Package ‘dySEM’

December 22, 2025
Title Dyadic Structural Equation Modeling

Version 1.4.1

Description Scripting of structural equation models via 'lavaan' for
Dyadic Data Analysis, and helper functions for supplemental
calculations, tabling, and model visualization.

License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2

URL https://github.com/jsakaluk/dySEM,
https://jsakaluk.github.io/dySEM/

BugReports https://github.com/jsakaluk/dySEM/issues

Imports cli, dplyr, EGAnet, gt, lavaan, lifecycle, magrittr, rlang,
semPlot, stringr, tibble

Suggests janitor, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

LazyData true

Depends R (>=4.1)

Config/testthat/edition 3

NeedsCompilation no

Author John Sakaluk [aut, cre, cph] (ORCID:

<https://orcid.org/0000-0002-2515-9822>),

Omar Camanto [aut] (ORCID: <https://orcid.org/0009-0009-4012-9777>),

Christopher Quinn-Nilas [ctb] (ORCID:
<https://orcid.org/0000-0002-8056-2008>),

Merissa Prine [ctb],

Robyn Kilshaw [ctb],

Alexandra Fisher [ctb]

Maintainer John Sakaluk <jksakaluk@gmail.com>
Repository CRAN
Date/Publication 2025-12-22 20:00:02 UTC

https://github.com/jsakaluk/dySEM
https://jsakaluk.github.io/dySEM/
https://github.com/jsakaluk/dySEM/issues
https://orcid.org/0000-0002-2515-9822
https://orcid.org/0009-0009-4012-9777
https://orcid.org/0000-0002-8056-2008

2 commitmentM

Contents
commitmentM 2
commitmentQ L e e e e 4
DRES . . e 5
getConstraintTests oL 6
getDydmacs 7
getDyReliability e 8
getIndistFit e 9
getlnvarCompTable 10
IMSM . . . e 11
outputConstraintTab e 13
outputlnvarCompTab 14
outputModel L 17
outputParamFig 19
outputParamTab 20
outputUniConstructComp e 22
pargM .o e e e 25
PracQ . . o 26
SCrapeVarCross v v i e e e e e e e e e e e 28
scriptAPIM L e 30
seriptBiDy o 32
scriptBifac L L e 35
scriptCFA . . . L e e 37
scriptCEM o e 41
SCHPtCOr o 43
scriptDYEFA . . . o e e 46
scriptHier 47
scriptINULL o o e 50
scriptISAT o 51
scriptMIM . . . L L e e e 52
scriptObsAPIM 54
seriptUni o oL e 55

Index 59

commitmentM Ratings of relational satisfaction and commitment from 282 (M)ixed-
sex couples
Description

A data set containing 5 ratings of satisfaction and 5 ratings of commitment for each member of a
mixed-sex romantic dyad. Measured using the Investment Model Scale subscales (Rusbult, Martz,
& Agnew, 1998). Data are from Sakaluk, Fisher, and Kilshaw’s (2021) study of dyadic invariance.
Variable names have been re-coded to follow a stem-item-partner ("sip") order, with a delimiter
("_") between the item number and partner distinguishing character.

commitmentM 3

Usage

data(commitmentM)

Format

A data frame with 282 rows and 20 variables:

sat.gl_f Satisfaction item 1 for female partner
sat.g2_f Satisfaction item 2 for female partner
sat.g3_f Satisfaction item 3 for female partner
sat.g4_f Satisfaction item 4 for female partner
sat.g5_f Satisfaction item 5 for female partner
coml_f Commitment items item 1 for female partner
com2_f Commitment items item 2 for female partner
com3_f Commitment items item 3 for female partner
com4_f Commitment items item 4 for female partner
com5_f Commitment items item 5 for female partner
sat.gl_m Satisfaction item 1 for male partner
sat.g2_m Satisfaction item 2 for male partner
sat.g3_m Satisfaction item 3 for male partner
sat.g4_m Satisfaction item 4 for male partner
sat.g5_m Satisfaction item 5 for male partner
coml_m Commitment items item 1 for male partner
com2_m Commitment items item 2 for male partner
com3_m Commitment items item 3 for male partner
com4_m Commitment items item 4 for male partner

com5_m Commitment items item 5 for male partner

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. .

4 commitmentQ

commitmentQ Ratings of relational satisfaction and commitment from 282 (Q)ueer
couples

Description

A data set containing 5 ratings of satisfaction and 5 ratings of commitment for each member of a
dyad in which one or more members identify as LGBTQ+. Measured using the Investment Model
Scale subscales (Rusbult, Martz, & Agnew, 1998). Data are from Sakaluk, Fisher, and Kilshaw
(2021). Variable names follow a stem-partner-item ("spi") order, with a delimiter (".") between the
stem and distinguishing partner character, and another delimiter ("_") between the distinguishing

partner character and item number.

Usage

data(commitmentQ)

Format

A data frame with 118 rows and 20 variables:

sat.g.1_1 Satisfaction item 1 for partnerl
sat.g.1_2 Satisfaction item 2 for partnerl
sat.g.1_3 Satisfaction item 3 for partnerl
sat.g.1_4 Satisfaction item 4 for partnerl
sat.g.1_S Satisfaction item 5 for partnerl
com.1_1 Commitment items item 1 for partnerl
com.1_2 Commitment items item 2 for partnerl
com.1_3 Commitment items item 3 for partnerl
com.1_4 Commitment items item 4 for partnerl
com.1_S Commitment items item 5 for partnerl
sat.g.2_1 Satisfaction item 1 for partner 2
sat.g.2_2 Satisfaction item 2 for partner 2
sat.g.2_3 Satisfaction item 3 for partner 2
sat.g.2_4 Satisfaction item 4 for partner 2
sat.g.2_S Satisfaction item 5 for partner 2
com.2_1 Commitment items item 1 for partner 2
com.2_2 Commitment items item 2 for partner 2
com.2_3 Commitment items item 3 for partner 2
com.2_4 Commitment items item 4 for partner 2

com.2_S Commitment items item 5 for partner 2

DRES 5

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. #

DRES Relationship quality and sexual satisfaction of 121 couples

Description

A dataset containing 9 observed indicators of relationship quality (PRQC) and 5 observed indica-
tors of sexual satisfaction from 121 couples in the DRES (Daily Relationship Experiences Study;
Raposo, Impett, & Muise, in press)

Usage
data(DRES)

Format

A data frame with 121 rows and 28 variables:

PRQC_1.1 PRQC item 1 for partner 1
PRQC_2.1 PRQC item 2 for partner 1
PRQC_3.1 PRQC item 3 for partner 1
PRQC_4.1 PRQC item 4 for partner 1
PRQC_5.1 PRQC item 5 for partner 1
PRQC_6.1 PRQC item 6 for partner 1
PRQC_7.1 PRQC item 7 for partner 1
PRQC_8.1 PRQC item 8 for partner 1
PRQC_9.1 PRQC item 9 for partner 1
PRQC_1.2 PRQC item 1 for partner 2
PRQC_2.2 PRQC item 2 for partner 2
PRQC_3.2 PRQC item 3 for partner 2
PRQC_4.2 PRQC item 4 for partner 2
PRQC_5.2 PRQC item 5 for partner 2
PRQC_6.2 PRQC item 6 for partner 2
PRQC_7.2 PRQC item 7 for partner 2
PRQC_8.2 PRQC item 8 for partner 2
PRQC_9.2 PRQC item 9 for partner 2

sexsatl.1 sexual satisfaction item 1 for partner 1

6 getConstraintTests

sexsat2.1 sexual satisfaction item 2 for partner 1
sexsat3.1 sexual satisfaction item 3 for partner 1
sexsatd.1l sexual satisfaction item 4 for partner 1
sexsatS.1 sexual satisfaction item 5 for partner 1
sexsatl.2 sexual satisfaction item 1 for partner 2
sexsat2.2 sexual satisfaction item 2 for partner 2
sexsat3.2 sexual satisfaction item 3 for partner 2
sexsat4.2 sexual satisfaction item 4 for partner 2

sexsat5.2 sexual satisfaction item 5 for partner 2

References

Raposo, S., Impett, E. A., & Muise, A. (2020). Avoidantly Attached Individuals Are More Exchange-
Oriented and Less Communal in the Bedroom. Archives of Sexual Behavior, 49, 2863-2881.
https://doi.org/10.1007/s10508-020-01813-9

getConstraintTests A function that performs a score test for relaxing each invariance
equality constraint between partners in a given dyadic SEM model.

Description
A function that performs a score test for relaxing each invariance equality constraint between part-
ners in a given dyadic SEM model.

Usage

getConstraintTests(constrainFit, filterSig = FALSE)

Arguments

constrainFit fitted lavaan model with dyadic invariance equality constraints

filterSig logical indicating whether to filter for significant constraints (default is FALSE)

Value

a data frame with rows of equality constraints (now with readable param labels) and test statistic,
df, and p for whether constraint worsens model fit

getDydmacs

Examples
dvn <- scrapeVarCross(dat = commitmentM, x_order = "sip"”, x_stem = "sat.g",
x_delim2="_" distinguish_1="f", distinguish_2="m")
sat.resids.script <- scriptCor(dvn, lvname = "Sat"”,
constr_dy_meas = c("loadings"”, "intercepts”, "residuals"),
constr_dy_struct = "none")

sat.resids.mod <- lavaan::cfa(sat.resids.script, data = commitmentM, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

getConstraintTests(sat.resids.mod)

getDydmacs Calculates dmacs difference in expected indicator scores for between
dyad members

Description

Calculates dmacs difference in expected indicator scores for between dyad members

Usage

getDydmacs(dat, dvn, fit, nodewidth = .01, lowerLV = -5, upperLV = 5)

Arguments
dat data frame of indicators
dvn input dvn list from scrapeVarCross
fit outputted dyadic cfa lavaan object; should be from a partial-invariance model
nodewidth space between nodes during quadrature approximation (default = .01)
lowerLV lowest latent variable value evaluated (default = -5)
upperLV greatest latent variable value evaluated (default = 5)

Value

vector of d_macs values

See Also

Other supplemental model calculators: getDyReliability(), getIndistFit()

8 getDyReliability

Examples

non

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =

x_delim2="_", distinguish_1="1", distinguish_2="2")
sat.config.script <- scriptCor(dvn, lvname = "Sat",
constr_dy_meas = "none”,

constr_dy_struct = "none")

sat.config.mod <- lavaan::cfa(sat.config.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)
getDydmacs (commitmentQ, dvn, sat.config.mod)

getDyReliability A Function Calculates Omega Total Coefficients from a Dyadic CFA

Description
This function takes the model from fitted scriptCor() scripts and returns omega total coefficients for
each dyad member, adapted following Formula 2 in McNeish (2018).

Usage

getDyReliability(dvn, fit)

Arguments
dvn input dvn list from scrapeVarCross
fit outputted dyadic cfa lavaan object based on the default (i.e., "configural") dyad-
CFA() function
Value

a tibble/data frame with calculated omega total coefficients for dyad Member 1 and Member 2

See Also

Other supplemental model calculators: getDydmacs(), getIndistFit()

Examples

non

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =
x_delim2="_", distinguish_1="1", distinguish_2="2")

sat.indist.script <- scriptCor(dvn, lvname = "Sat")

sat.indist.mod <- lavaan::cfa(sat.indist.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

getDyReliability(dvn, sat.indist.mod)

getIndistFit 9

getIndistFit A Function that Computes Corrected Fit Indexes According to the
ISAT and INULL Models of Olsen & Kenny (2006)

Description

This function takes the outputted model fit using scriptCor() with model = "indist", as well as scrip-
tISAT(), and scriptINULL() and computes corrected model fit indexes according to the approach
outlined by Olsen & Kenny (2006)

Usage

getIndistFit(indmodel, isatmod, inullmod)

Arguments
indmodel input lavaan model object fitted using dyadCFA(model = "indistinguishable")
isatmod input lavaan model object fitted using ISAT()
inullmod input lavaan model object fitted using INULL()

Value

A data frame of the original and corrected chi sq, df, p, rmsea, and tli

See Also

Other supplemental model calculators: getDyReliability(), getDydmacs()

Examples

dvn <- scrapeVarCross(

dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_deliml = "."
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"

)

sat.indist.script <- scriptCor(dvn, lvname = "Sat")

sat.indist.mod <- lavaan::cfa(sat.indist.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

sat.isat.script <- scriptISAT(dvn, lvxname = "Sat")
sat.isat.mod <- lavaan::cfa(sat.isat.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = FALSE

)

sat.inull.script <- scriptINULL(dvn, lvxname = "Sat")

10 getlnvarCompTable

sat.inull.mod <- lavaan::cfa(sat.inull.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = FALSE

)

getIndistFit(sat.indist.mod, sat.isat.mod, sat.inull.mod)

getInvarCompTable Compare model fit of nested dyadic invariance models in order from
most parsimonious (residual) to least parsimonious (configural)

Description

Compare model fit of nested dyadic invariance models in order from most parsimonious (residual)
to least parsimonious (configural)

Usage

getInvarCompTable(mods)

Arguments
mods a list of neted lavaan dyadic invariance models, in the order of residual, intercept,
loading, configural
Value

a data frame of model fit statistics for each model, as well as the difference in fit statistics between
each model and the previous model

Examples
dvn <- scrapeVarCross(
dat = commitmentQ, x_order = "spi”,
x_stem = "sat.g", x_deliml = ".", x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"
)
sat.residual.script <- scriptCor(dvn,
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts”, "residuals"), constr_dy_struct = "none”
)
sat.intercept.script <- scriptCor(dvn,
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts"), constr_dy_struct = "none”

)

sat.loading.script <- scriptCor(dvn,

imsM 11

lvname = "Sat”,

constr_dy_meas = c("loadings"), constr_dy_struct = "none”
)
sat.config.script <- scriptCor(dvn,

lvname = "Sat"”,

constr_dy_meas = "none", constr_dy_struct = "none”

)

sat.residual.fit <- lavaan::cfa(sat.residual.script,

data = commitmentQ,

std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE
)

sat.intercept.fit <- lavaan::cfa(sat.intercept.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.loading.fit <- lavaan::cfa(sat.loading.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)
sat.config.fit <- lavaan::cfa(sat.config.script,

data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)
mods <- list(sat.residual.fit, sat.intercept.fit, sat.loading.fit, sat.config.fit)

getInvarCompTable(mods)

imsM Ratings on the full Investment Model Scale (IMS) from 282 (M)ixed-
sex couples

Description

A data set containing 5 ratings for each of (1) satisfaction, (2) quality of alternatives, (3) investment,
and 4 (commitment) for each member of a mixed-sex romantic dyad. Measured using the Invest-
ment Model Scale subscales (Rusbult, Martz, & Agnew, 1998). Data are from Sakaluk, Fisher,
and Kilshaw’s (2021) study of dyadic invariance. Variable names have been re-coded to follow a
stem-item-partner ("sip") order, with a delimiter ("_") between the item number and partner distin-
guishing character.

Usage

data(imsM)

12

Format
A data frame with 282 rows and 40 variables:

sat.gl_f Satisfaction item 1 for female partner

sat.g2_f Satisfaction item 2 for female partner

sat.g3_f Satisfaction item 3 for female partner

sat.gd_f Satisfaction item 4 for female partner

sat.g5_f Satisfaction item 5 for female partner

qalt.gl_f Quality of alternatives item 1 for female partner
qalt.g2_f Quality of alternatives item 2 for female partner
qalt.g3_f Quality of alternatives item 3 for female partner
qalt.gd_f Quality of alternatives item 4 for female partner
qalt.g5_f Quality of alternatives item 5 for female partner
invest.gl_f Investment item 1 for female partner
invest.g2_f Investment item 2 for female partner
invest.g3_f Investment item 3 for female partner
invest.g4_f Investment item 4 for female partner
invest.g5_f Investment item 5 for female partner

coml_f Commitment items item 1 for female partner
com2_f Commitment items item 2 for female partner
com3_f Commitment items item 3 for female partner
com4_f Commitment items item 4 for female partner
com5_f Commitment items item 5 for female partner
sat.gl_m Satisfaction item 1 for male partner

sat.g2_m Satisfaction item 2 for male partner

sat.g3_m Satisfaction item 3 for male partner

sat.gd_m Satisfaction item 4 for male partner

sat.g5_m Satisfaction item 5 for male partner

qalt.gl_m Quality of alternatives item 1 for male partner
qalt.g2_m Quality of alternatives item 2 for male partner
qalt.g3_m Quality of alternatives item 3 for male partner
qalt.gd_m Quality of alternatives item 4 for male partner
qalt.g5_m Quality of alternatives item 5 for male partner
invest.gl_m Investment item 1 for male partner
invest.g2_m Investment item 2 for male partner
invest.g3_m Investment item 3 for male partner
invest.gd_m Investment item 4 for male partner

invest.g5_m Investment item 5 for male partner

imsM

outputConstraintTab 13

coml_m Commitment items item 1 for male partner
com2_m Commitment items item 2 for male partner
com3_m Commitment items item 3 for male partner
com4_m Commitment items item 4 for male partner
com5_m Commitment items item 5 for male partner

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. .

outputConstraintTab Evaluate Invariance Equality Constraints in a specified Dyadic Invari-
ance Model

Description

outputConstraintTab() is used to perform a score test for relaxing each invariance equality con-
straint between partners in a given dyadic SEM model.

Usage

outputConstraintTab(
constrainFit,
filterSig = FALSE,
gtTab = FALSE,
writeTo = NULL,
fileName = NULL

Arguments

constrainFit A fitted lavaan model with dyadic invariance equality constraints

filterSig A logical indicating whether to filter for significant constraints (default is FALSE)

gtTab A logical input indicating whether to generate the output in gt: : gt () table ob-
ject format (TRUE). By default (FALSE), the output is generated in tibble: : tibble()
format. Users can also apply the writeTo argument if they wish to export the
gt:gt() table object.

writeTo A character string specifying a directory path to where the gt : : gt () table object
should be saved. If set to ".", the file will be written to the current working
directory. The default is NULL, and examples use a temporary directory created
by tempdir(). writeTo is only relevant if gtTab = TRUE.

fileName A character string specifying a desired base name for the output gt: : gt () file.
If a fileName is not provided (i.e., fileName = NULL), then a default will be
used (i.e., "dySEM_table"). The resulting base name will automatically be ap-
pended with a . rtf file extension. fileName is only relevant if gtTab = TRUE
and writeTo is specified.

14 outputlnvarCompTab

Details

e If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

* If output file is successfully saved, a confirmation message will be printed to the console.

* If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

A tibble::tibble() if gtTab = FALSE (default), or gt: :gt() object if gtTab = TRUE, with rows
of equality constraints (now with readable param labels) and test statistic, df, and p for whether
constraint worsens model fit.

Examples

dvn <- scrapeVarCross(
dat = commitmentM, x_order = "sip”, x_stem = "sat.g",

x_delim2 = "_", distinguish_1 = "f", distinguish_2 = "m"
)
sat.resids.script <- scriptCor(dvn,
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts"”, "residuals"),
constr_dy_struct = "none”

)

sat.resids.mod <- lavaan::cfa(sat.resids.script,
data = commitmentM, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputConstraintTab(sat.resids.mod,

filterSig = FALSE,

gtTab = TRUE, writeTo = tempdir(), fileName = "dCFA_Residual”
)

outputInvarCompTab Compare Model Fit of Nested Dyadic Invariance Models

Description

outputInvarCompTab() is used to compare the model fit of nested dyadic invariance models in
order from most parsimonious (residual) to least parsimonious (configural)

outputlnvarCompTab 15

Usage

outputInvarCompTab(
mods,
parsimonyFirst = FALSE,
gtTab = FALSE,
writeTo = NULL,
fileName = NULL

Arguments

mods A list of nested lavaan dyadic invariance models, in the order of residual, inter-
cept, loading, configural

parsimonyFirst A logical input indicating whether to prioritize the residual dyadic invariance
(i.e. most parsimonious measurement model) as the baseline model for nested
comparisons, or to prioritize the configural dyadic invariance (i.e. least parsi-
monious measurement model). Defaults to FALSE (i.e., configural dyadic in-
variance is the baseline model).

gtTab A logical input indicating whether to generate the output in gt: : gt () table ob-
ject format (TRUE). By default (FALSE), the output is generated in tibble: : tibble()
format. Users can also apply the writeTo argument if they wish to export the
gt:gt() table object.

writeTo A character string specifying a directory path to where the gt : : gt () table object
should be saved. If set to ".", the file will be written to the current working
directory. The default is NULL, and examples use a temporary directory created
by tempdir(). writeTo is only relevant if gtTab = TRUE.

fileName A character string specifying a desired base name for the output gt: : gt () file.
If a fileName is not provided (i.e., fileName = NULL), then a default will be
used (i.e., "dySEM_table"). The resulting base name will automatically be ap-
pended with a . rtf file extension. fileName is only relevant if gtTab = TRUE
and writeTo is specified.

Details

o If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

* If output file is successfully saved, a confirmation message will be printed to the console.

* If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

A tibble::tibble() if gtTab = FALSE (default), or gt::gt() object if gtTab = TRUE, of model
fit statistics for each model, as well as the difference in fit statistics between each model and the
previous model

)

sat.residual.fit <- lavaan::cfa(sat.residual.script,

data = commitmentQ,

std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE
)

sat.intercept.fit <- lavaan::cfa(sat.intercept.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.loading.fit <- lavaan::cfa(sat.loading.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

sat.config.fit <- lavaan::cfa(sat.config.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

16 outputInvarCompTab
Examples
dvn <- scrapeVarCross(
dat = commitmentQ, x_order = "spi”,
x_stem = "sat.g", x_deliml = ".", x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"
)
sat.residual.script <- scriptCor(dvn,
lvname = "Sat"”,
constr_dy_meas = c("loadings”, "intercepts”, "residuals"), constr_dy_struct = "none”
)
sat.intercept.script <- scriptCor(dvn,
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts"), constr_dy_struct = "none”
)
sat.loading.script <- scriptCor(dvn,
lvname = "Sat”,
constr_dy_meas = c("loadings"), constr_dy_struct = "none”
)
sat.config.script <- scriptCor(dvn,
lvname = "Sat"”,
constr_dy_meas = "none"”, constr_dy_struct = "none”

mods <- list(sat.residual.fit, sat.intercept.fit, sat.loading.fit, sat.config.fit)

outputInvarCompTab(mods,
parsimonyFirst = FALSE,
gtTab = TRUE, writeTo = tempdir(), fileName = "dCFA_Invar_Standard”

)

outputModel

17

mods <- list(sat.config.fit, sat.loading.fit, sat.intercept.fit, sat.residual.fit)

outputInvarCompTab(mods,
parsimonyFirst = TRUE,
gtTab = TRUE, writeTo = tempdir(), fileName = "dCFA_Invar_Reverse”

)
outputModel A Function That Exports Tables and/or SEM Diagrams based on
dySEM models
Description

This function takes the model from fitted dySEM() scripts and exports table(s) and/or a path diagram
figure of expected output.

Usage

outputModel(

dvn,
model
fit,
table =

tabletype

figure
figtype
writeTo

fileName

Arguments

dvn

model

fit

table
tabletype

figure

figtype

NULL,
TRUE,
NULL,
NULL,
NULL

input dvn list from scrapeVarCross

character input specifying type of model to output (e.g., "cfa", "apim", "cfm")
input object from fitted lavaan model

logical input of whether table output is desired. Default is TRUE

character input of what type of table(s) is(are) desired. options are "measure-
ment" (i.e,, loadings, intercepts,), "structural" (i.e., latent slopes, such as ac-
tor/partner effects, k parameters), or "both" (i.e., both measurement and struc-
tural tables)

logical input of whether figure output is desired. Default is TRUE

character input of what type of figure is desired

18 outputModel

writeTo A character string specifying a directory path to where the file(s) should be
saved. If set to “, the file(s) will be written to the current working directory.
The default is NULL (which will throw an error), and examples use a temporary

directory created by tempdir().

fileName A character string specifying a desired base name for the output file(s). If a
fileName not provided (i.e., default fileName = NULL), then defaults will be
used (e.g., "dySEM_table"/"dySEM_table_Measurement"/"dySEM_table_Structural
for tables; "dySEM_figure" for figures). The specified name will be automati-
cally appended with the appropriate file extension (i.e., .rtf for tables; .png for
figures).

Details

If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

Ignore console (prints unnecessary semPlot::semPaths details). More importantly, prints word files
for the table(s) and/or figure, outputted to the users working directory

Examples

non
L

dvnx <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =

x_delim2="_", distinguish_1="1", distinguish_2="2")
sat.config.script <- scriptCor(dvnx, lvname = "Sat", constr_dy_meas = "none”,
constr_dy_struct = "none")

sat.config.mod <- lavaan::cfa(sat.config.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

outputModel (dvnx, model = "cfa", fit = sat.config.mod, table = TRUE,

tabletype = "measurement”, figure = "TRUE", figtype = "standardized”,

writeTo = tempdir(), fileName = "dCFA_configural”)

dvnxy <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =
x_delim2="_", distinguish_1="1", distinguish_2="2",

y_order="spi”, y_stem="com”, y_deliml = ".", y_delim2="_")

non

apim.indist.script <- scriptAPIM(dvnxy, lvxname = "Sat”, lvyname = "Com"”, est_k = TRUE)

apim.indist.mod <- lavaan::cfa(apim.indist.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

outputModel (dvnxy, model = "apim", fit = apim.indist.mod, table = TRUE,
tabletype = "measurement”, figure = "TRUE", figtype = "standardized”,
writeTo = tempdir(), fileName = "APIM_indist")

outputParamFig 19

outputParamFig A function That Exports SEM diagrams based on dySEM models

Description

This function takes the model from fitted dySEM scripts and exports .png path diagram figures of
expected output.

Usage

outputParamFig(fit, figtype = NULL, writeTo = NULL, fileName = NULL)

Arguments
fit Input object from fitted lavaan model.
figtype A character input of what type of model is desired:
* "unstandardized" for unstandardized path coefficients.
* "standardized" for standardized path coefficients.
* "labels" for labelled parameters.
writeTo A character string specifying a directory path to where the output file of the path
diagram should be saved. If set to ““.”, the file will be written to the current work-
ing directory. The default is NULL (which will throw an error), and examples use
a temporary directory created by tempdir ().
fileName A character string specifying a desired base name for the output file. If a
fileName not provided (i.e., fileName = NULL), then a default will be used de-
pending on the specified figtype (e.g., "dySEM_figure unstd", "dySEM_figure
std", or "dySEM_figure lab"). The specified name will automatically be ap-
pended with the . png file extension.
Details

* The function uses semPlot: :semPaths() to create a ggraph object of the desired SEM path
diagram.

» After execution, a semPlot: : semPaths () message will be printed to the console confirming
the directory path of the saved output file.

* If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

A qgraph object of the desired SEM path diagram, which is simultaneously exported as a . png file
to the specified directory.

20 outputParamTab

Examples

dvnx <- scrapeVarCross(

dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml = ".",
x_delim2 = "_" distinguish_1 = "1", distinguish_2 = "2"
)
sat.config.script <- scriptCor(dvnx,
lvname = "Sat”, constr_dy_meas = "none",
constr_dy_struct = "none”

)

sat.config.mod <- lavaan::cfa(sat.config.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputParamFig(sat.config.mod,
figtype = "standardized”,
writeTo = tempdir(), fileName = "dCFA_configural”

)

dvnxy <- scrapeVarCross(
dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml = "."
x_delim2 = "_" distinguish_1 = "1", distinguish_2 = "2",
y_order = "spi”, y_stem = "com”, y_deliml = ".", y_delim2 = "_"

)

apim.indist.script <- scriptAPIM(dvnxy, lvxname = "Sat”, lvyname = "Com"”, est_k = TRUE)

apim.indist.mod <- lavaan::cfa(apim.indist.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputParamFig(apim.indist.mod,
figtype = "standardized”,
writeTo = tempdir(), fileName = "APIM_indist”

outputParamTab A Function That Exports Tables based on dySEM models

Description

This function takes the model from fitted dySEM scripts and creates tables of expected output and/or
exports them as . rtfs.

outputParamTab 21

Usage
outputParamTab(
dvn,
model = NULL,
fit,

tabletype = NULL,
gtTab = FALSE,
writeTo = NULL,
fileName = NULL

)
Arguments

dvn Input dvn list from scrapeVarCross()

model A character input specifying type of model to output: "cfa", "bidyc", "apim",
"mim", "cfm", or "bidys".

fit input object from fitted lavaan model.

tabletype A character input of what type of table(s) is(are) desired. Options are "mea-
surement" (i.e., loadings, intercepts, etc.), "structural” (i.e., latent slopes, such
as actor/partner effects, k parameters), "both" (i.e., both measurement and struc-
tural tables), or "correlation" (for a table of factor correlations).

gtTab A logical input indicating whether to generate the table(s) in gt: : gt () table ob-
ject format (TRUE). By default (FALSE), the table(s) are generated in tibble: :tibble()
format. Users can also apply the writeTo argument if they wish to export the
gt:gt() table object(s).

writeTo A character string specifying a directory path to where the gt: :gt() table ob-
ject(s) should be saved. If set to ".", the file(s) will be written to the current
working directory. The default is NULL, and examples use a temporary directory
created by tempdir(). writeTo is only relevant if gtTab = TRUE.

fileName A character string specifying a desired base name for the output gt::gt()
file(s). If a fileName is not provided (i.e., fileName = NULL), then defaults will
be used (e.g., "dySEM_table", "dySEM_table_measurement", or "dySEM_table_structural)
based on the tabletype argument. The resulting base name will automatically
be appended with a .rtf file extension. fileName is only relevant if gtTab =
TRUE and writeTo is specified.

Details

» If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

* If output file(s) is(are) successfully saved, a confirmation message will be printed to the con-
sole.

* If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

22 outputUniConstructComp

Value

A tibble::tibble() if gtTab = FALSE (default), or gt: : gt () object if gtTab = TRUE, of specified
model parameter estimates and corresponding statistical tests.

Examples

dvnx <- scrapeVarCross(

dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_deliml = "."
x_delim2 = "_" distinguish_1 = "1", distinguish_2 = "2"
)
sat.config.script <- scriptCor(dvnx,
lvname = "Sat"”, constr_dy_meas = "none",
constr_dy_struct = "none”

)

sat.config.mod <- lavaan::cfa(sat.config.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)
outputParamTab(dvnx,
model = "cfa", sat.config.mod, tabletype = "measurement”,
writeTo = tempdir(), fileName = "dCFA_configural”
)
dvnxy <- scrapeVarCross(
dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml = "."
x_delim2 = "_" distinguish_1 = "1", distinguish_2 = "2",
y_order = "spi”, y_stem = "com”, y_deliml = ".", y_delim2 = "_"

)

apim.indist.script <- scriptAPIM(dvnxy, lvxname = "Sat”, lvyname = "Com", est_k = TRUE)

apim.indist.mod <- lavaan::cfa(apim.indist.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputParamTab(dvnxy,
model = "cfa", sat.config.mod, tabletype = "measurement”,
writeTo = tempdir(), fileName = "APIM_indist”

)

outputUniConstructComp
A Function That Fits and Compares Competing Dyadic Uni-construct
Models

outputUniConstructComp 23

Description

This function takes the outputted object from scrapeVarCross() along with the corresponding
dataset and automatically tests competing uni-construct dyadic models for the latent variable under

consideration. It inspects four possible model variants:

* Bifactor (scripted via dySEM: :scriptBifac)
* Hierarchical (scripted via dySEM: : scriptHier)
* Correlated Factors (scripted via dySEM: : scriptCor)

* Unidimensional (scripted via dySEM: : scriptUni)

Usage
outputUniConstructComp(
dvn,
dat,
indexes = c("df", "chisq", "cfi"”, "rmsea", "bic", "GenTEFI"),

’

gtTab = FALSE,

writeTo = NULL,
fileName = NULL
)
Arguments
dvn Input dvn list from scrapeVarCross().
dat Input data frame containing the dataset for model estimation.
indexes Input character vector specifying which index(es) to return. Default is c("df",
"chisq", "cfi"”, "rmsea"”, "bic"”, "GenTEFI"). Note:

* Valid entries include "GenTEFI"—the Generalized Total Entropy Fit Index
(see Golino et al., 2024)—and those from lavaan: : fitMeasures().

e If "chisq" is entered, chi-squared difference tests are automatically per-
formed via lavaan::lavTestLRT(), and the resulting p-values are added
to the output.

Additional arguments to be passed to lavaan::cfa(), allowing users to cus-
tomize model estimation settings. By default, the models are fit with maximum-
likelihood estimation (estimator = "ml") and missing data are handled via list-
wise deletion (missing = "listwise"), as per lavaan::cfa()’s default be-
haviour.

gtTab A logical input indicating whether to generate the requested index(es) for each
fitted model (requested via the indexes argument) in gt::gt() table object
format (TRUE). Users can also apply the writeTo argument if they wish to export
the gt: :gt() table object.

writeTo A character vector string specifying a directory path to where the gt::gt()

table object should be saved. If set to ".", the file will be written to the current
working directory. The default is NULL, and examples use a temporary directory
created by tempdir(). writeTo is only relevant if gtTab = TRUE.

24 outputUniConstructComp

fileName A character string specifying a desired base name for the output gt: : gt () file.
The resulting base name will automatically be appended with a . rtf file exten-
sion. fileName is only relevant if gtTab = TRUE and writeTo is specified.

Details

If "chisq" is included in indexes, the specific form of the applied chi-squared difference test
(e.g., standard vs. robust) is determined automatically by lavaan: :lavTestLRT(), based on
the model estimation method used.

If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

If output file is successfully saved, a confirmation message will be printed to the console.

* If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value
A list containing up to two components:

e Indexes: A tibble::tibble() if gtTab = FALSE (default), or gt: :gt() object if gtTab =
TRUE, with the desired index(es) for each fitted model (requested via the indexes argument).

e GenTEFI: A tibble::tibble() of the GenTEFI (if "GenTEFI" is included in the indexes
argument).

Examples

dvn <- scrapeVarCross(
commitmentM,
x_order = "sip”,
x_stem = "sat.g",
x_deliml = "",
x_delim2 = "_",
distinguish_1 = "f",
I

distinguish_2 = "m

)

Quick example for CRAN checks
outputUniConstructComp(

dvn,

commitmentM,

indexes = c("df", "bic"),
missing = "listwise”

More comprehensive examples (slower due to FIML estimation)
outputUniConstructComp(

dvn,

commitmentM,

missing = "fiml"”

)

pnrqM 25

outputUniConstructComp(

dvn,
commitmentM,
indexes = c("df", "bic"),
missing = "fiml"”
)
outputUniConstructComp(
dvn,
commitmentM,
indexes = c("df", "bic"),
estimator = "ml”,
missing = "fiml"”
)
outputUniConstructComp(
dvn,
commitmentM,
indexes = c("df", "bic"),
missing = "fiml",
gtTab = TRUE,
writeTo = tempdir(),
fileName = "uni-construct-dyad-models”
)
pnrgM Ratings on items from the Positive-Negative Relationship Quality
Scale (PNRQ; Rogge et al., 2017) from 219 (M)ixed-sex couples
Description

A data set containing ratings on items (4 each) assessing romantic (1) satisfaction and (2) dissatis-
faction for each member of a mixed-sex dyad . Positive-Negative Relationship Quality Scale (Rogge
etal., 2017). Data are from Prine et al. (Under Review). Variable names follow a stem-item-partner
("sip") order, with a delimiter ("_") between the item number and distinguishing partner character.

Usage
data(pnrgM)

Format

A data frame with 219 rows and 16 variables. Participants responded—on a six-point scale (1 = "Not
at all true", 6 = "Completely true")—to the prompt, "My relationship is...":

sat.pnrql_w Enjoyable for partner w

26 prqcQ

sat.pnrq2_w Pleasant for partner w
sat.pnrq3_w Strong for partner w
sat.pnrq4_w Alive for partner w
dsat.pnrql_w Miserable for partner w
dsat.pnrq2_w Bad for partner w
dsat.pnrq3_w Empty for partner w
dsat.pnrq4_w Lifeless for partner w
sat.pnrql_m Enjoyable for partner m
sat.pnrq2_m Pleasant for partner m
sat.pnrq3_m Strong for partner m
sat.pnrq4_m Alive for partner m
dsat.pnrql_m Miserable for partner m
dsat.pnrq2_m Bad for partner m
dsat.pnrq3_m Empty for partner m

dsat.pnrq4_m Lifeless for partner m

References

Prine, M., Sakaluk, J. K., Camanto, O. J., & Quinn-Nilas, C. (Under Review).

prqgcQ Ratings on items from the Perceived Relationship Quality Components
(PRQC) Inventory from 118 (Q)ueer couples

Description

A data set containing ratings on items (3 each) assessing romantic: (1) satisfaction, (2) commit-
ment, (3) intimacy, (4) trust, (5) passion, and (6) love for each member of a dyad in which one or
more members identify as LGBTQ+. Perceived Relationship Quality Components (PRQC) Inven-
tory (Fletcher, Simpson, & Thomas, 2000). Data are from Sakaluk, Fisher, and Kilshaw (2021).
Variable names follow a stem-partner-item ("spi") order, with a delimiter (".") between the stem
and distinguishing partner character, and another delimiter ("_") between the distinguishing partner

character and item number.

Usage

data(prqcQ)

prqcQ

Format
A data frame with 118 rows and 36 variables:

prqc.1_1 Satisfaction item 1 for partner 1
prqc.1_2 Satisfaction item 2 for partner 1
prqc.1_3 Satisfaction item 3 for partner 1
prqc.1_4 Commitment item 1 for partner 1
prqc.1_5 Commitment item 2 for partner 1
prqc.1_6 Commitment item 3 for partner 1
prqc.1_7 Intimacy item 1 for partner 1
prqc.1_8 Intimacy item 2 for partner 1
prqc.1_9 Intimacy item 3 for partner 1
prqc.1_10 Trustitem 1 for partner 1
prqc.1_11 Trust item 2 for partner 1
prqc.1_12 Trust item 3 for partner 1
prqc.1_13 Passion item 1 for partner 1
prqc.1_14 Passion item 2 for partner 1
prqc.1_15 Passion item 3 for partner 1
prqc.1_16 Love item 1 for partner 1
prqc.1_17 Love item 2 for partner 1
prqc.1_18 Love item 3 for partner 1
prqc.2_1 Satisfaction item 1 for partner 2
prqc.2_2 Satisfaction item 2 for partner 2
prqc.2_3 Satisfaction item 3 for partner 2
prqc.2_4 Commitment item 1 for partner 2
prqc.2_5 Commitment item 2 for partner 2
prqc.2_6 Commitment item 3 for partner 2
prqc.2_7 Intimacy item 1 for partner 2
prqc.2_8 Intimacy item 2 for partner 2
prqc.2_9 Intimacy item 3 for partner 2
prqc.2_10 Trustitem 1 for partner 2
prqc.2_11 Trust item 2 for partner 2
prqc.2_12 Trust item 3 for partner 2
prqc.2_13 Passion item 1 for partner 2
prqc.2_14 Passion item 2 for partner 2
prqc.2_15 Passion item 3 for partner 2
prqc.2_16 Love item 1 for partner 2
prqc.2_17 Love item 2 for partner 2
prqc.2_18 Love item 3 for partner 2

28 scrape VarCross

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. #

scrapeVarCross A Variable Name-Scraping and Indexing Function for cross-sectional
data

Description

This function scrapes the names of indicator variables in a wide-format data set used for dyadic
analyses of two latent variables (LV; X and Y), and indexes which indicators correspond to which
partner, for which LV. It is used primarily to guide the syntax-writing of the other dySEM functions.

Usage
scrapeVarCross(

dat,
x_order = "spi”,
x_stem,
x_deliml = NULL,
x_delim2 = NULL,
x_item_num = "\\d+",

distinguish_1 = "1",
distinguish_2 = "2",
y_order = NULL,

y_stem = NULL,
y_deliml = NULL,
y_delim2 = NULL,
y_item_num = "\\d+",
var_list = NULL,
var_list_order = NULL,
var_list_item_num = "\\d+",
covs_order = NULL,
covs_stem = NULL,
covs_deliml = NULL,
covs_delim2 = NULL,
verbose = TRUE

)
Arguments
dat input data frame of indicators of a particular LV
x_order input character for order of (S)tem, (P)artner number, and (I)tem number when

creating variable names. Defaults to "spi" (Qualtrics-friendly), but can alterna-
tively take "sip" or "psi"

scrape VarCross

X_stem

x_deliml

x_delim2

X_item_num

distinguish_1
distinguish_2

y_order

y_stem
y_deliml

y_delim2

y_item_num

var_list

var_list_order

29

input character stem of indicator variables for LV X

optional character to separate stem from partner number (spi) or item number
(sip)

optional character to separate stem/partner number (spi) or stem/item number
(sip) from from final element of variable name

defaults to scrape all items that match the stem with any digits that follow. Will
be updated to allow particular range of values, to make more sub-scale friendly.

input character used as the identifier for the first partner
input character used as the identifier for the first partner

optional character for order of (S)tem, (P)artner number, and (I)tem number
when creating variable names. Defaults to "spi" (Qualtrics-friendly), but can
alternatively take "sip" or "psi". This and other Y-arguments only necessary if
there is a latent Y variable to model

optional input character stem of indicator variables for LV X

optional character to separate stem from partner number (spi) or item number
(sip)

optional character to separate stem/partner number (spi) or stem/item number
(sip) from from final element of variable name

defaults to scrape all items that match the stem with any digits that follow. Will
be updated to allow particular range of values, to make more sub-scale friendly.

optional named list of indicator variable information, if more than one LV is to
be scripted (e.g., a dyadic CFA with multiple sub-scales from the same measure).
If supplied, this list must contain the following elements: "stem" (a vector of
stems), "delim1" (a vector of delimiting characters), and"delim2" (a vector of
subsequently delimiting characters). Optionally may include numeric vectors
"min_num" and "max_num" if indicators for different LVs share the same stem
and must be separated by range of item numbers within a measure.

optional character for order of (S)tem, (P)artner number, and (I)tem number
for any of the indicator variables of a multi-LV model (i.e., this functionality
assumes the same ordering of elements throughout)

var_list_item_num

covs_order

covs_stem

covs_delim1

covs_delim2

verbose

optional character for item number of any of the indicator variables of a multi-
LV model

optional character for order of (S)tem, (P)artner number, and (I)tem number for
any covariate(s). Defaults to NULL. This and other covariate arguments only
necessary if there are covariates to be scripted in your model(s).

optional input character stem(s) of indicator variables for covariate(s). Can ac-
cept a single stem (e.g., "anx"), or a vector of stems (e.g., c("anx", "dep")).
Defaults to NULL.

optional character to separate stem from partner number (spi) or item number
(sip) for covariate(s). Defaults to NULL.

optional character to separate stem/partner number (spi) or stem/item number
(sip) from

logical indicating whether to print a summary of scraped variables to the con-
sole. Defaults to TRUE.

30 scriptAPIM

Value
a list, referred in short-hand as a "dvn" (dyad variable names list) containing variable names for p1,
p2, # of items per LV, characters distinguishing partners, and total number of indicators

Examples

dvnx <- scrapeVarCross(

dat = commitmentQ, x_order = "spi"”, x_stem = "sat.g"”, x_deliml = ".",
x_delim2 = "_" distinguish_1 = "1", distinguish_2 = "2"

)

dvnxy <- scrapeVarCross(
dat = commitmentQ, x_order = "spi”, x_stem = "sat.g"”, x_deliml = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2",
y_order = "spi”, y_stem = "com”, y_deliml = ".", y_delim2 = "_"

)

scriptAPIM A Function That Writes, Saves, and Exports Syntax for Fitting Latent
Actor-Partner Interdependence Models (APIMs)
Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying Actor-Partner Interdependence Models (APIMs).
Users can also invoke configural, loading, and/or intercept invariant measurement models, and par-
ticular types of structural comparisons.

Usage
scriptAPIM(

dvn,
scaleset = "FF",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings”, "intercepts”, "residuals"),
constr_dy_x_struct = c("variances"”, "means"),
constr_dy_y_meas = c("loadings"”, "intercepts”, "residuals"),
constr_dy_y_struct = c("variances”, "means"),
constr_dy_xy_struct = c("actors”, "partners"),

includeMeanStruct = FALSE,

model = lifecycle: :deprecated(),
equate = lifecycle::deprecated(),
est_k = FALSE,

writeTo = NULL,

fileName = NULL

scriptAPIM

Arguments

dvn

scaleset

lvxname

lvyname

31

input dvn list from scrapeVarCross

input character to specify how to set the scale of the latent variable(s). Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

input character to (arbitrarily) name LV X in lavaan syntax

input character to (arbitrarily) name LV Y in lavaan syntax

constr_dy_x_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts”,
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_x_struct

input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c¢("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c¢("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_y_struct

input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_xy_struct

input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
fault is c("actors", "partners"), but users can also specify "all", "actors_zero",
"partners_zero", or "none".

includeMeanStruct

model

equate

input logical for whether the user wants to include the mean structure in the
model. Defaults FALSE, to support subsequent calculation of dynamic fit in-
dexes (see Details)

Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

Deprecated input character to specify which type of structural parameters are
constrained to equivalency between partners. Users should rely upon constr_dy_xy_struct
for making constraints to the structural portion of the model for associative re-
lationship between latent x and y.

32

est_k

writeTo

fileName

Value

scriptBiDy

input logical for whether Kenny & Ledermann’s (2010) k parameter should be
calculated to characterize the dyadic pattern in the APIM. Defaults FALSE, and
requires at least a loading-invariant model to be specified, otherwise a warning
is returned.

A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to ., the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

character object of lavaan script that can be passed immediately to lavaan functions. Users will
receive message if structural comparisons are specified when the recommended level of invariance
is not also specified. If user supplies dvn with containing X or Y variables, they are alerted to
respecify the dvn object.

See Also

scrapeVarCross which this function relies on

Other bi-construct script-writing functions: scriptBiDy(), scriptCFM(), scriptMIM()

Examples

dvn <- scrapeVarCross(

dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =
x_delim2 = "_",
y_order =

)

i", y_stem =

non

distinguish_1 = "1", distinguish_2 = "2",
com”, y_deliml = ".", y_delim2 =

n ” non

apim.script.indist <- scriptAPIM(dvn,
lvxname = "Sat"”, lvyname = "Com", est_k = TRUE,

writeTo = tempdir(),
fileName = "latAPIM_indist”
)
scriptBiDy A Function That Writes, Saves, and Exports Syntax for Fitting Bifactor
Dyadic (BiDy) models
Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying dyadic configural, loading, and intercept invariant
BiDy CFA (BiDy-C) or SEM (BiDy-S) Model. Currently only uses fixed-factor scale-setting

scriptBiDy 33

Usage

scriptBiDy(
dvn,
type = "CFA",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings”, "intercepts”, "residuals"),
constr_dy_x_struct = c("variances"”, "means"),
constr_dy_y_meas = c("loadings"”, "intercepts”, "residuals"),
constr_dy_y_struct = c("variances”, "means"),
constr_dy_xy_struct = c("actors"”),
model = lifecycle: :deprecated(),
equate = lifecycle::deprecated(),
writeTo = NULL,
fileName = NULL

)
Arguments
dvn input dvn list from scrapeVarCross
type input character to specify whether to script a BiDy-CFA ("CFA", default) or
BiDy-SEM ("SEM") model
lvxname input character to (arbitrarily) name LV X in lavaan syntax
lvyname input character to (arbitrarily) name LV Y in lavaan syntax

constr_dy_x_meas
input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model. Users may also specify more boutique patterns of bifactor

loading constraints with "loadings_source" or "loadings_mutual".
constr_dy_x_struct
input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c¢("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas
input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c¢("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals"”, or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model. Users may also specify more boutique patterns of bifactor

loading constraints with "loadings_source" or "loadings_mutual".
constr_dy_y_struct
input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

34 scriptBiDy

constr_dy_xy_struct
input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
fault is c("actors"), but users can also specify "dyadic_zero" or "none".

model Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

equate Deprecated input character to specify which type of structural parameters are
constrained to equivalency between partners. Users should rely upon constr_dy_xy_struct
for making constraints to the structural portion of the model for associative re-
lationship between latent x and y.

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to ., the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions

See Also

Other bi-construct script-writing functions: scriptAPIM(), scriptCFM(), scriptMIM()

Examples
dvn <- scrapeVarCross(DRES, x_order = "sip"”, x_stem = "sexsat”,
x_delim2="." distinguish_1="1", distinguish_2="2")

sexsat.bidyc.script <- scriptBiDy(dvn, lvxname = "SexSat"”, type = "CFA",
writeTo = tempdir(),
fileName = "BiDy_C")

non

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =

x_delim2="_", distinguish_1="1", distinguish_2="2",
y_order="spi", y_stem="com”, y_deliml = "." y_delim2="_")
comsat.bidys.config.script <- scriptBiDy(dvn, lvxname = "Sat”,

lvyname = "Com”, type = "SEM",
writeTo = tempdir(),
fileName = "BiDy_S")

scriptBifac

35

scriptBifac

A Function That Writes, Saves, and Exports Syntax for Fitting Bifactor
Dyadic Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (. txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant bifactor models.

Usage

scriptBifac(
dvn,

scaleset = "FF",

lvname = "X",

constr_dy_meas = c("loadings"”, "intercepts"”, "residuals"),
constr_dy_struct = c("variances"”, "means"”),

writeTo = NULL,

fileName = NULL

Arguments

dvn

scaleset

lvname

constr_dy_meas

Input dvn list from scrapeVarCross()

Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

Input character to (arbitrarily) name the latent variable in lavaan syntax

Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct

writeTo

fileName

Input character vector detailing which structural model parameters to constrain
across dyad members. Default is c(”variances”, "means”)(in combination
with defaults for constr_dy_meas, an indistinguishable correlated dyadic fac-
tors model), but user can specify any combination of "variances” and "means”,
or "none"”.

A character string specifying a directory path to where a . txt file of the resulting
lavaan script should be written. If set to “.”, the . txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

A character string specifying a desired base name for the . txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

36 scriptBifac

Details

* By default, many dySEM: : functions (including scriptBifac()) default to a fixed-factor
method of scale-setting, whereby the latent variance of a given factor is constrained to 1
for both partners in the configurally invariant model, and then one of these variances is
freely estimated in subsequent models of the invariance testing sequence. We have selected
this default for two reasons: (1) the selection of a marker-variable is usually arbitrary, yet
can have a large influence on the estimation and testing of of structural parameters (see
https://stats.stackexchange.com/questions/402133/in-cfa-does-it-matter-which-factor-loading-
is-set-to-1/402732#402732); and (2) the selection of a non-invariant marker-variable can have
disastrous down-stream consequences for the identification of non-invariant measurement pa-
rameters, following a the rejection of an omnibus invariance constraint set (see Lee, Preacher,
& Little, 2011).

Value

Character object of lavaan script that can be passed immediately to lavaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptCor(), scriptHier(), scriptUni()

Examples

dvn <- scrapeVarCross(
dat = commitmentQ,

x_order = "spi",
x_stem = "sat.g",
x_delim1 = ".",
x_delim2 = "_"

distinguish_1 = "1",
distinguish_2 = "2"

)

sat.indist.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat”

)

sat.lvars.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat"”,
constr_dy_meas = "loadings”,
constr_dy_struct = "variances”

)

sat.resids.script <- scriptBifac(
dvn,

scriptCFA

scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts”, "residuals"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dBiFac_residual”

)

sat.ints.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts"),
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dBiFac_intercept”

)

sat.loads.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = c("loadings"),
constr_dy_struct = "none”,

writeTo = tempdir(),
fileName = "dBiFac_loading”

)
sat.config.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = "none"”,
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dBiFac_configural”
)
sat.source.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat"”,
constr_dy_meas = "loadings_source”,
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dBiFac_source”

scriptCFA

scriptCFA A Function That Writes, Saves, and Exports Syntax for Fitting La-
tent Dyadic Confirmatory Factor Analysis (CFA) Models with Multi-
ple Factors

Description

This function takes the outputted object from scrapeVarCross() when the var_list argument has been
used, and automatically writes, returns, and exports (.txt) lavaan() syntax for specifying dyadic con-
figural, loading, and intercept invariant measurement models for either a group of latent variables

(e.g., different sub-scales from a self-report measures).

Usage
scriptCFA(
dvn,
scaleset = "FF",
constr_dy_meas = c("loadings"”, "intercepts"”, "residuals"),
constr_dy_struct = c("variances"”, "means"),

writeTo = NULL,
fileName = NULL

)
Arguments
dvn input dvn list from scrapeVarCross(); scrapeVarCross must have been run with
the var_list argument
scaleset input character to specify how to set the scale of the latent variable(s). Default is

constr_dy_meas

"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

input character vector detailing which measurement model parameters to con-
strain across dyad members. Default is c("loadings", "intercepts", "residuals")(in
combination with defaults for constr_dy_struct, an indistinguishable dyadic CFA),
but user can specify any combination of "loadings", "intercepts”, and "residu-
als", or "none" to specify an otherwise unconstrained dyadic configural invari-

ance model

constr_dy_struct

input character vector detailing which structural model parameters to constrain
across dyad members. Default is c("variances", "means")(in combination with
defaults for constr_dy_meas, an indistinguishable dyadic CFA), but user can

specify any combination of "variances" and "means", or "none".

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to ., the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The

default is NULL. The specified name will be automatically appended with the

scriptCFA 39

.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Details

By default, many dySEM:: functions (including scriptCFA() default to a fixed-factor method of
scale-setting, whereby the latent variance of a given factor is constrained to 1 for both partners in
the configurally invariant #model, and then one of these variances is freely estimated in subsequent
#models of the invariance testing sequence. We have selected this default for two reasons: (1) the
selection of a marker-variable is usually arbitrary, yet can have a large influence on the estimation
and testing of of structural parameters (see https://stats.stackexchange.com/questions/402133/in-
cfa-does-it-matter-which-factor-loading-is-set-to-1/402732#402732); and (2) the selection of a non-
invariant marker-variable can have disastrous down-stream consequences for the identification of
non-invariant measurement parameters, following a the rejection of an omnibus #invariance con-
straint set (see Lee, Preacher, & Little, 2011).

Value

character object of lavaan script that can be passed immediately to lavaan functions

See Also

scrapeVarCross which this function relies on

Other multi-construct script-writing functions: scriptDyEFA()

Examples

When different factor use distinct stems:
imsList <- list(
lvnames = c("Sat”, "Q_Alt"”, "Invest”, "Comm"),
stem = c("sat.g", "galt.g", "invest.g"”, "com"),
delim1l = c(C"", "", "", ""),
delim2 = c("_", "_", "_", "_")

) e

dvnIMS <- scrapeVarCross(imsM,
var_list = imsList,

var_list_order = "sip”,
distinguish_1 = "f",
distinguish_2 = "m"
)
script.ims.config <- scriptCFA(dvnIMS,
scaleset = "FF",
constr_dy_meas = "none",
constr_dy_struct = "none”, writeTo = tempdir(), fileName = "ims_config"

)

script.ims.load <- scriptCFA(dvnIMS,
scaleset = "FF",
constr_dy_meas = c("loadings"),

40

scriptCFA

constr_dy_struct = "none", writeTo = tempdir(), fileName = "ims_load”
)
script.ims.int <- scriptCFA(dvnIMS,

scaleset = "FF",

constr_dy_meas = c("loadings”, "intercepts"”),

constr_dy_struct = "none", writeTo = tempdir(), fileName = "ims_int"
)
script.ims.res <- scriptCFA(dvnIMS,

scaleset = "FF",

constr_dy_meas = c("loadings”, "intercepts"”, "residuals"),

constr_dy_struct = "none", writeTo = tempdir(), fileName = "ims_res"
)
script.ims.indist <- scriptCFA(dvnIMS,

scaleset = "FF",

constr_dy_meas = c("loadings”, "intercepts”, "residuals"),

constr_dy_struct = c("variances”, "means”), writeTo = tempdir(), fileName = "ims_indist"”

)

When different factor use the same stem and muse be detected through numeric position

prgcList <- list(

lvnames = c("Sat”, "Comm”, "Intim"”, "Trust”, "Pass"”, "Love"),
stem = c("prqc”, "prqc”, "prqc”, "prqc”, "prqc”, "prqc"),
deliml = c(".”, ".”, ".", ".", ".", "."),

delim2 = c("_", "_", "_", "_", "_", "L,

min_num = c(1, 4, 7, 10, 13, 16),
max_num = c(3, 6, 9, 12, 15, 18)

dvnPRQC <- scrapeVarCross(prqcQ,
var_list = prqclList,
var_list_order = "spi”,
distinguish_1 = "1",
distinguish_2 = "2"

)
script.prqc.config <- scriptCFA(dvnPRQC,
scaleset = "FF",
constr_dy_meas = "none"”,
constr_dy_struct = "none”, writeTo = tempdir(), fileName = "prqc_config”
)
script.prgc.load <- scriptCFA(dvnPRQC,
scaleset = "FF",
constr_dy_meas = c("loadings"),
constr_dy_struct = "none”, writeTo = tempdir(), fileName = "prqc_load”

)

script.prgc.int <- scriptCFA(dvnPRQC,
scaleset = "FF",

scriptCFM 41

constr_dy_meas = c("loadings”, "intercepts"),

constr_dy_struct = "none", writeTo = tempdir(), fileName = "prqc_int”
)
script.prgc.res <- scriptCFA(dvnPRQC,

scaleset = "FF",

constr_dy_meas = c("loadings”, "intercepts”, "residuals"),

constr_dy_struct = "none", writeTo = tempdir(), fileName = "prqc_res"”
)
script.prqc.indist <- scriptCFA(dvnPRQC,

scaleset = "FF",

constr_dy_meas = c("loadings”, "intercepts”, "residuals"),

constr_dy_struct = c("variances”, "means"”), writeTo = tempdir(), fileName = "prqc_indist"”

)

scriptCFM A Function That Writes, Saves, and Exports Syntax for Fitting Latent
Common Fate Models (CFMs)

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying Common Fate Models (CFMs). Users can also
invoke configural, loading, and/or intercept invariant measurement models, and particular types of
structural comparisons.

Usage

scriptCFM(
dvn,
scaleset = "FF",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings”, "intercepts”, "residuals"”),
constr_dy_x_struct = c("variances”, "means"),
constr_dy_y_meas = c("loadings"”, "intercepts”, "residuals"),
constr_dy_y_struct = c("variances”, "means"),
constr_dy_xy_struct = "none",

model = lifecycle: :deprecated(),
writeTo = NULL,
fileName = NULL

Arguments

dvn input dvn list from scrapeVarCross

42

scaleset

lvxname

lvyname

scriptCFM

input character to specify how to set the scale of the latent variable(s). Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

input character to (arbitrarily) name LV X in lavaan syntax

input character to (arbitrarily) name LV Y in lavaan syntax

constr_dy_x_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c¢("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_x_struct

input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c¢("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_y_struct

input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_xy_struct

model

writeTo

fileName

input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
faults to "none". Options include "pl_zero" or "p2_zero" (to constrain within-
person latent residual covariances between X and Y to zero), or "covar_zero"
(to constrain both within-person latent residual correlations to zero), and/or
"dyadic_zero" (to constrain the dyadic effect to zero).

Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

scriptCor 43

Value

character object of lavaan script that can be passed immediately to lavaan functions. Users will
receive message if structural comparisons are specified when the recommended level of invariance
is not also specified. If user supplies dvn with containing X or Y variables, they are alerted to
respecify the dvn object.

See Also

scrapeVarCross which this function relies on

Other bi-construct script-writing functions: scriptAPIM(), scriptBiDy(), scriptMIM()

Examples

non

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =

’

x_delim2="_", distinguish_1="1", distinguish_2="2",
y_order="spi”, y_stem="com”, y_deliml = ".", y_delim2="_")
cfm.script.indist <- scriptCFM(dvn, lvxname = "Sat”, lvyname = "Com",

writeTo = tempdir(),
fileName = "CFM_indist")

scriptCor A Function That Writes, Saves, and Exports Syntax for Fitting Corre-
lated Dyadic Factor Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (. txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant two-factor models.

Usage
scriptCor(
dvn,
scaleset = "FF",
lvname = "X",
constr_dy_meas = c("loadings"”, "intercepts"”, "residuals"),
constr_dy_struct = c("variances”, "means"),

writeTo = NULL,
fileName = NULL

44 scriptCor

Arguments
dvn Input dvn list from scrapeVarCross()
scaleset Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)
lvname Input character to (arbitrarily) name the latent variable in lavaan syntax

constr_dy_meas Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct
Input character vector detailing which structural model parameters to constrain
across dyad members. Default is c("variances”, "means”)(in combination
with defaults for constr_dy_meas, an indistinguishable correlated dyadic fac-
tors model), but user can specify any combination of "variances"” and "means”,

or "none”.
writeTo A character string specifying a directory path to where a . txt file of the resulting
lavaan script should be written. If set to “.”, the . txt file will be written to the

current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the . txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

Details

* By default, many dySEM: : functions (including scriptCor()) default to a fixed-factor method
of scale-setting, whereby the latent variance of a given factor is constrained to 1 for both part-
ners in the configurally invariant model, and then one of these variances is freely estimated in
subsequent models of the invariance testing sequence. We have selected this default for two
reasons: (1) the selection of a marker-variable is usually arbitrary, yet can have a large influ-
ence on the estimation and testing of of structural parameters (see https://stats.stackexchange.com/questions/402133/in-
cfa-does-it-matter-which-factor-loading-is-set-to-1/402732#402732); and (2) the selection of
a non-invariant marker-variable can have disastrous down-stream consequences for the iden-
tification of non-invariant measurement parameters, following a the rejection of an omnibus
invariance constraint set (see Lee, Preacher, & Little, 2011).

Value

Character object of lavaan script that can be passed immediately to 1avaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptBifac(), scriptHier(), scriptUni()

scriptCor

Examples

dvn <- scrapeVarCross(
dat = commitmentQ,

x_order = "spi",
x_stem = "sat.g",
x_deliml = ".",
x_delim2 = "_"

distinguish_1 = "1",
distinguish_2 = "2"

)

sat.indist.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat”

)

sat.lvars.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = "loadings",
constr_dy_struct = "variances”

)

sat.resids.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat"”,
constr_dy_meas = c("loadings”, "intercepts”, "residuals"),
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dCor_residual”

)

sat.ints.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts"”),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dCor_intercept”

)

sat.loads.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat"”,
constr_dy_meas = c("loadings"),
constr_dy_struct = "none",

writeTo = tempdir(),

45

46 scriptDyEFA

fileName = "dCor_loading”

)

sat.config.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = "none”,
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dCor_configural”

)

scriptDyEFA A Function That Writes, Saves, and Exports Syntax for Fitting Dyadic
Exploratory Factor Analysis (DEFA) Models
Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying a dyadic EFA model of a given number of ex-
ploratory factors.

Usage

scriptDyEFA(
dvn,
nFactor = 1,
constr_dy_meas = "none”,
writeTo = NULL,
fileName = NULL

)
Arguments
dvn input dvn list from scrapeVarCross
nFactor numeric argument for number of exploratory factors to extract. Defaults to 1.

Note that higher values may cause estimation problems as solution becomes
over-factored and/or in the presence of insufficient data.

constr_dy_meas input character vector detailing which measurement model parameters to con-
strain across dyad members. Default is "none" but user can specify "loadings"
and/or "residuals", to fit an exploratory model with loadings and/or residuals
constrained across partners

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

scriptHier 47

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions

See Also

scrapeVarCross which this function relies on

Other multi-construct script-writing functions: scriptCFA()

Examples

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =".",
x_delim2="_", distinguish_1="1", distinguish_2="2")

sat.defal.script <- scriptDyEFA(dvn, nFactor = 1,

writeTo = tempdir(), fileName = "DEFA_1fac")

scriptHier A Function That Writes, Saves, and Exports Syntax for Fitting Hierar-
chical Dyadic Factor Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,

and exports (. txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant hierarchical models.

Usage

scriptHier(
dvn,
scaleset = "FF",
lvname = "X",
constr_dy_meas = c("loadings"”, "intercepts"”, "residuals"),
constr_dy_struct = c("variances”, "means"),
writeTo = NULL,
fileName = NULL

48

Arguments

dvn

scaleset

lvname

constr_dy_meas

scriptHier

Input dvn list from scrapeVarCross()

Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

Input character to (arbitrarily) name the latent variable in lavaan syntax

Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct

writeTo

fileName

Details

Input character vector detailing which structural model parameters to constrain
across dyad members. Default is c("variances”, "means”)(in combination
with defaults for constr_dy_meas, an indistinguishable correlated dyadic fac-
tors model), but user can specify any combination of "variances” and "means”,
or "none”.

A character string specifying a directory path to where a . txt file of the resulting
lavaan script should be written. If setto “.”, the . txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

A character string specifying a desired base name for the . txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

* By default, many dySEM: : functions (including scriptHier()) default to a fixed-factor
method of scale-setting, whereby the latent variance of a given factor is constrained to 1
for both partners in the configurally invariant model, and then one of these variances is
freely estimated in subsequent models of the invariance testing sequence. We have selected
this default for two reasons: (1) the selection of a marker-variable is usually arbitrary, yet
can have a large influence on the estimation and testing of of structural parameters (see
https://stats.stackexchange.com/questions/402133/in-cfa-does-it-matter-which-factor-loading-
is-set-to-1/402732#402732); and (2) the selection of a non-invariant marker-variable can have
disastrous down-stream consequences for the identification of non-invariant measurement pa-
rameters, following a the rejection of an omnibus invariance constraint set (see Lee, Preacher,
& Little, 2011).

Value

Character object of lavaan script that can be passed immediately to 1avaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptBifac(), scriptCor(), scriptUni()

scriptHier

Examples

dvn <- scrapeVarCross(
dat = commitmentQ,

x_order = "spi",
x_stem = "sat.g",
x_deliml = ".",
x_delim2="_",

distinguish_1="1",
distinguish_2="2"

)

sat.indist.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat”
)

sat.lvars.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = "loadings",
constr_dy_struct = "variances”
)

sat.resids.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat"”,
constr_dy_meas = c("loadings”, "intercepts”, "residuals"),
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dHier_residual”
)

sat.ints.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts"”),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dHier_intercept”
)

sat.loads.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat"”,
constr_dy_meas = c("loadings"),
constr_dy_struct = "none",

writeTo = tempdir(),

50 scriptINULL
fileName = "dHier_loading”
)

sat.config.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = "none”,
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dHier_configural”
)
scriptINULL A Function That Writes, Saves, and Exports Syntax for Fitting the I-
NULL model for indistinguishable dyads
Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for the I-NULL model described in Olsen & Kenny (2006)

Usage

scriptINULL(

dvn,

lvxname
lvyname
writeTo

IIX” s
NULL,
NULL,

fileName = NULL

Arguments
dvn
lvxname
lvyname

writeTo

fileName

input dvn list from scrapeVarCross
input character to (arbitrarily) name X LV in lavaan syntax
(optional) input character to (arbitrarily) name Y LV in lavaan syntax

A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to ., the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

scriptISAT

Value

51

character object of lavaan script that can be passed immediately to lavaan functions

See Also

scrapeVarCross which this function relies on

Other indistinguishable script-writing functions: scriptISAT()

Examples

dvn <- scrapeVarCross(dat = DRES, x_order = "sip"”, x_stem = "PRQC", x_deliml = "_"
, x_item_num="\\d+", distinguish_1="1", distinguish_2="2")

non

x_delim2=".

-

qual.inull.script <- scriptINULL(dvn, lvxname = "Qual”,
writeTo = tempdir(),
fileName = "I-NULL_script"”)

scriptISAT

A Function That Writes, Saves, and Exports Syntax for Fitting the I-
SAT model for indistinguishable dyads

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for the I-SAT model described in Olsen & Kenny (2006)

Usage

scriptISAT(dvn, lvxname = "X", lvyname = NULL, writeTo = NULL, fileName = NULL)

Arguments

dvn
lvxname
lvyname

writeTo

fileName

Value

input dvn list from scrapeVarCross
input character to (arbitrarily) name X LV in lavaan syntax
(optional) input character to (arbitrarily) name X LV in lavaan syntax

A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

character object of lavaan script that can be passed immediately to lavaan functions

52 scriptMIM

See Also

scrapeVarCross which this function relies on

Other indistinguishable script-writing functions: scriptINULL ()

Examples

non
-

dvn <- scrapeVarCross(dat = DRES, x_order = "sip"”, x_stem = "PRQC"”, x_deliml =
x_delim2="." x_item_num="\\d+", distinguish_1="1", distinguish_2="2")
qual.isat.script <- scriptISAT(dvn, lvxname = "Qual”,

writeTo = tempdir(),

fileName = "I-SAT_script"”)

scriptMIM A Function That Writes, Saves, and Exports Syntax for Fitting Latent
Mutual influence Model

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying Mutual Influence Models (MIMs). Users can also
invoke configural, loading, and/or intercept invariant measurement models, and particular types of
structural comparisons.

Usage

scriptMIM(
dvn,
scaleset = "FF",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings"”, "intercepts”, "residuals"),
constr_dy_x_struct = c("variances”, "means"),
constr_dy_y_meas = c("loadings”, "intercepts”, "residuals"),
constr_dy_y_struct = c("variances”, "means"),
constr_dy_xy_struct = c("actors”, "partners"),

model = lifecycle: :deprecated(),
equate = lifecycle::deprecated(),
est_k = FALSE,

writeTo = NULL,

fileName = NULL

scriptMIM

Arguments

dvn

scaleset

lvxname

lvyname

53

input dvn list from scrapeVarCross

input character to specify how to set the scale of the latent variable(s). Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

input character to (arbitrarily) name LV X in lavaan syntax

input character to (arbitrarily) name LV Y in lavaan syntax

constr_dy_x_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_x_struct

input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c¢("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c¢("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_y_struct

input character vector detailing which structural model parameters to constrain

across dyad members for latent X. Default is c¢("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_xy_struct

model

equate

est_k

input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
fault is c("actors", "partners"), but users can also specify "all", "actors_zero",
"partners_zero", or "none".

Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

Deprecated input character to specify which type of structural parameters are

constrained to equivalency between partners. Users should rely upon constr_dy_xy_struct

for making constraints to the structural portion of the model for associative re-
lationship between latent x and y.

input logical for whether Kenny & Ledermann’s (2010) k parameter should be
calculated to characterize the dyadic pattern in the APIM. Defaults FALSE, and
requires at least a loading-invariant model to be specified, otherwise a warning
is returned.

54 scriptObsAPIM

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.’, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions. Users will
receive message if structural comparisons are specified when the recommended level of invariance
is not also specified. If user supplies dvn with containing X or Y variables, they are alerted to
respecify the dvn object.

See Also

scrapeVarCross which this function relies on

Other bi-construct script-writing functions: scriptAPIM(), scriptBiDy(), scriptCFM()

Examples

non

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi”, x_stem = "sat.g", x_deliml =

x_delim2="_" distinguish_1="1", distinguish_2="2",
y_order="spi", y_stem="com”, y_deliml = ".", y_delim2="_")
mim.script.indist <- scriptMIM(dvn, lvxname = "Sat”, lvyname = "Com"”, est_k = TRUE,

writeTo = tempdir(),
fileName = "MIM_indist")

scriptObsAPIM A Function That Writes, Saves, and Exports Syntax for Fitting Ob-
served Actor-Partner Interdependence Models

Description

A Function That Writes, Saves, and Exports Syntax for Fitting Observed Actor-Partner Interdepen-
dence Models

Usage
scriptObsAPIM(
X1 = NULL,
Y1 = NULL,
X2 = NULL,
Y2 = NULL,

equate = "none”,

scriptUni

k = FALSE,

55

writeTo = NULL,
fileName = NULL

Arguments

X1
Y1
X2
Y2

equate

writeTo

fileName

Value

character of vector name containing X variable/composite for partner 1
character of vector name containing Y variable/composite for partner 1
character of vector name containing X variable/composite for partner 2
character of vector name containing Y variable/composite for partner 2

non

character of what parameter(s) to constrain ("actor",
"none" (all freely estimated)

partner”, "all"); default is

input logical for whether Kenny & Ledermann’s (2010) k parameter should be
calculated to characterize the dyadic pattern in the APIM. Default to FALSE

A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.’, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

character object of lavaan script that can be passed immediately to lavaan functions.

Examples

obsAPIMScript <- scriptObsAPIM (X1 = "SexSatA”, Y1 = "RelSatA”,
X2 = "SexSatB", Y2 = "RelSatB",

equate = "none”,

writeTo = tempdir(),
fileName = "obsAPIM_script”)

scriptUni

A Function That Writes, Saves, and Exports Syntax for Fitting Unidi-
mensional Dyadic Factor Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (. txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant one-factor models.

56 scriptUni

Usage
scriptUni(
dvn,
scaleset = "FF",
lvname = "X",
constr_dy_meas = c("loadings"”, "intercepts"”, "residuals"),
constr_dy_struct = "none”,

writeTo = NULL,
fileName = NULL

)
Arguments
dvn Input dvn list from scrapeVarCross().
scaleset Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable).
lvname Input character to (arbitrarily) name the latent variable in 1avaan syntax.

constr_dy_meas Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct
Input character vector detailing which structural model parameters to constrain
across dyad members. Note: Within the context of scriptUni(), constr_dy_struct
is irrelevant, as the unidimensional dyadic factor model assumes a single latent
variable shared by both partners, leaving no structural parameters to constrain
across the modeled dyad members. For consistency with other scripter func-
tions, constr_dy_struct is included as an argument, but defaults to "none”.

writeTo A character string specifying a directory path to where a . txt file of the resulting
lavaan script should be written. If set to “.”, the . txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the . txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

Details

 Users do not need to modify constr_dy_struct when using scriptUni().

* By default, many dySEM: : functions (including scriptUni()) default to a fixed-factor method
of scale-setting, whereby the latent variance of a given factor is constrained to 1 for both part-
ners in the configurally invariant model, and then one of these variances is freely estimated in
subsequent models of the invariance testing sequence. We have selected this default for two
reasons: (1) the selection of a marker-variable is usually arbitrary, yet can have a large influ-
ence on the estimation and testing of of structural parameters (see https://stats.stackexchange.com/questions/402133/in-
cfa-does-it-matter-which-factor-loading-is-set-to-1/402732#402732); and (2) the selection of

scriptUni 57

a non-invariant marker-variable can have disastrous down-stream consequences for the iden-
tification of non-invariant measurement parameters, following a the rejection of an omnibus
invariance constraint set (see Lee, Preacher, & Little, 2011).

Value

Character object of lavaan script that can be passed immediately to lavaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptBifac(), scriptCor(), scriptHier()

Examples

dvn <- scrapeVarCross(

commitmentQ,
x_order = "spi”,
x_stem = "sat.g",
x_deliml = ".",
x_delim2 = "_"

distinguish_1 ",
distinguish_2 = "2"

)

sat.resids.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat"”,
constr_dy_meas = c("loadings"”, "intercepts”, "residuals"),
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dUni_residual”

)

sat.ints.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = c("loadings”, "intercepts"”),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dUni_intercept”

)

sat.loads.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = c("loadings"),
constr_dy_struct = "none",

writeTo = tempdir(),

scriptUni

fileName = "dUni_loading"

)

sat.config.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat”,
constr_dy_meas = "none",
constr_dy_struct = "none”,
writeTo = tempdir(),
fileName = "dUni_configural”

Index

* bi-construct script-writing functions
scriptAPIM, 30
scriptBiDy, 32
scriptCFM, 41
scriptMIM, 52

* datasets
commitmentM, 2
commitmentQ, 4
DRES, 5
imsM, 11
pnrgM, 25
prqcQ, 26

* indistinguishable script-writing functions
scriptINULL, 50
scriptISAT, 51

* multi-construct script-writing functions
scriptCFA, 38
scriptDyEFA, 46

* supplemental model calculators
getDydmacs, 7
getDyReliability, 8
getIndistFit, 9

* uni-construct script-writing functions
scriptBifac, 35
scriptCor, 43
scriptHier, 47
scriptUni, 55

* variable-scraping functions
scrapeVarcCross, 28

commitmentM, 2
commitmentQ, 4

DRES, 5

getConstraintTests, 6
getDydmacs, 7, 8, 9
getDyReliability, 7,8, 9
getIndistFit, 7, 8,9
getInvarCompTable, 10

59

imsM, 11

outputConstraintTab, 13
outputInvarCompTab, 14
outputModel, 17
outputParamFig, 19
outputParamTab, 20
outputUniConstructComp, 22

pnragM, 25
prqcQ, 26

scrapeVarCross, 28, 32, 36, 39, 43, 44, 47,
48,51, 52, 54, 57
scriptAPIM, 30, 34, 43, 54
scriptBiDy, 32, 32, 43, 54
scriptBifac, 35, 44, 48, 57
scriptCFA, 37,47
scriptCFM, 32, 34, 41, 54
scriptCor, 36, 43, 48, 57
scriptDyEFA, 39, 46
scriptHier, 36, 44, 47, 57
scriptINULL, 50, 52
scriptISAT, 51,51
scriptMIM, 32, 34, 43,52
scriptObsAPIM, 54
scriptUni, 36, 44, 48, 55

	commitmentM
	commitmentQ
	DRES
	getConstraintTests
	getDydmacs
	getDyReliability
	getIndistFit
	getInvarCompTable
	imsM
	outputConstraintTab
	outputInvarCompTab
	outputModel
	outputParamFig
	outputParamTab
	outputUniConstructComp
	pnrqM
	prqcQ
	scrapeVarCross
	scriptAPIM
	scriptBiDy
	scriptBifac
	scriptCFA
	scriptCFM
	scriptCor
	scriptDyEFA
	scriptHier
	scriptINULL
	scriptISAT
	scriptMIM
	scriptObsAPIM
	scriptUni
	Index

