

plot(cp@, icp@$coarsened_cps[[1]1], icp@$restored_cps[[1]1], color = TRUE,
plot(cp@, icp@$restored_cps[[1]1], color = TRUE, show_spline = TRUE)

plot(cp@, icp@$coarsened_cps[[2]1], icp@$restored_cps[[2]1], color = TRUE,
plot(cp@, icp@$restored_cps[[2]], color = TRUE, show_spline = TRUE)

plot(cp@, icp@$coarsened_cps[[3]1], icp@$restored_cps[[3]1], color = TRUE,
plot(cp@, icp@$restored_cps[[3]1], color = TRUE, show_spline = TRUE)

plot(cp@, icp@$coarsened_cps[[4]1], icp@$restored_cps[[4]1], color = TRUE,
plot(cp@, icp@$restored_cps[[4]1], color = TRUE, show_spline = TRUE)

plot(cp@, icp@$coarsened_cps[[5]1], icp@$restored_cps[[5]], color = TRUE,
plot(cp@, icp@$restored_cps[[5]], color = TRUE, show_spline = TRUE)

When the cp was defined by regression

27

show_spline = TRUE)

show_spline = TRUE)

show_spline = TRUE)

show_spline = TRUE)

show_spline = TRUE)

df <- data.frame(x = x, y = as.numeric(bmat %*% theta) + rnorm(5000, sd = 0.2))
cpl <- cp(y ~ bsplines(x, iknots = c(1, 1.5, 2.3, 3, 4, 4.5), bknots = c(@, 6)), data = df)

icpl <- influence_of_iknots(cp1)
icp1l

insert_a_knot Insert a Knot into a Control Polygon

Description

Insert a knot into a control polygon without changing the spline

28 knot_expr

Usage
insert_a_knot(x, xi_prime, ...)
Arguments
X a cpr_cp object
xi_prime the value of the knot to insert
not currently used
Value

a cpr_cp object

Examples

x <- seq(le-5, 5.99999, length.out = 100)

bmat <- bsplines(x, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(0, 6))
theta <- matrix(c(1, 0, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5), ncol = 1)
cpd <- cp(bmat, theta)

cpl <- insert_a_knot(x = cp@, xi_prime = 3)

plot(cp@, cpl, color = TRUE, show_spline = TRUE)

knot_expr Knot Expressions

Description

Non-exported function used to build expressions for the knot sequences to be labeled well on a plot.

Usage

knot_expr(x, digits)

Arguments

X a cpr_cp or cpr_bs object

digits digits to the right of the decimal point to report
Value

a list

loglikelihood 29

Examples

bmat <- bsplines(mtcars$hp, df = 8, bknots = c(50, 350))
ke <- cpr:::knot_expr(bmat, digits = 1)
summary (ke)

plot(x = ke$breaks, y = rep(1, length(ke$breaks)), type = "n")
text(
x = ke$breaks
, y = rep(1, length(ke$breaks))
, labels = parse(text = ke$xi_expr)

loglikelihood Determine the (quasi) Log Likelihood for a regression object.

Description

Return, via loglLik or a custom S3 method, the (quasi) log likelihood of a regression object.

Usage
loglikelihood(x, ...)

Arguments
X a regression fit object
passed through to logl ik
Details

This function is used by cpr and cnr to determine the (quasi) log likelihood returned in the cpr_cpr
and cpr_cnr objects.

Generally this function defaults to loglLik. Therefore, if an S3 method for determining the (quasi)
log likelihood exists in the workspace everything should work. If an S3 method does not exist you
should define one.

See methods(loglikelihood) for alist of the provided methods. The default method uses logLik.

Value

the numeric value of the (quasi) log likelihood.

See Also

cpr cnr loglik

30 matrix_rank

Examples

fit <- Im(mpg ~ wt, data = mtcars)
stats::loglLik(fit)
cpr:::loglikelihood(fit)

matrix_rank Rank of a Matrix

Description

Determine the rank (number of linearly independent columns) of a matrix.

Usage

matrix_rank(x)

Arguments

X a numeric matrix

Details

Implementation via the Armadillo C++ linear algebra library. The function returns the rank of
the matrix x. The computation is based on the singular value decomposition of the matrix; a
std::runtime_error exception will be thrown if the decomposition fails. Any singular values less
than the tolerance are treated as zeros. The tolerance is max(m, n) * max_sv * arma: :datum: : eps,
where m is the number of rows of x, n is the number of columns of x, max_sv is the maximal singular
value of x, and arma: :datum: :eps is the difference between 1 and the least value greater than 1

that is representable.

Value

the rank of the matrix as a numeric value.

References

Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library for linear algebra.
Journal of Open Source Software, Vol. 1, pp. 26, 2016.

Examples

Check the rank of a matrix

set.seed(42)

mat <- matrix(rnorm(25000 * 120), nrow = 25000)
matrix_rank(mat) == ncol(mat)

matrix_rank(mat) == 120L

newknots 31

A full rank B-spline basis
bmat <- bsplines(seq(@, 1, length = 100), df = 15)
matrix_rank(bmat) == 15L

A rank deficient B-spline basis
bmat <- bsplines(seq(@, 1, length
ncol (bmat) == 6L
matrix_rank(bmat) == 5L

100), iknots = c(0.001, 0.002))

newknots New Knots for CPs and CNs in CPR and CNR

Description
Non-exported function, newknots are used in the cpr and cnr calls. Used to create a new control
polygon or control net from with different internal knots.

Usage

newknots(form, nk)

Arguments
form a formula
nk numeric vector, or a list of numeric vectors, to be used in a bsplines or btensor
call, respectively.
Details

Think of this function as an analogue to the stats{update} calls. Where stats{update} will
modify a call, the newknots will update just the iknots argument of a bsplines or btensor call
within the formula argument of a cp or cn call.

Value
Expected use is within the cpr and cnr calls. The return object a formula to define a control
polygon/net with different knots than then ones found within form.

See Also

update_bsplines for a more generic tool for the end user.

32 order_statistics

Examples

cp@ <- cp(log(pdg) ~ bsplines(day, iknots = c(-.25, @, 0.25), bknots = c(-1, 1)), data = spdg)

new_knots <- c¢(-0.85, 0, 0.25, 0.3)

f <= cpr:::newknots(cp@$call$formula, nk = new_knots)
.F

cp(f, data = spdg)

order_statistics Distribution of Order Statistics

Description

Density or distribution function for the jth order statistic from a sample of size n from a known
distribution function.

Usage
d_order_statistic(x, n, j, distribution, ...)
p_order_statistic(q, n, j, distribution, ...)
Arguments
X, q vector or quantiles
n sample size
j jth order statistics

distribution character string defining the distribution. See Details.

additional arguments passed to the density and distribution function

Details

For a known distribution with defined density and distribution functions, e.g., normal (dnorm,
pnorm), or chisq (dchisq, pchisq), we define the density function of the jth order statistic, from a
sample of size n, to be

n!

mf(w)l’(m)jfl(l — F(x))"™

and the distribution function to be

> () rer o -

n
k=j

order_statistics 33

Value

a numeric vector

References

George Casella and Roger L. Berger (2002). Statistical Inference. 2nd edition. Duxbury Thomson
Learning.

Examples

Example 1
Find the distribution of the minimum from a sample of size 54 from a
standard normal distribution

simulated_data <- matrix(rnorm(n = 54 * 5000), ncol = 54)

find all the minimums for each of the simulated samples of size 54
mins <- apply(simulated_data, 1, min)

get the density values
x <- seq(-5, 0, length.out = 100)
d <- d_order_statistic(x, n = 54, j =1, distribution = "norm”)

plot the histogram and density
hist(mins, freq = FALSE)
points(x, d, type = "1", col = "red")

plot the distribution function
plot(ecdf(mins))
points(x, p_order_statistic(q = x, n =54, j =1, distribution = "norm"), col = "red")

Example 2

Find the density and distribution of the fourth order statistic from a
sample of size 12 from a chisq distribution with 3 degrees of freedom
simulated_data <- matrix(rchisq(n = 12 x 5000, df = 3), ncol = 12)

0s4 <- apply(simulated_data, 1, function(x) sort(x)[41)

x <- seq(min(os4), max(os4), length.out = 100)

d <- d_order_statistic(x, n =12, j = 4, distribution = "chisq", df
p <- p_order_statistic(x, n = 12, j = 4, distribution = "chisq", df

3
3)

hist(os4, freq = FALSE); points(x, d, type = "1", col = "red")
plot(ecdf(os4)); points(x, p, col = "red")

Example 3

For a set of j observations, find the values for each of the j order
statistics

simulated_data <- matrix(rnorm(n = 6 * 5000), ncol = 6)

simulated_data <- apply(simulated_data, 1, sort)

xs <- apply(simulated_data, 1, range)

34 plot.cpr_bs

xs <- apply(xs, 2, function(x) {seq(x[1], x[2], length.out = 100)3})
ds <- apply(xs, 1, d_order_statistic, n =6, j = 1:6, distribution = "norm")
ps <- apply(xs, 1, p_order_statistic, n =6, j 1:6, distribution = "norm")

old_par <- par() # save current settings

par(mfrow = c(2, 3))
for (i in 1:6) {
hist(simulated_datali,]
, freq = FALSE

, main = substitute(Density~of~X[(ii)], list(ii = i))
, xlab = ""

)

points(xs[, il], ds[i, 1, type = "1", col = "red")

}

for (i in 1:6) {
plot(ecdf(simulated_datali, 1)
, main = substitute(CDF~of~X[(ii)], list(ii = i))
, ylab = ""
, xlab = ""
)
points(xs[, il, ps[i, 1, type = "p", col = "red")
3

par(mfrow = c(1, 1))

plot(xs[, 11, ps[1, 1, type = "1", col = 1, xlim = range(xs), ylab = "", xlab = "")

for(i in 2:6) {

points(xs[, il, ps[i, 1, type = "1", col = i)
3
legend("topleft”, col = 1:6, 1ty = 1, legend =
c(

expression(CDF~of~X[(1)1),
expression(CDF~of~X[(2)1),
expression(CDF~of~X[(3)1),
expression(CDF~of~X[(4)1),
expression(CDF~of~X[(5)1),
expression(CDF~of~X[(5)1)
D)

par(old_par) # reset par to setting prior to running this example

plot.cpr_bs Plot B-spline Basis

Description

Wrapper around several ggplot2 calls to plot a B-spline basis

plot.cpr_cn 35

Usage
S3 method for class 'cpr_bs'
plot(x, ..., show_xi = TRUE, show_x = FALSE, color = TRUE, digits = 2, n = 100)
Arguments
X a cpr_bs object
show_xi logical, show the knot locations, using the Greek letter xi, on the x-axis
show_x logical, show the x values of the knots on the x-axis
color logical, if TRUE (default) the splines are plotted in color. If FALSE all splines are
black lines.
digits number of digits to the right of the decimal place to report for the value of each
knot.
n number of values to use to plot the splines, defaults to 100

not currently used

Value

a ggplot

See Also

bsplines

Examples

bmat <- bsplines(seq(-3, 2, length = 1000), iknots = c(-2, 0, 0.2))
plot(bmat, show_xi = TRUE, show_x = TRUE)

plot(bmat, show_xi = FALSE, show_x = TRUE)

plot(bmat, show_xi = TRUE, show_x = FALSE) ## Default

plot(bmat, show_xi = FALSE, show_x = FALSE)

plot(bmat, show_xi = FALSE, show_x = FALSE)

plot(bmat, show_xi = FALSE, show_x = FALSE, color = FALSE)

bmat <- bsplines(seq(@, 10, length.out = 1000), bknots = c(1, 9))
plot(bmat)

plot.cpr_cn Plotting Control Nets

Description

Three-dimensional plots of control nets and/or surfaces

36

Usage

plot.cpr_cn

S3 method for class 'cpr_cn'

plot(
X7
xlab = "",
ylab H”,
zlab = "",

show_net = TRUE,

show_surface

= FALSE,

get_surface_args,

net_args,

surface_args,

rgl = TRUE

Arguments

X

xlab, ylab, zlab
show_net

show_surface

a cpr_cn object

common arguments which would be used for both the plot of the control net and
the surface, e.g., xlim, ylim, zlim.

labels for the axes.
logical, show the control net

logical, show the tensor product surface

get_surface_args

net_args

surface_args

rgl

Details

a list of arguments passed to the get_surface call. This call generates the
needed data sets used in the plotting.

arguments to be used explicitly for the control net.
FALSE.

arguments to be used explicitly for the surface. Ignored if show_surface =
FALSE.

If TRUE, the default, generate use rgl::persp3d to generate the graphics. If
FALSE, use plot3D: : persp3D to generate the graphics.

Ignored if show_net =

This plotting method generates three-dimensional plots of the control net, surface, or both, for a
cpr_cn objects. The three-dimensional plots are generated by either persp3D form the plot3D
package or persp3d from the rgl package. rgl graphics may or may not work on your system
depending on support for OpenGL.

Building complex and customized graphics might be easier for you if you use get_surface to gen-
erate the needed data for plotting. See vignette(topic = "cnr”, package = "cpr") for examples
of building different plots.

For rgl graphics, the surface_args and net_args are lists of rgl.material and other argu-
ments passed to persp3d. Defaults are col = "black”, front = "lines"”, back = "lines" for the
net_args and col = "grey20”, front = "fill"”, back = "lines" for the surface_args.

plot.cpr_cnr 37

For plot3D graphics there are no defaults values for the net_args and surface_args.

Value

the plotting data needed to generate the plot is returned invisibly.

See Also

plot.cpr_cp for plotting control polygons and splines, persp3d and rgl.material for generating
and controlling rgl graphics. persp3D for building plot3D graphics. get_surface for generating
the data sets needed for the plotting methods.

vignette(topic = "cnr", package = "cpr")

Examples

acn <- cn(logl@(pdg) ~ btensor(x = list(day, age)
, df = list(30, 4)
, bknots = list(c(-1, 1), c(44, 53)))
, data = spdg)

plot3D
plot(acn, rgl = FALSE)

rgl

if (require(rgl)) {
plot(acn, rgl = TRUE)

3

plot.cpr_cnr Control Net Reduction Plots

Description

A collection of function for the inspection and evaluation of the control polygon reduction.

Usage
S3 method for class 'cpr_cnr'
plot(x, type = "rse"”, from =1, to, ...)
Arguments
X a cpr_cnr object
type type of diagnostic plot. "loglik” for the log likelihood by degrees of freedom,
"rse” for residual standard error by model index
from the first index of x to plot
to the last index of x to plot

pass through

38 plot.cpr_cp
Value
a ggplot
Examples
initial_cn <- cn(logl@(pdg) ~ btensor(list(day, age)
, df = list(1e, 8)
, bknots = list(c(-1, 1), c(44, 53))
)
, data = spdg)
cnr@ <- cnr(initial_cn)
plot(cnro)
plot.cpr_cp Plotting Control Polygons
Description
Plotting control polygon(s) and/or the associated spline(s) via ggplot2
Usage
S3 method for class 'cpr_cp'
plot(
X,
comparative,
show_cp = TRUE,
show_spline = FALSE,
show_xi = TRUE,
color = FALSE,
n = 100,
show_x = FALSE,
digits = 2
)
Arguments
X a cpr_cp object
additional cpr_cp objects
comparative when TRUE use color to distinguish one spline from another, when FALSE color

to highlight the control polygon and spline with different colors, and plot the
knots the way plot.cpr_bs does. When missing, the default if TRUE if more
than one cpr_cp object is passed in, and FALSE is only one cpr_cp object is

passed.

plot.cpr_cpr 39

show_cp logical (default TRUE), show the control polygon(s)?
show_spline logical (default FALSE) to plot the spline function?

show_xi logical (default TRUE) use geom_rug to show the location of the knots in the
respective control polygons.

color Boolean (default FALSE) if more than one cpr_cp object is to be plotted, set this
value to TRUE to have the graphic in color (line types will be used regardless of
the color setting).

n the number of data points to use for plotting the spline
show_x boolean, so x-values
digits number of digits to the right of the decimal place to report for the value of each

knot. Only used when plotting on control polygon with comparative = FALSE.

Value

a ggplot object

Examples

X <= runif(n = 500, @, 6)

bmat <- bsplines(x, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(@, 6))

thetal <- matrix(c(1, @, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5), ncol = 1)

theta2 <- thetal + c(-0.15, -1.01, 0.37, 0.19, -0.53, -0.84, -0.19, 1.15, 0.17)
cpl <- cp(bmat, thetal)

cp2 <- cp(bmat, theta2)

compare two control polygons on one plot

plot(cpl, cp2)

plot(cpl, cp2, color = TRUE)

plot(cpl, cp2, color = TRUE, show_spline = TRUE)

plot(cpl, cp2, color = TRUE, show_cp = FALSE, show_spline = TRUE)

Show one control polygon with knots on the axis instead of the rug and
color/linetype for the control polygon and spline, instead of different
control polygons

plot(cpl, comparative = FALSE)

plot(cpl, comparative = FALSE, show_spline = TRUE)

plot(cpl, comparative = FALSE, show_spline = TRUE, show_x = TRUE)
plot(cp2, comparative = FALSE, show_spline = TRUE, show_x = TRUE)

plot.cpr_cpr Control Polygon Reduction Plots

Description

A wrapper around several ggplot2 calls to help evaluate results of a CPR run.

40 plot.cpr_summary_cpr_cpr

Usage
S3 method for class 'cpr_cpr'
plot(x, from =1, to, ...)
Arguments
X a cpr_cpr object
from the first index of x to plot
to the last index of x to plot

arguments passed to plot.cpr_cp

Value

a ggplot object

See Also

plot.cpr_cp, cpr, cp

Examples

set.seed(42)

x <- seq(@ + 1/5000, 6 - 1/5000, length.out = 100)

bmat <- bsplines(x, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(@, 6))
theta <- matrix(c(1, 0, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5), ncol = 1)
DF <- data.frame(x = x, truth = as.numeric(bmat %x% theta))

DF$y <- as.numeric(bmat %*% theta + rnorm(nrow(bmat), sd = 0.3))

initial_cp@ <-
cp(y ~ bsplines(x, iknots = c(1, 1.5, 2.3, 3.0, 4, 4.5), bknots = c(@, 6))
, data = DF
, keep_fit = TRUE # default is FALSE

)
cpr@ <- cpr(initial_cp®)

plot(cpro)
plot(cpr@, show_spline = TRUE, show_cp = FALSE, color = TRUE, from = 2, to = 4)

plot.cpr_summary_cpr_cpr
Plotting Summaries of Control Polygon Reductions

Description

Plotting Summaries of Control Polygon Reductions

plot.cpr_summary_cpr_cpr

Usage
S3 method for class 'cpr_summary_cpr_cpr'
plot(
X ’
type = c("rse”, "rss", "loglik", "wiggle", "fdsc”, "Pr(>w_(1))"),
from = 1,
to,
)
Arguments
X a cpr_summary_cpr_cpr object
type response to plot by index
from the first index of x to plot
to the last index of x to plot
pass through
Value

a ggplot object

See Also

plot.cpr_cpr, cpr summary.cpr_cpr

Examples

set.seed(42)

x <- seq(@ + 1/5000, 6 - 1/5000, length.out = 100)

bmat <- bsplines(x, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(0, 6))
theta <- matrix(c(1, 0, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5), ncol = 1)
DF <- data.frame(x = x, truth = as.numeric(bmat %x% theta))

DF$y <- as.numeric(bmat %*% theta + rnorm(nrow(bmat), sd = 0.3))

initial_cp@ <-
cp(y ~ bsplines(x, iknots = c(1, 1.5, 2.3, 3.0, 4, 4.5), bknots = c(@, 6))
, data = DF
, keep_fit = TRUE # default is FALSE
)
cpr@ <- cpr(initial_cp®)
s@ <- summary(cpro)

plot(s@, type = "rse")
plot(s@, type = "rss")
plot(s@, type = "loglik")
plot(s0, type = "wiggle")
plot(s@, type = "fdsc")
plot(s0, type = "Pr(>w_(1))")

42

print.cpr_bs

predict.cpr_cp Model Prediction

Description

Model prediction for cpr_cp and cpr_cn objects.

Usage
S3 method for class 'cpr_cp'
predict(object, ...)

Arguments
object a cpr_cp or cpr_cn object

passed to predict

Value

the same as you would get from calling predict on the object$fit.

Examples

acp <- cp(logl@(pdg) ~ bsplines(age, df = 12, bknots = c(45, 53))
, data = spdg
, keep_fit = TRUE)

acp_pred@ <- predict(acp$fit, se.fit = TRUE)

acp_pred <- predict(acp, se.fit = TRUE)

all.equal(acp_predd, acp_pred)

print.cpr_bs Print bsplines

Description

Print bsplines

Usage

S3 method for class 'cpr_bs'
print(x, n =6L, ...)

sign_changes

Arguments
X a cpr_bs object.
n number of rows of the B-spline basis matrix to display, defaults to 6L.
not currently used.
Value

the object x is returned invisibly

43

sign_changes Sign Changes

Description

Count the number of times the first, or second, derivative of a spline changes sign.

Usage

sign_changes(

object,

lower = min(object$bknots),
upper = max(object$bknots),
n = 1000,

derivative = 1L,

)
Arguments
object a cpr_cp object
lower the lower limit of the integral
upper the upper limit of the integral
n number of values to assess the derivative between lower and upper.
derivative integer value denoted first or second derivative
pass through
Value

the number of times the sign of the first or second derivative changes within the specified interval.

See Also

wiggle

44 spdg

Examples

xvec <- seq(@, 6, length = 500)

Define the basis matrix
bmat1 <- bsplines(x = xvec, iknots = c(1, 1.5, 2.3, 4, 4.5))
bmat2 <- bsplines(x = xvec)

Define the control vertices ordinates
thetal <- c¢(1, o, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5)
theta2 <- c(1, 3.4, -2, 1.7)

build the two control polygons

cpl <- cp(bmatl, thetal)

cp2 <- cp(bmat2, theta2)

plot(cpl, cp2, show_cp = FALSE, show_spline = TRUE)

sign_changes(cp1)
sign_changes(cp2)

spdg Simulated Pregnanediol glucuronide (PDG) Data

Description

A Simulated data set based on the Study of Women’s Health Across the Nation (SWAN) Daily
Hormone Study (DHS).

Usage

spdg

Format
a data.frame. Variables in the data set:

id Subject ID

age Age, in years of the subject

ttm Time-to-menopause, in years

ethnicity Ethnicity, a factor with five levels: Caucasian, Black, Chinese, Hispanic, and Japanese
bmi Body Mass Index

day_from_dIt A integer value for the number of days from Day of Luteal Transition (DLT). The
DLT is day_from_dlt == @. Negative values indicate the follicular phase, positive values for
the luteal phase.

day_of_cycle the day of cycle
day A scaled day-of-cycle between [-1, 1] with O for the DLT. See Details
pdg A simulated PDG value

summary.cpr_cn 45

Details

Pregnanediol glucuronide (PDG) is the urine metabolite of progesterone. This data set was sim-
ulated to have similar characteristics to a subset of the SWAN DHS data. The SWAN DHS data
was the motivating data set for the method development that lead to the cpr package. The DHS
data cannot be made public, so this simulated data set has been provided for use in examples and
instructions for use of the cpr package.

Source
This is simulated data. To see the script that generated the data set please visit https://github.
com/dewittpe/cpr and look at the scripts in the data-raw directory.

References

Santoro, Nanette, et al. "Body size and ethnicity are associated with menstrual cycle alterations
in women in the early menopausal transition: The Study of Women’s Health across the Nation
(SWAN) Daily Hormone Study." The Journal of Clinical Endocrinology & Metabolism 89.6 (2004):
2622-2631.

summary.cpr_cn Summary of Control Net

Description

Generate a summary of control net object

Usage
S3 method for class 'cpr_cn'
summary (object, ...)
Arguments
object a cpr_cn object
pass through
Value

adata.frame

Examples

acn <- cn(logl@(pdg) ~ btensor(list(day, age)
, df = list(10, 8)
, bknots = list(c(-1, 1), c(44, 53)))
, data = spdg)

summary (acn)

https://github.com/dewittpe/cpr
https://github.com/dewittpe/cpr

46 summary.cpr_cp

summary.cpr_cnr Summarize Control Net Reduction Objects

Description

Summarize Control Net Reduction Objects

Usage
S3 method for class 'cpr_cnr'
summary (object, ...)
Arguments
object a cpr_cnr object
pass through
Value

a cpr_summary_cpr_cnr object, that is just a data. frame

Examples

acn <- cn(logl@(pdg) ~ btensor(list(day, age)
, df = list(10, 8)
, bknots = list(c(-1, 1), c(44, 53)))
, data = spdg)
cnr@ <- cnr(acn)
cnro
summary (cnro)

summary.cpr_cp Summarize a Control Polygon Object

Description

Summarize a Control Polygon Object

Usage

S3 method for class 'cpr_cp'
summary(object, wiggle = TRUE, integrate.args = list(), ...)

summary.cpr_cpr

Arguments

object
wiggle

integrate.args

Value

47

a cpr_cp object

logical, if TRUE then the integral of the squared second derivative of the spline
function will be calculated via integrate.

a list of arguments passed to wiggle and ultimately integrate.

pass through

a cpr_summary_cpr_cp object, that is just a data.frame

Examples

set.seed(42)

x <- seq(@ + 1/5000, 6 - 1/5000, length.out = 100)

bmat <- bsplines(x, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(0, 6))
theta <- matrix(c(1, 0, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5), ncol = 1)
DF <- data.frame(x = x, truth = as.numeric(bmat %x% theta))

DF$y <- as.numeric(bmat %*% theta + rnorm(nrow(bmat), sd = 0.3))

initial_cp <-

cp(y ~ bsplines(x, iknots = c(1, 1.5, 2.3, 3.0, 4, 4.5), bknots = c(@, 6))

, data = DF

, keep_fit
)

TRUE # default is FALSE

summary(initial_cp)

summary . cpr_cpr

Summarize a Control Polygon Reduction Object

Description

Summarize a Control Polygon Reduction Object

Usage

S3 method for class 'cpr_cpr'

summary (object,

Arguments

object

)

a cpr_cpr object

pass through

48 trimmed_quantile

Value

a data. frame with the attribute elbow which is a programmatic attempt to identify a useful trade-
off between degrees of freedom and fit statistic.

Examples

set.seed(42)

x <- seq(@ + 1/5000, 6 - 1/5000, length.out = 100)

bmat <- bsplines(x, iknots = c(1, 1.5, 2.3, 4, 4.5), bknots = c(0, 6))
theta <- matrix(c(1, 0, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5), ncol = 1)
DF <- data.frame(x = x, truth = as.numeric(bmat %x% theta))

DF$y <- as.numeric(bmat %*% theta + rnorm(nrow(bmat), sd = 0.3))

initial_cp <-
cp(y ~ bsplines(x, iknots = c(1, 1.5, 2.3, 3.0, 4, 4.5), bknots = c(@, 6))
, data = DF
, keep_fit = TRUE # default is FALSE
)

cpr@ <- cpr(initial_cp)
s <- summary(cpro)

s

plot(s, type = "rse")

trimmed_quantile Trimmed Quantiles
Description
For data X = m1,%s,..., Ty, with order statistics x (1), T(2), - - -, T(,) return the quantiles for a

trimmed data set, e.g., X \{z(1), 7, } (trim = 1), or X\{x 1), 2(2), T(r—1), T(ry } (trim = 2).

Usage
trimmed_quantile(x, trim = 1L, use_unique = TRUE, ...)
Arguments
X a numeric vector
trim defaults to 1, omitting the min and the max
use_unique logical, if true (defaults), base the quantiles on unique values, if false, base the
quantiles on all data, after trimming.
other arguments to pass to stats::quantile
Value

a numeric vector, the return from quantile

update_bsplines 49

See Also

quantile

Examples

trimmed_quantile(1:100, prob = 1:23 / 24, name = FALSE)

Warning
trimmed_quantile(1:100, trim

.3, prob = 1:23 / 24, name = FALSE)

no warning
trimmed_quantile(1:100, trim = 3, prob = 1:23 / 24, name = FALSE)

update_bsplines Update bsplines or btensor calls

Description

Update cpr_bs and cpr_bt objects alone or within cpr_cp and cpr_cn objects.

Usage
update_bsplines(object, ..., evaluate = TRUE)
update_btensor(object, ..., evaluate = TRUE)
Arguments
object an object to update.
arguments to update, expected to be iknots, df, bknots, or order.
evaluate whether or not to evaluate the updated call.
Value

If evaluate = TRUE then a cpr_bs or cpr_bt object is returned, else, an unevaluated call is returned.

See Also

update, bsplines, btensor

50 us_covid_cases

Examples

HHHHHHHEHEH AR AR AR A
Updating a cpr_bs object
construct a B-spline basis

bmat <- bsplines(runif(1@, 1, 10), df =5, order = 3, bknots = c(1, 10))

look at the structure of the basis
str(bmat)

change the order
str(update_bsplines(bmat, order = 4))

change the order and the degrees of freedom
str(update_bsplines(bmat, df = 12, order = 4))

HHHHHHARHEAH A AR AR

#it Updating a cpr_bt object #it

construct a tensor product

tpmat <- btensor(list(x1 = seq(@, 1, length = 10), x2 = seq(@, 1, length = 10)),
df = list(4, 5))

tpmat

update the degrees of freedom
update_btensor(tpmat, df = list(6, 7))

AR AR R AR
Updating bsplines or btensor on the right and side of a formula

f1 <- y ~ bsplines(x, df = 14) + varl + var2
f2 <- y ~ btensor(x = list(x1, x2), df = list(50, 31), order = list(3, 5)) + varl + var2

update_bsplines(f1, df = 13, order = 5)
update_btensor(f2, df = list(13, 24), order = list(3, 8))

AR AR AR R A
#it Updating a cpr_cp object #i#
data(spdg, package = "cpr")

init_cp <- cp(pdg ~ bsplines(day, df = 30) + age + ttm, data = spdg)

updt_cp <- update_bsplines(init_cp, df = 5)

HHEHHHHHHHERE AR AR AR AR
#it Updating a cpr_cn object #it
init_cn <- cn(pdg ~ btensor(list(day, age), df = list(30, 4)) + ttm, data = spdg)
updt_cn <- update_btensor(init_cn, df = list(30, 2), order = list(3, 2))

us_covid_cases United States Laboratory Confirmed COVID-19 Cases

wiggle 51

Description

Number of laboratory-confirmed COVID-19 cases in the United States, as reported by the Cen-
ters for Disease Control, between January 1 2020 and May 11, 2023, the end of the public health
emergency declaration.

Usage

us_covid_cases

Format
a data. frame with two columns

date year, month, day

cases number of reported laboratory-confirmed COVID-19 cases

Source

Download original data from <https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-
Public-Use-Data/vbim-akqf> on December 5, 2023. The reported data set was last updated on
November 3, 2023.

wiggle Wiggliness of a Spline function

Description

Calculate the integral of the squared second derivative of the spline function.

Usage

wiggle(object, lower, upper, stop.on.error = FALSE, ...)
Arguments

object a cpr_cp object

lower the lower limit of the integral

upper the upper limit of the integral

stop.on.error default to FALSE, see integrate.

additional arguments passed to integrate

Details

The wiggliness of the spline function is defined as

[() o

52 wiggle

Value

Same as integrate.

See Also

cp, integrate, sign_changes

Examples

xvec <- seq(@, 6, length = 500)

Define the basis matrix
bmat1 <- bsplines(x = xvec, iknots = c(1, 1.5, 2.3, 4, 4.5))
bmat2 <- bsplines(x = xvec)

Define the control vertices ordinates
thetal <- c¢(1, o, 3.5, 4.2, 3.7, -0.5, -0.7, 2, 1.5)
theta2 <- c(1, 3.4, -2, 1.7)

build the two control polygons

cpl <- cp(bmatl, thetal)

cp2 <- cp(bmat2, theta2)

plot(cpl, cp2, show_cp = FALSE, show_spline = TRUE)

wiggle(cpl)
wiggle(cp2)

Index

x datasets
spdg, 44
us_covid_cases, 50

bs, 6

bsplineD, 3, 6, 25
bsplines, 3,5, 8, 25, 31, 35, 49
btensor, 7, 31, 49
build_tensor, 8

cn, 9,11, 12,31

cnr, 10, 11, 29, 31

coarsen_ordinate (cpr-defunct), 17
coef, 12

coef_vcov, 12

cp, 12,13, 18, 19, 31,40, 52
cp_diff, 18, 19

cp_value, 18, 19

cpr, 11, 14,29, 31,40, 41
cpr-defunct, 17

d_order_statistic (order_statistics), 32
dchisq, 32
dnorm, 32

geeglm, 21
generate_cp_formula_data, 20
geom_rug, 39
get_spline, 3,21, 24
get_surface, 22, 23, 36, 37
glm, 10, 13

hat_ordinate (cpr-defunct), 17

iknots_or_df, 25

influence_of (cpr-defunct), 17
influence_of_iknots, 15, 26
influence_weights, 17
influence_weights (cpr-defunct), 17
insert_a_knot, 27

insertion_matrix (cpr-defunct), 17

53

integrate, 47,51, 52
knot_expr, 28

1m, 10, 13, 20
lmer, 10, 13, 20
loglLik, 29
loglikelihood, 29

matrix_rank, 30
newknots, 31
order_statistics, 32

p_order_statistic (order_statistics), 32
pchisq, 32

persp3D, 36, 37
persp3d, 36, 37
plot.cpr_bs, 6, 34, 38
plot.cpr_cn, 10, 35
plot.cpr_cnr, 37
plot.cpr_cp, 37, 38, 40
plot.cpr_cpr, 39, 41
plot.cpr_summary_cpr_cpr, 40
pnorm, 32

predict, 42
predict.cpr_cp, 42
print.cpr_bs, 42

quantile, 48, 49

refine_ordinate (cpr-defunct), 17
rgl.material, 36, 37

sign_changes, 43, 52
spdg, 44

stats, 3/
summary.cpr_cn, 10, 45
summary.cpr_cnr, 46
summary.cpr_cp, 46

54

summary.cpr_cpr, 41, 47
trimmed_quantile, 25, 48

update, 6, 49
update_bsplines, 6, 31, 49
update_btensor (update_bsplines), 49
us_covid_cases, 50

wiegh_iknots (cpr-defunct), 17
wiggle, 43,47, 51

INDEX

	bsplineD
	bsplines
	btensor
	build_tensor
	cn
	cnr
	coef_vcov
	cp
	cpr
	cpr-defunct
	cp_diff
	cp_value
	generate_cp_formula_data
	get_spline
	get_surface
	iknots_or_df
	influence_of_iknots
	insert_a_knot
	knot_expr
	loglikelihood
	matrix_rank
	newknots
	order_statistics
	plot.cpr_bs
	plot.cpr_cn
	plot.cpr_cnr
	plot.cpr_cp
	plot.cpr_cpr
	plot.cpr_summary_cpr_cpr
	predict.cpr_cp
	print.cpr_bs
	sign_changes
	spdg
	summary.cpr_cn
	summary.cpr_cnr
	summary.cpr_cp
	summary.cpr_cpr
	trimmed_quantile
	update_bsplines
	us_covid_cases
	wiggle
	Index

