
Package ‘duckspatial’
January 10, 2026

Type Package

Title R Interface to 'DuckDB' Database with Spatial Extension

Version 0.9.0

Description Fast & memory-efficient functions to analyze and manipulate large
spatial data data sets. It leverages the fast analytical
capabilities of 'DuckDB' and its spatial extension (see <https:
//duckdb.org/docs/stable/core_extensions/spatial/overview>)
while maintaining compatibility with R’s spatial data ecosystem to
work with spatial vector data.

URL https://cidree.github.io/duckspatial/,

https://github.com/Cidree/duckspatial

BugReports https://github.com/Cidree/duckspatial/issues

License GPL (>= 3)

Depends R (>= 4.1.0)

Imports arrow, cli, duckdb, geoarrow, DBI, glue, sf, wk, uuid, rlang,
lifecycle

Suggests areal, bench, dplyr, ggplot2 (>= 3.3.1), knitr, lwgeom,
quadkeyr, rmarkdown, terra, testthat (>= 3.0.0)

VignetteBuilder knitr

RoxygenNote 7.3.3

Config/testthat/edition 3

Encoding UTF-8

NeedsCompilation no

Author Adrián Cidre González [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3310-3052>),

Rafael H. M. Pereira [aut] (ORCID:
<https://orcid.org/0000-0003-2125-7465>),

Egor Kotov [aut] (ORCID: <https://orcid.org/0000-0001-6690-5345>)

Maintainer Adrián Cidre González <adrian.cidre@gmail.com>

Repository CRAN

Date/Publication 2026-01-10 15:00:07 UTC

1

https://duckdb.org/docs/stable/core_extensions/spatial/overview
https://duckdb.org/docs/stable/core_extensions/spatial/overview
https://cidree.github.io/duckspatial/
https://github.com/Cidree/duckspatial
https://github.com/Cidree/duckspatial/issues
https://orcid.org/0000-0002-3310-3052
https://orcid.org/0000-0003-2125-7465
https://orcid.org/0000-0001-6690-5345

2 Contents

Contents
ddbs_area . 3
ddbs_as_hexwkb . 5
ddbs_as_text . 6
ddbs_as_wkb . 7
ddbs_bbox . 8
ddbs_boundary . 10
ddbs_buffer . 11
ddbs_centroid . 13
ddbs_combine . 14
ddbs_concave_hull . 16
ddbs_contains . 17
ddbs_contains_properly . 19
ddbs_convex_hull . 20
ddbs_covered_by . 22
ddbs_covers . 24
ddbs_create_conn . 25
ddbs_create_schema . 26
ddbs_crosses . 27
ddbs_crs . 28
ddbs_difference . 29
ddbs_disjoint . 30
ddbs_distance . 32
ddbs_drivers . 33
ddbs_envelope . 34
ddbs_equals . 36
ddbs_exterior_ring . 37
ddbs_filter . 39
ddbs_flip . 41
ddbs_generate_points . 42
ddbs_glimpse . 44
ddbs_install . 45
ddbs_interpolate_aw . 46
ddbs_intersection . 49
ddbs_intersects . 51
ddbs_intersects_extent . 52
ddbs_is_simple . 54
ddbs_is_valid . 55
ddbs_is_within_distance . 57
ddbs_join . 58
ddbs_length . 61
ddbs_list_tables . 63
ddbs_load . 63
ddbs_make_polygon . 64
ddbs_make_valid . 65
ddbs_overlaps . 67
ddbs_predicate . 68

ddbs_area 3

ddbs_quadkey . 71
ddbs_read_vector . 73
ddbs_register_vector . 74
ddbs_rotate . 75
ddbs_rotate_3d . 77
ddbs_scale . 79
ddbs_shear . 81
ddbs_shift . 82
ddbs_simplify . 84
ddbs_stop_conn . 85
ddbs_touches . 86
ddbs_transform . 87
ddbs_union . 89
ddbs_within . 91
ddbs_within_properly . 92
ddbs_write_vector . 94

Index 96

ddbs_area Calculates the area of geometries

Description

Calculates the area of geometries from a DuckDB table or a sf object Returns the result as an sf
object with an area column or creates a new table in the database. Note: Area units depend on
the CRS of the input geometries (e.g., square meters for projected CRS, or degrees for geographic
CRS).

Usage

ddbs_area(
x,
conn = NULL,
name = NULL,
new_column = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

4 ddbs_area

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

new_column Name of the new column to create on the input data. If NULL, the function will
return a vector with the result

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

a vector, an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial")) |>

st_transform("EPSG:3857")

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

calculate area (returns sf object with area column)
ddbs_area("argentina", conn)

calculate area with custom column name
ddbs_area("argentina", conn, new_column = "area_sqm")

create a new table with area calculations
ddbs_area("argentina", conn, name = "argentina_with_area")

calculate area in a sf object
ddbs_area(argentina_sf)

End(Not run)

ddbs_as_hexwkb 5

ddbs_as_hexwkb Convert geometries to hexadecimal Well-Known Binary (HEXWKB)
format

Description

Converts spatial geometries to their hexadecimal Well-Known Binary (HEXWKB) representation.
This function wraps DuckDB’s ST_AsHEXWKB spatial function.

Usage

ddbs_as_hexwkb(x, conn = NULL, quiet = FALSE)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

HEXWKB is a hexadecimal string representation of Well-Known Binary (WKB) format. This
encoding is human-readable (unlike raw WKB) while maintaining the compact binary structure.
HEXWKB is commonly used in databases and web services for transmitting spatial data as text
strings.

Value

A character vector containing hexadecimal-encoded WKB representations of the geometries

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb

6 ddbs_as_text

ddbs_write_vector(conn, argentina_sf, "argentina")

convert geometries to HEXWKB
hexwkb_text <- ddbs_as_hexwkb(conn = conn, "argentina")

convert without using a connection
hexwkb_text <- ddbs_as_hexwkb(argentina_sf)

End(Not run)

ddbs_as_text Convert geometries to Well-Known Text (WKT) format

Description

Converts spatial geometries to their Well-Known Text (WKT) representation. This function wraps
DuckDB’s ST_AsText spatial function.

Usage

ddbs_as_text(x, conn = NULL, quiet = FALSE)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

Well-Known Text (WKT) is a text markup language for representing vector geometry objects. This
function is useful for exporting geometries in a portable text format that can be used with other
spatial tools and databases.

Value

A character vector containing WKT representations of the geometries

ddbs_as_wkb 7

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

convert geometries to WKT
wkt_text <- ddbs_as_text(conn = conn, "argentina")

convert without using a connection
wkt_text <- ddbs_as_text(argentina_sf)

End(Not run)

ddbs_as_wkb Convert geometries to Well-Known Binary (WKB) format

Description

Converts spatial geometries to their Well-Known Binary (WKB) representation. This function
wraps DuckDB’s ST_AsWkb spatial function.

Usage

ddbs_as_wkb(x, conn = NULL, quiet = FALSE)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

Well-Known Binary (WKB) is a binary representation of vector geometry objects. WKB is more
compact than WKT and is commonly used for efficient storage and transfer of spatial data between
systems. Each geometry is returned as a raw vector of bytes.

8 ddbs_bbox

Value

A list of raw vectors, where each element contains the WKB representation of a geometry

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

convert geometries to WKB
wkb_list <- ddbs_as_wkb(conn = conn, "argentina")

convert without using a connection
wkb_list <- ddbs_as_wkb(argentina_sf)

End(Not run)

ddbs_bbox Returns the minimal bounding box enclosing the input geometry

Description

Returns the minimal bounding box enclosing the input geometry from a sf object or a DuckDB
table. Returns the result as an sf object or creates a new table in the database.

Usage

ddbs_bbox(
x,
by_feature = FALSE,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

ddbs_bbox 9

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

by_feature Boolean. The function defaults to FALSE, and returns a single bounding box for
x. If TRUE, it return one bounding box for each feature.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

option 1: passing sf objects
ddbs_bbox(argentina_sf)

option 2: passing the names of tables in a duckdb db

creates a duckdb write sf to it
conn <- duckspatial::ddbs_create_conn()
ddbs_write_vector(conn, argentina_sf, "argentina_tbl", overwrite = TRUE)

output2 <- ddbs_bbox(
conn = conn,
x = "argentina_tbl",
name = "argentina_bbox"

10 ddbs_boundary

)

DBI::dbReadTable(conn, "argentina_bbox")

End(Not run)

ddbs_boundary Returns the boundary of geometries

Description

Returns the boundary of geometries from a sf object or a DuckDB table. Returns the result as an
sf object or creates a new table in the database.

Usage

ddbs_boundary(
x,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

ddbs_buffer 11

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

boundary
b <- ddbs_boundary(x = "argentina", conn)

End(Not run)

ddbs_buffer Creates a buffer around geometries

Description

Calculates the buffer of geometries from a DuckDB table using the spatial extension. Returns the
result as an sf object or creates a new table in the database.

Usage

ddbs_buffer(
x,
distance,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

12 ddbs_buffer

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

distance a numeric value specifying the buffer distance. Units correspond to the coordi-
nate system of the geometry (e.g. degrees or meters)

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

buffer
ddbs_buffer(conn = conn, "argentina", distance = 1)

buffer without using a connection
ddbs_buffer(argentina_sf, distance = 1)

End(Not run)

ddbs_centroid 13

ddbs_centroid Calculates the centroid of geometries

Description

Calculates the centroids of geometries from a DuckDB table using the spatial extension. Returns
the result as an sf object or creates a new table in the database.

Usage

ddbs_centroid(
x,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

14 ddbs_combine

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

centroid
ddbs_centroid("argentina", conn)

centroid without using a connection
ddbs_centroid(argentina_sf)

End(Not run)

ddbs_combine Combine geometries into a single MULTI-geometry

Description

Combines all geometries from a sf object or a DuckDB table into a single MULTI-geometry using
the spatial extension. This is equivalent to sf::st_combine(). Returns the result as an sf object
or creates a new table in the database.

Usage

ddbs_combine(
x,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

ddbs_combine 15

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column character string specifying the name of the CRS column. Default is "crs_duckspatial"

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")

combine all geometries into one
ddbs_combine(conn = conn, "countries")

combine without using a connection
ddbs_combine(countries_sf)

store result in a new table
ddbs_combine(conn = conn, "countries", name = "countries_combined")

End(Not run)

16 ddbs_concave_hull

ddbs_concave_hull Returns the concave hull enclosing the geometry

Description

Returns the concave hull enclosing the geometry from an sf object or from a DuckDB table using
the spatial extension. Returns the result as an sf object or creates a new table in the database.

Usage

ddbs_concave_hull(
x,
ratio = 0.5,
allow_holes = TRUE,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

ratio Numeric. The ratio parameter dictates the level of concavity; 1 returns the con-
vex hull, while 0 indicates to return the most concave hull possible. Defaults to
0.5.

allow_holes Boolean. If TRUE (the default), it allows the output to contain holes.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

ddbs_contains 17

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create points data
n <- 5
points_sf <- data.frame(

id = 1,
x = runif(n, min = -180, max = 180),
y = runif(n, min = -90, max = 90)
) |>
sf::st_as_sf(coords = c("x", "y"), crs = 4326) |>
st_geometry() |>
st_combine() |>
st_cast("MULTIPOINT") |>
st_as_sf()

option 1: passing sf objects
output1 <- duckspatial::ddbs_concave_hull(x = points_sf)

plot(output1)

option 2: passing the name of a table in a duckdb db

creates a duckdb
conn <- duckspatial::ddbs_create_conn()

write sf to duckdb
ddbs_write_vector(conn, points_sf, "points_tbl")

spatial join
output2 <- duckspatial::ddbs_concave_hull(

conn = conn,
x = "points_tbl"
)

plot(output2)

End(Not run)

ddbs_contains Spatial contains predicate

18 ddbs_contains

Description

Tests if geometries in x contain geometries in y. Returns TRUE if geometry x completely contains
geometry y.

Usage

ddbs_contains(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "contains".

Value

A list where each element contains indices (or IDs) of geometries in y that are contained by the
corresponding geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

ddbs_contains_properly 19

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_contains(countries_sf, rivers_sf, id_x = "NAME_ENGL", id_y = "RIVER_NAME")

End(Not run)

ddbs_contains_properly

Spatial contains properly predicate

Description

Tests if geometries in x properly contain geometries in y. Returns TRUE if geometry y is completely
inside geometry x and does not touch its boundary.

Usage

ddbs_contains_properly(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

20 ddbs_convex_hull

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "contains_properly".

Value

A list where each element contains indices (or IDs) of geometries in y that are properly contained
by the corresponding geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_contains_properly(countries_sf, rivers_sf, id_x = "NAME_ENGL", id_y = "RIVER_NAME")

End(Not run)

ddbs_convex_hull Returns the convex hull enclosing the geometry

Description

Returns the convex hull enclosing the geometry from an sf object or from a DuckDB table using
the spatial extension. Returns the result as an sf object or creates a new table in the database.

ddbs_convex_hull 21

Usage

ddbs_convex_hull(
x,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

option 1: passing sf objects

22 ddbs_covered_by

output1 <- duckspatial::ddbs_convex_hull(x = argentina_sf)

plot(output1["CNTR_NAME"])#' # store in duckdb

option 2: passing the name of a table in a duckdb db

creates a duckdb
conn <- duckspatial::ddbs_create_conn()

write sf to duckdb
ddbs_write_vector(conn, argentina_sf, "argentina_tbl")

spatial join
output2 <- duckspatial::ddbs_convex_hull(

conn = conn,
x = "argentina_tbl"
)

plot(output2["CNTR_NAME"])

End(Not run)

ddbs_covered_by Spatial covered by predicate

Description

Tests if geometries in x are covered by geometries in y. Returns TRUE if geometry x is completely
covered by geometry y (no point of x lies outside y).

Usage

ddbs_covered_by(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

ddbs_covered_by 23

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "covered_by".

Value

A list where each element contains indices (or IDs) of geometries in y that cover the corresponding
geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_covered_by(rivers_sf, countries_sf, id_x = "RIVER_NAME", id_y = "NAME_ENGL")

End(Not run)

24 ddbs_covers

ddbs_covers Spatial covers predicate

Description

Tests if geometries in x cover geometries in y. Returns TRUE if geometry x completely covers
geometry y (no point of y lies outside x).

Usage

ddbs_covers(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "covers".

Value

A list where each element contains indices (or IDs) of geometries in y that are covered by the
corresponding geometry in x. See ddbs_predicate() for details.

ddbs_create_conn 25

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_covers(countries_sf, rivers_sf, id_x = "NAME_ENGL")

End(Not run)

ddbs_create_conn Create a DuckDB connection with spatial extension

Description

It creates a DuckDB connection, and then it installs and loads the spatial extension

Usage

ddbs_create_conn(dbdir = "memory")

Arguments

dbdir String. Either "tempdir" or "memory". Defaults to "memory".

Value

A duckdb_connection

Examples

load packages
library(duckspatial)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

create a duckdb database in disk (with spatial extension)

26 ddbs_create_schema

conn <- ddbs_create_conn(dbdir = "tempdir")

ddbs_create_schema Check and create schema

Description

Check and create schema

Usage

ddbs_create_schema(conn, name, quiet = FALSE)

Arguments

conn A connection object to a DuckDB database

name A character string with the name of the schema to be created

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

TRUE (invisibly) for successful schema creation

Examples

load packages
Not run:
library(duckspatial)
library(duckdb)

connect to in memory database
conn <- ddbs_create_conn(dbdir = "memory")

create a new schema
ddbs_create_schema(conn, "new_schema")

check schemas
dbGetQuery(conn, "SELECT * FROM information_schema.schemata;")

disconnect from db
ddbs_stop_conn(conn)

End(Not run)

ddbs_crosses 27

ddbs_crosses Spatial crosses predicate

Description

Tests if geometries in x cross geometries in y. Returns TRUE if geometries have some but not all
interior points in common.

Usage

ddbs_crosses(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "crosses".

Value

A list where each element contains indices (or IDs) of geometries in y that cross the corresponding
geometry in x. See ddbs_predicate() for details.

28 ddbs_crs

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_crosses(rivers_sf, countries_sf, id_x = "RIVER_NAME", id_y = "NAME_ENGL")

End(Not run)

ddbs_crs Check CRS of a table

Description

Check CRS of a table

Usage

ddbs_crs(conn, name, crs_column = "crs_duckspatial")

Arguments

conn A connection object to a DuckDB database

name A character string of length one specifying the name of the table, or a character
string of length two specifying the schema and table names.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector)

Value

CRS object

ddbs_difference 29

Examples

load packages
library(duckdb)
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")

check CRS
ddbs_crs(conn, "countries")

ddbs_difference Calculates the difference of two geometries

Description

Calculates the geometric difference of two geometries, and returns a sf object or creates a new table

Usage

ddbs_difference(
x,
y,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y A table with geometry column within the DuckDB database

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

30 ddbs_disjoint

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

An sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")
ddbs_write_vector(conn, argentina_sf, "argentina")

difference with a connection
ddbs_difference("countries", "argentina", conn)

difference without a connection
ddbs_difference(countries_sf, argentina_sf)

End(Not run)

ddbs_disjoint Spatial disjoint predicate

Description

Tests if geometries in x are disjoint from geometries in y. Returns TRUE if geometries have no points
in common.

ddbs_disjoint 31

Usage

ddbs_disjoint(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "disjoint".

Value

A list where each element contains indices (or IDs) of geometries in y that are disjoint from the
corresponding geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)

32 ddbs_distance

library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_disjoint(countries_sf, rivers_sf, id_x = "NAME_ENGL")

End(Not run)

ddbs_distance Returns the distance between two geometries

Description

Returns the planar or haversine distance between two geometries, and returns a data.frame object
or creates a new table in a DuckDB database.

Usage

ddbs_distance(x, y, dist_type = "haversine", conn = NULL, quiet = FALSE)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

dist_type String. One of c("planar", "haversine"). Defaults to "haversine" and re-
turns distance in meters, but the input is expected to be in WGS84 (EPSG:4326)
coordinates. The option "haversine" only accepts POINT geometries. When
dist_type = "planar", distances estimates are in the same unit as the coordi-
nate reference system (CRS) of the input.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

A data.frame object or TRUE (invisibly) for table creation

ddbs_drivers 33

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create points data
n <- 10
points_sf <- data.frame(

id = 1:n,
x = runif(n, min = -180, max = 180),
y = runif(n, min = -90, max = 90)

) |>
sf::st_as_sf(coords = c("x", "y"), crs = 4326)

option 1: passing sf objects
output1 <- duckspatial::ddbs_distance(

x = points_sf,
y = points_sf,
dist_type = "haversine"

)

head(output1)

option 2: passing the names of tables in a duckdb db and output as sf

creates a duckdb
conn <- duckspatial::ddbs_create_conn()

write sf to duckdb
ddbs_write_vector(conn, points_sf, "points", overwrite = TRUE)

output2 <- ddbs_distance(
conn = conn,
x = "points",
y = "points",
dist_type = "haversine"

)
head(output2)

End(Not run)

ddbs_drivers Get list of GDAL drivers and file formats

Description

Get list of GDAL drivers and file formats

34 ddbs_envelope

Usage

ddbs_drivers(conn)

Arguments

conn A connection object to a DuckDB database

Value

data.frame

Examples

load packages
library(duckdb)
library(duckspatial)

database setup
conn <- dbConnect(duckdb())
ddbs_install(conn)
ddbs_load(conn)

check drivers
ddbs_drivers(conn)

ddbs_envelope Returns the envelope (bounding box) of geometries

Description

Returns the minimum bounding rectangle (envelope) of geometries from a sf object or a DuckDB
table. Returns the result as an sf object or creates a new table in the database.

Usage

ddbs_envelope(
x,
by_feature = FALSE,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

ddbs_envelope 35

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

by_feature Logical. If TRUE, returns one envelope per feature. If FALSE (default), returns a
single envelope for all geometries combined.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

ST_Envelope returns the minimum bounding rectangle (MBR) of a geometry as a polygon. For
points and lines, this creates a rectangular polygon that encompasses the geometry. For polygons,
it returns the smallest rectangle that contains the entire polygon.

When by_feature = FALSE, all geometries are combined and a single envelope is returned that
encompasses the entire dataset.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

input as sf, and output as sf
env <- ddbs_envelope(x = argentina_sf, by_feature = TRUE)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

36 ddbs_equals

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

envelope for each feature
env <- ddbs_envelope("argentina", conn, by_feature = TRUE)

single envelope for entire dataset
env_all <- ddbs_envelope("argentina", conn, by_feature = FALSE)

create a new table with envelopes
ddbs_envelope("argentina", conn, name = "argentina_bbox", by_feature = TRUE)

End(Not run)

ddbs_equals Spatial equals predicate

Description

Tests if geometries in x are spatially equal to geometries in y. Returns TRUE if geometries are
topologically equivalent (same shape and location).

Usage

ddbs_equals(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

ddbs_exterior_ring 37

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "equals".

Value

A list where each element contains indices (or IDs) of geometries in y that are equal to the corre-
sponding geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))

ddbs_equals(countries_sf, countries_sf, id_x = "NAME_ENGL")

End(Not run)

ddbs_exterior_ring Extracts the exterior ring of polygon geometries

Description

Returns the exterior ring (outer boundary) of polygon geometries from a DuckDB table using the
spatial extension. For multi-polygons, returns the exterior ring of each polygon component. Returns
the result as an sf object or creates a new table in the database.

38 ddbs_exterior_ring

Usage

ddbs_exterior_ring(
x,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))

store in duckdb

ddbs_filter 39

ddbs_write_vector(conn, countries_sf, "countries")

extract exterior ring
ddbs_exterior_ring(conn = conn, "countries")

extract exterior ring without using a connection
ddbs_exterior_ring(countries_sf)

End(Not run)

ddbs_filter Performs spatial filter of two geometries

Description

Filters data spatially based on a spatial predicate

Usage

ddbs_filter(
x,
y,
predicate = "intersects",
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
distance = NULL,
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y Y table with geometry column within the DuckDB database

predicate A geometry predicate function. Defaults to intersects, a wrapper of ST_Intersects.
See details for other options.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

40 ddbs_filter

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

distance a numeric value specifying the distance for ST_DWithin. Units correspond to
the coordinate system of the geometry (e.g. degrees or meters)

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

Spatial Join Predicates:

A spatial predicate is really just a function that evaluates some spatial relation between two geome-
tries and returns true or false, e.g., “does a contain b” or “is a within distance x of b”. Here is a
quick overview of the most commonly used ones, taking two geometries a and b:

• "ST_Intersects": Whether a intersects b

• "ST_Contains": Whether a contains b

• "ST_ContainsProperly": Whether a contains b without b touching a’s boundary

• "ST_Within": Whether a is within b

• "ST_Overlaps": Whether a overlaps b

• "ST_Touches": Whether a touches b

• "ST_Equals": Whether a is equal to b

• "ST_Crosses": Whether a crosses b

• "ST_Covers": Whether a covers b

• "ST_CoveredBy": Whether a is covered by b

• "ST_DWithin": x) Whether a is within distance x of b

Value

An sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

ddbs_flip 41

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")
ddbs_write_vector(conn, argentina_sf, "argentina")

filter countries touching argentina
ddbs_filter(conn = conn, "countries", "argentina", predicate = "touches")

filter without using a connection
ddbs_filter(countries_sf, argentina_sf, predicate = "touches")

End(Not run)

ddbs_flip Flip geometries horizontally or vertically

Description

Flips (reflects) geometries around the centroid. Returns the result as an sf object or creates a new
table in the database. This function is equivalent to terra::flip().

Usage

ddbs_flip(
x,
direction = c("horizontal", "vertical"),
by_feature = FALSE,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

direction character string specifying the flip direction: "horizontal" (default) or "vertical".
Horizontal flips across the Y-axis (left-right), vertical flips across the X-axis
(top-bottom)

by_feature Logical. If TRUE, the geometric operation is applied separately to each geometry.
If FALSE (default), the geometric operation is applied to the data as a whole.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

42 ddbs_generate_points

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

flip all features together as a whole (default)
ddbs_flip(conn = conn, "argentina", direction = "horizontal", by_feature = FALSE)

flip each feature independently
ddbs_flip(conn = conn, "argentina", direction = "horizontal", by_feature = TRUE)

flip without using a connection
ddbs_flip(argentina_sf, direction = "horizontal")

End(Not run)

ddbs_generate_points Generate random points within geometries

ddbs_generate_points 43

Description

Generates random points within geometries from a DuckDB table using the spatial extension.
Works similarly to generating random points within polygons in sf. Returns the result as an sf
object or creates a new table in the database.

Usage

ddbs_generate_points(
x,
n,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

n Number of random points to generate within each geometry

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)

44 ddbs_glimpse

library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

generate 100 random points within each geometry
ddbs_generate_points("argentina", n = 100, conn)

generate points without using a connection
ddbs_generate_points(argentina_sf, n = 100)

End(Not run)

ddbs_glimpse Check first rows of the data

Description

Check first rows of the data

Usage

ddbs_glimpse(
conn,
name,
crs = NULL,
crs_column = "crs_duckspatial",
quiet = FALSE

)

Arguments

conn A connection object to a DuckDB database

name A character string of length one specifying the name of the table, or a character
string of length two specifying the schema and table names.

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

ddbs_install 45

Value

sf object

Examples

library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

ddbs_glimpse(conn, "argentina")

ddbs_install Checks and installs the Spatial extension

Description

Checks if a spatial extension is available, and installs it in a DuckDB database

Usage

ddbs_install(conn, upgrade = FALSE, quiet = FALSE)

Arguments

conn A connection object to a DuckDB database

upgrade if TRUE, it upgrades the DuckDB extension to the latest version

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

TRUE (invisibly) for successful installation

46 ddbs_interpolate_aw

Examples

load packages
library(duckspatial)
library(duckdb)

connect to in memory database
conn <- duckdb::dbConnect(duckdb::duckdb())

install the spatial extension
ddbs_install(conn)

disconnect from db
duckdb::dbDisconnect(conn)

ddbs_interpolate_aw Areal-Weighted Interpolation using DuckDB

Description

Transfers attribute data from a source spatial layer to a target spatial layer based on the area of
overlap between their geometries. This function executes all spatial calculations within DuckDB,
enabling efficient processing of large datasets without loading all geometries into R memory.

Usage

ddbs_interpolate_aw(
target,
source,
tid,
sid,
extensive = NULL,
intensive = NULL,
weight = "sum",
output = "sf",
keep_NA = TRUE,
na.rm = FALSE,
join_crs = NULL,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

ddbs_interpolate_aw 47

Arguments

target An sf object or the name of a persistent table in the DuckDB connection repre-
senting the destination geometries.

source An sf object or the name of a persistent table in the DuckDB connection con-
taining the data to be interpolated.

tid Character. The name of the column in target that uniquely identifies features.

sid Character. The name of the column in source that uniquely identifies features.

extensive Character vector. Names of columns in source to be treated as spatially exten-
sive (e.g., population counts).

intensive Character vector. Names of columns in source to be treated as spatially inten-
sive (e.g., population density).

weight Character. Determines the denominator calculation for extensive variables. Ei-
ther "sum" (default) or "total". See Mass Preservation in Details.

output Character. One of "sf" (default) or "tibble".

• "sf": The result includes the geometry column of the target.
• "tibble": The result excludes the geometry column. This is significantly

faster and consumes less storage.

Note: This argument also controls the schema of the created table if name is
provided.

keep_NA Logical. If TRUE (default), returns all features from the target, even those that
do not overlap with the source (values will be NA). If FALSE, performs an inner
join, dropping non-overlapping target features.

na.rm Logical. If TRUE, source features with NA values in the interpolated variables
are completely removed from the calculation (area calculations will behave as if
that polygon did not exist). Defaults to FALSE.

join_crs Numeric or Character (optional). EPSG code or WKT for the CRS to use for
area calculations. If provided, both target and source are transformed to this
CRS within the database before interpolation.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

48 ddbs_interpolate_aw

Details

Areal-weighted interpolation is used when the source and target geometries are incongruent (they
do not align). It relies on the assumption of uniform distribution: values in the source polygons
are assumed to be spread evenly across the polygon’s area.

Coordinate Systems: Area calculations are highly sensitive to the Coordinate Reference System
(CRS). While the function can run on geographic coordinates (lon/lat), it is strongly recommended
to use a projected CRS (e.g., EPSG:3857, UTM, or Albers) to ensure accurate area measurements.
Use the join_crs argument to project data on-the-fly during the interpolation.

Extensive vs. Intensive Variables:

• Extensive variables are counts or absolute amounts (e.g., total population, number of voters).
When a source polygon is split, the value is divided proportionally to the area.

• Intensive variables are ratios, rates, or densities (e.g., population density, cancer rates). When
a source polygon is split, the value remains constant for each piece.

Mass Preservation (The weight argument): For extensive variables, the choice of weight deter-
mines the denominator used in calculations:

• "sum" (default): The denominator is the sum of all overlapping areas for that source feature.
This preserves the "mass" of the variable relative to the target’s coverage. If the target poly-
gons do not completely cover a source polygon, some data is technically "lost" because it falls
outside the target area. This matches areal::aw_interpolate(weight="sum").

• "total": The denominator is the full geometric area of the source feature. This assumes the
source value is distributed over the entire source polygon. If the target covers only 50% of the
source, only 50% of the value is transferred. This is strictly mass-preserving relative to the
source. This matches sf::st_interpolate_aw(extensive=TRUE).

Note: Intensive variables are always calculated using the "sum" logic (averaging based on intersec-
tion areas) regardless of this parameter.

Value

• If name is NULL (default): Returns an sf object (if output="sf") or a tibble (if output="tibble").

• If name is provided: Returns TRUE invisibly and creates a persistent table in the DuckDB
database.

– If output="sf", the table includes the geometry column.
– If output="tibble", the table excludes the geometry column (pure attributes).

References

Prener, C. and Revord, C. (2019). areal: An R package for areal weighted interpolation. Journal of
Open Source Software, 4(37), 1221. Available at: doi:10.21105/joss.01221

See Also

areal::aw_interpolate() — reference implementation.

https://doi.org/10.21105/joss.01221

ddbs_intersection 49

Examples

library(sf)

1. Prepare Data
Load NC counties (Source) and project to Albers (EPSG:5070)
nc <- st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
nc <- st_transform(nc, 5070)
nc$sid <- seq_len(nrow(nc)) # Create Source ID

Create a target grid
g <- st_make_grid(nc, n = c(10, 5))
g_sf <- st_as_sf(g)
g_sf$tid <- seq_len(nrow(g_sf)) # Create Target ID

2. Extensive Interpolation (Counts)
Use weight = "total" for strict mass preservation (e.g., total births)
res_ext <- ddbs_interpolate_aw(

target = g_sf, source = nc,
tid = "tid", sid = "sid",
extensive = "BIR74",
weight = "total"

)

Check mass preservation
sum(res_ext$BIR74, na.rm = TRUE) / sum(nc$BIR74) # Should be ~1

3. Intensive Interpolation (Density/Rates)
Calculates area-weighted average (e.g., assumption of uniform density)
res_int <- ddbs_interpolate_aw(

target = g_sf, source = nc,
tid = "tid", sid = "sid",
intensive = "BIR74"

)

4. Quick Visualization
par(mfrow = c(1, 2))
plot(res_ext["BIR74"], main = "Extensive (Total Count)", border = NA)
plot(res_int["BIR74"], main = "Intensive (Weighted Avg)", border = NA)

ddbs_intersection Calculates the intersection of two geometries

Description

Calculates the intersection of two geometries, and return a sf object or creates a new table

50 ddbs_intersection

Usage

ddbs_intersection(
x,
y,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y A table with geometry column within the DuckDB database

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data

ddbs_intersects 51

countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")
ddbs_write_vector(conn, argentina_sf, "argentina")

intersection inside the connection
ddbs_intersection("countries", "argentina", conn)

intersection without using a connection
ddbs_intersection(countries_sf, argentina_sf)

End(Not run)

ddbs_intersects Spatial intersects predicate

Description

Tests if geometries in x intersect geometries in y. Returns TRUE if geometries share at least one
point in common.

Usage

ddbs_intersects(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

52 ddbs_intersects_extent

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "intersects".

Value

A list where each element contains indices (or IDs) of geometries in y that intersect the correspond-
ing geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_intersects(countries_sf, rivers_sf, id_x = "NAME_ENGL")

End(Not run)

ddbs_intersects_extent

Spatial intersects extent predicate

Description

Tests if the bounding box of geometries in x intersect the bounding box of geometries in y. Returns
TRUE if the extents (bounding boxes) overlap. This is faster than full geometry intersection but less
precise.

ddbs_intersects_extent 53

Usage

ddbs_intersects_extent(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "intersects_extent".

Value

A list where each element contains indices (or IDs) of geometries in y whose bounding box inter-
sects the bounding box of the corresponding geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)

54 ddbs_is_simple

library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

Fast bounding box intersection check
ddbs_intersects_extent(countries_sf, rivers_sf, id_x = "NAME_ENGL")

End(Not run)

ddbs_is_simple Check if geometries are simple

Description

Checks if geometries are simple (no self-intersections) from a DuckDB table using the spatial ex-
tension. Returns the result as an sf object with a boolean simplicity column or creates a new table
in the database.

Usage

ddbs_is_simple(
x,
conn = NULL,
name = NULL,
new_column = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

new_column Name of the new column to create on the input data. If NULL, the function will
return a vector with the result

ddbs_is_valid 55

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

a vector, an sf object with simplicity information or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

check simplicity
ddbs_is_simple("argentina", conn)

check simplicity without using a connection
ddbs_is_simple(argentina_sf)

End(Not run)

ddbs_is_valid Check if geometries are valid

Description

Checks the validity of geometries from a DuckDB table using the spatial extension. Returns the
result as an sf object with a boolean validity column or creates a new table in the database.

56 ddbs_is_valid

Usage

ddbs_is_valid(
x,
conn = NULL,
name = NULL,
new_column = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

new_column Name of the new column to create on the input data. If NULL, the function will
return a vector with the result

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

a vector, an sf object with validity information or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

ddbs_is_within_distance 57

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

check validity
ddbs_is_valid("argentina", conn)

check validity without using a connection
ddbs_is_valid(argentina_sf)

End(Not run)

ddbs_is_within_distance

Within Distance predicate

Description

Tests if geometries in x are within a specified distance of y. Returns TRUE if geometries are within
the distance.

Usage

ddbs_is_within_distance(
x,
y,
distance = NULL,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

distance a numeric value specifying the distance for ST_DWithin. Units correspond to
the coordinate system of the geometry (e.g. degrees or meters)

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

58 ddbs_join

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "dwithin".

Value

A list where each element contains indices (or IDs) of geometries in y that touch the corresponding
geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial"))
countries_filter_sf <- countries_sf |> filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))

check countries within 1 degree of distance
ddbs_is_within_distance(countries_filter_sf, countries_sf, 1)

End(Not run)

ddbs_join Performs spatial joins of two geometries

Description

Performs spatial joins of two geometries, and returns a sf object or creates a new table in a DuckDB
database.

ddbs_join 59

Usage

ddbs_join(
x,
y,
join = "intersects",
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

join A geometry predicate function. Defaults to "intersects". See the details for
other options.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a character
string of length two specifying the schema and table names. If it’s NULL (the
default), it will return the result as an sf object.

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

Spatial Join Predicates:

A spatial predicate is really just a function that evaluates some spatial relation between two geome-
tries and returns true or false, e.g., “does a contain b” or “is a within distance x of b”. Here is a
quick overview of the most commonly used ones, taking two geometries a and b:

• "ST_Intersects": Whether a intersects b

• "ST_Contains": Whether a contains b

60 ddbs_join

• "ST_ContainsProperly": Whether a contains b without b touching a’s boundary

• "ST_Within": Whether a is within b

• "ST_Overlaps": Whether a overlaps b

• "ST_Touches": Whether a touches b

• "ST_Equals": Whether a is equal to b

• "ST_Crosses": Whether a crosses b

• "ST_Covers": Whether a covers b

• "ST_CoveredBy": Whether a is covered by b

• "ST_DWithin": x) Whether a is within distance x of b

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

read polygons data
countries_sf <- sf::st_read(system.file("spatial/countries.geojson", package = "duckspatial"))

create points data
n <- 100
points_sf <- data.frame(

id = 1:n,
x = runif(n, min = -180, max = 180),
y = runif(n, min = -90, max = 90)

) |>
sf::st_as_sf(coords = c("x", "y"), crs = 4326)

option 1: passing sf objects
output1 <- duckspatial::ddbs_join(

x = points_sf,
y = countries_sf,
join = "within"

)

plot(output1["CNTR_NAME"])

option 2: passing the names of tables in a duckdb db

creates a duckdb
conn <- duckspatial::ddbs_create_conn()

ddbs_length 61

write sf to duckdb
ddbs_write_vector(conn, points_sf, "points", overwrite = TRUE)
ddbs_write_vector(conn, countries_sf, "countries", overwrite = TRUE)

spatial join
output2 <- ddbs_join(

conn = conn,
x = "points",
y = "countries",
join = "within"

)

plot(output2["CNTR_NAME"])

End(Not run)

ddbs_length Calculates the length of geometries

Description

Calculates the length of geometries from a DuckDB table or a sf object Returns the result as an sf
object with a length column or creates a new table in the database. Note: Length units depend on
the CRS of the input geometries (e.g., meters for projected CRS, or degrees for geographic CRS).

Usage

ddbs_length(
x,
conn = NULL,
name = NULL,
new_column = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

62 ddbs_length

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

new_column Name of the new column to create on the input data. If NULL, the function will
return a vector with the result

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, rivers_sf, "rivers")

calculate length (returns sf object with length column)
ddbs_length("rivers", conn)

calculate length with custom column name
ddbs_length("rivers", conn, new_column = "length_meters")

create a new table with length calculations
ddbs_length("rivers", conn, name = "rivers_with_length")

calculate length in a sf object (without a connection)
ddbs_length(rivers_sf)

End(Not run)

ddbs_list_tables 63

ddbs_list_tables Check tables and schemas inside a database

Description

Check tables and schemas inside a database

Usage

ddbs_list_tables(conn)

Arguments

conn A connection object to a DuckDB database

Value

data.frame

Examples

TODO
2+2

ddbs_load Loads the Spatial extension

Description

Checks if a spatial extension is installed, and loads it in a DuckDB database

Usage

ddbs_load(conn, quiet = FALSE)

Arguments

conn A connection object to a DuckDB database

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

TRUE (invisibly) for successful installation

64 ddbs_make_polygon

Examples

load packages
library(duckspatial)
library(duckdb)

connect to in memory database
conn <- duckdb::dbConnect(duckdb::duckdb())

install the spatial exntesion
ddbs_install(conn)
ddbs_load(conn)

disconnect from db
duckdb::dbDisconnect(conn)

ddbs_make_polygon Creates polygons from linestring geometries

Description

Constructs polygon geometries from linestring geometries in a DuckDB table using the spatial
extension. The input linestrings must be closed (first and last points must be identical). Returns the
result as an sf object or creates a new table in the database.

Usage

ddbs_make_polygon(
x,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

ddbs_make_valid 65

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

extract exterior ring as linestring, then convert back to polygon
ring_sf <- ddbs_exterior_ring(conn = conn, "argentina")
ddbs_make_polygon(conn = conn, ring_sf, name = "argentina_poly")

create polygon without using a connection
ddbs_make_polygon(ring_sf)

End(Not run)

ddbs_make_valid Make invalid geometries valid

Description

Attempts to make invalid geometries valid from a DuckDB table using the spatial extension. Returns
the result as an sf object or creates a new table in the database.

66 ddbs_make_valid

Usage

ddbs_make_valid(
x,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column Name of the column to store CRS information. Default is "crs_duckspatial".

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object with valid geometries or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")

ddbs_overlaps 67

make valid
ddbs_make_valid("countries", conn)

make valid without using a connection
ddbs_make_valid(countries_sf)

End(Not run)

ddbs_overlaps Spatial overlaps predicate

Description

Tests if geometries in x overlap geometries in y. Returns TRUE if geometries share some but not all
points, and the intersection has the same dimension as the geometries.

Usage

ddbs_overlaps(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

68 ddbs_predicate

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "overlaps".

Value

A list where each element contains indices (or IDs) of geometries in y that overlap the corresponding
geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))

spain_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial")) |>
filter(CNTR_ID %in% c("PT", "ES", "FR", "FI"))

ddbs_overlaps(countries_sf, spain_sf)

End(Not run)

ddbs_predicate Spatial predicate operations

Description

Computes spatial relationships between two geometry datasets using DuckDB’s spatial extension.
Returns a list where each element corresponds to a row of x, containing the indices (or IDs) of rows
in y that satisfy the specified spatial predicate.

Usage

ddbs_predicate(
x,
y,
predicate = "intersects",
conn = NULL,
id_x = NULL,

ddbs_predicate 69

id_y = NULL,
sparse = TRUE,
distance = NULL,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

predicate A geometry predicate function. Defaults to intersects, a wrapper of ST_Intersects.
See details for other options.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

distance a numeric value specifying the distance for ST_DWithin. Units correspond to
the coordinate system of the geometry (e.g. degrees or meters)

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This function provides a unified interface to all spatial predicate operations in DuckDB’s spatial
extension. It performs pairwise comparisons between all geometries in x and y using the specified
predicate.

Available Predicates:
• intersects: Geometries share at least one point
• covers: Geometry x completely covers geometry y

• touches: Geometries share a boundary but interiors do not intersect
• disjoint: Geometries have no points in common
• within: Geometry x is completely inside geometry y

• dwithin: Geometry x is completely within a distance of geometry y

• contains: Geometry x completely contains geometry y

• overlaps: Geometries share some but not all points
• crosses: Geometries have some interior points in common

70 ddbs_predicate

• equals: Geometries are spatially equal
• covered_by: Geometry x is completely covered by geometry y

• intersects_extent: Bounding boxes of geometries intersect (faster but less precise)
• contains_properly: Geometry x contains geometry y without boundary contact
• within_properly: Geometry x is within geometry y without boundary contact

If x or y are not DuckDB tables, they are automatically copied into a temporary in-memory
DuckDB database (unless a connection is supplied via conn).
id_x or id_y may be used to replace the default integer indices with the values of an identifier
column in x or y, respectively.

Value

A list of length equal to the number of rows in x.

• Each element contains:

– integer vector of row indices of y that satisfy the predicate with the corresponding ge-
ometry of x, or

– character vector if id_y is supplied.

• The names of the list elements:

– are integer row numbers of x, or
– the values of id_x if provided.

If there’s no match between x and y it returns NULL

Examples

Not run:
Load packages
library(duckspatial)
library(dplyr)
library(sf)

create in-memory DuckDB database
conn <- ddbs_create_conn(dbdir = "memory")

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

Store in DuckDB
ddbs_write_vector(conn, countries_sf, "countries")
ddbs_write_vector(conn, rivers_sf, "rivers")

Example 1: Check which rivers intersect each country
ddbs_predicate(countries_sf, rivers_sf, predicate = "intersects", conn)

Example 2: Find neighboring countries

ddbs_quadkey 71

ddbs_predicate(countries_sf, countries_sf, predicate = "touches",
id_x = "NAME_ENGL", id_y = "NAME_ENGL")

Example 3: Find rivers that don't intersect countries
ddbs_predicate(countries_sf, rivers_sf, predicate = "disjoint",

id_x = "NAME_ENGL", id_y = "RIVER_NAME")

Example 4: Use table names inside duckdb
ddbs_predicate("countries", "rivers", predicate = "within", conn, "NAME_ENGL")

End(Not run)

ddbs_quadkey Convert geometries to QuadKey tiles

Description

Converts POINT geometries to QuadKey tile representations at a specified zoom level. QuadKeys
are a hierarchical spatial indexing system used by mapping services like Bing Maps.

Usage

ddbs_quadkey(
x,
level = 10,
output = "polygon",
field = NULL,
fun = "mean",
background = NA,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

level An integer specifying the zoom level for QuadKey generation (1-23). Higher
values provide finer spatial resolution. Default is 10.

output Character string specifying output format. One of:

• "polygon" - Returns QuadKey tile boundaries as polygons (default)
• "raster" - Returns QuadKey values as a raster grid

72 ddbs_quadkey

• "tilexy" - Returns tile XY coordinates

field Character string specifying the field name for raster output. Only used when
output = "raster"

fun summarizing function for when there are multiple geometries in one cell (e.g.
"mean", "min", "max", "sum"). Only used when output = "raster"

background numeric. Default value in raster cells without values. Only used when output =
"raster"

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

QuadKeys divide the world into a hierarchical grid of tiles, where each tile is subdivided into four
smaller tiles at the next zoom level. This function wraps DuckDB’s ST_QuadKey spatial function
to generate these tiles from input geometries.

Value

An sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)
library(terra)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

create random points in Argentina
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))
rand_sf <- st_sample(argentina_sf, 100) |> st_as_sf()
rand_sf["var"] <- runif(100)

store in duckdb

ddbs_read_vector 73

ddbs_write_vector(conn, rand_sf, "rand_sf")

generate QuadKey polygons at zoom level 8
qkey_sf <- ddbs_quadkey(conn = conn, "rand_sf", level = 8, output = "polygon")

generate QuadKey raster with custom field name
qkey_rast <- ddbs_quadkey(conn = conn, "rand_sf", level = 6, output = "raster", field = "var")

generate Quadkey XY tiles
qkey_tiles_tbl <- ddbs_quadkey(conn = conn, "rand_sf", level = 10, output = "tilexy")

End(Not run)

ddbs_read_vector Load spatial vector data from DuckDB into R

Description

Retrieves the data from a DuckDB table, view, or Arrow view with a geometry column, and converts
it to an R sf object. This function works with both persistent tables created by ddbs_write_vector
and temporary Arrow views created by ddbs_register_vector.

Usage

ddbs_read_vector(
conn,
name,
crs = NULL,
crs_column = "crs_duckspatial",
clauses = NULL,
quiet = FALSE

)

Arguments

conn A connection object to a DuckDB database

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

clauses character, additional SQL code to modify the query from the table (e.g. "WHERE
...", "ORDER BY...")

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

74 ddbs_register_vector

Value

an sf object

Examples

load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

create random points
random_points <- data.frame(

id = 1:5,
x = runif(5, min = -180, max = 180),
y = runif(5, min = -90, max = 90)

)

convert to sf
sf_points <- st_as_sf(random_points, coords = c("x", "y"), crs = 4326)

Example 1: Write and read persistent table
ddbs_write_vector(conn, sf_points, "points")
ddbs_read_vector(conn, "points", crs = 4326)

Example 2: Register and read Arrow view (faster, temporary)
ddbs_register_vector(conn, sf_points, "points_view")
ddbs_read_vector(conn, "points_view", crs = 4326)

disconnect from db
ddbs_stop_conn(conn)

ddbs_register_vector Register an SF Object as an Arrow Table in DuckDB

Description

This function registers a Simple Features (SF) object as a temporary Arrow-backed view in a
DuckDB database. This is a zero-copy operation and is significantly faster than ddbs_write_vector
for workflows that do not require data to be permanently materialized in the database.

Usage

ddbs_register_vector(conn, data, name, overwrite = FALSE, quiet = FALSE)

ddbs_rotate 75

Arguments

conn A connection object to a DuckDB database

data A sf object to write to the DuckDB database, or the path to a local file that can
be read with ST_READ

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

TRUE (invisibly) on successful registration.

Examples

Not run:
library(duckspatial)
library(sf)

conn <- ddbs_create_conn("memory")

nc <- st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)

ddbs_register_vector(conn, nc, "nc_arrow_view")

dbGetQuery(conn, "SELECT COUNT(*) FROM nc_arrow_view;")

ddbs_stop_conn(conn, shutdown = TRUE)

End(Not run)

ddbs_rotate Rotate geometries around centroid

Description

Rotates geometries from from a sf object or a DuckDB table. Returns the result as an sf object or
creates a new table in the database.

76 ddbs_rotate

Usage

ddbs_rotate(
x,
angle,
units = c("degrees", "radians"),
by_feature = FALSE,
center_x = NULL,
center_y = NULL,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

angle a numeric value specifying the rotation angle
units character string specifying angle units: "degrees" (default) or "radians"
by_feature Logical. If TRUE, the geometric operation is applied separately to each geometry.

If FALSE (default), the geometric operation is applied to the data as a whole.
center_x numeric value for the X coordinate of rotation center. If NULL, rotates around

the centroid of each geometry
center_y numeric value for the Y coordinate of rotation center. If NULL, rotates around

the centroid of each geometry
conn A connection object to a DuckDB database. If NULL, the function runs on a

temporary DuckDB database.
name A character string of length one specifying the name of the table, or a charac-

ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

ddbs_rotate_3d 77

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

rotate 45 degrees
ddbs_rotate(conn = conn, "argentina", angle = 45)

rotate 90 degrees around a specific point
ddbs_rotate(conn = conn, "argentina", angle = 90, center_x = -64, center_y = -34)

rotate without using a connection
ddbs_rotate(argentina_sf, angle = 45)

End(Not run)

ddbs_rotate_3d Rotate 3D geometries around an axis

Description

Rotates 3D geometries from from a sf object or a DuckDB table around the X, Y, or Z axis. Returns
the result as an sf object or creates a new table in the database.

Usage

ddbs_rotate_3d(
x,
angle,
units = c("degrees", "radians"),
axis = "x",
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

78 ddbs_rotate_3d

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

angle a numeric value specifying the rotation angle

units character string specifying angle units: "degrees" (default) or "radians"

axis character string specifying the rotation axis: "x", "y", or "z" (default = "x"). The
geometry rotates around this axis

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read 3D data
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")

rotate 45 degrees around X axis (pitch)
ddbs_rotate_3d(conn = conn, "countries", angle = 45, axis = "x")

rotate 90 degrees around Y axis (yaw)

ddbs_scale 79

ddbs_rotate_3d(conn = conn, "countries", angle = 30, axis = "y")

rotate 180 degrees around Z axis (roll)
ddbs_rotate_3d(conn = conn, "countries", angle = 180, axis = "z")

rotate without using a connection
ddbs_rotate_3d(countries_sf, angle = 45, axis = "z")

End(Not run)

ddbs_scale Scale geometries by X and Y factors

Description

Scales geometries around the centroid of the geometry. Returns the result as an sf object or creates
a new table in the database.

Usage

ddbs_scale(
x,
x_scale = 1,
y_scale = 1,
by_feature = FALSE,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

x_scale numeric value specifying the scaling factor in the X direction (default = 1)

y_scale numeric value specifying the scaling factor in the Y direction (default = 1)

by_feature Logical. If TRUE, the geometric operation is applied separately to each geometry.
If FALSE (default), the geometric operation is applied to the data as a whole.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

80 ddbs_scale

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")

scale to 150% in both directions
ddbs_scale(conn = conn, "countries", x_scale = 1.5, y_scale = 1.5)

scale to 200% horizontally, 50% vertically
ddbs_scale(conn = conn, "countries", x_scale = 2, y_scale = 0.5)

scale all features together (default)
ddbs_scale(countries_sf, x_scale = 1.5, y_scale = 1.5, by_feature = FALSE)

scale each feature independently
ddbs_scale(countries_sf, x_scale = 1.5, y_scale = 1.5, by_feature = TRUE)

End(Not run)

ddbs_shear 81

ddbs_shear Shear geometries

Description

Applies a shear transformation to geometries from a sf object or a DuckDB table. Returns the
result as an sf object or creates a new table in the database. Shearing skews the geometry by
shifting coordinates proportionally.

Usage

ddbs_shear(
x,
x_shear = 0,
y_shear = 0,
by_feature = FALSE,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

x_shear numeric value specifying the shear factor in the X direction (default = 0). For
each unit in Y, X coordinates are shifted by this amount

y_shear numeric value specifying the shear factor in the Y direction (default = 0). For
each unit in X, Y coordinates are shifted by this amount

by_feature Logical. If TRUE, the geometric operation is applied separately to each geometry.
If FALSE (default), the geometric operation is applied to the data as a whole.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

82 ddbs_shift

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")

shear in X direction (creates italic-like effect)
ddbs_shear(conn = conn, "countries", x_shear = 0.3, y_shear = 0)

shear in Y direction
ddbs_shear(conn = conn, "countries", x_shear = 0, y_shear = 0.3)

shear in both directions
ddbs_shear(conn = conn, "countries", x_shear = 0.2, y_shear = 0.2)

shear without using a connection
ddbs_shear(countries_sf, x_shear = 0.3, y_shear = 0)

End(Not run)

ddbs_shift Shift geometries by X and Y offsets

Description

Shifts (translates) geometries from a sf object or a DuckDB table. Returns the result as an sf object
or creates a new table in the database. This function is equivalent to terra::shift().

ddbs_shift 83

Usage

ddbs_shift(
x,
dx = 0,
dy = 0,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

dx numeric value specifying the shift in the X direction (longitude/easting)

dy numeric value specifying the shift in the Y direction (latitude/northing)

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

84 ddbs_simplify

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

shift 10 degrees east and 5 degrees north
ddbs_shift(conn = conn, "argentina", dx = 10, dy = 5)

shift without using a connection
ddbs_shift(argentina_sf, dx = 10, dy = 5)

End(Not run)

ddbs_simplify Simplify geometries

Description

Simplifies geometries from a DuckDB table using the Douglas-Peucker algorithm via the spatial
extension. Returns the result as an sf object or creates a new table in the database.

Usage

ddbs_simplify(
x,
tolerance,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

tolerance Tolerance distance for simplification. Larger values result in more simplified
geometries.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

ddbs_stop_conn 85

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object with simplified geometries or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
countries_sf <- st_read(system.file("spatial/countries.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, countries_sf, "countries")

simplify with tolerance of 0.01
ddbs_simplify("countries", tolerance = 0.01, conn)

simplify without using a connection
ddbs_simplify(countries_sf, tolerance = 0.01)

End(Not run)

ddbs_stop_conn Close a duckdb connection

Description

Close a duckdb connection

Usage

ddbs_stop_conn(conn)

86 ddbs_touches

Arguments

conn A connection object to a DuckDB database

Value

TRUE (invisibly) for successful disconnection

Examples

load packages
library(duckspatial)

create an in-memory duckdb database
conn <- ddbs_create_conn(dbdir = "memory")

close the connection
ddbs_stop_conn(conn)

ddbs_touches Spatial touches predicate

Description

Tests if geometries in x touch geometries in y. Returns TRUE if geometries share a boundary but
their interiors do not intersect.

Usage

ddbs_touches(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

ddbs_transform 87

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "touches".

Value

A list where each element contains indices (or IDs) of geometries in y that touch the corresponding
geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial"))
countries_filter_sf <- countries_sf |> filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))

Find neighboring countries
ddbs_touches(countries_filter_sf, countries_sf, id_x = "NAME_ENGL", id_y = "NAME_ENGL")

End(Not run)

ddbs_transform Transform coordinate reference system of geometries

Description

Transforms geometries from a DuckDB table to a different coordinate reference system using the
spatial extension. Works similarly to sf::st_transform(). Returns the result as an sf object or
creates a new table in the database.

88 ddbs_transform

Usage

ddbs_transform(
x,
y,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y Target CRS. Can be:

• A character string with EPSG code (e.g., "EPSG:4326")
• An sf object (uses its CRS)
• Name of a DuckDB table (uses its CRS)

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column a character string of length one specifying the column storing the CRS (created
automatically by ddbs_write_vector). Set to NULL if absent.

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

ddbs_union 89

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
argentina_sf <- st_read(system.file("spatial/argentina.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, argentina_sf, "argentina")

transform to different CRS using EPSG code
ddbs_transform("argentina", "EPSG:3857", conn)

transform to match CRS of another sf object
argentina_3857_sf <- st_transform(argentina_sf, "EPSG:3857")
ddbs_write_vector(conn, argentina_3857_sf, "argentina_3857")
ddbs_transform("argentina", argentina_3857_sf, conn)

transform to match CRS of another DuckDB table
ddbs_transform("argentina", "argentina_3857", conn)

transform without using a connection
ddbs_transform(argentina_sf, "EPSG:3857")

End(Not run)

ddbs_union Union of geometries

Description

Computes the union of geometries from a sf objects or a DuckDB tables using. This is equivalent to
sf::st_union(). The function supports three modes: (1) union all geometries from a single object
into one geometry, (2) union geometries from a single object grouped by one or more columns, (3)
union geometries from two different objects. Returns the result as an sf object or creates a new
table in the database.

Usage

ddbs_union(
x,
y = NULL,
by = NULL,
conn = NULL,
name = NULL,
crs = NULL,
crs_column = "crs_duckspatial",
overwrite = FALSE,
quiet = FALSE

)

90 ddbs_union

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y optional. A second table name, sf object, or DuckDB connection to compute
the pairwise union between geometries in x and y. Default is NULL

by optional. Character vector specifying one or more column names to group by
when computing unions. Geometries will be unioned within each group. Default
is NULL

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

crs The coordinates reference system of the data. Specify if the data doesn’t have a
crs_column, and you know the CRS.

crs_column character string specifying the name of the CRS column. Default is "crs_duckspatial"

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

an sf object or TRUE (invisibly) for table creation

Examples

Not run:
load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)
conn <- ddbs_create_conn(dbdir = "memory")

read data
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial"))

store in duckdb
ddbs_write_vector(conn, rivers_sf, "rivers")

union all geometries into one
ddbs_union(conn = conn, "rivers")

union without using a connection
ddbs_union(rivers_sf)

ddbs_within 91

union geometries grouped by a column
ddbs_union(conn = conn, "rivers", by = "RIVER_NAME")

store result in a new table
ddbs_union(conn = conn, "rivers", name = "rivers_union")

End(Not run)

ddbs_within Spatial within predicate

Description

Tests if geometries in x are within geometries in y. Returns TRUE if geometry x is completely inside
geometry y.

Usage

ddbs_within(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

92 ddbs_within_properly

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "within".

Value

A list where each element contains indices (or IDs) of geometries in y that contain the corresponding
geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_within(rivers_sf, countries_sf, id_x = "RIVER_NAME", id_y = "NAME_ENGL")

End(Not run)

ddbs_within_properly Spatial within properly predicate

Description

Tests if geometries in x are properly within geometries in y. Returns TRUE if geometry x is com-
pletely inside geometry y and does not touch its boundary.

Usage

ddbs_within_properly(
x,
y,
conn = NULL,
id_x = NULL,
id_y = NULL,
sparse = TRUE,
quiet = FALSE

)

ddbs_within_properly 93

Arguments

x An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn. Data is returned from
this object.

y An sf spatial object. Alternatively, it can be a string with the name of a table
with geometry column within the DuckDB database conn.

conn A connection object to a DuckDB database. If NULL, the function runs on a
temporary DuckDB database.

id_x Character; optional name of the column in x whose values will be used to name
the list elements. If NULL, integer row numbers of x are used.

id_y Character; optional name of the column in y whose values will replace the inte-
ger indices returned in each element of the list.

sparse A logical value. If TRUE, it returns a sparse index list. If FALSE, it returns a dense
logical matrix.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Details

This is a convenience wrapper around ddbs_predicate() with predicate = "within_properly".

Value

A list where each element contains indices (or IDs) of geometries in y that properly contain the
corresponding geometry in x. See ddbs_predicate() for details.

See Also

ddbs_predicate() for other spatial predicates.

Examples

Not run:
load packages
library(dplyr)
library(duckspatial)
library(sf)

read countries data, and rivers
countries_sf <- read_sf(system.file("spatial/countries.geojson", package = "duckspatial")) |>

filter(CNTR_ID %in% c("PT", "ES", "FR", "IT"))
rivers_sf <- st_read(system.file("spatial/rivers.geojson", package = "duckspatial")) |>

st_transform(st_crs(countries_sf))

ddbs_within_properly(countries_sf, rivers_sf, id_x = "NAME_ENGL", id_y = "RIVER_NAME")

End(Not run)

94 ddbs_write_vector

ddbs_write_vector Write an SF Object to a DuckDB Database

Description

This function writes a Simple Features (SF) object into a DuckDB database as a new table. The
table is created in the specified schema of the DuckDB database.

Usage

ddbs_write_vector(
conn,
data,
name,
overwrite = FALSE,
temp_view = FALSE,
quiet = FALSE

)

Arguments

conn A connection object to a DuckDB database

data A sf object to write to the DuckDB database, or the path to a local file that can
be read with ST_READ

name A character string of length one specifying the name of the table, or a charac-
ter string of length two specifying the schema and table names. If NULL (the
default), the function returns the result as an sf object

overwrite Boolean. whether to overwrite the existing table if it exists. Defaults to FALSE.
This argument is ignored when name is NULL.

temp_view If TRUE, registers the sf object as a temporary Arrow-backed database ’view’
using ddbs_register_vector instead of creating a persistent table. This is
much faster but the view will not persist. Defaults to FALSE.

quiet A logical value. If TRUE, suppresses any informational messages. Defaults to
FALSE.

Value

TRUE (invisibly) for successful import

Examples

load packages
library(duckspatial)
library(sf)

create a duckdb database in memory (with spatial extension)

ddbs_write_vector 95

conn <- ddbs_create_conn(dbdir = "memory")

create random points
random_points <- data.frame(

id = 1:5,
x = runif(5, min = -180, max = 180), # Random longitude values
y = runif(5, min = -90, max = 90) # Random latitude values

)

convert to sf
sf_points <- st_as_sf(random_points, coords = c("x", "y"), crs = 4326)

insert data into the database
ddbs_write_vector(conn, sf_points, "points")

read data back into R
ddbs_read_vector(conn, "points", crs = 4326)

disconnect from db
dbDisconnect(conn)

Index

areal::aw_interpolate(), 48

ddbs_area, 3
ddbs_as_hexwkb, 5
ddbs_as_text, 6
ddbs_as_wkb, 7
ddbs_bbox, 8
ddbs_boundary, 10
ddbs_buffer, 11
ddbs_centroid, 13
ddbs_combine, 14
ddbs_concave_hull, 16
ddbs_contains, 17
ddbs_contains_properly, 19
ddbs_convex_hull, 20
ddbs_covered_by, 22
ddbs_covers, 24
ddbs_create_conn, 25
ddbs_create_schema, 26
ddbs_crosses, 27
ddbs_crs, 28
ddbs_difference, 29
ddbs_disjoint, 30
ddbs_distance, 32
ddbs_drivers, 33
ddbs_envelope, 34
ddbs_equals, 36
ddbs_exterior_ring, 37
ddbs_filter, 39
ddbs_flip, 41
ddbs_generate_points, 42
ddbs_glimpse, 44
ddbs_install, 45
ddbs_interpolate_aw, 46
ddbs_intersection, 49
ddbs_intersects, 51
ddbs_intersects_extent, 52
ddbs_is_simple, 54
ddbs_is_valid, 55
ddbs_is_within_distance, 57

ddbs_join, 58
ddbs_length, 61
ddbs_list_tables, 63
ddbs_load, 63
ddbs_make_polygon, 64
ddbs_make_valid, 65
ddbs_overlaps, 67
ddbs_predicate, 68
ddbs_predicate(), 18, 20, 23–25, 27, 28, 31,

37, 52, 53, 58, 68, 87, 92, 93
ddbs_quadkey, 71
ddbs_read_vector, 73
ddbs_register_vector, 74
ddbs_rotate, 75
ddbs_rotate_3d, 77
ddbs_scale, 79
ddbs_shear, 81
ddbs_shift, 82
ddbs_simplify, 84
ddbs_stop_conn, 85
ddbs_touches, 86
ddbs_transform, 87
ddbs_union, 89
ddbs_within, 91
ddbs_within_properly, 92
ddbs_write_vector, 4, 9, 10, 12, 13, 16, 21,

28, 30, 35, 38, 40, 42–44, 47, 50, 55,
56, 59, 62, 65, 72, 73, 76, 78, 80, 81,
83, 85, 88, 94

96

	ddbs_area
	ddbs_as_hexwkb
	ddbs_as_text
	ddbs_as_wkb
	ddbs_bbox
	ddbs_boundary
	ddbs_buffer
	ddbs_centroid
	ddbs_combine
	ddbs_concave_hull
	ddbs_contains
	ddbs_contains_properly
	ddbs_convex_hull
	ddbs_covered_by
	ddbs_covers
	ddbs_create_conn
	ddbs_create_schema
	ddbs_crosses
	ddbs_crs
	ddbs_difference
	ddbs_disjoint
	ddbs_distance
	ddbs_drivers
	ddbs_envelope
	ddbs_equals
	ddbs_exterior_ring
	ddbs_filter
	ddbs_flip
	ddbs_generate_points
	ddbs_glimpse
	ddbs_install
	ddbs_interpolate_aw
	ddbs_intersection
	ddbs_intersects
	ddbs_intersects_extent
	ddbs_is_simple
	ddbs_is_valid
	ddbs_is_within_distance
	ddbs_join
	ddbs_length
	ddbs_list_tables
	ddbs_load
	ddbs_make_polygon
	ddbs_make_valid
	ddbs_overlaps
	ddbs_predicate
	ddbs_quadkey
	ddbs_read_vector
	ddbs_register_vector
	ddbs_rotate
	ddbs_rotate_3d
	ddbs_scale
	ddbs_shear
	ddbs_shift
	ddbs_simplify
	ddbs_stop_conn
	ddbs_touches
	ddbs_transform
	ddbs_union
	ddbs_within
	ddbs_within_properly
	ddbs_write_vector
	Index

