Package ‘dipsaus’

January 9, 2026

Type Package
Title A Dipping Sauce for Data Analysis and Visualizations
Version 0.3.3

Description Works as an * " add-on" to packages like 'shiny', 'future’, as well as
'rlang’', and provides utility functions. Just like dipping sauce adding
flavors to potato chips or pita bread, 'dipsaus' for data analysis and
visualizations adds handy functions and enhancements to popular packages.
The goal is to provide simple solutions that are frequently asked for
online, such as how to synchronize 'shiny' inputs without freezing the app,
or how to get memory size on 'Linux' or 'MacOS' system. The enhancements
roughly fall into these four categories: 1. 'shiny' input widgets; 2.
high-performance computing using the 'future' package; 3.
modify R calls and convert among numbers, strings, and other objects. 4.
utility functions to get system information such like CPU chip-set, memory
limit, etc.

URL https://github.com/dipterix/dipsaus, https://dipterix.org/dipsaus/

BugReports https://github.com/dipterix/dipsaus/issues
License GPL-3

Encoding UTF-8

Language en-US

Depends R (>=4.1.0)

Imports utils, stats, graphics, grDevices, parallel, Rcpp, R6, shiny,
cli, stringr, jsonlite (>= 1.6), future, future.apply,
progressr, fastmap (>= 1.1.0), base64enc, digest, rlang (>=
0.4.0), rstudioapi (>= 0.11)

Suggests knitr, promises, later, rmarkdown, testthat, microbenchmark,
yaml, future.callr

RoxygenNote 7.3.3
LinkingTo Rcpp
VignetteBuilder knitr

NeedsCompilation yes

https://github.com/dipterix/dipsaus
https://dipterix.org/dipsaus/
https://github.com/dipterix/dipsaus/issues

2 Contents

Author Zhengjia Wang [aut, cre],
John Magnotti [ctb] (Contributed to "rutabaga.R"),
Xiang Zhang [ctb] (Contributed to "rutabaga.R")

Maintainer Zhengjia Wang <dipterix.wang@gmail.com>
Repository CRAN
Date/Publication 2026-01-09 09:30:30 UTC

Contents
AbstractMap L e e e e 4
AbstractQueue L. e e e e e e e e e 4
actionButtonStyled L 7
add_to_SesSiOn e e e e e 8
ask_or_default. L 9
ask_yesnoo e e 10
ASYNIC . v v o e e e e e e e e e e e e e e e e 11
ASYNC_EXPT . v v v v e 11
async_flapply 12
asynC_WOrKS L e e e e 13
AS_PIPE . . e e 15
attached_packages 16
baseb4-url L e 17
base64_to_image e e e 18
base64_to_String e e e 18
baseline_array e e 19
CAPLUTE_EXPT « « o v v o e 21
CA2 . e e e 22
check_installed_packages 23
clear env L e s 24
CcolZhexStr e e e e 24
collapse e 25
compoundlnput2 26
decorate_function L e 29
deparse_SVEC e e e e 30
digest2 e e 31
dipsaus-rstudio-shortcuts L 32
do_aggregate e e e 34
do_nothing L 34
drop_nulls L e 35
eval_dirty L 35
fancyDirectorylnput L. 36
fancyFilelnput 41
fastcov2 e e e 42
fastmap2 L 43
fastquantile 45
fastqueue2 46

flex_div e 48

Contents

3
forelse e e e e 49
getlnputBinding L 50
GELLCPU .+ o v v it e e e e e e e e e e e e 51
get_credential 51
get_dipsaus_upload_dir 54
get_dots . . . oL e e e 55
LD . . . e 56
BELLOS . v i e e e e e e e e e e e 57
GeL TAM e e e e e e e e e e e e e e e e e 58
graphic-devices 58
handler_dipsaus_progress e e e 60
html_asis e e e e e e e e e e 61
html class e e 62
@pply . . . 63
is_from_namespace e e e 64
lapply_async2 e 64
lapply_callr e 66
list_to_fastmap2 e e e 68
list_to_fastqueue2 68
lock . . . e e e 69
make_forked_clusters e e 70
MAD © o v e 72
mask _function2 L L e e 74
match_calls e 75
MEAN_SE . . v v v v v v e e e e e e e e e e 76
mem_limit2 e e e e e e e e e e e 77
new_function2 77
NO_OD + v v e e e e e e e e e e e e 79
observeDirectoryProgresso e e 80
package installed 81
PASE_SVEC . .« v v v v it i e e e e e e e e e e e e e e 82
PersistContainer e e e e e e 82
print_directory_tree e 84
PIOZIESS2 . . o o o i e e e e e e e e e 85
registerlnputBinding 86
TESEArt_SESSION v o v o e e e e e e e e e e e e e 87
IS_ACHIVE_PIOJECt v v v v i it e e e e e e e e e e 88
rs_avail ... 88
rs_edit_file . . .o e 89
TS_EXEC v v v i e e e e e e e e e e e 89
rs_focus_console 91
rs_save_all . . . L L 91
rs_select_path e 92
TS_SELTEPOS « v v v v v e e e e e e e e e e e e e e e e e e e 92
TS_VIEWET . . o v e e e e e e e e s 93
SCreenshot e e e e e e e 93
session_uuid L L e e e 94

set_shiny_input L 95

4 AbstractQueue

SEXP_LYPE2 o o i e e e e e e e e e e 96
shared_finalizer 97
shift_array e e e 101
shiny_alert2 oL e 102
Shiny_is_running o e e e e e e e e e e 104
Y (0 0 =2 Y o 104
stream_download e 105
sumsquared oL e e e e e e e e 107
SYNC_shiny_inputS. o e e e e e e e e e 107
test_fargo 108
time_delta e 109
to_datauri e e 110
TO_TAM_SIZE . . . o v v v o e e e e e e e e e 110
updateActionButtonStyled 111
updateCompoundInput2 e 111
update_fastmap2 L. 113
use_shiny_dipsaus L e e 113
GoOF% o e 114
Go=>% e e e 114
Do1<-To . . 115
Do+-To . . . o e e e 116
Do<-TT0 . . 117
Index 119
AbstractMap Abstract Map to store key-value pairs
Description

Abstract Map to store key-value pairs

AbstractQueue Defines abstract queue class

Description

This class is inspired by https://cran.r-project.org/package=txtq. The difference is AbstractQueue
introduce an abstract class that can be extended and can queue not only text messages, but also arbi-

trary R objects, including expressions and environments. All the queue types in this package inherit

this class.

https://cran.r-project.org/package=txtq

AbstractQueue 5

Abstract Public Methods

Methods start with @. . . are not thread-safe. Most of them are not used directly by users. However,
you might want to override them if you inherit this abstract class. Methods marked as "(override)"
are not implemented, meaning you are supposed to implement the details. Methods marked as
"(optional)" usually have default alternatives.

initialize(...) (override) The constructor. Usually three things to do during the process: 1.
set get_locker free_locker if you don’t want to use the default lockers. 2. set lock file (if
using default lockers). 3. call self$connect(...)

get_locker(), free_locker() (optional) Default is NULL for each methods, and queue uses an
internal private$default_get_locker and private$default_free_locker. These two
methods are for customized locker, please implement these two methods as functions during
self$initialization get_locker obtains and lock access (exclusive), and free_locker
frees the locker. Once implemented, private$exclusive will take care the rest. Type: func-
tion; parameters: none; return: none

@get_head(), @set_head(v) (override) Get head so that we know where we are in the queue
self$@get_head() should return a integer indicating where we are at the queue self$@set_head(v)
stores that integer. Parameter v is always non-negative, this is guaranteed. Users are not sup-
posed to call these methods directly, use self$head and self$head<- instead. However, if
you inherit this class, you are supposed to override the methods.

@get_total(), @set_total(v) (override) Similar to @get_head and @set_head, defines the to-
tal items ever stored in the queue. total-head equals current items in the queue.

@inc_total(n=1) (optional) Increase total, usually this doesn’t need to be override, unless you
are using files to store total and want to decrease number of file connections

@append_header(msg, ...) (override) msg will be vector of strings, separated by "I", containing
encoded headers: ‘time‘, ‘key‘, ‘hash‘, and ‘message‘. to decode what’s inside, you can use
self$print_items(stringr::str_split_fixed(msg, '\|', 4)). Make sure to return a
number, indicating number of items stored. Unless handled elsewhere, usually return(length(msg)).

@store_value(value, key) (override) Defines how to store value. ‘key* is unique identifier gen-
erated from time, queue ID, and value. Usually I use it as file name or key ID in database.
value is an arbitrary R object to store. you need to store value somewhere and return a string
that will be passed as ‘hash‘ in self$restore_value.

restore_value(hash, key, preserve = FALSE) (override) Method to restore value from given
combination of ‘hash‘ and ‘key‘. ‘hash° is the string returned by @store_value, and ‘key" is
the same as key in @store_value. preserve is a indicator of whether to preserve the value for
future use. If set to FALSE, then you are supposed to free up the resource related to the value.
(such as free memory or disk space)

@log(n=-1, all = FALSE) (override) getnitems from what you saved to during @append_header.
n less equal than 0 means listing all possible items. If al1=TRUE, return all items (number of
rows should equals to self$total), including popped items. If al1=FALSE, only return items
in the queue (number of rows is self$count). The returned value should be a n x 4 ma-
trix. Usually T use stringr::str_split_fixed(..., "\|', 4). Please see all other types
implemented for example.

@reset(...) (override) Reset queue, remove all items and reset head, total to be 0.

@clean() (override) Clean the queue, remove all the popped items.

6 AbstractQueue

@validate() (override) Validate the queue. Stop if the queue is broken.

@connect(con, ...) (override) Setup connection. Usually should be called at the end of self$initialization
to connect to a database, a folder, or an existing queue you should do checks whether the con-
nection is new or it’s an existing queue.

connect(con, ...) (optional) Thread-safe version. sometimes you need to override this func-
tion instead of @connect, because private$exclusive requires lockfile to exist and to be
locked. If you don’t have lockers ready, or need to set lockers during the connection, override
this one.

destroy() (optional) Destroy a queue, free up space and call delayedAssign('.lockfile',
{stop(...)}, assign.env=private) to raise error if a destroyed queue is called again later.

Public Methods

Usually don’t need to override unless you know what you are doing.

push(value, message=",...) Function to push an arbitrary R object to queue. message is a
string giving notes to the pushed item. Usually message is stored with header, separated from
values. The goal is to describe the value. ... is passed to @append_header

pop(n =1, preserve = FALSE) Pop n items from the queue. preserve indicates whether not to
free up the resources, though not always guaranteed.

print_item(item),print_items(items) To decode matrix returned by log(), returning named
list or data frame with four heads: ‘time°, ‘key‘, ‘hash‘, and ‘message°.

list(n=-1) List items in the queue, decoded. If n is less equal than O, then list all results. The
result is equivalent to self$print_items(self$log(n))

log(n=-1,all=FALSE) List items in the queue, encoded. This is used with self$print_items.
When all=TRUE, result will list the records ever pushed to the queue since the last time queue
is cleaned. When all=FALSE, results will be items in the queue. n is the number of items.

Public Active Bindings

id Read-only property. Returns unique ID of current queue.

lockfile The lock file.

head Integer, total number of items popped, i.e. inactive items.

total Total number of items ever pushed to the queue since last cleaned, integer.

count Integer, read-only, equals to total - head, number of active items in the queue

Private Methods or properties

.id Don’t use directly. Used to store queue ID.

.lockfile Location of lock file.

lock Preserve the file lock.

exclusive(expr, ...) Function to make sure the methods are thread-safe
default_get_locker() Default method to lock a queue

default_free_locker Default method to free a queue

actionButtonStyled

actionButtonStyled Action Button but with customized styles

Description

Action Button but with customized styles

Usage

actionButtonStyled(
inputld,
label,
icon = NULL,
width = NULL,
type = "primary”,
btn_type = "button”,

nn

class = ,

Arguments

inputlId, label, icon, width, ...
passed to shiny: :actionButton

type button type, choices are ‘default’, ‘primary‘, ‘info‘, ‘success‘, ‘warning‘, and
‘danger*
btn_type HTML tag type, either "button” or "a"
class additional classes to be added to the button
Value
‘HTML tags
See Also

updateActionButtonStyled for how to update the button.

Examples

demo('example-actionButtonStyled', package='dipsaus')

library(shiny)
library(dipsaus)

ui <- fluidPage(
actionButtonStyled('btn', label = 'Click me', type = 'default'),
actionButtonStyled('btn2', label = 'Click me2', type = 'primary')

8 add_to_session

server <- function(input, output, session) {
btn_types = c('default', 'primary', 'info', 'success', 'warning', ‘'danger')
observeEvent (input$btn, {
btype = btn_types[((input$btn-1) %% (length(btn_types)-1)) + 1]
updateActionButtonStyled(session, 'btn2', type = btype)
1))
observeEvent (input$btn2, {
updateActionButtonStyled(session, 'btn',
disabled = c(FALSE,TRUE)[(input$btn2 %% 2) + 11)
b))

if(interactive()){
shinyApp(ui, server, options = list(launch.browser=TRUE))

}

add_to_session Store/Get key-value pairs in ’shiny’ session

Description

If key is missing, it’ll be created, otherwise ignored or overwritten.

Usage
add_to_session(
session,
key = "rave_id",
val = paste(sample(c(letters, LETTERS, 0:9), 20), collapse = ""),
override = FALSE
)
Arguments
session ’Shiny’ session
key character, key to store
val value to store
override if key exists, whether to overwrite its value
Value

If session is shiny session, returns current value stored in session, otherwise returns NULL

ask_or_default 9

ask_or_default Read a Line from the Terminal, but with Default Values

Description

Ask a question and read from the terminal in interactive scenario

Usage

ask_or_default(..., default = "", end = "", level = "INFQO")
Arguments

...,end, level passedto cat2

default default value to return in case of blank input
Details

The prompt string will ask a question, providing defaults. Users need to enter the answer. If the
answer is blank (no space), then returns the default, otherwise returns the user input.

This can only be used in an interactive session.

Value

A character from the user’s input, or the default value. See details.

See Also

cat2, readline, ask_yesno

Examples

if(interactive()){

ask_or_default('What is the best programming language?',
default = 'PHP')

3

10 ask_yesno

ask_yesno Ask and Return True or False from the Terminal

Description

Ask a question and read from the terminal in interactive scenario

Usage

ask_yesno(
end =
level = "INFO",
error_if_canceled = TRUE,
use_rs = TRUE,
ok = "Yes",
cancel = "No",
rs_title = "Yes or No:"

nn
’

Arguments

...,end, level passedtocat2

error_if_canceled
raise error if canceled

use_rs whether to use rstudioapi if possible

ok button label for yes

cancel button label for no

rs_title message title if "RStudio’” question box pops up.
Details

nenon no.n

The prompt string will ask for an yes or no question. Users need to enter "y", "yes" for yes, "n",
"no" or no, and "c¢" for cancel (case-insensitive).

This can only be used in an interactive session.

Value
logical or NULL or raise an error. If "yes" is entered, returns TRUE; if "no" is entered, returns FALSE;
if "c" is entered, error_if_canceled=TRUE will result in an error, otherwise return NULL

See Also

cat2, readline, ask_or_default

async

Examples

if(interactive()){

ask_yesno('Do you know how hard it is to submit an R package and '

'pass the CRAN checks?')
ask_yesno('Can I pass the CRAN check this time?')

}

)

11

async Evaluate expression in async_expr

Description

Evaluate expression in async_expr

Usage

async(expr)

Arguments

expr R expression

See Also

async_expr

async_expr Apply R expressions in a parallel way

Description

Apply R expressions in a parallel way

Usage

async_expr(
X,
.expr,
.varname = "x",
envir = parent.frame(),
.pre_run = NULL,
.ncore = future::availableCores(),

12 async_flapply

Arguments
X a vector or a list to apply evaluation on
.expr R expression, unquoted
.varname variable name representing element of each . X
envir environment to evaluate expressions
.pre_run expressions to be evaluated before looping.
.ncore number of CPU cores
passed to future: : future
Details

async_expr uses lapply and future: : future internally. Within each loop, an item in " . X" will
be assigned to variable "x" (defined by ".varname”) and enter the evaluation. During the evalu-
ation, function async is provided. Expressions within async will be evaluated in another session,
otherwise will be evaluated in current session. Below is the workflow:

e Run .pre_run
e For i in seq_along(.X):
— 1. Assign x with . X[[i]], variable name x is defined by .varname
— 2. Evaluate expr in current session.
+ a. If async is not called, return evaluated expr

x b. If async(aync_expr) is called, evaluate aync_expr in another session, and return
the evaluation results if aync_expr

Value

a list whose length equals to .X. The value of each item returned depends on whether async is
called. See details for workflow.

async_flapply Wrapper for future.apply: : future_lapply

Description

Wrapper for future.apply: : future_lapply

Usage

async_flapply(X, FUN, ...)
Arguments

X, FUN, ... passing to future.apply:: future_lapply
See Also

future_lapply

async_works

13

async_works

Run jobs in other R sessions without waiting

Description

This function has been deprecated. Please use lapply_callr instead.

Usage

async_works(

X,
FUN,

.globals = NULL,

.name = "Untitled"”,
.rs = FALSE,
.wait = TRUE,

.chunk_size = Inf,
.nworkers = future:
.simplify = FALSE,

:availableCores(),

.quiet = FALSE,

.log

Arguments

X
FUN

.globals
.name
.rs
.wait

.chunk_size

.nworkers
.simplify
.quiet

.log

vector or list to be applied

function with the first argument to be each element of X
further arguments to be passed to FUN

global variables to be evaluated in FUN

job names, used if backed by rstudioapi jobs
whether to use rstudioapi jobs

whether to wait for the results

used only when .wait=FALSE, chunk size for each workers at a time. Only
useful for printing progress messages, but might slow down the process when
.chunk_size is too small

number of workers at a time
whether to simplify the results, i.e. merge list of results to vectors or arrays
whether to suppress the printing messages

internally used

14 async_works

Details

Unlike future package, where the global variables can be automatically detected, async_works
require users to specify global variables explicitly via . globals

async_works is almost surely slower than future.apply packages. However, it provides a func-
tionality that future.apply can hardly achieve: being non-block. When setting .wait=FALSE, the
process will run in the background, and one may run as many of these tasks as they want. This is
especially useful when large data generating process occurs (such as read in from a file, process,
generate summarizing reports).

Value

If .wait=TRUE, returns the applied results of FUN on each of X. The result types depend on . simplify
(compare the difference between lapply and sapply). If .wait=FALSE, then returns a function that
can check the result. The function takes timeout argument that blocks the session at most timeout
seconds waiting for the results. See examples.

Examples

Not run:
requires a sub-process to run the code

Basic usage
a<-1
async_works(1:10, function(ii){
ii + a # sub-process don't know a, hence must pass a as globals
}, .globals = list(a = a))

non-blocking case
system. time({
check <- async_works(1:10, function(ii){
simulating process, run run run
Sys.sleep(ii)
Sys.getpid()
}, .wait = FALSE)
»

check the results
res <- check(timeout = 0.1)
attr(res, 'resolved') # whether it's resolved

block the session waiting for the results

res <- check(timeout = Inf)
attr(res, 'resolved')

End(Not run)

as_pipe 15

as_pipe Convert functions to pipe-friendly functions

Description

Convert functions to pipe-friendly functions

Usage

as_pipe(
X,
cey
call,
arg_name,
.name = arg_name,

.env = parent.frame(),
.quoted = FALSE

)
Arguments
X R object as input
default arguments explicitly display in the returned function
call a function call, or the function itself
arg_name argument name to be varied. This argument will be the first argument in the new
function so it’s pipe-friendly.
.name new argument name; default is the same as arg_name
.env executing environment
.quoted whether call has been quoted
Value

If x is missing, returns a function that takes one argument, otherwise run the function with given x

Examples

modify a function call
vary_title <- as_pipe(call = plot(1:10, 1:10),

pch = 16,
arg_name = 'main',
.name = 'title')

vary_title

vary_title is pipe-friendly with “pch™ default 16
vary_title(title = 'My Title')

16 attached_packages

“pch™ is explicit
vary_title(title = 'My Title', pch = 1)

other variables are implicit
vary_title(title = 'My Title', type = '1")

modify a function

f <- function(b =1, x){ b + x }
f_pipable <- as_pipe(call = f, arg_name = 'x')
f_pipable

f_pipable(2)
Advanced use

Set option dipsaus.debug.as_pipe=TRUE to debug
options("dipsaus.debug.as_pipe" = TRUE)

Both ~.(z)" and “z° work

image2 <- as_pipe(call = image(
x = seq(@, 1, length.out = nrow(z)),
y = T:ncol(z),
z = matrix(1:16, 4),
xlab = "Time"”, ylab = "Freq”,
main = "Debug”
), arg_name = 'z')

main can be overwritten
image2(matrix(1:50, 5), main = "Production”)

reset debug option
options("dipsaus.debug.as_pipe" = FALSE)

attached_packages Get attached package names in current session (Internally used)

Description

Get attached package names in current session (Internally used)

Usage

attached_packages(include_base = FALSE)

base64-url 17

Arguments

include_base whether to include base packages

Value

characters, package names that are attached in current session

base64-url Encode or decode ’base64’

Description

Compatible with results from package 'base64url’, but implemented with package 'base64enc’.
I simply do not like it when I have to depend on two packages that can achieve the same goal. This
implementation is slower. If you have 'base64url’' installed, please use that version.

Usage

base64_urlencode(x)

base64_urldecode(x)

Arguments

X character vector to encode or decode

Value

character vector of the same length as x

Examples

x = "plain text”

encoded = base64_urlencode(x)
decoded = base64_urldecode(encoded)
print(encoded)

print(decoded)

18

base64_to_string

base64_to_image Save "Base64" Data to Images

Description

Save "Base64" Data to Images

Usage
base64_to_image(data, path)

Arguments
data characters, encoded "Base64" data for images
path file path to save to

Value

Absolute path of the saved file

base64_to_string Convert "Base64" Data to String

Description

Decode "Base64" data to its generating characters

Usage

base64_to_string(what)

Arguments

what characters, encoded "Base64" data

Value

String
Examples
input <- "The quick brown fox jumps over the lazy dog”

Base64 encode
what <- base64enc: :baseb64encode(what = charToRaw(input))

Base64 decode
base64_to_string(what)

baseline_array 19

baseline_array Calculate Contrasts of Arrays in Different Methods

Description

Provides five methods to baseline an array and calculate contrast.

Usage
baseline_array(
X’
along_dim,

baseline_indexpoints,

unit_dims = seq_along(dim(x))[-along_dim],

method = c("percentage”, "sqrt_percentage”, "decibel”, "zscore", "sqrt_zscore”,
"subtract_mean")

)
Arguments
X array (tensor) to calculate contrast
along_dim integer range from 1 to the maximum dimension of x. baseline along this di-

mension, this is usually the time dimension.

baseline_indexpoints
integer vector, which index points are counted into baseline window? Each
index ranges from 1 to dim(x)[[along_dim]]. See Details.

unit_dims integer vector, baseline unit: see Details.

method character, baseline method options are: "percentage”, "sqrt_percentage”,
"decibel”, "zscore"”, and "sqrt_zscore"

Details

Consider a scenario where we want to baseline a bunch of signals recorded from different locations.
For each location, we record n sessions. For each session, the signal is further decomposed into
frequency-time domain. In this case, we have the input x in the following form:

sessionx frequencyxtimezxlocation

Now we want to calibrate signals for each session, frequency and location using the first 100 time
points as baseline points, then the code will be

baseline,rray(x, alonggim = 3,1 : 100, unitqgims = ¢(1,2,4))

along_dim=3is dimension of time, in this case, it’s the third dimension of x. baseline_indexpoints=1:100,
meaning the first 100 time points are used to calculate baseline. unit_dims defines the unit signal.

Its value c(1,2,4) means the unit signal is per session (first dimension), per frequency (second)

and per location (fourth).

20

baseline_array

In some other cases, we might want to calculate baseline across frequencies then the unit signal is
frequencyxtime, i.e. signals that share the same session and location also share the same baseline.
In this case, we assign unit_dims=c(1,4).

There are five baseline methods. They fit for different types of data. Denote z is an unit signal, 2
is its baseline slice. Then these baseline methods are:

"percentage” ~
z— 3
% % 100%

20

"sqrt_percentage” B
z—4/z
VEio VA 100%

J7

"decibel” -
10 x (logyo(2) — logyo(20))
"zscore" _
Z— 20
sd(zp)

"sqrt_zscore” B
vz V7
sd(y/%)

Value

Contrast array with the same dimension as x.

Examples

library(dipsaus)
set.seed(1)

Generate sample data
dims = c(10,20,30,2)
x = array(rnorm(prod(dims))*2, dims)

Set baseline window to be arbitrary 10 timepoints
baseline_window = sample(30, 10)

Using base functions

rel <- aperm(apply(x, c(1,2,4), function(y){
m <- mean(y[baseline_window])
(y/m = 1) x 100

3}, c(2,3,1,4))

Using dipsaus
re2 <- baseline_array(x, 3, baseline_window, c(1,2,4),
method = 'percentage')

capture_expr 21

Check different, should be very tiny (double precisions)
range(re2 - rel)

Check speed for large dataset
if(interactive()){
dims = c(200,20,300,2)
x = array(rnorm(prod(dims))*2, dims)
Set baseline window to be arbitrary 10 timepoints
baseline_window = seq_len(100)
f1 <= function(){
aperm(apply(x, c(1,2,4), function(y){
m <- mean(y[baseline_window])
(y/m - 1) * 100
», c(2,3,1,4))
}
f2 <= function(){
equivalent as bl = x[,,baseline_window,]
#
baseline_array(x, along_dim = 3,
baseline_indexpoints = baseline_window,
unit_dims = c(1,2,4), method = 'sqrt_percentage')

}
microbenchmark: :microbenchmark (f1(), f2(), times = 3L)
3
capture_expr Captures Evaluation Output of Expressions as One Single String
Description

Evaluate expression and captures output as characters, then concatenate as one single string.

Usage

capture_expr(expr, collapse = "\n”, type = c("output”, "message”), ...)
Arguments

expr R expression

collapse character to concatenate outputs

type, ... passed to capture.output
Value

Character of length 1: output captured by capture.output

22 cat2

Examples

x <- data.frame(a=1:10)

x_str <- capture_expr({
print(x)

»

x_str

cat(x_str)

cat2 Color Output

Description

Color Output

Usage
cat2(

level = "DEBUG",

print_level = FALSE,

file = "",

sep = ! ”)

fill = FALSE,

labels = NULL,

append = FALSE,

end = "\n",

pal = 1ist(DEBUG = "grey60”, INFO = "#1d9f34", WARNING = "#ec942c”, ERROR = "#f02c2c",
FATAL = "#763053", DEFAULT = "grey60"),

use_cli = TRUE,

bullet = "auto”

)
Arguments
e to be printed
level "DEBUG’, "INFO’, "WARNING’, "TERROR’, or 'FATAL’ (total 5 levels)
print_level if true, prepend levels before messages

file, sep, fill, labels, append
pass to base: :cat

end character to append to the string
pal a named list defining colors see details
use_cli logical, whether to use package ’cli’

bullet character, if use ’cli’, which symbol to show. see symbol

check_installed_packages 23

Details

There are five levels of colors by default: 'DEBUG’, "INFO’, "'WARNING’, ’ERROR’, or FATAL.
Default colors are: "’DEBUG’ (grey60), "INFO’ (#1d9f34), "WARNING’ (#ec942c), 'TERROR’
(#f02c2c), 'FATAL (#763053) and 'DEFAULT’ (#000000, black). If level is not in preset five
levels, the color will be "default"-black color.

Value

none.

check_installed_packages
Check If Packages Are Installed, Returns Missing Packages

Description

Check If Packages Are Installed, Returns Missing Packages

Usage

check_installed_packages(
pkgs,
libs = base::.libPaths(),
auto_install = FALSE,

Arguments
pkgs vector of packages to install
libs paths of libraries

auto_install automatically install packages if missing

other parameters for install.packages

Value

package names that are not installed

col2hexStr

24
clear_env Function to clear all elements within environment
Description
Function to clear all elements within environment
Usage
clear_env(env, ...)
Arguments
env environment to clean, can be an R environment, or a fastmap?2 instance
ignored
Examples
env = new.env()
env$a = 1
print(as.list(env))
clear_env(env)
print(as.list(env))
col2hexStr Convert color to Hex string
Description
Convert color to Hex string
Usage
col2hexStr(col, alpha = NULL, prefix = "#", ...)
Arguments
col character or integer indicating color
alpha NULL or numeric, transparency. See grDevices: :rgb
prefix character, default is "#"

passing to adjustcolor

collapse 25

Details

col2hexStr converts colors such as 1, 2, 3, "red", "blue", ... into hex strings that can be easily
recognized by ‘HTML*, ‘CSS® and ‘JavaScript‘. Internally this function uses adjustcolor with
two differences:

1. the returned hex string does not contain alpha value if alpha is NULL;

2. the leading prefix "#" can be customized

Value

characters containing the hex value of each color. See details

See Also
adjustcolor

Examples
col2hexStr(1, prefix = '@x") # "0x000000"
col2hexStr('blue') # "#000OFF"

Change default palette, see "grDevices::colors()"
grDevices: :palette(c('orange3', 'skybluel'))

col2hexStr(1) # Instead of #000000, #CD8500
collapse Collapse Sensors And Calculate Summations/Mean
Description

Collapse Sensors And Calculate Summations/Mean

Usage

collapse(x, keep, average = FALSE)

Arguments
X A numeric multi-mode tensor (array), without NA
keep Which dimension to keep
average collapse to sum or mean

Value

a collapsed array with values to be mean or summation along collapsing dimensions

26 compoundInput?2

Examples

Example 1
X = matrix(1:16, 4)

Keep the first dimension and calculate sums along the rest
collapse(x, keep = 1)
rowSums(x) # Should yield the same result

Example 2

x = array(1:120, dim = c(2,3,4,5))

result = collapse(x, keep = c(3,2))

compare = apply(x, c(3,2), sum)

sum(abs(result - compare)) # The same, yield @ or very small number (1e-10)

Example 3 (performance)
Small data, no big difference, even slower
x = array(rnorm(240), dim = c(4,5,6,2))
microbenchmark: :microbenchmark(
result = collapse(x, keep = c(3,2)),
compare = apply(x, c(3,2), sum),
times = 1L, check = function(v){
max(abs(range(do.call('-", v)))) < 1e-10
}
)

large data big difference
x = array(rnorm(prod(300,200,105)), c(300,200,105,1))
microbenchmark: :microbenchmark(

result = collapse(x, keep = c(3,2)),

compare = apply(x, c(3,2), sum),

times = 1L , check = function(v){

max(abs(range(do.call('-", v)))) < 1e-10
b))

compoundInput?2 Compound input that combines and extends shiny inputs

Description

Compound input that combines and extends shiny inputs

Usage

compoundInput2(
inputld,
label = "Group”,
components = shiny::taglList(),
initial_ncomp = 1,

compoundInput2

min_ncomp
max_ncomp =

label_color

27

9,
10,
value = NULL,

NA,

max_height = NULL,

Arguments
inputId
label
components
initial_ncomp
min_ncomp
max_ncomp
value

label_color

max_height

Value

‘HTML* tags

See Also

character, shiny input ID

character, will show on each groups

‘HTML* tags that defines and combines HTML components within groups
numeric initial number of groups to show, non-negative

minimum number of groups, default is 0, non-negative

maximum number of groups, default is 10, greater or equal than min_ncomp
list of lists, initial values of each inputs, see examples.

integer or characters, length of 1 or max_ncomp, assigning colors to each group
labels; default is NA, and try to get color from foreground par ("fg")

maximum height of the widget

will be ignored

updateCompoundInput?2 for how to update inputs

Examples

library(shiny); library(dipsaus)

compoundInput2(
'Group',

"input_id',
div(

textInput('text',
sliderInput('sli',

)!

label_color =
value = list(
list(text = '"1"),

list(),

list(sli = 0.2)

)

'Text Label'),
'Slider Selector', value = @, min = 1, max = 1)

1:10,

Set text first group to be "1"
no settings for second group
sli = 0.2 for the third group

Source - system.file('demo/example-compountInput2.R', package='dipsaus')

28

demo('example-compountInput2', package='dipsaus')

library(shiny)
library(dipsaus)
ui <- fluidPage(
fluidRow(
column(
width = 4,
compoundInput2(

'compound', 'Group Label', label_color = c(NA,1:9),

components = div(
textInput('txt', '
selectInput('sel’,
sliderInput('sli',

),

value = list(
list(txt = '1"),
list(sli = 0.2)

)

),
hrQ),
actionButton('action',
)
)
)

Text'),

'Select', choices = 1:10, multiple = TRUE),
'Slider', max=1, min=0, val=0.5)

Set text first group to be "1"
no settings for second group
sli = 0.2 for the third group

'Update compound input')

server <- function(input, output, session) {

observe({
print(input$compound)
b))

observe({

Getting specific input at group 1
print(input$compound_txt_1)

D

observeEvent (input$action,

updateCompoundInput2(
session, 'compound',

{

Update values for each components
value = lapply(1:5, function(ii){

3)’

list(
txt = sample(LETTERS, 1),
sel = sample(1:10,
sli = runif(1)

)
}), ncomp = NULL, txt

D
}

if(interactive()){

shinyApp(ui, server, options = list(launch.browser = TRUE))

}

= list(label = as.character(Sys.time())))

compoundInput?2

decorate_function

29

decorate_function Python-style decorator

Description

Python-style decorator

Usage

decorate_function(orig, decor, ...)

lhs %D% rhs

Arguments
orig, lhs any function
decor, rhs decorator function that takes orig as its first argument
passed to decor
Examples

Example 1: basic usage
Decorator that prints summary of results and return results itself
verbose_summary <- function(...){
summary_args <- list(...)
function(f){
function(...){
results <- f(...)

print(do.call(
summary,
c(list(results), summary_args)

)

results

runs as.list, but through verbose_summary
as_list2 <- decorate_function(as.list, verbose_summary)

run test
res <- as_list2(1:3) # will verbose summary
identical(res, as.list(1:3))

30

Example 2
x <- 1:20
y <= x + rnorm(20)

decorator, add a line with slope 1 with given intercept
abline_xy <- function(b){

function(f){
function(...){
f(...)
intercept <- get_dots('intercept', 0, ...)
abline(a = intercept, b = b)
}
}
3

orig, plot whatever x vs jittered+intercept
plot_xy <- function(x, intercept = rnorm(1)){
plot(x, jitter(x, amount = 3) + intercept)
3
new function that decorate plot_xy with abline_xy, and
returns the intercept

plot_xy2 <- decorate_function(plot_xy, abline_xy, b = 1)

alternatively, you might also want to try
plot_xy2 <- plot_xy %D% abline_xy(b = 1)

plot_xy2(x = 1:20)

deparse_svec

deparse_svec Convert Integer Vectors To String

Description

Convert Integer Vectors To String

Usage

deparse_svec(
nums,
connect = "-",
concatenate = TRUE,
n n

collapse = ",",
max_lag = 1

digest2

Arguments
nums integer vector
connect character used to connect consecutive numbers
concatenate connect strings if there are multiples
collapse if concatenate, character used to connect strings
max_lag defines "consecutive", min = 1

Value

strings representing the input vector. For example, c(1, 2, 3) returns "1-3".

See Also

parse_svec

Examples

deparse_svec(c(1:10, 15:18))

31

digest2 Digest R object with source reference removed

Description

Digest R object with source reference removed

Usage

digest2(object, ..., keep_source = FALSE)
Arguments

object, ... passed to digest

keep_source whether to keep the code that generates the object; default is false
See Also

removeSource

32 dipsaus-rstudio-shortcuts

dipsaus-rstudio-shortcuts
Register customized R code to 'RStudio’ shortcuts

Description

’RStudio’ keyboard shortcuts is handy, however, it is non-trivial to set shortcuts that run customized
code. The proposing functions allow 10 customized R expressions to be registered. The first five (1
to 5) are interactive shortcuts, the rest five (6 to 10) are non-interactive.

Usage
rs_add_insertion_shortcut(which, txt, force = FALSE)
rs_add_shortcut(which, expr, force = FALSE, quoted = FALSE)
rs_remove_shortcut(which)
rs_show_shortcut(which)

rs_quick_debug(env = globalenv())

Arguments
which integer from 1 to 10, which keyboard shortcut to edit
txt an insertion/replacement shortcut to add
force whether to remove existing shortcut if the hot-key has been registered
expr expression to run if shortcut is pressed
quoted whether expr is quoted, default is false
env environment to debug code; default is global environment
Details

There are two steps to register an ’RStudio’ keyboard shortcut.

1. Please enable the shortcuts by opening 'Tools' > 'Modify Keyboard Shortcuts' in "RStudio’
menu bar; search and locate add-in items starting with *Dipsaus’; register hot-keys of your choices,
and then save. It is recommended that these keys are 'Alt' +1 to 'Alt' +@. On Apple, "Alt’ is
equivalent to ’option’ key.

2. run rs_add_insertion_shortcut or rs_add_shortcut to customize the behaviors of each
shortcuts; see Examples.

Function rs_quick_debug provides quick way to debug a script or function without messing up
the code. The script only works in ’RStudio’. When executing the quick-debug function, the
cursor context will be automatically resolved and nearest debugging code blocks will be searched
and executed. To enable this feature, add a line with "# DIPSAUS: DEBUG START" in your code,

dipsaus-rstudio-shortcuts 33

followed by debugging code blocks in comments. The script will figure it out. Since the *RStudio’
context will be obtained when executing the function, it is recommended to add this function to
your shortcuts. By default, if the shortcut-1 is unset, this function will be executed.

Examples

Not run:

Need to run in RStudio
Please read the Section 'Details' carefully

I assume the shortcuts are Alt+1,2,...,9,0,
corresponding to shortcuts 1 - 10

Adds an insertion to Alt+9
rs_add_insertion_shortcut(9, " %?<-% ", force = TRUE)
restart RStudio and try ~Alt+9°

Adds an expression to Alt+2
rs_add_shortcut(2, {
expr <- sprintf(”system.time({\n%s\n})\n",
rstudioapi::selectionGet()$value)
cat(expr)
eval(parse(text = expr))
}, force = TRUE)

Select any valid R code and press Alt+1

run this to set your shortcut (one-time setup)
rs_add_shortcut(1, { dipsaus::rs_quick_debug() })

Add debug feature: insert the following comment anywhere in your code
You may open a new script in the RStudio

DIPSAUS: DEBUG START
message("Debugging...")
a<-1

print(a)
message("Finished")

o o

Place your cursor here, press the shortcut key

End(Not run)

34

do_nothing

do_aggregate Make aggregate pipe-friendly

Description

A pipe-friendly wrapper of aggregate when using formula as input.

Usage
do_aggregate(x, ...)
Arguments
X an R object
other parameters passed to aggregate
Value

Results from aggregate

See Also

aggregate

Examples

data(ToothGrowth)

ToothGrowth |>

do_aggregate(len ~ ., mean)
do_nothing A dummy function that literally does nothing
Description

A dummy function that literally does nothing

Usage
do_nothing(...)

Arguments

ignored

drop_nulls 35

Value

Nothing

drop_nulls Drop NULL values from list or vectors

Description

Drop NULL values from list or vectors

Usage

drop_nulls(x, .invalids = list("is.null"))

Arguments

X list to check

.invalids a list of functions, or function name. Default is ’is.null’.
Value

list or vector containing no invalid values

Examples

x <- list(NULL,NULL,T,2)
drop_nulls(x) # length of 2

eval_dirty Evaluate expressions

Description

Evaluate expressions

Usage
eval_dirty(expr, env = parent.frame(), data = NULL, quoted = TRUE)

Arguments
expr R expression or 'rlang’ quo
env environment to evaluate
data dataframe or list
quoted Is the expression quoted? By default, this is TRUE. This is useful when you don’t

want to use an expression that is stored in a variable; see examples

36 fancyDirectorylnput

Details

eval_dirty uses base: :eval() function to evaluate expressions. Compare to rlang: :eval_tidy,
which won’t affect original environment, eval_dirty causes changes to the environment. There-
fore if expr contains assignment, environment will be changed in this case.

Value

the executed results of expr evaluated with side effects.

Examples

env = new.env(); env$a = 1
rlang::eval_tidy(quote({a <- 111}), env = env)
print(env$a) # Will be 1. This is because eval_tidy has no side effect

eval_dirty(quote({a <- 111}), env)
print(env$a) # 111, a is changed

Unquoted case
eval_dirty({a <- 222}, env, quoted = FALSE)
print(envs$a)

fancyDirectoryInput Shiny drag-and-drop directory input

Description

Fancy drag and drop directory upload for shiny apps. This function allows users to drag and drop
entire directories. Note: This feature requires browser support for the webkitdirectory attribute
(Chrome, Edge, Safari). Firefox has limited support.

Usage

fancyDirectoryInput(
inputld,
label,
width = NULL,
after_content = "Drag & drop directory, or button”,
size = c("s", "m", "1", "x1"),
maxSize = NULL,
progress = FALSE,
autoCleanup = FALSE,
autoCleanupLocked = FALSE,

fancyDirectorylnput 37

Arguments
inputId the input slot that will be used to access the value
label display label for the control, or NULL for no label.
width the width of the input

after_content tiny content that is to be displayed below the input box

size height of the widget, choices are 's', 'm', '1', and 'x1'

maxSize maximum file size per file in bytes (default uses shiny.maxRequestSize op-
tion, typically SMB)

progress logical or character; if TRUE, displays upload progress using progress?2; if a
character string, uses it as the progress title; if FALSE (default), no progress is
shown

autoCleanup logical; if TRUE, removes all files from the upload directory before each new

upload. Default is FALSE. This is useful to prevent stale files from previous
uploads. Can be changed dynamically by updating the data-auto-cleanup
HTML attribute on the input element.

autoCleanuplLocked
logical; if TRUE, hides the auto-cleanup checkbox, preventing users from chang-
ing the setting. Default is FALSE, which shows the check-box allowing users to
toggle auto-cleanup behavior.

additional arguments (currently unused)

Details

The directory input uses the webkitdirectory HTML attribute which is not part of the HTMLS5
standard but is widely supported. Browser compatibility:

* Chrome/Edge: Full support

* Safari: Full support

* Firefox: Partial support (desktop only, no mobile)

* Internet Explorer: Not supported

Hidden files (starting with ’.”) are filtered out by default on the client side.

Files are transferred as base64-encoded data, so they use approximately 33% more bandwidth than
their actual size. Files exceeding maxSize will be skipped with a warning in the browser console.

Upload Directory Management:
Uploaded files are stored in a session-specific directory with a deterministic path: tempdir()/dipsaus_uploads/{6-char-h
where the hash is computed as substr(digest(session_token + full_inputId), 1, 6). This
ensures:
* The same directory is used for all uploads to the same input within a session
* Files preserve their original relative directory structure within this directory

* Different sessions and inputs get isolated directories

38 fancyDirectorylnput

For example, uploading a directory with structure project/src/utils/helper.R will create tempdir () /dipsaus_uploads

The autoCleanup parameter controls whether the upload directory is cleaned before each new
upload. When FALSE (default), files accumulate across uploads. When TRUE, the directory is re-
moved and recreated before each upload, preventing stale files from previous uploads. A checkbox
is displayed below the input widget allowing users to toggle the auto-cleanup behavior dynami-
cally. Use get_dipsaus_upload_dir to retrieve the upload directory path for manual cleanup:
unlink(get_dipsaus_upload_dir(inputId), recursive = TRUE)

Related Functions:

* observeDirectoryProgress: Enable progress tracking with progress2 for directory up-
loads. Call this in your server function to display upload progress automatically.

» get_dipsaus_upload_dir: Retrieve the upload directory path for a given input ID. Useful
for manual file cleanup or custom processing.

Value

A reactive data frame with components: fileId (unique file identifier), name (file name), size (file
size in bytes), type (MIME type), datapath (temporary file path on server), and relativePath
(full relative path including sub-directories). The data frame also has attributes: directoryStructure
(nested list representing the directory tree), ready (logical indicating if all files are processed),
totalFiles (total number of files), upload_status (one of "initialized"”, "completed”, or
"errored"), and upload_dir (character string with the upload directory path where files are stored,
preserving their relative directory structure).

Important: The datapath column is NA initially when upload_status = "initialized". The in-
put automatically updates when all files complete (upload_status = "completed"), and datapath
values are populated with server file paths. Check attr(input$<inputId>, "upload_status"”)
to determine when files are ready.

Optional real-time tracking: Individual file data is available via input$<inputId>__file as files
upload. File processing status can be tracked via input$<inputId>__status, which returns a data

frame with columns: filelId, name, relativePath, status (pending/processing/complete/error/skipped),
progress (0-100), and error (error message if any).

See Also
observeDirectoryProgress for progress tracking, get_dipsaus_upload_dir for directory path

retrieval, fancyFileInput for single file uploads, progress2 for custom progress bars

Examples

library(shiny)
library(dipsaus)

ui <- basicPage(
fancyDirectoryInput('dir_input', "Please upload a directory"”)

)

Example with progress tracking
ui2 <- basicPage(

fancyDirectorylnput

fancyDirectoryInput('dir_input2', "Upload with progress”, progress = TRUE)
)

if(interactive()) {
Basic example
shinyApp(
ui,
server = function(input, output, session){
Observe directory upload - updates automatically when complete
observeEvent (input$dir_input, {
files <- input$dir_input
if(lis.null(files)) {
upload_status <- attr(files, "upload_status")

cat("Directory upload event:\n")

cat(” Status:”, upload_status, "\n")

cat(” Total files:", attr(files, "totalFiles"”), "\n")
cat(” Ready:", attr(files, "ready”), "\n")

if(upload_status == "completed”) {
All files uploaded - datapaths are now populated!
cat("\nAll files uploaded successfully!\n")
cat("Files with datapaths:\n")
print(files[!is.na(files$datapath),
c("name", "relativePath"”, "datapath")])

Now you can process all files
for(i in seq_len(nrow(files))) {
if(!is.na(files$datapath[il)) {
cat("\nProcessing:", files$name[i], "\n")
cat(" Server path:", files$datapath[i], "\n")
cat(" File size:", file.size(files$datapath[i]), "bytes\n")
3
3
} else if(upload_status == "initialized"”) {
Initial metadata - datapaths are NA at this point
cat("Upload started, processing files...\n")

Access directory structure
dir_struct <- attr(files, "directoryStructure”)
cat("\nDirectory structure:\n")
print(str(dir_struct, max.level = 2))
}
}
b))

Optional: Track individual files as they upload (real-time)
observeEvent(input$dir_input__file, {
file_data <- input$dir_input__file
if(!lis.null(file_data) && !is.na(file_data$datapath)) {
cat("File uploaded:"”, file_data$name, "->", file_data$datapath, "\n")
}
1))

39

40

fancyDirectorylnput

Optional: Monitor upload progress
observeEvent (input$dir_input__status, {
status <- input$dir_input__status
if(!is.null(status) && is.data.frame(status)) {
completed <- sum(status$status == "complete”)
total <- nrow(status)
cat("Progress:", completed, "/", total, "files\n")
}
1))
h
options = list(launch.browser = TRUE)

)

Example with progress tracking
shinyApp(
ui2,
server = function(input, output, session){
Enable progress tracking
observeDirectoryProgress("dir_input2")

Process files when complete
observeEvent (input$dir_input2, {
files <- input$dir_input2
if(lis.null(files) && attr(files, "upload_status”) == "completed”) {
cat("Received”, nrow(files), "files\n")
}
b))
h
options = list(launch.browser = TRUE)

)

Example with autoCleanup and manual directory cleanup

ui3 <- basicPage(
fancyDirectoryInput('dir_input3', "Upload directory”, autoCleanup = TRUE),
actionButton('cleanup', 'Clean Up Files')

)

shinyApp(
uis,
server = function(input, output, session){
observeEvent (input$dir_input3, {
files <- input$dir_input3
if(!lis.null(files) && attr(files, "upload_status”) == "completed”) {
Get upload directory with preserved structure
upload_dir <- attr(files, "upload_dir")
cat("Files stored in:", upload_dir, "\\n")
cat("Example file path:"”, files$datapath[1], "\\n")
Process files with their directory structure...
}
1))

Manual cleanup option

fancyFilelnput

observeEvent (input$cleanup, {
upload_dir <- get_dipsaus_upload_dir('dir_input3')
if(!is.null(upload_dir) && dir.exists(upload_dir)) {
unlink(upload_dir, recursive = TRUE, force = TRUE)
cat("Cleaned up:", upload_dir, "\\n")

}
1))
}!
options = list(launch.browser = TRUE)
)
3
fancyFileInput Shiny drag-and-drop file input
Description

Fancy drag and drop file upload for shiny apps.

Usage

fancyFileInput(
inputlId,
label,
width = NULL,
after_content = "Drag & drop, or button”,
size = c("s", "m", "1", "x1"),
maxSize = NULL,

)
Arguments
inputId the input slot that will be used to access the value
label display label for the control, or NULL for no label.
width the width of the input
after_content tiny content that is to be displayed below the input box
size height of the widget, choices are 's', 'm', '1', and 'x1'
maxSize maximum file size per file in bytes (default uses shiny.maxRequestSize op-

tion, typically SMB)
passed to fileInput

Value

See fileInput

42 fastcov2

Examples

library(shiny)
library(dipsaus)

ui <- basicPage(
fancyFileInput('file_input', "Please upload”)
)

if(interactive()) {
shinyApp(
ui, server = function(input, output, session){},
options = list(launch.browser = TRUE)
)
3

fastcov2 Calculate Covariance Matrix in Parallel

Description
Speed up covariance calculation for large matrices. The default behavior is similar cov. Please
remove any NA prior to calculation.

Usage

fastcov2(x, y = NULL, coll, col2, df)

Arguments
X a numeric vector, matrix or data frame; a matrix is highly recommended to max-
imize the performance
y NULL (default) or a vector, matrix or data frame with compatible dimensions to
x; the default is equivalent to y = x
coll integers indicating the subset (columns) of x to calculate the covariance; default
is all the columns
col?2 integers indicating the subset (columns) of y to calculate the covariance; default
is all the columns
df a scalar indicating the degrees of freedom; default is nrow(x)-1
Value

A covariance matrix of x and y. Note that there is no NA handling. Any missing values will lead to
NA in the resulting covariance matrices.

fastmap?2 43

Examples

x <= matrix(rnorm(400), nrow = 100)

Call “cov(x)™ to compare
fastcov2(x)

Calculate covariance of subsets
fastcov2(x, coll =1, col2 = 1:2)

Speed comparison
X <= matrix(rnorm(100000), nrow = 1000)
microbenchmark: :microbenchmark(
fastcov2 = {
fastcov2(x, coll = 1:50, col2 = 51:100)
1
cov = {
cov(x[,1:50], x[,51:100])
1

unit = 'ms', times = 10

fastmap2 A Wrapper for fastmap: : fastmap

Description

fastmap provides a key-value store where the keys are strings and the values are any R objects.
It differs from normal environment that fastmap avoids memory leak. fastmap?2 is a wrapper for
fastmap, which provides several generic functions such that it has similar behaviors to lists or
environments

Usage
fastmap2(missing_default = NULL)

S3 method for class 'fastmap2'
x[[name]]

S3 method for class 'fastmap2’
x$name

S3 replacement method for class 'fastmap2’
x[[name]] <- value

S3 replacement method for class 'fastmap2'
x$name <- value

44

S3 method for class
x[i, j = NULL, ...]

'fastmap2'

S3 replacement method for class 'fastmap2'

x[i, j = NULL, ...] <-

S3 method for class
names (x)

S3 method for class
print(x, ...)

S3 method for class
length(x)

S3 method for class
as.list(x, recursive =

Arguments

missing_default

value

'fastmap2'

'fastmap2'

'fastmap2'’

'fastmap?2'
FALSE, sorted = FALSE,

passed to fastmap: : fastmap

X a 'fastmap2' object
name name, or key of the value
value any R object

i, j vector of names

passed to other methods

recursive whether to recursively apply as.list
sorted whether to sort names; default is false
Value

Examples
e
map <- fastmap2()
map$a = 1
map$h = 2
print(map)

A list of 'fastmap2' instance

map[c('a', 'b')]
Alternative way
map[|a| , |b|:|

map[c('c', 'd')] <- 3:4

fastmap?2

fastquantile 45

or
map['e', 'f'] <- 5:6

The order is not guaranteed, unless sort=TRUE
as.list(map)
as.list(map, sort=TRUE)

names (map)
length(map)

e NULL value handles ------------------——-—-
map$b <- NULL

names(map) # 'b' still exists!

as.list(map) # 'b' is NULL, but still there

to remove 'b', you have to use “@remove” method
map$”@remove™ ('b')

1

whether map has
map$~@has™('a')

a

Remove a name from list
map$”@remove™ ('a')

remove all from list
map$~@reset” ()
print(map)

fastquantile Calculate single quantile for numerical values

Description

Slightly faster than quantile with na.rm=TRUE. The internal implementation uses the *C++’ func-
tion std: :nth_element, which is significantly faster than base R implementation when the length
of input x is less than 1e7.

Usage

fastquantile(x, q)

Arguments

X numerical vector (integers or double)

q number from O to 1

46 fastqueue?2

Value

Identical to quantile(x, q, na.rm=TRUE)

Examples

create input x with NAs
x <= rnorm(10000)
x[sample (10000, 10)] <- NA

compute median
res <- fastquantile(x, 0.5)
res

base method
res == quantile(x, 0.5, na.rm = TRUE)
res == median(x, na.rm = TRUE)

Comparison
microbenchmark: :microbenchmark(
{
fastquantile(x, 0.5)
A
quantile(x, 0.5, na.rm = TRUE)
bt
median(x, na.rm = TRUE)
}
)

fastqueue2 A Wrapper for fastmap: : fastqueue

Description

A Wrapper for fastmap: : fastqueue
Usage
fastqueue2(init = 20L, missing_default = NULL)

S3 method for class 'fastqueue2'
x[[i]]

S3 method for class 'fastqueue2'’
x[i, j = NULL, ...]

S3 method for class 'fastqueue2'
print(x, ...)

fastqueue?2

S3 method for class 'fastqueue2'
length(x)

S3 method for class 'fastqueue2'
as.list(x, ...)

Arguments

init, missing_default
passed to fastmap: : fastqueue

X a 'fastqueue2' object
i, j integer index

integer indices or passed to other methods

Value

A list of 'fastqueue2' instance

Examples
x <- fastqueue2()

add elements
x$madd(1, "b", function(){ "c" 3}, 4, "5")

print information
print(x)

get the second element without changing the queue
x[[2]]

remove and get the first element
x$remove ()

the second item

x[[2]1]

first two items in a list

x[c(1,2)]

print(x)
as.list(x)

48 flex_div

flex_div Generate Shiny element with arrangement automatically

Description

Generate Shiny element with arrangement automatically

Usage
flex_div(..., ncols = "auto")
Arguments
shiny UI elements
ncols number of columns, either "auto” or vector of positive integers
Details

If multiple numbers of columns are specified, flex_div will guess the best size that will be applied.
For button UI, flex_div automatically add "2@px" on the top margin.

Value

HTML objects

Examples

ui <- flex_div(
shiny::selectInput('sel', label = 'Select input',
choices = '', width = '100%'),
shiny::textInput('id2', label = html_asis(' '), width = '100%',
value = 'Heights aligned'),
actionButtonStyled('ok2', 'Button', width = '100%',),
shiny::sliderInput('sl', 'Item 4', min = 1, max = 2,
value = 1.5, width = '100%'),
shiny::filelnput('aa', 'item 5', width = '100%'),
ncols = c¢(2,3) # Try to assign 2 or 3 items per column
)
if(interactive()){
shiny: :shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)),
server = function(input, output, session){})

forelse 49

forelse Python-style "for-else" function

Description

Provide Python-style "for-else” that works as follows: for each element, execute "for" block, if
there is break while executing "for" block, then just stop and ignore the "else" statement, otherwise
run "else" block.

Usage
forelse(x, FUN, ALT_FUN = NULL)

Arguments

X iterative R objects such as list, vector, etc.

FUN function that applies to each x

ALT_FUN function that takes no argument or other types of R object
Value

If any FUN returns anything other than NULL, then the function returns the first none NULL object. If
all x fed to FUN return NULL, then this function returns ALT_FUN (if ALT_FUN is not a function) or the
result of ALT_FUN().

Examples

1. ALT_FUN get executed because FUN returns NULL for all items in x
forelse(
1:10,
function(x){
cat('The input is ', x, end = '"\n'")
if(x > 10) return(x) else return(NULL)
1
function(){
cat('ALT_FUN is executed!\n')

2. FUN returns non-NULL object
forelse(
1:10,
function(x){
cat('The input is ', x, end = '"\n'")
if(x %% 2 == @) return(x) else return(NULL)

50 getlnputBinding

FUN <- function(x){

Sys.sleep(0.01)

if(x %% 2 == @) return(x) else return(NULL)
3

microbenchmark: :microbenchmark({
forelse(1:10, FUN, 'wow')
AL
y <- unlist(lapply(1:10, FUN))
if(length(y)){
y <= y[[11]
Yelse{
y <= "wow'
3
A
y <- NULL
for(x in 1:10){ y <- FUN(x) }
if(is.null(y)){ y <= 'wow' }
}, times = 3)

getInputBinding Obtain registered input bindings

Description

Obtain registered input bindings

Usage

getInputBinding(fname, pkg = NULL, envir = parent.frame())

Arguments
fname input function name, character or quoted expression such as 'shiny: : textInput'
or numericInput.
pkg (optional), name of package
envir environment to evaluate fname if pkg is not provided
Value

a list containing: 1. ‘JavaScript® input binding name; 2. ‘R updating function name

get_cpu 51

Examples

library(dipsaus)

Most recommended usage
getInputBinding('compoundInput2', pkg = 'dipsaus')

Other usages

getInputBinding('shiny: :textInput')

getInputBinding(shiny: :textInput)

getInputBinding(compoundInput2, pkg = 'dipsaus')

Bad usage, raise errors in some cases

Not run:

You need to library(shiny), or set envir=asNamespace('shiny'), or pkg='shiny'
getInputBinding('textInput')

getInputBinding(textInput) # also fails

Always fails
getInputBinding('dipsaus::compoundInput2', pkg = 'dipsaus')

End(Not run)

get_cpu Defunct Functions in Package dipsaus The functions or variables
listed here are no longer part of the package.

Description
Defunct Functions in Package dipsaus The functions or variables listed here are no longer part of
the package.

Usage

get_cpu()

get_credential Generate a random password

Description

Please note that this function is not meant to be used in production. It is not meant to be used for
highly secured cryptographic purposes.

52 get_credential

Usage

get_credential(
master_password,

method = c("get_or_create”, "replace”, "query"),
service = NULL,
special_chr = "~ @#3$%"&*()_—-+={[}1]:;'<,>.?/",

tokenfile = NULL,
verbose = FALSE

Arguments

master_password
a master password that only you know, should have at least 8 characters

method whether to query token map, or to create the password, choices are 'get_or_create’
(default), 'replace’, 'query'; see ’Details’

service service name, must only contains letters, digits, equal sign, underscore, comma,
dot, dash
special_chr special characters allowed in the password
tokenfile a file containing all the tokens. Warning: if you lose the token book, it is hard
(not impossible, but impractical) to restore the passwords
verbose whether to print out service names; default is false
Details

Please note that this function is not meant to be used in production or anything that requires high
security level. This is most likely for my personal use since I am tired of storing the passwords on
the cloud or having to buy the services.

The encryption adopts 'sha256' algorithm provided by digest function. To restore a password,
you will need twp components: master_password, a token book (tokenfile). If any of them is
missing, then the password is lost. Please store the token book properly (for example, in *Dropbox’
vault).

The token book could be shared. Anyone who do not have master password will be unlikely to
restore the service password. Do not share the master password with anyone other than yourself.

By default, method="get_or_create' will try to retrieve existing tokens to generate password.
If the token is missing, then a new token will be generated. The method="'replace' will ignore
existing tokens and directly create a new one.

Value

If method is 'query', returns token map; otherwise returns the password itself

See Also

digest

get_credential

Examples
tokenfile <- tempfile()

- Create a password and store the tokens to token book
pass1 <- get_credential(

master_password = "my password”,

service = "google.com:my_username”,

special_chr = "@#$%"&x",

tokenfile = tokenfile

)
print(pass1)

oo Query existing tokens ------
token_params <- get_credential(

method = "query”,

tokenfile = tokenfile,

verbose = TRUE

print(token_params)

oo retrieve stored password ----------
pass2 <- get_credential(

master_password = "my password”,

service = "google.com”,

tokenfile = tokenfile
)

identical(pass1, pass2)

Using wrong master password
pass3 <- get_credential(

master_password = "wrong password”,
service = "google.com”,
tokenfile = tokenfile

)

identical(pass1, pass3)

- Replace token ----------
Existing token will be replaced with a new token
pass4 <- get_credential(

master_password = "my password”,
method = "replace”,
service = "google.com”,

special_chr = "@#$%"&x",
tokenfile = tokenfile
)
print(pass4)
identical(passl1, pass4)

53

54 get_dipsaus_upload_dir

get_dipsaus_upload_dir
Get upload directory for fancyDirectoryInput

Description

Retrieve the upload directory path for a fancyDirectoryInput. The upload directory is generated
based on the session token and input ID, and files uploaded to the input preserve their relative
directory structure within this directory.

Usage

get_dipsaus_upload_dir(inputId, session = shiny::getDefaultReactiveDomain())

Arguments
inputId the input ID (relative to the session, whose namespace will be automatically
applied via session$ns(inputId))
session the Shiny session object (default: shiny: :getDefaultReactiveDomain())
Details

This function is useful for:
* Manually cleaning up uploaded files viaunlink (get_dipsaus_upload_dir(inputld), recursive
= TRUE)
* Processing files with their preserved directory structure
* Accessing the upload directory for custom file operations
The upload directory is deterministic for a given session and input ID, meaning multiple uploads

to the same input will use the same directory (unless autoCleanup = TRUE is set, which clears the
directory before each new upload).

In Shiny modules, use the relative inputId (e.g., "dir_input”) rather than the full ID (with names-
pace applied). The function will automatically handle namespace conversion via session$ns(inputId).

Value

Character string with the upload directory path, or NULL if the input has no uploaded files yet. The
directory path follows the pattern tempdir()/dipsaus_uploads/{6-char-hash}/ where the hash
is derived from digest(session_token + full_inputId).

get_dots 55

Examples

Not run:
server <- function(input, output, session) {
observeEvent (input$dir_input, {
files <- input$dir_input

if(!is.null(files) && attr(files, "upload_status”) == "completed") {
Get the upload directory
upload_dir <- get_dipsaus_upload_dir("dir_input")
cat("Files are stored in:", upload_dir, "\n")

Process files...

Clean up when done
unlink(upload_dir, recursive = TRUE, force = TRUE)
3
b))
3

End(Not run)

’

get_dots Get or check elements from dots ’ . . .

Description

[

Get information from '. .. "' without evaluating the arguments.

Usage

get_dots(..name, ..default = NULL, ...)

missing_dots(envir = parent.frame())

Arguments
. .name character name of the argument
..default R object to return if argument not found
dots that contains argument
envir R environment
Value

missing_dots returns logical vector with lengths matching with dot lengths. get_dots returns
value corresponding to the name.

56

Examples

missing_dots(environment()) is a fixed usage

my_function <- function(...){
missing_dots(environment())

3

my_function(,)

get_dots

plot2 <- function(...){
title = get_dots('main', 'There is no title', ...)
plot(...)
title

3

plot2(1:10)
plot2(1:10, main = 'Scatter Plot of 1:10")

oo Comparisons —-----—--—=--=--=--—---—--——-—-

f1 <= function(...){ get_dots('x"', ...) }
f2 <= function(...){ list(...)[['x']1] }
delayedAssign('y', { cat('y is evaluated!') 3})

y will not evaluate
fix=1,y=v)

y gets evaluated
f2x =1, y =y

o Decorator example --------—---------———-----
ret_range <- function(which_range = 'y'){
function(f){
function(...){
f(...)
y_range <- range(get_dots(which_range, 0, ...))
y_range
}
}
3

plot_ret_yrange <- plot %D% ret_range('y"')
plot_ret_yrange(x = 1:10, y = rnorm(10))

get_ip

get_ip Get ’IP’ address

get_os
Description

Get "IP’ address

Usage

get_ip(get_public = NA)

Arguments

get_public whether to get public "IP’

Value

a list of "IP’ addresses

57

get_os Detect the type of operating system

Description

Detect the type of operating system

Usage

get_os()

Value

The type of current operating system: 'windows', 'darwin’, 'linux', 'solaris’, 'emscripten’,

or otherwise 'unknown'.

Examples

get_os()

58

graphic-devices

get_ram Get Memory Size

Description

Get Memory Size

Usage

get_ram()

Details

The function get_ram only supports "'MacOS’, ’Windows’, and 'Linux’. ’Solaris’ or other platforms

will return NA. Here are the system commands used to detect memory limits:

*Windows’ Uses command 'wmic.exe' in the "Windows’ system folder. Notice this command-
line tool might not exist on all "Windows’ machines. get_ram will return NA if it cannot locate

the command-line tool.

’MacOS’ Uses command 'sysctl' located at '/usr/sbin/' or '/sbin/'. Alternatively, you
can edit the environment variable 'PATH' to include the command-line tools if 'sysctl' is

missing. get_ram will return NA if it cannot locate 'sysctl'.

’Linux’ Uses the file ' /proc/meminfo', possibly the first entry 'MemTotal'. If the file is missing

or entry 'MemTotal' cannot be located, get_ram will return NA.

Value

System RAM in bytes, or NA if not supported.

Examples

get_ram()

graphic-devices Create a group of named graphic devices

Description

Create a group of named graphic devices

Usage

dev_create(..., env = parent.frame(), attributes = list())

get_dev_attr(which, dev = grDevices::dev.cur(), ifnotfound = NULL)

graphic-devices 59

Arguments
named expressions to launch devices
env environment to evaluate expressions
attributes named list; names correspond to device names and values are attributes to set to
the devices
which which attribute to obtain
dev which device to search for attributes
ifnotfound value to return if attribute is not found
Value

A list of functions to query, control, and switch between devices

Examples

Not run: ## Unix-specific example

Create multiple named devices, setting attributes to the second graph
devs <- dev_create(

line = X11(), points = x11(),

attributes = list(points = list(pch = 16))

switch to device named "points”
devs$dev_which('points"')

Plot points, with pch given as preset
plot(1:10, pch = get_dev_attr(which = 'pch', ifnotfound = 1))

switch to "line"” device
devs$dev_switch('line")
plot(1:100, type='l")

Create another group with conflict name
dev_another <- dev_create(line = X11())

Query device name with 'line’
dev_another$dev_which('line') # 4
devs$dev_which('line') # 2, doesn't conflict with the new groups

dev.list()
close one or more device
dev_another$dev_off('line")
dev.list()

close all devices
devs$dev_off ()
dev.list()

60 handler_dipsaus_progress

End(Not run)

handler_dipsaus_progress
Progress-bar Handler

Description

Handler for progress?2 to support progressr: :handlers. See examples for detailed use case

Usage

handler_dipsaus_progress(
title = getOption("dipsaus.progressr.title”, "Progress"),
intrusiveness = getOption("progressr.intrusiveness.gui”, 1),
target = if (is.null(shiny::getDefaultReactiveDomain())) "terminal” else "gui”,

enable = interactive() || shiny_is_running(),
)
Arguments
title default title of progress?2
intrusiveness A non-negative scalar on how intrusive (disruptive) the reporter to the user
target where progression updates are rendered
enable whether the progress should be reported

passed to make_progression_handler

Examples

library(progressr)
library(shiny)
library(future)

- Setup! ----------------
handlers(handler_dipsaus_progress())

xs <- 1:5
handlers(handler_dipsaus_progress())
with_progress({

p <- progressor(along = xs)

y <- lapply(xs, function(x) {
p(sprintf("x=%g", x))
Sys.sleep(0@.1)
sqrt(x)

html_asis 61

»
b

plan(sequential)
test it yourself with plan(multisession)

handlers(handler_dipsaus_progress())
with_progress({
p <- progressor(along = xs)
y <- future.apply::future_lapply(xs, function(x) {
p(sprintf("x=%g", x))
Sys.sleep(0.1)
sqrt(x)
D)
»

ui <- fluidPage(
actionButton('ok', 'Run Demo')

)

server <- function(input, output, session) {
handlers(handler_dipsaus_progress())
make_forked_clusters()

observeEvent (input$ok, {
with_progress({
p <- progressor(along = 1:100)
y <- future.apply::future_lapply(1:100, function(x) {
p(sprintf("Input %d|Result %d", x, x+1))
Sys.sleep(1)

x+1
)]
»
D)
3
if(interactive()){
shinyApp(ui, server)
3
html_asis Escape HTML strings
Description

Escape HTML strings so that they will be displayed "as-is’ in websites.

62 html class

Usage

html_asis(s, space = TRUE)

Arguments

S characters

space whether to also escape white space, default is true.

Value

An R string

Examples

ui <- flex_div(
shiny::textInput('id', ' ', width = '100%"',
value = 'Height not aligned'),
actionButtonStyled('ok', 'Buttonl', width = '100%',),
shiny::textInput('id2', html_asis(' '), width = '100%"',
value = 'Heights aligned'),
actionButtonStyled('ok2', 'Button2', width = '100%',),
ncols = 2
)
if(interactive()){
shiny: :shinyApp(ui = shiny::fluidPage(shiny::fluidRow(ui)),
server = function(input, output, session){})

html_class Combine, add, or remove '"HTML’ classes

Description
Combine "THTML’ classes to produce nice, clean "THTML’ class string via combine_html_class, or
to remove a class via remove_html_class

Usage

combine_html_class(...)

remove_html_class(target, class)

Arguments

one or more characters, classes to combine; duplicated classes will be removed
target characters, class list

class one or more characters, classes to be removed from target

iapply 63

Value

A character string of new "HTML’ class

Examples

Combine classes "a b c d e”
combine_html_class("a", "b a", c("c", " d", "b"), list("e ", "a"))

Remove class

remove_html_class("a b ¢ e", c("b", "c "))
iapply Apply each elements with index as second input
Description

Apply function with an index variable as the second input.

Usage

iapply(X, FUN, ..., .method = c("sapply”, "lapply”, "vapply"))
Arguments

X a vector (atomic or list)

FUN the function to be applied to each element of X: see ‘Details*.

passed to apply methods

.method method to use, default is sapply

Details

FUN will be further passed to the apply methods. Unlike lapply, FUN is expected to have at least
two arguments. The first argument is each element of X, the second argument is the index number
of the element.

Value

a list or matrix depends on .method. See lapply

64 lapply_async2

is_from_namespace Check whether a function, environment comes from a namespace

Description

A coarse way to find if a function comes from a package.

Usage

is_from_namespace(x, recursive = TRUE)

Arguments
X function, environment, language (with environment attached)
recursive whether to recursively search parent environments

Value

logical true if x or its environment is defined in a namespace; returns false if the object is atomic, or
defined in/from global environment, or an empty environment.

Examples

is_from_namespace(baseenv()) # TRUE
is_from_namespace(utils::read.csv) # TRUE

x <= function(){}

is_from_namespace (NULL) # FALSE
is_from_namespace(x) # FALSE
is_from_namespace(emptyenv()) # FALSE

Let environment of “x” be base environment
(exception case)
environment(x) <- baseenv()

is_from_namespace(x) # TRUE
lapply_async?2 Apply, but in parallel
Description

Apply, but in parallel

lapply_async2 65

Usage
lapply_async2(
X’
FUN,
FUN.args = list(),
callback = NULL,
plan = TRUE,

future.chunk.size = NULL,
future.seed = sample.int(1, n = Te+@5 - 1),

)
Arguments
X vector, list
FUN function to apply on each element of x
FUN.args more arguments to feed into FUN
callback function to run after each iteration
plan logical, or character or future plan; see Details.

future.chunk.size, future.seed
see also future_lapply. If you want the callbacks to be called immediately
after each loop, then set it to 1, which is not optimal but the only way right now.

passed to plan

Details

When planis logical, FALSE means use current plan. If plan=TRUE, then it equals to plan="multicore'.
For characters, plancanbe 'multicore’, 'callr', 'sequential', 'multisession’', 'multiprocess’,
etc. Alternatively, you could pass future plan objects.

Value

same as with(FUN.args, lapply(x, function(el){eval(body(FUN))3}))

See Also

make_forked_clusters

Examples

library(future)
plan(sequential)

Use sequential plan

1. Change “plan” to 'multicore', 'multisession', or TRUE to enable
multi-core, but still with progress information

2. Change plan=FALSE will use current future plan

res <- lapply_async2(100:200, function(x){

66 lapply_callr

return(x+1)
}, callback = function(e){
sprintf('Input=%d', e)
}, plan = 'sequential')

Disable callback message, then the function reduce to
normal ~future.apply::future_lapply"”
res <- lapply_async2(100:200, function(x){
return(x+1)
3}, callback = NULL, plan = FALSE)

if(interactive()) {

PID are different, meaning executing in different sessions
lapply_async2(1:4, function(x){
Sys.getpid()
D)
3

lapply_callr Apply function with rs_exec

Description

Apply function with rs_exec

Usage

lapply_callr(
X’
fun,

.callback = NULL,

.globals = list(),

.ncores = future::availableCores(),
.packages = attached_packages(),
.focus_on_console = TRUE,

.rs = FALSE,
.quiet = FALSE,
.name = "",
.wait = TRUE
)
Arguments
X vector or list

fun function

lapply_callr

.callback

.globals
.ncores

.packages

67

passed to function, see lapply

a function takes zero, one, or two arguments and should return a string to show
in the progress

a named list that fun relies on
number of cores to use; only used when .wait=TRUE

packages to load

.focus_on_console

.rs
.quiet
.name

.wait

Value

whether to focus on console once finished; is only used when . rs is true
whether to create "RStudio’ jobs; default is false

whether to suppress progress message

the name of progress and jobs

whether to wait for the results; default is true, which blocks the main session
waiting for results.

When .wait=TRUE, returns a list that should be, in most of the cases, identical to lapply; when
.wait=FALSE, returns a function that collects results.

See Also

rs_exec

Examples

if(interactive()){

lapply_callr(1:3, function(x, a){
c(Sys.getpid(), a, x)

},a=1)

lapply_callr(1:30, function(x)

{

Sys.sleep(0.1)
sprintf("a + x = %d", a + x)

}, .globals
.callback =

list(a = 1),

I, .name = "Test")

68

list_to_fastqueue2

list_to_fastmap2 Copy elements to fastmap2

Description

Copy elements to fastmap2

Usage

list_to_fastmap2(li, map = NULL)

Arguments

1i a list or an environment

map NULL or a fastmap?2 instance
Value

If map is not NULL, elements will be added to map and return map, otherwise create a new instance.

list_to_fastqueue2 Copy elements to fastqueue?2

Description

Copy elements to fastqueue?2

Usage

list_to_fastqueue2(li, queue = NULL)

Arguments

1i a list or an environment

queue NULL or a fastqueue?2 instance
Value

If map is not NULL, elements will be added to map and return map, otherwise create a new instance.

lock 69

lock Create or Unlock a Lock

Description

A wrapper for ’synchronicity’ package, but user can interrupt the lock procedure anytime, and don’t
have to worry about whether the lock exists or not.

Usage

dipsaus_lock(name, timeout = 10, exclusive = TRUE)
dipsaus_unlock(name, timeout = 1@, exclusive = TRUE)

dipsaus_resetlocks(name)

Arguments
name character, the locker’s name, must be only letters and digits
timeout numeric, seconds to wait for the locker to lock or unlock
exclusive ignored

Value

Logical, whether the operation succeed.

Examples

Clear existing locks
dipsaus::dipsaus_resetlocks()

unlock to prepare for the example
dipsaus_unlock('testlocker', timeout = 0.01)

Create a locker, return TRUE
lock_success = dipsaus_lock('testlocker")
if(lock_success){

cat2('testlocker has been locked')
3

test whether locker has been locked
lock_success = dipsaus_lock('testlocker', timeout = 0.01)
if(!lock_success){
cat2('attempt to lock testlocker failed')
3

unlock
dipsaus_unlock('testlocker', timeout = 0.01)

70 make_forked_clusters

clean up
dipsaus::dipsaus_resetlocks()

make_forked_clusters Create forked clusters, but more than that

Description

Creates forked clusters. If fails, then switch to alternative plan (default is "multisession”).

Usage

make_forked_clusters(
workers = future::availableCores(),
on_failure = getOption("dipsaus.cluster.backup”, "sequential”),
clean = FALSE,

)
Arguments
workers positive integer, number of cores to use
on_failure alternative plan to use if failed. This is useful when forked process is not sup-
ported (like *windows’); default is options("dipsaus.cluster.backup”) or
’sequential’
clean whether to reverse the plan on exit. This is useful when use make_forked_clusters
inside of a function. See details and examples.
passing to future: :plan
Details
This was original designed as a wrapper for future: :plan(future::multicore, ...). Forked

clusters are discouraged when running in *’RStudio’ because some pointers in "RStudio’ might be
incorrectly handled, causing fork-bombs. However, forked process also has big advantages over
other parallel methods: there is no data transfer needed, hence its speed is very fast. Many external
pointers can also be shared using forked process. Since version 1.14.0, unfortunately, forked *mul-
ticore’ is banned by future package by default, and you usually need to enable it manually. This
function provides a simple way of enable it and plan the future at the same time.

On windows, forked process is not supported, under this situation, the plan fall back to sequen-
tial, which might not be what you want. In such case, this function provides an alternative strat-
egy that allows you to plan. You could also always enable the alternative strategy by setting
dipsaus.no.fork option to true.

The parameter clean allows you to automatically clean the plan. This function allows you to
reverse back to previous plan automatically once your function exits. For example, users might

make_forked_clusters 71

have already set up their own plans, clean=TRUE allows you to set the plan back to those original
plans once function exit. To use this feature, please make sure this function is called within another
function, and you must collect results before exiting the outer function.

Value

Current future plan

See Also

lapply_async2

Examples

if(interactive()){

- Basic example
library(future)
library(dipsaus)

sequential
plan("sequential”)

make_forked_clusters()
plan() # multicore, or multisession (on windows)

Sys.getpid() # current main session PID
value(future({Sys.getpid()})) # sub-process PID, evaluated as multicore

—————- When fork is not supported

reset to default single core strategy
plan("”sequential”)

Disable forked process
options("dipsaus.no.fork” = TRUE)
options("dipsaus.cluster.backup” = "multisession”)

Not fall back to multisession
make_forked_clusters()

plan()

----—- Auto-clean

reset plan

plan("sequential”)

options("dipsaus.no.fork” = FALSE)
options("dipsaus.cluster.backup” = "multisession”)

simple case:

72 map

my_func <- function(){
make_forked_clusters(clean = TRUE)

fs <- lapply(1:4, function(i){
future({Sys.getpid()})
»

unlist(value(fs))
}

my_func() # The PIDs are different, meaning they ran in other sessions
plan() # The plan is sequential, auto reversed strategy

- Auto-clean with lapply_async2
my_plan <- plan()

lapply_async2 version of the previous task
lapply_async2(1:4, function(i){

Sys.getpid()
1))

identical(plan(), my_plan)

map Create R object map.

Description

Provides five types of map that fit in different use cases.
Usage

session_map(map = fastmap::fastmap())

rds_map(path = tempfile())

text_map(path = tempfile())

Arguments

map a fastmap: :fastmap() list

path directory path where map data should be stored

map

Details

73

There are five types of map implemented. They all inherit class AbstractMap. There are several
differences in use case scenarios and they backend implementations.

session_map A session map takes a fastmap object. All objects are stored in current R session.

This means you cannot access the map from other process nor parent process. The goal of this
map is to share the data across different environments and to store global variables, as long as
they share the same map object. If you are looking for maps that can be shared by different
processes, check the rest map types. The closest map type is rds_map.

rds_map An RDS’ map uses file system to store values. The values are stored separately in ’.rds’

files. Compared to session maps, 'RDS’ map can be shared across different R process. It’s
recommended to store large files in rds_map. If the value is not large in RAM, text_map is
recommended.

text_map A ’text’ map uses file system to store values. Similar to rds_map, it can be stored

Value

across multiple processes as long as the maps share the same file directory. However, unlike
rds_map, text_map the text_map can only store basic data values, namely atom data types.
The supported types are: numeric, character, vector, list, matrix It’s highly recommended to
convert factors to characters. Do NOT use if the values are functions or environments. The
recommended use case scenario is when the speed is not the major concern, and you want
to preserve data with backward compatibility. Otherwise it’s highly recommended to use
rds_map.

An R6 instance that inherits AbstractMap

Examples

Define a path to your map.
path = tempfile()
map <- rds_map(path)

Reset
map$reset()

Check if the map is corrupted.
map$validate()

You have not set any key-value pairs yet.

Let's say two parallel processes (A and B) are sharing this map.
Process A set values

map$keys ()

Start push
set a normal message

map$set(key =

[

a', value = 1)

set a large object

74 mask_function2

map$set(key = 'b', value = rnorm(100000))

set an object with hash of another object
map$set(key = 'c', value = 2, signature = list(
parameterl = 123,

parameter2 = 124

)

Check what's in the map from process B
mapB <- rds_map(path)

mapB$keys ()

mapB$keys(include_signatures = TRUE)

Number of key-values pairs in the map.
mapB$size()

Check if key exists
mapB$has(c('1','a', 'c"))

Check if key exists and signature also matches
mapB$has('c', signature = list(

parameter1 = 123,

parameter2 = 124

)

Signature changed, then return FALSE. This is especially useful when
value is really large and reading the value takes tons of time
mapB$has('c', signature = list(

parameter1 = 1244444,

parameter2 = 124

))
Destroy the map's files altogether.
mapB$destroy()
Not run:
Once destroyed, validate will raise error
mapB$validate()

End(Not run)

mask_function2 Mask a function with given variables

Description

Modifies the default behavior of the function by adding one environment layer on top of input
function. The masked variables are assigned directly to the environment.

match_calls

Usage

mask_function2(f, ..., .list = list())
Arguments

f any function

..., .list name-value pairs to mask the function
Value

a masked function

Examples

a <- 123

f1 <= function(){
a+ 1

3

f1() # 124

f2 <- mask_function2(f1, a = 1)
f2() # a is masked with value 1, return 2

environment(f1) # global env
environment(f2) # masked env

env <- environment(f2)
identical(parent.env(env), environment(f1)) # true
env$a # masked variables: a=1

75

match_calls Recursively match calls and modify arguments

Description

Recursively match calls and modify arguments

Usage

match_calls(
call,
recursive = TRUE,
replace_args = list(),
quoted = FALSE,
envir = parent.frame(),

76

Arguments
call an R expression
recursive logical, recursively match calls, default is true

replace_args named list of functions, see examples
quoted logical, is call quoted
envir which environment should call be evaluated

other parameters passing to match.call

Value

A nested call with all arguments matched

Examples

library(dipsaus); library(shiny)

In shiny modules, we might want to add ns() to inputlds
In this example, textInput(id) will become textInput(ns(id))
match_calls(lapply(1:20, function(i){

textInput(paste('id_", i), paste('Label ', i))
}), replace_args = list(

inputId = function(arg, call){ as.call(list(quote(ns), arg)) }
)

mean_se

mean_se Calculates mean and standard error of mean

Description

Calculates mean and standard error of mean

Usage

mean_se(x, na.rm = FALSE, se_na_as_zero = na.rm)

Arguments
X R numerical object
na.rm whether to remove NA; default is false

Seé_na_as_zero see na_as_zero in ste_mean

Value

A named vector containing the mean and standard error of mean (ste_mean).

mem_limit2 77
See Also

ste_mean

Examples

Mean should be near @ (mean of standard normal)
standard error of mean should be near 0.01
mean_se(rnorm(10000))

Get max RAM size This is an experimental function that is designed
for non-windows systems

mem_limit2

Description

Get max RAM size This is an experimental function that is designed for non-windows systems

Usage

mem_limit2()

Value

a list of total free memory.

new_function?2 Create new function that supports ’quasi-quosure’ syntax

Description

Create new function that supports ’quasi-quosure’ syntax

Usage

new_function2(
args = alist(),
body = {
1
env = parent.frame(),
quote_type = c("unquoted”, "quote"”, "quo"),
quasi_env = parent.frame()

)

78 new_function2

Arguments

args named list of function formals

body function body expression, supports ’quasi-quosure’ syntax

env declare environment of the function

quote_type character, whether body is unquoted, quoted, or a ’quo’ object (from ’rlang’

package)

quasi_env where the ’quasi-quosure’ should be evaluated, default is parent environment

Details

An unquoted body expression will be quoted, all the expressions with ’quasi-quosure’ like !!var
will be evaluated and substituted with the value of var. For a ’quosure’, quo_squash will be
applied. A quoted expression will not be substitute, but will be expanded if any ’quasi-quosure’
detected

args must be a 1ist object, see formals. For arguments with no default values, or quoted defaults,
use alist. An arg=alist(a=) will result in a function like function(a){...3}. See examples for
more details.

Value

a function

See Also

new_function

x <- 1:10
f1 <- new_function2(alist(a=), { print(a + x) }, env = environment())
1(0)

X <- 20:23

f1(0) # result changed as x changed

x <- 1:10

f2 <- new_function2(alist(a=), { print(a + !!x) })
print(f2)

2(0)

X <- 20:23
f2(0) # result doesn't change as f2 doesn't depend on x anymore

default <- 123

no_op 79

default with values pre-specified
new_function2(list(a = default)) # function (a = 123){}

default with values unevaluated
new_function2(list(a = quote(default))) # function (a = default){}
new_function2(alist(a = default))

missing default
new_function2(alist(a =)) # function (a){}

no_op Pipe-friendly no-operation function

Description

returns the first input with side effects

Usage
no_op(.x, .expr, ..., .check_fun = TRUE)
Arguments
X any R object
.expr R expression that produces side effects
.., .check_fun see ‘details*
Details

no_op is a pipe-friendly function that takes any values in, evaluate expressions but still returns input.
This is very useful when you have the same input across multiple functions and you want to use
pipes.

.expr is evaluated with a special object ' . ', youcanuse '.' torepresent . x in .expr. For example,
if .x=1:100, then plot(x=seq(@,1,length.out =100), y=.) isequivalent to plot (x=seq(@,1,length.out
=100), y=1:100).

.check_fun checks whether . expr returns a function, if yes, then the function is called with argu-
ment .x and ...
Value

The value of . x

80 observeDirectoryProgress

Examples

1. Basic usage

Will print('a') and return 'a'

no_op('a', print)

Will do nothing and return 'a' because .check_fun is false
no_op('a', print, .check_fun = FALSE)

Will print('a') and return 'a'
no_op('a', print(.), .check_fun = FALSE)

2. Toy example
library(graphics)

par(mfrow = c(2,2))
X <= rnorm(100)

hist and plot share the same input “rnorm(100)"
y <= x [|>
.expr is a function, all ... are passed as other arguments
no_op(hist, nclass = 10) |>
no_op(plot, x = seq(@,1,length.out = 100)) |>
Repeat the previous two plots, but with different syntax
no_op({ hist(., nclass = 10) }) |>
no_op({ plot(x = seq(@,1,length.out = 100), y = .) }) |>
The return statement is ignored
no_op({ return(x + 1)3})

x is returned at the end

identical(x, y) # TRUE

observeDirectoryProgress
Enable progress tracking for directory uploads

Description
Helper function to set up progress tracking using progress2 for fancyDirectoryInput. Call this
in your server function to enable automatic progress updates.

Usage

observeDirectoryProgress(inputld, session = shiny::getDefaultReactiveDomain())

package_installed 81

Arguments

inputId the input ID of the fancyDirectoryInput

session the Shiny session object (default: shiny: :getDefaultReactiveDomain())
Value

invisible NULL,; sets up reactive observers for progress tracking

Examples

Not run:

server <- function(input, output, session) {
Enable progress tracking
observeDirectoryProgress("dir_input")

Your other server logic...

}

End(Not run)

package_installed Check if a package is installed

Description

Check if a package is installed

Usage
package_installed(pkgs, all = FALSE)

Arguments

pkgs vector of package names

all only returns TRUE if all packages are installed. Default is FALSE.
Value

logical, if packages are installed or not. If al1=TRUE, return a logical value of whether all packages
a re installed.
Examples

Check if package base and dipsaus are installed
package_installed(c('base', 'dipsaus'))

Check if all required packages are installed
package_installed(c('base', 'dipsaus'), all = TRUE)

82 PersistContainer

parse_svec Parse Text Into Numeric Vectors

Description

Parse Text Into Numeric Vectors

Usage
parse_svec(text, sep = ","”, connect = "-:|", sort = FALSE, unique = TRUE)
Arguments
text string with chunks, e.g. "1-10, 14, 16-20, 18-30" has 4 chunks
sep default is ",", character used to separate chunks
connect characters defining connection links for example "1:10" is the same as "1-10"
sort sort the result
unique extract unique elements
Value

a numeric vector. For example, "1-3" returns c(1, 2, 3)

See Also

deparse_svec

Examples

parse_svec('1-10, 13:15,14-20")

PersistContainer Wrapper to cache key-value pairs and persist across sessions

Description

This class is designed to persist arbitrary R objects locally and share across different sessions. The
container consists two-level caches. The first one is session-based, meaning it’s only valid under
current R session and will be cleared once the session is shut down. The second is the persist-level
map, which will persist to hard drive and shared across sessions. See cache method in ’details’.

PersistContainer 83

Public Methods
initialize(..., backend =rds_map) The constructor. backend must inherit AbstractMap, . ..
will be passed to backend$new(. . .). To check available back-ends and their use cases, see
map.

reset(all = FALSE) Reset container. If all is set to be true, then reset session-based and hard-
drive-based, otherwise only reset session-based container.

destroy(all = FALSE) destroy the container. Only use it when you want to finalize the container
in reg.finalizer.

has(key, signature = NULL) returns a list of true/false (logical) vectors indicating whether keys
exist in the container, if signature is used when caching the key-value pairs, then it also checks
whether signature matches. This is very important as even if the keys match but signature is
wrong, the results will be false.

remove (keys, all = TRUE) Remove keys in the container. Default is to remove the keys in both
levels. If al1=FALSE, then only remove the key in current session

cache(key, value, signature =NULL, replace = FALSE, persist = FALSE) keyand signature
together form the unique identifier for the value. By default signature is none, but it’s very
useful when value if large, or key is not a string. replace indicates whether to force replace
the key-value pairs even if the entry exists. If persist is true, then the value is stored in
hard-disks, otherwise the value will be deleted once the session is closed.

See Also

map
Examples
container = PersistContainer$new(tempfile())

Reset the container so that values are cleared
container$reset(all = TRUE)

Store “1° to 'a' with signature 111 to a non-persist map
returns 1

container$cache(key = 'a', value = 1, signature = 111, persist = FALSE)
Replace 'a' with 3

returns 3

container$cache(key = 'a', value = 3, signature = 111,

persist = TRUE, replace = TRUE)

check if 'a' exists with signature 111
container$has('a', signature = 111) # TRUE
When you only have 'a' but no signature
container$has('a') # TRUE
check if 'a' exists with wrong signature 222
container$has('a', signature = 222) # FALSE

1

Store 'a' with 2 with same signature

84

print_directory_tree

will fail and ignore the value (value will not be evaluated if signatured)
Return 2 (Important! use cached values)

container$cache(key
print(123)
return(2)

}, signature = 111,

When no signature
If the key exists
returns 3

container$cache(key

= 'a', value = {

replace = FALSE)

is present
(no signature provided), return stored value

= 'a', value = 4)

replace is TRUE (no signature provided), signature will be some default value

containers$cache(key

= '3

, value = 2, replace = TRUE)

destroy the container to free disk space

container$destroy()

print_directory_tree Print Directory Tree

Description

Print Directory Tree

Usage
print_directory_tree(
target,
root = "~"
child,
dir_only = FALSE,
collapse = NULL,
)
Arguments
target target directory path, relative to root
root root directory, default is ' ~'
child child files in target; is missing, then list all files
dir_only whether to display directory children only
collapse whether to concatenate results as one single string
passto list.files when list all files
Value

Characters, print-friendly directory tree.

progress2 85

progress?2 "Shiny’ progress bar, but can run without reactive context

Description

’Shiny’ progress bar, but can run without reactive context

Usage

progress2(
title,
max = 1,
quiet = FALSE,
session = shiny::getDefaultReactiveDomain(),
shiny_auto_close = FALSE,

log = NULL
)
Arguments
title character, task description
max maximum number of items in the queue
passed to shiny: :Progress$new(...)
quiet suppress console output, ignored in shiny context.
session ’shiny’ session, default is current reactive domain

shiny_auto_close
logical, automatically close ’shiny’ progress bar once current observer is over.
Defaultis FALSE. If setting to TRUE, then it’s equivalent to p <- progress2(...);
on.exit({p$close()}, add = TRUE).

log function when running locally, default is NULL, which redirects to cat?2

Value

A list of functions:

inc(detail, message = NULL, amount =1, ...) Increase progress bar by amount (default is 1).
close() Close the progress

reset(detail =”, message =”, value = @) Reset the progress to value (default is 0), and reset
information

get_value() Get current progress value

is_closed() Returns logical value if the progress is closed or not.

86 registerInputBinding

Examples

progress <- progress2('Task A', max = 2)
progress$inc('Detail 1")
progress$inc('Detail 2')
progress$close()

Check if progress is closed
progress$is_closed()

library(shiny)
library(dipsaus)

ui <- fluidPage(
actionButtonStyled('do', 'Click Here', type = 'primary')
)

server <- function(input, output, session) {
observeEvent (input$do, {
updateActionButtonStyled(session, 'do', disabled = TRUE)
progress <- progress2('Task A', max = 10, shiny_auto_close = TRUE)
lapply(1:10, function(ii){
progress$inc(sprintf('Detail %d', ii))
Sys.sleep(0.2)
D
updateActionButtonStyled(session, 'do', disabled = FALSE)
D)
}

if(interactive()){
shinyApp(ui, server)

}

registerInputBinding Register customized input to enable support by compound input

Description

Register customized input to enable support by compound input

Usage

registerInputBinding(
fname,
pkg,
shiny_binding,
update_function = NULL,
quiet = FALSE

restart_session 87

Arguments
fname character, function name, such as "textInput”
pkg character, package name, like "shiny”

shiny_binding character, 'JavaScript’ binding name.See examples

update_function
character, update function such as "shiny: :textInput”

quiet logical, whether to suppress warnings

Value

a list of binding functions, one is ‘JavaScript® object key in Shiny.inputBindings, the other is
‘shiny ¢ update function in R end.

Examples

register shiny textInput
registerInputBinding('textInput', 'shiny',
'shiny.textInput', 'shiny::updateTextInput')

Register shiny actionLink
In "Shiny.inputbindings”, the binding name is "shiny.actionButtonInput”,
Shiny update function is "shiny::updateActionButton”
registerInputBinding('actionLink', 'shiny',

'shiny.actionButtonInput', 'shiny::updateActionButton')

restart_session Restart R Session

Description

Utilize *RStudio’ functions to restart, if running without ’RStudio’, use package startup (not in-
cluded in this library) instead.

Usage

restart_session()

88 rs_avail

rs_active_project Get 'RStudio’ active project

Description

Get "RStudio’ active project

Usage

rs_active_project(...)

Arguments

passed to rs_avail

Value

If *RStudio’ is running and current project is not none, return project name, otherwise return NA

rs_avail Verify 'RStudio’ version

Description

Verify *RStudio’ version

Usage
rs_avail(version_needed = "1.3", child_ok = FALSE, shiny_ok = FALSE)

Arguments

version_needed minimum version required

child_ok check if the current R process is a child process of the main RStudio session.
shiny_ok if set false, then check if ’Shiny’ is running, return false if shiny reactive domain
is not NULL
Value

whether 'RStudio’ is running and its version is above the required

See Also

isAvailable

rs_edit_file 89

rs_edit_file Use 'RStudio’ to open and edit files

Description

Use ’RStudio’ to open and edit files

Usage

rs_edit_file(path, create = TRUE)

Arguments

path path to file

create whether to create if path is not found; default is true
Value

Opens the file pointing to path to edit, and returns the path

rs_exec Schedule a Background Job

Description

Utilizes *RStudio’ job scheduler if correct environment is detected, otherwise call system command
viaRscript

Usage
rs_exec(

expr,
name = "Untitled”,
quoted = FALSE,
rs = TRUE,
as_promise = FALSE,
wait = FALSE,

packages = NULL,
focus_on_console = FALSE,

c

nested_ok = FALSE

90 Is_exec

Arguments
expr R expression
name used by "RStudio’ as name of the job
quoted is expr quoted
rs whether to use ’RStudio’ by default
as_promise whether to return as a promise object; default is no
wait whether to wait for the result.
packages packages to load in the sub-sessions

focus_on_console
whether to return back to console after creating jobs; useful when users want
to focus on writing code; default is false. This feature works with ’RStudio’
(>=1.4)

internally used

nested_ok whether nested rs_exec is allowed; default is false; Set to true to allow nested
parallel code, but use at your own risk.

Details

’RStudio’ provides interfaces jobRunScript to schedule background jobs. However, this function-
ality only applies using "RStudio’ IDE. When launching R from other places such as terminals, the
job scheduler usually result in errors. In this case, the alternative is to call system command via
Rscript

The expression expr will run a clean environment. Therefore R objects created outside of the con-
text will be inaccessible from within the child environment, and packages except for base packages
will not be loaded.

There is a small difference when running within and without ’RStudio’. When running via Rscript,
the environment will run under vanilla argument, which means no load, no start-up code. If you
have start-up code stored at ~/.Rprofile, the start-up code will be ignored. When running within
’RStudio’, the start-up code will be executed. As of rstudioapi version 0.11, there is no ’vanilla’
option. This feature is subject to change in the future.

Value

If wait=TRUE, returns evaluation results of expr, otherwise a function that can track the state of job.

Examples
if(interactive()){
h <- rs_exec(
{

Sys.sleep(2)
print(Sys.getpid())
1,
wait = FALSE, name = 'Test',
focus_on_console = TRUE

rs_focus_console 91

code <- h()
print(code)

wait 3 seconds
Sys.sleep(3)
code <- h()
attributes(code)

rs_focus_console Focus on 'RStudio’ Console

Description

Focus on coding; works with "RStudio’ (>=1.4)

Usage

rs_focus_console(wait = 0.5)

Arguments
wait wait in seconds before sending command; if too soon, then ’RStudio’ might not
be able to react.
Value
None
rs_save_all Save all documents in ’RStudio’
Description

Perform "safe" save-all action with backward compatibility: check whether ’'RStudio’ is running
and whether rstudioapi has function documentSaveAll.

Usage

rs_save_all()

92 rs_set_repos

rs_select_path Use 'RStudio’ to Select a Path on the Server

Description

Use 'RStudio’ to Select a Path on the Server

Usage

rs_select_path(is_directory = TRUE)

Arguments

is_directory whether the path should be a directory

Value

Raise error if rs_avail fails, otherwise returns the selected path

rs_set_repos Add secondary ’CRAN’-like repository to the 'RStudio’ settings

Description
Add self-hosted repository, such as ’drat’, 'r-universe’ to 'RStudio’ preference. Please restart "RStu-
dio’ to take changes into effect.

Usage

rs_set_repos(name, url, add = TRUE)

Arguments
name repository name, must be unique and readable
url the website address of the repository, starting with schemes such as "https'.
add whether to add to existing repository; default is true

Details

’RStudio’ allows to add secondary ’CRAN’-like repository to its preference, such that users can
add on-going self-hosted developing repositories (such as package 'drat', or 'r-universe’). These
repositories will be set automatically when running install.packages.

Value

a list of settings.

ISs_viewer 93

rs_viewer Get 'RStudio’ Viewer, or Return Default

Description

Get 'RStudio’ Viewer, or Return Default

Usage

rs_viewer(

default = TRUE,
version_needed = "1.3",
child_ok = FALSE,
shiny_ok = FALSE

)
Arguments
passed to viewer
default if rs_avail fails, the value to return. Default is TRUE

version_needed, child_ok, shiny_ok
passed to rs_avail

Value

If viewer can be called and "RStudio’ is running, then launch ’RStudio’ internal viewer. Otherwise
if default is a function such as browseURL, then call the function with given arguments. If default
is not a function, return default

screenshot Take a screenshot in shiny apps

Description

Take a screenshot of the whole page and save encoded DataURI that can be accessed via input[[inputId]].
Usage
screenshot(inputld, session = shiny::getDefaultReactiveDomain())

Arguments

inputId the input id where the screenshot should be

session shiny session

94 session_uuid

Value

None. However, the screenshot results can be accessed from shiny input

Examples

library(shiny)
library(dipsaus)
ui <- fluidPage(
taglist(
shiny: :singleton(shiny::tags$head(
shiny::tags$link(rel="stylesheet”, type="text/css", href="dipsaus/dipsaus.css"),
shiny: :tags$script(src="dipsaus/dipsaus-dipterix-1lib.js")

)
),
actionButtonStyled('do', 'Take Screenshot'),
compoundInput2('group', label = 'Group', components = list(
textInput('txt', 'Enter something here')
))

)

server <- function(input, output, session) {
observeEvent (input$do, {
screenshot('screeshot_result')
»
observeEvent (input$screeshot_result, {
showModal (modalDialog(
tags$img(src = input$screeshot_result, width = '100%"')

)
k)]
3
if(interactive()){
shinyApp(ui, server)
3
session_uuid Provides Unique Session ID According to Current R Session
Description

Provides Unique Session ID According to Current R Session

Usage

session_uuid(pid = Sys.getpid(), attributes = FALSE)

set_shiny_input
Arguments
pid

attributes

Value

Character string

95

R session process 1D, default is Sys.getpid()

whether to append data used to calculate ID as attributes, default is false

set_shiny_input

Set Shiny Input

Description

Shiny ‘input’ object is read-only reactive list. When try to assign values to input, errors usually
occur. This method provides several work-around to set values to input. Please use along with
use_shiny_dipsaus.

Usage

set_shiny_input(
session = shiny::getDefaultReactiveDomain(),

inputld,
value,
priority = c("event”, "deferred”, "immediate"),
method = c("proxy", "serialize"”, "value"”, "expression”),
quoted = TRUE
)
Arguments
session shiny session, see shiny domains
inputId character, input ID
value the value to assign
priority characters, options are "event", "deferred", and "immediate". "event" and "im-
mediate" are similar, they always fire changes. "deferred" fire signals to other
reactive/observers only when the input value has been changed
method characters, options are "proxy", "serialize", "value", "expression". "proxy" is

quoted

recommended, other methods are experimental.

is value quoted? Only used when method is "expression”

96 sexp_type2

Examples

library(shiny)

library(dipsaus)

ui <- fluidPage(
Register widgets
use_shiny_dipsaus(),
actionButton('run', 'Set Input'),
verbatimTextOutput('input_value')

)

server <- function(input, output, session) {
start = Sys.time()

output$input_value <- renderPrint({

now <- inputskey

now %7<-% start

cat('This app has been opened for ',
difftime(now, start, units = 'sec'), ' seconds')

b

observeEvent (input$run, {
setting input$key to Sys.time()
set_shiny_input(session, 'key', Sys.time())

D)
3
if(interactive()){
shinyApp(ui, server)
}
sexp_type2 Get Internal Storage Type
Description

Get internal (C) data types; See https://cran.r-project.org/doc/manuals/r-release/R-ints.
pdf Page 1 for more different SEXPTYPEs.

Usage
sexp_type2(x)

S3 method for class 'sexp_type2'
as.character(x, ...)

S3 method for class 'sexp_type2'
print(x, ...)

https://cran.r-project.org/doc/manuals/r-release/R-ints.pdf
https://cran.r-project.org/doc/manuals/r-release/R-ints.pdf

shared_finalizer

Arguments
X any R object
ignored
Value

An integer of class "sexp_type2”

See Also

storage.mode

Examples

1 vs 1L

Integer case
sexp_type2(1L)

double
sexp_type2(1)

Built-in function
sexp_type2("+7)

normal functions
sexp_type2(sexp_type2)

symbols (quoted names)
sexp_type2(quote(~+7))

Calls (quoted expressions)
sexp_type2(quote({~+71}))

97

shared_finalizer Create Shared Finalization to Avoid Over Garbage Collection

Description

Generates a function to be passed to reg.finalizer

98 shared_finalizer

Usage

shared_finalizer(x, key, fin, onexit = FALSE, ...)

Default S3 method:
shared_finalizer(x, key, fin, onexit = FALSE, ...)

S3 method for class 'R6'
shared_finalizer(x, key, fin, onexit = TRUE, ...)

S3 method for class 'fastmap'
shared_finalizer(x, key, fin, onexit = FALSE, ...)

S3 method for class 'fastmap2’

shared_finalizer(x, key, fin, onexit = FALSE, ...)
Arguments
X object to finalize
key characters that should be identical if finalization method is to be shared
fin Shared finalization: function to call on finalization; see reg.finalizer. See
details.
onexit logical: should the finalization be run if the object is still uncollected at the end

of the R session? See reg.finalizer

passed to other methods

Details

The main purpose of this function is to allow multiple objects that point to a same source (say a
temporary file) to perform clean up when all the objects are garbage collected.

Base function reg.finalizer provides finalization to to garbage collect single R environment.
However, when multiple environments share the same file, finalizing one single environment will
result in removing the file so that all the other environment lose the reference. (See example "Native
reg.finalizer fails example")

The argument of fin varies according to different types of x. For environments, fin contains and
only contains one parameter, which is the environment itself. This is the same as reg. finalizer.
For R6 classes, fin is ignored if class has "shared_finalize"” method defined. For fastmap or
fastmap?2 instances, fin accepts no argument.

Examples

oo Environment example ------------
file_exists <- TRUE
clear_files <- function(e){

print('Clean some shared files')

do something to remove files

file_exists <<- FALSE

}

shared_finalizer

el, e2 both require file existence
el <- new.env()
el$valid <- function(){ file_exists }
e2 <- new.env()
e2$valid <- function(){ file_exists }

e1$valid(); e2$valid()

we don't want to remove files when either el,e2 gets
garbage collected, however, we want to run “clear_files~
when system garbage collecting *bothx el and e2

Make sure “key's are identical
shared_finalizer(el, 'cleanXXXfiles', clear_files)
shared_finalizer(e2, 'cleanXXXfiles', clear_files)

Now remove el, files are not cleaned, and e2 is still valid
rm(el); invisible(gc(verbose = FALSE))

e2$valid() # TRUE

file_exists # TRUE

remove both el and e2, and file gets removed
rm(e2); invisible(gc(verbose = FALSE))
file_exists # FALSE

cls <- R6::R6Class(
classname = '...demo...",
cloneable = TRUE,
private = list(
finalize = function(){
cat('Finalize private resource\n')
}
),
public = list(
file_path = character(9),
shared_finalize = function(){
cat('Finalize shared resource - ', self$file_path, '\n')
h
initialize = function(file_path){
self$file_path = file_path
shared_finalizer(self, key = self$file_path)
3
)
)

el <- cls$new('filel")
rm(el); invisible(gc(verbose = FALSE))
el <- cls$new('file2")

A copy of el

99

100

e2 <- el$clone()
unfortunately, we have to manually register
shared_finalizer(e2, key = e2$file_path)

Remove el, gc only free private resource
rm(e1); invisible(gc(verbose = FALSE))

remove el and e2, run shared finalize
rm(e2); invisible(gc(verbose = FALSE))

No formals needed for fastmap/fastmap2
fin <= function(){
cat('Finalizer is called\n')
3
single reference case
el <- dipsaus::fastmap2()

shared_finalizer(el, 'fin-fastmap2', fin = fin)

invisible(gc(verbose = FALSE)) # Not triggered

rm(e1); invisible(gc(verbose = FALSE)) # triggered

multiple reference case
el <- dipsaus::fastmap2()
e2 <- dipsaus::fastmap2()
shared_finalizer(el, 'fin-fastmap2', fin
shared_finalizer(e2, 'fin-fastmap2', fin

rm(el1); invisible(gc(verbose

This example shows a failure case using base::reg.finalizer

file_exists <- TRUE

clear_files <- function(e){
print('Clean some shared files')
do something to remove files
file_exists <<- FALSE

3

el, e2 both require file existence
el <- new.env()
el$valid <- function(){ file_exists }
e2 <- new.env()
e2$valid <- function(){ file_exists }

reg.finalizer(el, clear_files)
reg.finalizer(e2, clear_files)
gcO

file_exists

fin)
fin)

FALSE)) # Not triggered
rm(e2); invisible(gc(verbose = FALSE)) # triggered

shared_finalizer

shift_array 101

removing el will invalidate e2
rm(e1); gcQ)
e2$valid() # FALSE

Clean-ups
rm(e2); gc()

shift_array Shift Array by Index

Description

Re-arrange arrays in parallel

Usage

shift_array(x, shift_idx, shift_by, shift_amount)

Arguments
X array, must have at least matrix
shift_idx which index is to be shifted
shift_by which dimension decides shift_amount

shift_amount shift amount along shift_idx

Details

A simple use-case for this function is to think of a matrix where each row is a signal and columns
stand for time. The objective is to align (time-lock) each signal according to certain events. For
each signal, we want to shift the time points by certain amount.

In this case, the shift amount is defined by shift_amount, whose length equals to number of signals.
shift_idx=2 as we want to shift time points (column, the second dimension) for each signal.
shift_by=1 because the shift amount is depend on the signal number.

Examples

x <- matrix(1:10, nrow = 2, byrow = TRUE)
z <- shift_array(x, 2, 1, c(1,2))

y <= NA * X
y[1,1:4]1 = x[1,2:5]
y[2,1:3] = x[2,3:5]

Check if z ang y are the same
z -y

array case

102

x is Trial x Frequency x Time
x <- array(1:27, c(3,3,3))

Shift time for each trial, amount is 1, -1, 0
shift_amount <- c(1,-1,0)
z <- shift_array(x, 3, 1, shift_amount)

if(interactive()){

par(mfrow = c(3, 2))
for(ii in 1:3){
image(t(x[ii, ,1), ylab = 'Frequency', xlab = 'Time',
main = paste('Trial', ii))
image(t(z[ii, ,1), ylab = 'Frequency', xlab = 'Time',

shiny_alert2

main = paste('Shifted amount:', shift_amount[ii]))
}
3
shiny_alert2 Simple shiny alert that uses ’JavaScript’ promises
Description

Simple shiny alert that uses *JavaScript’ promises

Usage

shiny_alert2(
title = "Alert”,
text = "",
icon = c("info"”, "warning"”, "success”, "error"),
danger_mode = FALSE,
auto_close = TRUE,
buttons = NULL,
on_close = NULL,
session = shiny::getDefaultReactiveDomain()

close_alert2(session = shiny::getDefaultReactiveDomain())

Arguments
title title of the alert
text alert body text (pure text)

icon which icon to display, choices are 'info', 'success' 'warning', and 'error'

shiny_alert2

danger_mode

auto_close

buttons

on_close

session

Value

103

true or false; if true, then the confirm button turns red and the default focus is
set on the cancel button instead. To enable danger mode, buttons must be TRUE
as well

whether to close automatically when clicking outside of the alert

logical value or a named list, or characters. If logical, it indicates whether but-
tons should be displayed or not; for named list, the names will be the button text,
see example; for characters, the characters will be the button text and value

NULL or a function that takes in one argument. If function is passed in, then it
will be executed when users close the alert

shiny session, see domains

a temporary input ID, currently not useful

Examples

library(shiny)

library(dipsaus)

ui <- fluidPage(
use_shiny_dipsaus(),
actionButtonStyled('btn', 'btn')

)

server <- function(input, output, session) {
observeEvent (input$btn, {
shiny_alert2(
on_close = function(value) {
cat(”"Modal closed!\n")

print(value)
3,
title = "Title",
text = "message”,
icon = "success"”,

auto_close = FALSE,
buttons = list("cancel” = TRUE,
"YES!" = list(value = 1))
)
D)
3

if(interactive()){

shinyApp(ui, server, options = list(launch.browser = TRUE))

}

104

ste_mean

shiny_is_running

Detect whether ’Shiny’ is running

Description

Detect whether *Shiny’ is running

Usage

shiny_is_running()

Value

logical, true if current shiny context is active

ste_mean Standard error of mean

Description

Ported from 'rutabaga' package, calculates standard error of mean. The sample size is determined

by number of none-NA numbers by default

Usage
ste_mean(x, na.rm = FALSE, na_as_zero = na.rm,
Default S3 method:
ste_mean(x, na.rm = FALSE, na_as_zero = na.rm,
Arguments
X R object
na.rm whether to remove NA; default is false
na_as_zero whether convert NA to zero
passed to other methods
Value

A numerical number that is the standard error of the mean

See Also

mean_se

.2

)

stream_download 105

Examples

X <= rnorm(100)
ste_mean(x)

internal implementation
identical(ste_mean(x), sd(x) / sqrt(100))

stream_download Stream Download Files to Browser

Description

Push files to browser downloads using 'StreamSaver.js' for efficient streaming of large files.
This function sends file data in chunks to the browser, which then writes them directly to disk
without buffering the entire file in memory.

Usage

stream_download(
filepath,
filename = basename(filepath),
session = shiny::getDefaultReactiveDomain(),
chunk_size = 2 * 1024*2,
cleanup = FALSE,

method = c("streamsaver”, "blob"),
quiet = FALSE
)
Arguments
filepath path to the file to download; must be an existing file
filename the file name to use for the download (defaults to the base name of filepath)
session the Shiny session; defaults to shiny: : getDefaultReactiveDomain()
chunk_size size in bytes for each chunk; default is 2 MB
cleanup whether to delete the source file after download completes; default is FALSE
method download method: "streamsaver” (default, uses service worker for true stream-

ing) or "blob" (fallback that accumulates chunks in memory)

quiet whether to suppress progress messages; default is FALSE

106 stream_download

Details

This function requires the use_shiny_dipsaus() to be called in your Shiny UI to load the neces-
sary *JavaScript’ dependencies.

The "streamsaver” method (default) uses service workers to enable true streaming downloads
that start immediately without buffering the entire file. This is ideal for large files (100MB+). The
"blob" method is a fallback that accumulates chunks in memory before triggering the download,
which works on more browsers but uses more memory.

Value

Invisible NULL; the function is called for its side effects

Service Worker Requirements
'StreamSaver. js' requires the following files to be served from the same origin:

* streamsaver/StreamSaver. js - Main library
* streamsaver/sw. js - Service worker

* streamsaver/mitm.html - Man-in-the-middle page

These files are automatically included when using use_shiny_dipsaus.

See Also

use_shiny_dipsaus, progress2

Examples

if(interactive()) {
library(shiny)

ui <- fluidPage(
use_shiny_dipsaus(),
actionButton("download_btn"”, "Download Large File")

)

server <- function(input, output, session) {
observeEvent (input$download_btn, {
Create a temporary file to demonstrate
temp_file <- tempfile(fileext = ".txt")
writeLines(rep("Hello World!\n", 100000), temp_file)

Stream the file to the browser

stream_download(
filepath = temp_file,
filename = "large_file.txt",
cleanup = TRUE # Delete temp file after download

)

»
}

sumsquared 107

shinyApp(ui, server)

}

sumsquared Fast Calculation of Sum-squared for Large Matrices/Vectors

Description

Calculate sum(x*2), but faster when the number of elements exceeds 1000.

Arguments

X double, integer, or logical vector/matrix

Value

A numerical scalar

Examples

X <= rnorm(10000)
sumsquared(x)

Compare speed

microbenchmark: :microbenchmark(
cpp = {sumsquared(x)},
r = {sum(x*2)}

)

sync_shiny_inputs Synchronize Shiny Inputs

Description

Synchronize Shiny Inputs

Usage

sync_shiny_inputs(
input,
session,
inputlds,
uniform = rep("I"”, length(inputlds)),
updates,
snap = 250,
ignoreNULL
ignorelnit

TRUE,
FALSE

108 test_farg

Arguments

input, session shiny reactive objects

inputIds input ids to be synchronized

uniform functions, equaling to length of inputIds, converting inputs to a uniform values
updates functions, equaling to length of inputIds, updating input values

shap numeric, milliseconds to defer the changes

ignoreNULL, ignorelnit
passed to bindEvent

Value

none.

Examples

library(shiny)

ui <- fluidPage(

textInput('a', 'a', value = 'a'),
sliderInput('b', 'b', value = 1, min = @, max = 1000)
)
server <- function(input, output, session) {
sync_shiny_inputs(input, session, inputIds = c('a', 'b'), uniform = list(
function(a){as.numeric(a)},
T

), updates = list(
function(a){updateTextInput(session, 'a', value = a)},
function(b){updateSliderInput(session, 'b', value = b)}

)
}

if(interactive()){
shinyApp(ui, server)

}

test_farg Test whether function has certain arguments

Description

Test whether function has certain arguments

Usage
test_farg(fun, arg, dots = TRUE)

time_delta 109

Arguments
fun function
arg characters of function arguments
dots whether fun’s dots (. . .) counts
Examples

a <- function(n = 1){}

Test whether “a” has argument called 'b'
test_farg(a, 'b')

Test whether “a° has argument called 'b' and 'n'
test_farg(a, c('b', 'n"))

~a° now has dots
a <- function(n =1, ...){}

'b' could goes to dots and a(b=...) is still valid
test_farg(a, 'b')

strict match, dots doesn't count
test_farg(a, 'b', dots = FALSE)

time_delta Calculate time difference and return a number

Description

Calculate time difference and return a number

Usage

time_delta(t1, t2, units = "secs")

Arguments

t1 time start

t2 time end

units character, choices are 'secs', 'mins', 'hours', and 'days'
Value

numeric difference of time in units specified

110

Examples

a = Sys.time()
Sys.sleep(9.3)
b = Sys.time()

time_delta(a, b) # In seconds, around 0.3
time_delta(a, b, 'mins') # in minutes, around 0.005

to_ram_size

to_datauri Convert file to "base64’ format

Description

Convert file to base64’ format

Usage

to_datauri(file, mime = "")
Arguments

file file path

mime ’mime’ type, default is blank
Value

a ’base64’ data string looks like 'data: ;base64,AEF6986. .. "

to_ram_size Convert bytes to KB, MB, GB,...

Description

Convert bytes to KB, MB, GB,...

Usage
to_ram_size(s, kb_to_b = 1000)

Arguments

s size

kb_to_b how many bytes counts one KB, 1000 by default
Value

numeric equaling to s but formatted

updateActionButtonStyled

111

updateActionButtonStyled
Update styled action button

Description

Update styled action button

Usage

updateActionButtonStyled(
session,
inputld,
label = NULL,
icon = NULL,
type = NULL,
disabled = NULL,

Arguments

session, inputld, label, icon
passed to shiny: :updateActionButton

type button type to update
disabled whether to disable the button
ignored
Value
none
See Also

actionButtonStyled for how to define the button

updateCompoundInput2 Update compound inputs

Description

Update compound inputs

112 updateCompoundInput2

Usage

updateCompoundInput2(
session,
inputld,
value = NULL,
ncomp = NULL,
initialization = NULL,

)
Arguments
session shiny session or session proxy
inputId character see compoundInput2
value list of lists, see compoundInput?2 or examples
ncomp integer, non-negative number of groups to update, NULL to remain unchanged
initialization, ...
named list of other updates
Value
none
See Also

compoundInput?2 for how to define components.

Examples

Not run:
library(shiny); library(dipsaus)

UI side
compoundInput2(
"input_id', 'Group',
div(
textInput('text', 'Text Label'),
sliderInput('sli', 'Slider Selector', value = @, min = 1, max = 1)
),
label_color = 1:10,
value = list(
list(text = '"1'), # Set text first group to be "1"
" # no settings for second group
list(sli = 0.2) # sli = 0.2 for the third group
D)

server side:
updateCompoundInput2(session, 'inputid',
Change the first 3 groups

update_fastmap?2 113

value = lapply(1:3, function(ii){

list(sli = runif(1))
b,
Change text label for all groups
initialization = list(

text = list(label = as.character(Sys.time()))
))

End(Not run)

update_fastmap2 Migrate a fastmap?2 object to a new one

Description

Migrate a fastmap2 object to a new one

Usage

update_fastmap2(from, to, override = TRUE)

Arguments

from, to fastmap2 object

override whether to override keys in to if they exist
Value

Map to

See Also

fastmap2

use_shiny_dipsaus Set up shiny plugins

Description

This function must be called from a Shiny app’s Ul in order for some widgets to work.

Usage

use_shiny_dipsaus(x)

Arguments

X "HTML tags

114 %=>%

%0F % Get an element with condition that it must be from a list or vector

Description

Get an element with condition that it must be from a list or vector

Usage
lhs %0F% rhs

Arguments
lhs the element of candidate
rhs the constraint

Value

Returns an element of length one that will be from rhs

Examples

C is from LETTERS, therefore returns “C°
"C" %0F% LETTERS

“lhs™ is not from “rhs”, hence return the first element of LETTERS
'9" %0F% LETTERS
NULL %O0F% LETTERS

When there are multiple elements from “lhs™, select the first that
matches the constraint
c('9', "D", "V") %O0F% LETTERS

%=>% A JavaScript style of creating functions

Description

A JavaScript style of creating functions

Usage

args %=>% expr

% 7<-% 115

Arguments

args function arguments: see formals

expr R expression that forms the body of functions: see body
Value

A function that takes args as parameters and expr as the function body

Examples

Formal arguments

c(a) %=>% {
print(a)

3

Informal arguments

list(a=) %=>% {
print(a)

3

Multiple inputs
c(a, b=2, ...) %=>%{
print(c(a, b, ...))

-—-—- JavaScript style of forEach -----

Equivalent JavaScript Code:

LETTERS.forEach((el, ii) => {

console.log('The index of letter ' + el + ' in "x" is:

#3);

+ 11);

iapply(LETTERS, c(el, ii) %=>% {
cat2('The index of letter ', el, ' in ', sQuote('x'), ' is:
1) -> results

, 11)

%27<=% Left-hand side checked assignment Provides a way to assign default
values to variables. If the statement ‘lhs‘ is invalid or NULL, this func-
tion will try to assign value, otherwise nothing happens.

Description

Left-hand side checked assignment Provides a way to assign default values to variables. If the
statement ‘1hs‘ is invalid or NULL, this function will try to assign value, otherwise nothing happens.

Usage

lhs %?<-% value

116

Arguments

lhs an object to check or assign

value value to be assigned if lhs is NULL
Value

Assign value on the right-hand side to the left-hand side if 1hs does not exist or is NULL

Examples

Prepare, remove aaa if exists
if(exists('aaa', envir = globalenv(), inherits = FALSE)){
rm(aaa, envir = globalenv())

}

Assign
aaa %?<-% 1; print(aaa)

However, if assigned, nothing happens
aaa = 1;

aaa %?<-% 2;

print(aaa)

in a list
a = list()
a$e %7<-% 1; print(a$e)
a$e %?<-% 2; print(a$e)

%+-%

%t=% Plus-minus operator

Description

Plus-minus operator

Usage

a %t-% b

Arguments

a,b numeric vectors, matrices or arrays

Value

a +/- b, the dimension depends on a+b. If a+b is a scalar, returns a vector of two; in the case of
vector, returns a matrix; all other cases will return an array with the last dimension equal to 2.

%<-?% 117

Examples
scalar

1 %+-%2 # -1, 3

vector input
c(1,2,3) %t-% 2 # matrix

matrix input
matrix(1:9, 3) %+-% 2 # 3x3x2 array

%<=?% Right-hand side checked assignment Provides a way to avoid assign-
ment to the left-hand side. If the statement ‘value‘ is invalid or NULL,
this function will not assign values and nothing happens.

Description

Right-hand side checked assignment Provides a way to avoid assignment to the left-hand side. If
the statement ‘value® is invalid or NULL, this function will not assign values and nothing happens.

Usage

lhs %<-?% value

Arguments
lhs an object to be assigned to
value value to be checked
Value

Assign value on the right-hand side to the left-hand side if value does exists and is not NULL

Examples

Prepare, remove aaa if exists
if(exists('aaa', envir = globalenv(), inherits = FALSE)){
rm(aaa, envir = globalenv())

}

aaa will not be assigned. run “print(aaa)” will raise error
aaa %<-7% NULL

Assign
aaa %<-7% 1

print(aaa)

in a list

118 %<-?%

a = list()
a$e %<-?% bbb; print(ase)
a%$e %<-?% 2; print(ase)

Index

[.fastmap2 (fastmap2), 43
[.fastqueue2 (fastqueue?2), 46
[<-.fastmap2 (fastmap2), 43
[[.fastmap2 (fastmap2), 43
[[.fastqueue?2 (fastqueue2), 46
[[<-.fastmap2 (fastmap2), 43
$.fastmap2 (fastmap2), 43
$<-.fastmap2 (fastmap2), 43
%D% (decorate_function), 29
%+=%, 116

%<=2%, 117

%=>%, 114

%?<-%, 115

%0F%, 114

AbstractMap, 4, 73

AbstractQueue, 4
actionButtonStyled, 7, 111
add_to_session, 8
adjustcolor, 24, 25

aggregate, 34

alist, 78

as.character.sexp_type2 (sexp_type2), 96
as.list, 44

as.list.fastmap2 (fastmap2), 43
as.list.fastqueue2 (fastqueue2), 46
as_pipe, 15

ask_or_default, 9, 10
ask_yesno, 9, 10

async, 11

async_expr, 11,11

async_flapply, 12

async_works, 13
attached_packages, 16

base64-url, 17
base64_to_image, 18
base64_to_string, 18
base64_urldecode (base64-url), 17
base64_urlencode (base64-url), 17

119

baseline_array, 19
bindEvent, 108
body, 115
browseURL, 93

capture.output, 2/
capture_expr, 21
cat2, 9, 10,22,85
check_installed_packages, 23
clear_env, 24

close_alert2 (shiny_alert2), 102
col2hexStr, 24

collapse, 25

combine_html_class (html_class), 62
compoundInput2, 26, 112

cov, 42

decorate_function, 29
deparse_svec, 30, 82
dev_create (graphic-devices), 58
digest, 31, 52

digest2, 31

dipsaus-defunct (get_cpu), 51
dipsaus-rstudio-shortcuts, 32
dipsaus_lock (lock), 69
dipsaus_resetlocks (lock), 69
dipsaus_unlock (lock), 69
do_aggregate, 34
do_nothing, 34

domains, 95, 103

drop_nulls, 35

eval_dirty, 35

fancyDirectoryInput, 36, 54, 80
fancyFilelnput, 38, 41
fastcov2, 42

fastmap, 43, 73, 98

fastmap2, 24,43, 98, 113
fastquantile, 45

120

fastqueue2, 46
fileInput, 41
flex_div, 48
forelse, 49
formals, 78, 115
future_lapply, 12

get_cpu, 51

get_credential, 51

get_dev_attr (graphic-devices), 58
get_dipsaus_upload_dir, 38, 54
get_dots, 55

get_ip, 56

get_os, 57

get_ram, 58

getInputBinding, 50
graphic-devices, 58

handler_dipsaus_progress, 60
html_asis, 61
html_class, 62

iapply, 63
install.packages, 92
interactive, 9, 10
is_from_namespace, 64
isAvailable, 88

jobRunScript, 90

lapply, 14, 63, 67
lapply_async2, 64, 71
lapply_callr, 13, 66
length.fastmap2 (fastmap2), 43
length. fastqueue2 (fastqueue2), 46
list.files, 84
list_to_fastmap2, 68
list_to_fastqueue2, 68

lock, 69

make_forked_clusters, 65, 70
make_progression_handler, 60
map, 72, 83

mask_function2, 74
match_calls, 75

mean, 76

mean_se, 76, 104
mem_limit2, 77

missing_dots (get_dots), 55

INDEX

names.fastmap2 (fastmap2), 43
new_function, 78
new_function2, 77

no_op, 79

observeDirectoryProgress, 38, 80

package_installed, 81
parse_svec, 31, 82
PersistContainer, 82

plan, 65

print.fastmap2 (fastmap2), 43
print.fastqueue?2 (fastqueue2), 46
print.sexp_type2 (sexp_type2), 96
print_directory_tree, 84
progress2, 37, 38, 60, 80, 85, 106
promise, 90

quantile, 45
quo_squash, 78

rds_map, 73

rds_map (map), 72

readline, 9, 10

reg.finalizer, 83, 97, 98

registerInputBinding, 86

remove_html_class (html_class), 62

removeSource, 3/

restart_session, 87

rs_active_project, 88

rs_add_insertion_shortcut
(dipsaus-rstudio-shortcuts), 32

rs_add_shortcut
(dipsaus-rstudio-shortcuts), 32

rs_avail, 88, 88, 92, 93

rs_edit_file, 89

rs_exec, 67, 89

rs_focus_console, 91

rs_quick_debug
(dipsaus-rstudio-shortcuts), 32

rs_remove_shortcut
(dipsaus-rstudio-shortcuts), 32

rs_save_all, 91

rs_select_path, 92

rs_set_repos, 92

rs_show_shortcut
(dipsaus-rstudio-shortcuts), 32

rs_viewer, 93

sapply, 14, 63

INDEX

screenshot, 93
session_map, 73
session_map (map), 72
session_uuid, 94
set_shiny_input, 95
sexp_type2, 96
shared_finalizer, 97
shift_array, 101
shiny_alert2, 102
shiny_is_running, 104
ste_mean, 76, 77, 104
storage.mode, 97
stream_download, 105
sumsquared, 107
symbol, 22
sync_shiny_inputs, 107

test_farg, 108
text_map, 73
text_map (map), 72
time_delta, 109
to_datauri, 110
to_ram_size, 110

update_fastmap2, 113
updateActionButtonStyled, 7, 111
updateCompoundInput2, 27, 111
use_shiny_dipsaus, 95, 106, 113

viewer, 93

121

	AbstractMap
	AbstractQueue
	actionButtonStyled
	add_to_session
	ask_or_default
	ask_yesno
	async
	async_expr
	async_flapply
	async_works
	as_pipe
	attached_packages
	base64-url
	base64_to_image
	base64_to_string
	baseline_array
	capture_expr
	cat2
	check_installed_packages
	clear_env
	col2hexStr
	collapse
	compoundInput2
	decorate_function
	deparse_svec
	digest2
	dipsaus-rstudio-shortcuts
	do_aggregate
	do_nothing
	drop_nulls
	eval_dirty
	fancyDirectoryInput
	fancyFileInput
	fastcov2
	fastmap2
	fastquantile
	fastqueue2
	flex_div
	forelse
	getInputBinding
	get_cpu
	get_credential
	get_dipsaus_upload_dir
	get_dots
	get_ip
	get_os
	get_ram
	graphic-devices
	handler_dipsaus_progress
	html_asis
	html_class
	iapply
	is_from_namespace
	lapply_async2
	lapply_callr
	list_to_fastmap2
	list_to_fastqueue2
	lock
	make_forked_clusters
	map
	mask_function2
	match_calls
	mean_se
	mem_limit2
	new_function2
	no_op
	observeDirectoryProgress
	package_installed
	parse_svec
	PersistContainer
	print_directory_tree
	progress2
	registerInputBinding
	restart_session
	rs_active_project
	rs_avail
	rs_edit_file
	rs_exec
	rs_focus_console
	rs_save_all
	rs_select_path
	rs_set_repos
	rs_viewer
	screenshot
	session_uuid
	set_shiny_input
	sexp_type2
	shared_finalizer
	shift_array
	shiny_alert2
	shiny_is_running
	ste_mean
	stream_download
	sumsquared
	sync_shiny_inputs
	test_farg
	time_delta
	to_datauri
	to_ram_size
	updateActionButtonStyled
	updateCompoundInput2
	update_fastmap2
	use_shiny_dipsaus
	OF
	=>
	?<-
	+-
	<-?
	Index

