
Package ‘dySEM’
December 22, 2025

Title Dyadic Structural Equation Modeling

Version 1.4.1

Description Scripting of structural equation models via 'lavaan' for
Dyadic Data Analysis, and helper functions for supplemental
calculations, tabling, and model visualization.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/jsakaluk/dySEM,

https://jsakaluk.github.io/dySEM/

BugReports https://github.com/jsakaluk/dySEM/issues

Imports cli, dplyr, EGAnet, gt, lavaan, lifecycle, magrittr, rlang,
semPlot, stringr, tibble

Suggests janitor, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

LazyData true

Depends R (>= 4.1)

Config/testthat/edition 3

NeedsCompilation no

Author John Sakaluk [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-2515-9822>),

Omar Camanto [aut] (ORCID: <https://orcid.org/0009-0009-4012-9777>),
Christopher Quinn-Nilas [ctb] (ORCID:

<https://orcid.org/0000-0002-8056-2008>),
Merissa Prine [ctb],
Robyn Kilshaw [ctb],
Alexandra Fisher [ctb]

Maintainer John Sakaluk <jksakaluk@gmail.com>

Repository CRAN

Date/Publication 2025-12-22 20:00:02 UTC

1

https://github.com/jsakaluk/dySEM
https://jsakaluk.github.io/dySEM/
https://github.com/jsakaluk/dySEM/issues
https://orcid.org/0000-0002-2515-9822
https://orcid.org/0009-0009-4012-9777
https://orcid.org/0000-0002-8056-2008

2 commitmentM

Contents
commitmentM . 2
commitmentQ . 4
DRES . 5
getConstraintTests . 6
getDydmacs . 7
getDyReliability . 8
getIndistFit . 9
getInvarCompTable . 10
imsM . 11
outputConstraintTab . 13
outputInvarCompTab . 14
outputModel . 17
outputParamFig . 19
outputParamTab . 20
outputUniConstructComp . 22
pnrqM . 25
prqcQ . 26
scrapeVarCross . 28
scriptAPIM . 30
scriptBiDy . 32
scriptBifac . 35
scriptCFA . 37
scriptCFM . 41
scriptCor . 43
scriptDyEFA . 46
scriptHier . 47
scriptINULL . 50
scriptISAT . 51
scriptMIM . 52
scriptObsAPIM . 54
scriptUni . 55

Index 59

commitmentM Ratings of relational satisfaction and commitment from 282 (M)ixed-
sex couples

Description

A data set containing 5 ratings of satisfaction and 5 ratings of commitment for each member of a
mixed-sex romantic dyad. Measured using the Investment Model Scale subscales (Rusbult, Martz,
& Agnew, 1998). Data are from Sakaluk, Fisher, and Kilshaw’s (2021) study of dyadic invariance.
Variable names have been re-coded to follow a stem-item-partner ("sip") order, with a delimiter
("_") between the item number and partner distinguishing character.

commitmentM 3

Usage

data(commitmentM)

Format

A data frame with 282 rows and 20 variables:

sat.g1_f Satisfaction item 1 for female partner

sat.g2_f Satisfaction item 2 for female partner

sat.g3_f Satisfaction item 3 for female partner

sat.g4_f Satisfaction item 4 for female partner

sat.g5_f Satisfaction item 5 for female partner

com1_f Commitment items item 1 for female partner

com2_f Commitment items item 2 for female partner

com3_f Commitment items item 3 for female partner

com4_f Commitment items item 4 for female partner

com5_f Commitment items item 5 for female partner

sat.g1_m Satisfaction item 1 for male partner

sat.g2_m Satisfaction item 2 for male partner

sat.g3_m Satisfaction item 3 for male partner

sat.g4_m Satisfaction item 4 for male partner

sat.g5_m Satisfaction item 5 for male partner

com1_m Commitment items item 1 for male partner

com2_m Commitment items item 2 for male partner

com3_m Commitment items item 3 for male partner

com4_m Commitment items item 4 for male partner

com5_m Commitment items item 5 for male partner

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. .

4 commitmentQ

commitmentQ Ratings of relational satisfaction and commitment from 282 (Q)ueer
couples

Description

A data set containing 5 ratings of satisfaction and 5 ratings of commitment for each member of a
dyad in which one or more members identify as LGBTQ+. Measured using the Investment Model
Scale subscales (Rusbult, Martz, & Agnew, 1998). Data are from Sakaluk, Fisher, and Kilshaw
(2021). Variable names follow a stem-partner-item ("spi") order, with a delimiter (".") between the
stem and distinguishing partner character, and another delimiter ("_") between the distinguishing
partner character and item number.

Usage

data(commitmentQ)

Format

A data frame with 118 rows and 20 variables:

sat.g.1_1 Satisfaction item 1 for partner1

sat.g.1_2 Satisfaction item 2 for partner1

sat.g.1_3 Satisfaction item 3 for partner1

sat.g.1_4 Satisfaction item 4 for partner1

sat.g.1_5 Satisfaction item 5 for partner1

com.1_1 Commitment items item 1 for partner1

com.1_2 Commitment items item 2 for partner1

com.1_3 Commitment items item 3 for partner1

com.1_4 Commitment items item 4 for partner1

com.1_5 Commitment items item 5 for partner1

sat.g.2_1 Satisfaction item 1 for partner 2

sat.g.2_2 Satisfaction item 2 for partner 2

sat.g.2_3 Satisfaction item 3 for partner 2

sat.g.2_4 Satisfaction item 4 for partner 2

sat.g.2_5 Satisfaction item 5 for partner 2

com.2_1 Commitment items item 1 for partner 2

com.2_2 Commitment items item 2 for partner 2

com.2_3 Commitment items item 3 for partner 2

com.2_4 Commitment items item 4 for partner 2

com.2_5 Commitment items item 5 for partner 2

DRES 5

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. .#’

DRES Relationship quality and sexual satisfaction of 121 couples

Description

A dataset containing 9 observed indicators of relationship quality (PRQC) and 5 observed indica-
tors of sexual satisfaction from 121 couples in the DRES (Daily Relationship Experiences Study;
Raposo, Impett, & Muise, in press)

Usage

data(DRES)

Format

A data frame with 121 rows and 28 variables:

PRQC_1.1 PRQC item 1 for partner 1

PRQC_2.1 PRQC item 2 for partner 1

PRQC_3.1 PRQC item 3 for partner 1

PRQC_4.1 PRQC item 4 for partner 1

PRQC_5.1 PRQC item 5 for partner 1

PRQC_6.1 PRQC item 6 for partner 1

PRQC_7.1 PRQC item 7 for partner 1

PRQC_8.1 PRQC item 8 for partner 1

PRQC_9.1 PRQC item 9 for partner 1

PRQC_1.2 PRQC item 1 for partner 2

PRQC_2.2 PRQC item 2 for partner 2

PRQC_3.2 PRQC item 3 for partner 2

PRQC_4.2 PRQC item 4 for partner 2

PRQC_5.2 PRQC item 5 for partner 2

PRQC_6.2 PRQC item 6 for partner 2

PRQC_7.2 PRQC item 7 for partner 2

PRQC_8.2 PRQC item 8 for partner 2

PRQC_9.2 PRQC item 9 for partner 2

sexsat1.1 sexual satisfaction item 1 for partner 1

6 getConstraintTests

sexsat2.1 sexual satisfaction item 2 for partner 1

sexsat3.1 sexual satisfaction item 3 for partner 1

sexsat4.1 sexual satisfaction item 4 for partner 1

sexsat5.1 sexual satisfaction item 5 for partner 1

sexsat1.2 sexual satisfaction item 1 for partner 2

sexsat2.2 sexual satisfaction item 2 for partner 2

sexsat3.2 sexual satisfaction item 3 for partner 2

sexsat4.2 sexual satisfaction item 4 for partner 2

sexsat5.2 sexual satisfaction item 5 for partner 2

References

Raposo, S., Impett, E. A., & Muise, A. (2020). Avoidantly Attached Individuals Are More Exchange-
Oriented and Less Communal in the Bedroom. Archives of Sexual Behavior, 49, 2863–2881.
https://doi.org/10.1007/s10508-020-01813-9

getConstraintTests A function that performs a score test for relaxing each invariance
equality constraint between partners in a given dyadic SEM model.

Description

A function that performs a score test for relaxing each invariance equality constraint between part-
ners in a given dyadic SEM model.

Usage

getConstraintTests(constrainFit, filterSig = FALSE)

Arguments

constrainFit fitted lavaan model with dyadic invariance equality constraints

filterSig logical indicating whether to filter for significant constraints (default is FALSE)

Value

a data frame with rows of equality constraints (now with readable param labels) and test statistic,
df, and p for whether constraint worsens model fit

getDydmacs 7

Examples

dvn <- scrapeVarCross(dat = commitmentM, x_order = "sip", x_stem = "sat.g",
x_delim2="_", distinguish_1="f", distinguish_2="m")

sat.resids.script <- scriptCor(dvn, lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none")

sat.resids.mod <- lavaan::cfa(sat.resids.script, data = commitmentM, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

getConstraintTests(sat.resids.mod)

getDydmacs Calculates dmacs difference in expected indicator scores for between
dyad members

Description

Calculates dmacs difference in expected indicator scores for between dyad members

Usage

getDydmacs(dat, dvn, fit, nodewidth = 0.01, lowerLV = -5, upperLV = 5)

Arguments

dat data frame of indicators

dvn input dvn list from scrapeVarCross

fit outputted dyadic cfa lavaan object; should be from a partial-invariance model

nodewidth space between nodes during quadrature approximation (default = .01)

lowerLV lowest latent variable value evaluated (default = -5)

upperLV greatest latent variable value evaluated (default = 5)

Value

vector of d_macs values

See Also

Other supplemental model calculators: getDyReliability(), getIndistFit()

8 getDyReliability

Examples

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2")
sat.config.script <- scriptCor(dvn, lvname = "Sat",
constr_dy_meas = "none",
constr_dy_struct = "none")

sat.config.mod <- lavaan::cfa(sat.config.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)
getDydmacs(commitmentQ, dvn, sat.config.mod)

getDyReliability A Function Calculates Omega Total Coefficients from a Dyadic CFA

Description

This function takes the model from fitted scriptCor() scripts and returns omega total coefficients for
each dyad member, adapted following Formula 2 in McNeish (2018).

Usage

getDyReliability(dvn, fit)

Arguments

dvn input dvn list from scrapeVarCross

fit outputted dyadic cfa lavaan object based on the default (i.e., "configural") dyad-
CFA() function

Value

a tibble/data frame with calculated omega total coefficients for dyad Member 1 and Member 2

See Also

Other supplemental model calculators: getDydmacs(), getIndistFit()

Examples

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2")
sat.indist.script <- scriptCor(dvn, lvname = "Sat")
sat.indist.mod <- lavaan::cfa(sat.indist.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)
getDyReliability(dvn, sat.indist.mod)

getIndistFit 9

getIndistFit A Function that Computes Corrected Fit Indexes According to the
ISAT and INULL Models of Olsen & Kenny (2006)

Description

This function takes the outputted model fit using scriptCor() with model = "indist", as well as scrip-
tISAT(), and scriptINULL() and computes corrected model fit indexes according to the approach
outlined by Olsen & Kenny (2006)

Usage

getIndistFit(indmodel, isatmod, inullmod)

Arguments

indmodel input lavaan model object fitted using dyadCFA(model = "indistinguishable")

isatmod input lavaan model object fitted using ISAT()

inullmod input lavaan model object fitted using INULL()

Value

A data frame of the original and corrected chi sq, df, p, rmsea, and tli

See Also

Other supplemental model calculators: getDyReliability(), getDydmacs()

Examples

dvn <- scrapeVarCross(
dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"

)

sat.indist.script <- scriptCor(dvn, lvname = "Sat")
sat.indist.mod <- lavaan::cfa(sat.indist.script,

data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

sat.isat.script <- scriptISAT(dvn, lvxname = "Sat")
sat.isat.mod <- lavaan::cfa(sat.isat.script,

data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = FALSE

)

sat.inull.script <- scriptINULL(dvn, lvxname = "Sat")

10 getInvarCompTable

sat.inull.mod <- lavaan::cfa(sat.inull.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = FALSE

)

getIndistFit(sat.indist.mod, sat.isat.mod, sat.inull.mod)

getInvarCompTable Compare model fit of nested dyadic invariance models in order from
most parsimonious (residual) to least parsimonious (configural)

Description

Compare model fit of nested dyadic invariance models in order from most parsimonious (residual)
to least parsimonious (configural)

Usage

getInvarCompTable(mods)

Arguments

mods a list of neted lavaan dyadic invariance models, in the order of residual, intercept,
loading, configural

Value

a data frame of model fit statistics for each model, as well as the difference in fit statistics between
each model and the previous model

Examples

dvn <- scrapeVarCross(
dat = commitmentQ, x_order = "spi",
x_stem = "sat.g", x_delim1 = ".", x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"

)

sat.residual.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"), constr_dy_struct = "none"

)

sat.intercept.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts"), constr_dy_struct = "none"

)

sat.loading.script <- scriptCor(dvn,

imsM 11

lvname = "Sat",
constr_dy_meas = c("loadings"), constr_dy_struct = "none"

)

sat.config.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = "none", constr_dy_struct = "none"

)

sat.residual.fit <- lavaan::cfa(sat.residual.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.intercept.fit <- lavaan::cfa(sat.intercept.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.loading.fit <- lavaan::cfa(sat.loading.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.config.fit <- lavaan::cfa(sat.config.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

mods <- list(sat.residual.fit, sat.intercept.fit, sat.loading.fit, sat.config.fit)

getInvarCompTable(mods)

imsM Ratings on the full Investment Model Scale (IMS) from 282 (M)ixed-
sex couples

Description

A data set containing 5 ratings for each of (1) satisfaction, (2) quality of alternatives, (3) investment,
and 4 (commitment) for each member of a mixed-sex romantic dyad. Measured using the Invest-
ment Model Scale subscales (Rusbult, Martz, & Agnew, 1998). Data are from Sakaluk, Fisher,
and Kilshaw’s (2021) study of dyadic invariance. Variable names have been re-coded to follow a
stem-item-partner ("sip") order, with a delimiter ("_") between the item number and partner distin-
guishing character.

Usage

data(imsM)

12 imsM

Format

A data frame with 282 rows and 40 variables:

sat.g1_f Satisfaction item 1 for female partner

sat.g2_f Satisfaction item 2 for female partner

sat.g3_f Satisfaction item 3 for female partner

sat.g4_f Satisfaction item 4 for female partner

sat.g5_f Satisfaction item 5 for female partner

qalt.g1_f Quality of alternatives item 1 for female partner

qalt.g2_f Quality of alternatives item 2 for female partner

qalt.g3_f Quality of alternatives item 3 for female partner

qalt.g4_f Quality of alternatives item 4 for female partner

qalt.g5_f Quality of alternatives item 5 for female partner

invest.g1_f Investment item 1 for female partner

invest.g2_f Investment item 2 for female partner

invest.g3_f Investment item 3 for female partner

invest.g4_f Investment item 4 for female partner

invest.g5_f Investment item 5 for female partner

com1_f Commitment items item 1 for female partner

com2_f Commitment items item 2 for female partner

com3_f Commitment items item 3 for female partner

com4_f Commitment items item 4 for female partner

com5_f Commitment items item 5 for female partner

sat.g1_m Satisfaction item 1 for male partner

sat.g2_m Satisfaction item 2 for male partner

sat.g3_m Satisfaction item 3 for male partner

sat.g4_m Satisfaction item 4 for male partner

sat.g5_m Satisfaction item 5 for male partner

qalt.g1_m Quality of alternatives item 1 for male partner

qalt.g2_m Quality of alternatives item 2 for male partner

qalt.g3_m Quality of alternatives item 3 for male partner

qalt.g4_m Quality of alternatives item 4 for male partner

qalt.g5_m Quality of alternatives item 5 for male partner

invest.g1_m Investment item 1 for male partner

invest.g2_m Investment item 2 for male partner

invest.g3_m Investment item 3 for male partner

invest.g4_m Investment item 4 for male partner

invest.g5_m Investment item 5 for male partner

outputConstraintTab 13

com1_m Commitment items item 1 for male partner
com2_m Commitment items item 2 for male partner
com3_m Commitment items item 3 for male partner
com4_m Commitment items item 4 for male partner
com5_m Commitment items item 5 for male partner

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. .

outputConstraintTab Evaluate Invariance Equality Constraints in a specified Dyadic Invari-
ance Model

Description

outputConstraintTab() is used to perform a score test for relaxing each invariance equality con-
straint between partners in a given dyadic SEM model.

Usage

outputConstraintTab(
constrainFit,
filterSig = FALSE,
gtTab = FALSE,
writeTo = NULL,
fileName = NULL

)

Arguments

constrainFit A fitted lavaan model with dyadic invariance equality constraints
filterSig A logical indicating whether to filter for significant constraints (default is FALSE)
gtTab A logical input indicating whether to generate the output in gt::gt() table ob-

ject format (TRUE). By default (FALSE), the output is generated in tibble::tibble()
format. Users can also apply the writeTo argument if they wish to export the
gt:gt() table object.

writeTo A character string specifying a directory path to where the gt::gt() table object
should be saved. If set to ".", the file will be written to the current working
directory. The default is NULL, and examples use a temporary directory created
by tempdir(). writeTo is only relevant if gtTab = TRUE.

fileName A character string specifying a desired base name for the output gt::gt() file.
If a fileName is not provided (i.e., fileName = NULL), then a default will be
used (i.e., "dySEM_table"). The resulting base name will automatically be ap-
pended with a .rtf file extension. fileName is only relevant if gtTab = TRUE
and writeTo is specified.

14 outputInvarCompTab

Details

• If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

• If output file is successfully saved, a confirmation message will be printed to the console.

• If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

A tibble::tibble() if gtTab = FALSE (default), or gt::gt() object if gtTab = TRUE, with rows
of equality constraints (now with readable param labels) and test statistic, df, and p for whether
constraint worsens model fit.

Examples

dvn <- scrapeVarCross(
dat = commitmentM, x_order = "sip", x_stem = "sat.g",
x_delim2 = "_", distinguish_1 = "f", distinguish_2 = "m"

)

sat.resids.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none"

)

sat.resids.mod <- lavaan::cfa(sat.resids.script,
data = commitmentM, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputConstraintTab(sat.resids.mod,
filterSig = FALSE,
gtTab = TRUE, writeTo = tempdir(), fileName = "dCFA_Residual"

)

outputInvarCompTab Compare Model Fit of Nested Dyadic Invariance Models

Description

outputInvarCompTab() is used to compare the model fit of nested dyadic invariance models in
order from most parsimonious (residual) to least parsimonious (configural)

outputInvarCompTab 15

Usage

outputInvarCompTab(
mods,
parsimonyFirst = FALSE,
gtTab = FALSE,
writeTo = NULL,
fileName = NULL

)

Arguments

mods A list of nested lavaan dyadic invariance models, in the order of residual, inter-
cept, loading, configural

parsimonyFirst A logical input indicating whether to prioritize the residual dyadic invariance
(i.e. most parsimonious measurement model) as the baseline model for nested
comparisons, or to prioritize the configural dyadic invariance (i.e. least parsi-
monious measurement model). Defaults to FALSE (i.e., configural dyadic in-
variance is the baseline model).

gtTab A logical input indicating whether to generate the output in gt::gt() table ob-
ject format (TRUE). By default (FALSE), the output is generated in tibble::tibble()
format. Users can also apply the writeTo argument if they wish to export the
gt:gt() table object.

writeTo A character string specifying a directory path to where the gt::gt() table object
should be saved. If set to ".", the file will be written to the current working
directory. The default is NULL, and examples use a temporary directory created
by tempdir(). writeTo is only relevant if gtTab = TRUE.

fileName A character string specifying a desired base name for the output gt::gt() file.
If a fileName is not provided (i.e., fileName = NULL), then a default will be
used (i.e., "dySEM_table"). The resulting base name will automatically be ap-
pended with a .rtf file extension. fileName is only relevant if gtTab = TRUE
and writeTo is specified.

Details

• If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

• If output file is successfully saved, a confirmation message will be printed to the console.

• If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

A tibble::tibble() if gtTab = FALSE (default), or gt::gt() object if gtTab = TRUE, of model
fit statistics for each model, as well as the difference in fit statistics between each model and the
previous model

16 outputInvarCompTab

Examples

dvn <- scrapeVarCross(
dat = commitmentQ, x_order = "spi",
x_stem = "sat.g", x_delim1 = ".", x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"

)

sat.residual.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"), constr_dy_struct = "none"

)

sat.intercept.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts"), constr_dy_struct = "none"

)

sat.loading.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings"), constr_dy_struct = "none"

)

sat.config.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = "none", constr_dy_struct = "none"

)

sat.residual.fit <- lavaan::cfa(sat.residual.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.intercept.fit <- lavaan::cfa(sat.intercept.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.loading.fit <- lavaan::cfa(sat.loading.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

sat.config.fit <- lavaan::cfa(sat.config.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE

)

mods <- list(sat.residual.fit, sat.intercept.fit, sat.loading.fit, sat.config.fit)

outputInvarCompTab(mods,
parsimonyFirst = FALSE,
gtTab = TRUE, writeTo = tempdir(), fileName = "dCFA_Invar_Standard"

)

outputModel 17

mods <- list(sat.config.fit, sat.loading.fit, sat.intercept.fit, sat.residual.fit)

outputInvarCompTab(mods,
parsimonyFirst = TRUE,
gtTab = TRUE, writeTo = tempdir(), fileName = "dCFA_Invar_Reverse"

)

outputModel A Function That Exports Tables and/or SEM Diagrams based on
dySEM models

Description

This function takes the model from fitted dySEM() scripts and exports table(s) and/or a path diagram
figure of expected output.

Usage

outputModel(
dvn,
model = NULL,
fit,
table = TRUE,
tabletype = NULL,
figure = TRUE,
figtype = NULL,
writeTo = NULL,
fileName = NULL

)

Arguments

dvn input dvn list from scrapeVarCross

model character input specifying type of model to output (e.g., "cfa", "apim", "cfm")

fit input object from fitted lavaan model

table logical input of whether table output is desired. Default is TRUE

tabletype character input of what type of table(s) is(are) desired. options are "measure-
ment" (i.e„ loadings, intercepts,), "structural" (i.e., latent slopes, such as ac-
tor/partner effects, k parameters), or "both" (i.e., both measurement and struc-
tural tables)

figure logical input of whether figure output is desired. Default is TRUE

figtype character input of what type of figure is desired

18 outputModel

writeTo A character string specifying a directory path to where the file(s) should be
saved. If set to “.”, the file(s) will be written to the current working directory.
The default is NULL (which will throw an error), and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the output file(s). If a
fileName not provided (i.e., default fileName = NULL), then defaults will be
used (e.g., "dySEM_table"/"dySEM_table_Measurement"/"dySEM_table_Structural
for tables; "dySEM_figure" for figures). The specified name will be automati-
cally appended with the appropriate file extension (i.e., .rtf for tables; .png for
figures).

Details

If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

Ignore console (prints unnecessary semPlot::semPaths details). More importantly, prints word files
for the table(s) and/or figure, outputted to the users working directory

Examples

dvnx <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2")

sat.config.script <- scriptCor(dvnx, lvname = "Sat", constr_dy_meas = "none",
constr_dy_struct = "none")

sat.config.mod <- lavaan::cfa(sat.config.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

outputModel(dvnx, model = "cfa", fit = sat.config.mod, table = TRUE,
tabletype = "measurement", figure = "TRUE", figtype = "standardized",
writeTo = tempdir(), fileName = "dCFA_configural")
dvnxy <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2",
y_order="spi", y_stem="com", y_delim1 = ".", y_delim2="_")

apim.indist.script <- scriptAPIM(dvnxy, lvxname = "Sat", lvyname = "Com", est_k = TRUE)

apim.indist.mod <- lavaan::cfa(apim.indist.script, data = commitmentQ, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

outputModel(dvnxy, model = "apim", fit = apim.indist.mod, table = TRUE,
tabletype = "measurement", figure = "TRUE", figtype = "standardized",
writeTo = tempdir(), fileName = "APIM_indist")

outputParamFig 19

outputParamFig A function That Exports SEM diagrams based on dySEM models

Description

This function takes the model from fitted dySEM scripts and exports .png path diagram figures of
expected output.

Usage

outputParamFig(fit, figtype = NULL, writeTo = NULL, fileName = NULL)

Arguments

fit Input object from fitted lavaan model.

figtype A character input of what type of model is desired:

• "unstandardized" for unstandardized path coefficients.
• "standardized" for standardized path coefficients.
• "labels" for labelled parameters.

writeTo A character string specifying a directory path to where the output file of the path
diagram should be saved. If set to “.”, the file will be written to the current work-
ing directory. The default is NULL (which will throw an error), and examples use
a temporary directory created by tempdir().

fileName A character string specifying a desired base name for the output file. If a
fileName not provided (i.e., fileName = NULL), then a default will be used de-
pending on the specified figtype (e.g., "dySEM_figure unstd", "dySEM_figure
std", or "dySEM_figure lab"). The specified name will automatically be ap-
pended with the .png file extension.

Details

• The function uses semPlot::semPaths() to create a qgraph object of the desired SEM path
diagram.

• After execution, a semPlot::semPaths() message will be printed to the console confirming
the directory path of the saved output file.

• If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

A qgraph object of the desired SEM path diagram, which is simultaneously exported as a .png file
to the specified directory.

20 outputParamTab

Examples

dvnx <- scrapeVarCross(
dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"

)

sat.config.script <- scriptCor(dvnx,
lvname = "Sat", constr_dy_meas = "none",
constr_dy_struct = "none"

)

sat.config.mod <- lavaan::cfa(sat.config.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputParamFig(sat.config.mod,
figtype = "standardized",
writeTo = tempdir(), fileName = "dCFA_configural"

)

dvnxy <- scrapeVarCross(
dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2",
y_order = "spi", y_stem = "com", y_delim1 = ".", y_delim2 = "_"

)

apim.indist.script <- scriptAPIM(dvnxy, lvxname = "Sat", lvyname = "Com", est_k = TRUE)

apim.indist.mod <- lavaan::cfa(apim.indist.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputParamFig(apim.indist.mod,
figtype = "standardized",
writeTo = tempdir(), fileName = "APIM_indist"

)

outputParamTab A Function That Exports Tables based on dySEM models

Description

This function takes the model from fitted dySEM scripts and creates tables of expected output and/or
exports them as .rtfs.

outputParamTab 21

Usage

outputParamTab(
dvn,
model = NULL,
fit,
tabletype = NULL,
gtTab = FALSE,
writeTo = NULL,
fileName = NULL

)

Arguments

dvn Input dvn list from scrapeVarCross()

model A character input specifying type of model to output: "cfa", "bidyc", "apim",
"mim", "cfm", or "bidys".

fit input object from fitted lavaan model.

tabletype A character input of what type of table(s) is(are) desired. Options are "mea-
surement" (i.e., loadings, intercepts, etc.), "structural" (i.e., latent slopes, such
as actor/partner effects, k parameters), "both" (i.e., both measurement and struc-
tural tables), or "correlation" (for a table of factor correlations).

gtTab A logical input indicating whether to generate the table(s) in gt::gt() table ob-
ject format (TRUE). By default (FALSE), the table(s) are generated in tibble::tibble()
format. Users can also apply the writeTo argument if they wish to export the
gt:gt() table object(s).

writeTo A character string specifying a directory path to where the gt::gt() table ob-
ject(s) should be saved. If set to ".", the file(s) will be written to the current
working directory. The default is NULL, and examples use a temporary directory
created by tempdir(). writeTo is only relevant if gtTab = TRUE.

fileName A character string specifying a desired base name for the output gt::gt()
file(s). If a fileName is not provided (i.e., fileName = NULL), then defaults will
be used (e.g., "dySEM_table", "dySEM_table_measurement", or "dySEM_table_structural)
based on the tabletype argument. The resulting base name will automatically
be appended with a .rtf file extension. fileName is only relevant if gtTab =
TRUE and writeTo is specified.

Details

• If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

• If output file(s) is(are) successfully saved, a confirmation message will be printed to the con-
sole.

• If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

22 outputUniConstructComp

Value

A tibble::tibble() if gtTab = FALSE (default), or gt::gt() object if gtTab = TRUE, of specified
model parameter estimates and corresponding statistical tests.

Examples

dvnx <- scrapeVarCross(
dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"

)

sat.config.script <- scriptCor(dvnx,
lvname = "Sat", constr_dy_meas = "none",
constr_dy_struct = "none"

)

sat.config.mod <- lavaan::cfa(sat.config.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputParamTab(dvnx,
model = "cfa", sat.config.mod, tabletype = "measurement",
writeTo = tempdir(), fileName = "dCFA_configural"

)

dvnxy <- scrapeVarCross(
dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2",
y_order = "spi", y_stem = "com", y_delim1 = ".", y_delim2 = "_"

)

apim.indist.script <- scriptAPIM(dvnxy, lvxname = "Sat", lvyname = "Com", est_k = TRUE)

apim.indist.mod <- lavaan::cfa(apim.indist.script,
data = commitmentQ, std.lv = FALSE,
auto.fix.first = FALSE, meanstructure = TRUE

)

outputParamTab(dvnxy,
model = "cfa", sat.config.mod, tabletype = "measurement",
writeTo = tempdir(), fileName = "APIM_indist"

)

outputUniConstructComp

A Function That Fits and Compares Competing Dyadic Uni-construct
Models

outputUniConstructComp 23

Description

This function takes the outputted object from scrapeVarCross() along with the corresponding
dataset and automatically tests competing uni-construct dyadic models for the latent variable under
consideration. It inspects four possible model variants:

• Bifactor (scripted via dySEM::scriptBifac)

• Hierarchical (scripted via dySEM::scriptHier)

• Correlated Factors (scripted via dySEM::scriptCor)

• Unidimensional (scripted via dySEM::scriptUni)

Usage

outputUniConstructComp(
dvn,
dat,
indexes = c("df", "chisq", "cfi", "rmsea", "bic", "GenTEFI"),
...,
gtTab = FALSE,
writeTo = NULL,
fileName = NULL

)

Arguments

dvn Input dvn list from scrapeVarCross().

dat Input data frame containing the dataset for model estimation.

indexes Input character vector specifying which index(es) to return. Default is c("df",
"chisq", "cfi", "rmsea", "bic", "GenTEFI"). Note:

• Valid entries include "GenTEFI"—the Generalized Total Entropy Fit Index
(see Golino et al., 2024)—and those from lavaan::fitMeasures().

• If "chisq" is entered, chi-squared difference tests are automatically per-
formed via lavaan::lavTestLRT(), and the resulting p-values are added
to the output.

... Additional arguments to be passed to lavaan::cfa(), allowing users to cus-
tomize model estimation settings. By default, the models are fit with maximum-
likelihood estimation (estimator = "ml") and missing data are handled via list-
wise deletion (missing = "listwise"), as per lavaan::cfa()’s default be-
haviour.

gtTab A logical input indicating whether to generate the requested index(es) for each
fitted model (requested via the indexes argument) in gt::gt() table object
format (TRUE). Users can also apply the writeTo argument if they wish to export
the gt::gt() table object.

writeTo A character vector string specifying a directory path to where the gt::gt()
table object should be saved. If set to ".", the file will be written to the current
working directory. The default is NULL, and examples use a temporary directory
created by tempdir(). writeTo is only relevant if gtTab = TRUE.

24 outputUniConstructComp

fileName A character string specifying a desired base name for the output gt::gt() file.
The resulting base name will automatically be appended with a .rtf file exten-
sion. fileName is only relevant if gtTab = TRUE and writeTo is specified.

Details

• If "chisq" is included in indexes, the specific form of the applied chi-squared difference test
(e.g., standard vs. robust) is determined automatically by lavaan::lavTestLRT(), based on
the model estimation method used.

• If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf
file to the user’s specified directory.

• If output file is successfully saved, a confirmation message will be printed to the console.

• If a file with the same name already exists in the user’s chosen directory, it will be overwritten.

Value

A list containing up to two components:

• Indexes: A tibble::tibble() if gtTab = FALSE (default), or gt::gt() object if gtTab =
TRUE, with the desired index(es) for each fitted model (requested via the indexes argument).

• GenTEFI: A tibble::tibble() of the GenTEFI (if "GenTEFI" is included in the indexes
argument).

Examples

dvn <- scrapeVarCross(
commitmentM,
x_order = "sip",
x_stem = "sat.g",
x_delim1 = "",
x_delim2 = "_",
distinguish_1 = "f",
distinguish_2 = "m"
)

Quick example for CRAN checks
outputUniConstructComp(

dvn,
commitmentM,
indexes = c("df", "bic"),
missing = "listwise"

)

More comprehensive examples (slower due to FIML estimation)
outputUniConstructComp(

dvn,
commitmentM,
missing = "fiml"

)

pnrqM 25

outputUniConstructComp(
dvn,
commitmentM,
indexes = c("df", "bic"),
missing = "fiml"

)

outputUniConstructComp(
dvn,
commitmentM,
indexes = c("df", "bic"),
estimator = "ml",
missing = "fiml"

)

outputUniConstructComp(
dvn,
commitmentM,
indexes = c("df", "bic"),
missing = "fiml",
gtTab = TRUE,
writeTo = tempdir(),
fileName = "uni-construct-dyad-models"

)

pnrqM Ratings on items from the Positive-Negative Relationship Quality
Scale (PNRQ; Rogge et al., 2017) from 219 (M)ixed-sex couples

Description

A data set containing ratings on items (4 each) assessing romantic (1) satisfaction and (2) dissatis-
faction for each member of a mixed-sex dyad . Positive-Negative Relationship Quality Scale (Rogge
et al., 2017). Data are from Prine et al. (Under Review). Variable names follow a stem-item-partner
("sip") order, with a delimiter ("_") between the item number and distinguishing partner character.

Usage

data(pnrqM)

Format

A data frame with 219 rows and 16 variables. Participants responded–on a six-point scale (1 = "Not
at all true", 6 = "Completely true")–to the prompt, "My relationship is...":

sat.pnrq1_w Enjoyable for partner w

26 prqcQ

sat.pnrq2_w Pleasant for partner w

sat.pnrq3_w Strong for partner w

sat.pnrq4_w Alive for partner w

dsat.pnrq1_w Miserable for partner w

dsat.pnrq2_w Bad for partner w

dsat.pnrq3_w Empty for partner w

dsat.pnrq4_w Lifeless for partner w

sat.pnrq1_m Enjoyable for partner m

sat.pnrq2_m Pleasant for partner m

sat.pnrq3_m Strong for partner m

sat.pnrq4_m Alive for partner m

dsat.pnrq1_m Miserable for partner m

dsat.pnrq2_m Bad for partner m

dsat.pnrq3_m Empty for partner m

dsat.pnrq4_m Lifeless for partner m

References

Prine, M., Sakaluk, J. K., Camanto, O. J., & Quinn-Nilas, C. (Under Review).

prqcQ Ratings on items from the Perceived Relationship Quality Components
(PRQC) Inventory from 118 (Q)ueer couples

Description

A data set containing ratings on items (3 each) assessing romantic: (1) satisfaction, (2) commit-
ment, (3) intimacy, (4) trust, (5) passion, and (6) love for each member of a dyad in which one or
more members identify as LGBTQ+. Perceived Relationship Quality Components (PRQC) Inven-
tory (Fletcher, Simpson, & Thomas, 2000). Data are from Sakaluk, Fisher, and Kilshaw (2021).
Variable names follow a stem-partner-item ("spi") order, with a delimiter (".") between the stem
and distinguishing partner character, and another delimiter ("_") between the distinguishing partner
character and item number.

Usage

data(prqcQ)

prqcQ 27

Format

A data frame with 118 rows and 36 variables:

prqc.1_1 Satisfaction item 1 for partner 1

prqc.1_2 Satisfaction item 2 for partner 1

prqc.1_3 Satisfaction item 3 for partner 1

prqc.1_4 Commitment item 1 for partner 1

prqc.1_5 Commitment item 2 for partner 1

prqc.1_6 Commitment item 3 for partner 1

prqc.1_7 Intimacy item 1 for partner 1

prqc.1_8 Intimacy item 2 for partner 1

prqc.1_9 Intimacy item 3 for partner 1

prqc.1_10 Trust item 1 for partner 1

prqc.1_11 Trust item 2 for partner 1

prqc.1_12 Trust item 3 for partner 1

prqc.1_13 Passion item 1 for partner 1

prqc.1_14 Passion item 2 for partner 1

prqc.1_15 Passion item 3 for partner 1

prqc.1_16 Love item 1 for partner 1

prqc.1_17 Love item 2 for partner 1

prqc.1_18 Love item 3 for partner 1

prqc.2_1 Satisfaction item 1 for partner 2

prqc.2_2 Satisfaction item 2 for partner 2

prqc.2_3 Satisfaction item 3 for partner 2

prqc.2_4 Commitment item 1 for partner 2

prqc.2_5 Commitment item 2 for partner 2

prqc.2_6 Commitment item 3 for partner 2

prqc.2_7 Intimacy item 1 for partner 2

prqc.2_8 Intimacy item 2 for partner 2

prqc.2_9 Intimacy item 3 for partner 2

prqc.2_10 Trust item 1 for partner 2

prqc.2_11 Trust item 2 for partner 2

prqc.2_12 Trust item 3 for partner 2

prqc.2_13 Passion item 1 for partner 2

prqc.2_14 Passion item 2 for partner 2

prqc.2_15 Passion item 3 for partner 2

prqc.2_16 Love item 1 for partner 2

prqc.2_17 Love item 2 for partner 2

prqc.2_18 Love item 3 for partner 2

28 scrapeVarCross

References

Sakaluk, J. K., Fisher, A. N., & Kilshaw, R. E.(2021). Dyadic measurement invariance and its
importance for replicability in romantic relationship research. Personal Relationships, 28(1), 190-
226. .#’

scrapeVarCross A Variable Name-Scraping and Indexing Function for cross-sectional
data

Description

This function scrapes the names of indicator variables in a wide-format data set used for dyadic
analyses of two latent variables (LV; X and Y), and indexes which indicators correspond to which
partner, for which LV. It is used primarily to guide the syntax-writing of the other dySEM functions.

Usage

scrapeVarCross(
dat,
x_order = "spi",
x_stem,
x_delim1 = NULL,
x_delim2 = NULL,
x_item_num = "\\d+",
distinguish_1 = "1",
distinguish_2 = "2",
y_order = NULL,
y_stem = NULL,
y_delim1 = NULL,
y_delim2 = NULL,
y_item_num = "\\d+",
var_list = NULL,
var_list_order = NULL,
var_list_item_num = "\\d+",
covs_order = NULL,
covs_stem = NULL,
covs_delim1 = NULL,
covs_delim2 = NULL,
verbose = TRUE

)

Arguments

dat input data frame of indicators of a particular LV

x_order input character for order of (S)tem, (P)artner number, and (I)tem number when
creating variable names. Defaults to "spi" (Qualtrics-friendly), but can alterna-
tively take "sip" or "psi"

scrapeVarCross 29

x_stem input character stem of indicator variables for LV X
x_delim1 optional character to separate stem from partner number (spi) or item number

(sip)
x_delim2 optional character to separate stem/partner number (spi) or stem/item number

(sip) from from final element of variable name
x_item_num defaults to scrape all items that match the stem with any digits that follow. Will

be updated to allow particular range of values, to make more sub-scale friendly.
distinguish_1 input character used as the identifier for the first partner
distinguish_2 input character used as the identifier for the first partner
y_order optional character for order of (S)tem, (P)artner number, and (I)tem number

when creating variable names. Defaults to "spi" (Qualtrics-friendly), but can
alternatively take "sip" or "psi". This and other Y-arguments only necessary if
there is a latent Y variable to model

y_stem optional input character stem of indicator variables for LV X
y_delim1 optional character to separate stem from partner number (spi) or item number

(sip)
y_delim2 optional character to separate stem/partner number (spi) or stem/item number

(sip) from from final element of variable name
y_item_num defaults to scrape all items that match the stem with any digits that follow. Will

be updated to allow particular range of values, to make more sub-scale friendly.
var_list optional named list of indicator variable information, if more than one LV is to

be scripted (e.g., a dyadic CFA with multiple sub-scales from the same measure).
If supplied, this list must contain the following elements: "stem" (a vector of
stems), "delim1" (a vector of delimiting characters), and"delim2" (a vector of
subsequently delimiting characters). Optionally may include numeric vectors
"min_num" and "max_num" if indicators for different LVs share the same stem
and must be separated by range of item numbers within a measure.

var_list_order optional character for order of (S)tem, (P)artner number, and (I)tem number
for any of the indicator variables of a multi-LV model (i.e., this functionality
assumes the same ordering of elements throughout)

var_list_item_num

optional character for item number of any of the indicator variables of a multi-
LV model

covs_order optional character for order of (S)tem, (P)artner number, and (I)tem number for
any covariate(s). Defaults to NULL. This and other covariate arguments only
necessary if there are covariates to be scripted in your model(s).

covs_stem optional input character stem(s) of indicator variables for covariate(s). Can ac-
cept a single stem (e.g., "anx"), or a vector of stems (e.g., c("anx", "dep")).
Defaults to NULL.

covs_delim1 optional character to separate stem from partner number (spi) or item number
(sip) for covariate(s). Defaults to NULL.

covs_delim2 optional character to separate stem/partner number (spi) or stem/item number
(sip) from

verbose logical indicating whether to print a summary of scraped variables to the con-
sole. Defaults to TRUE.

30 scriptAPIM

Value

a list, referred in short-hand as a "dvn" (dyad variable names list) containing variable names for p1,
p2, # of items per LV, characters distinguishing partners, and total number of indicators

Examples

dvnx <- scrapeVarCross(
dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"

)
dvnxy <- scrapeVarCross(

dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2",
y_order = "spi", y_stem = "com", y_delim1 = ".", y_delim2 = "_"

)

scriptAPIM A Function That Writes, Saves, and Exports Syntax for Fitting Latent
Actor-Partner Interdependence Models (APIMs)

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying Actor-Partner Interdependence Models (APIMs).
Users can also invoke configural, loading, and/or intercept invariant measurement models, and par-
ticular types of structural comparisons.

Usage

scriptAPIM(
dvn,
scaleset = "FF",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings", "intercepts", "residuals"),
constr_dy_x_struct = c("variances", "means"),
constr_dy_y_meas = c("loadings", "intercepts", "residuals"),
constr_dy_y_struct = c("variances", "means"),
constr_dy_xy_struct = c("actors", "partners"),
includeMeanStruct = FALSE,
model = lifecycle::deprecated(),
equate = lifecycle::deprecated(),
est_k = FALSE,
writeTo = NULL,
fileName = NULL

)

scriptAPIM 31

Arguments

dvn input dvn list from scrapeVarCross

scaleset input character to specify how to set the scale of the latent variable(s). Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

lvxname input character to (arbitrarily) name LV X in lavaan syntax

lvyname input character to (arbitrarily) name LV Y in lavaan syntax

constr_dy_x_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_x_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_y_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_xy_struct

input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
fault is c("actors", "partners"), but users can also specify "all", "actors_zero",
"partners_zero", or "none".

includeMeanStruct

input logical for whether the user wants to include the mean structure in the
model. Defaults FALSE, to support subsequent calculation of dynamic fit in-
dexes (see Details)

model Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

equate Deprecated input character to specify which type of structural parameters are
constrained to equivalency between partners. Users should rely upon constr_dy_xy_struct
for making constraints to the structural portion of the model for associative re-
lationship between latent x and y.

32 scriptBiDy

est_k input logical for whether Kenny & Ledermann’s (2010) k parameter should be
calculated to characterize the dyadic pattern in the APIM. Defaults FALSE, and
requires at least a loading-invariant model to be specified, otherwise a warning
is returned.

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions. Users will
receive message if structural comparisons are specified when the recommended level of invariance
is not also specified. If user supplies dvn with containing X or Y variables, they are alerted to
respecify the dvn object.

See Also

scrapeVarCross which this function relies on

Other bi-construct script-writing functions: scriptBiDy(), scriptCFM(), scriptMIM()

Examples

dvn <- scrapeVarCross(
dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2",
y_order = "spi", y_stem = "com", y_delim1 = ".", y_delim2 = "_"

)
apim.script.indist <- scriptAPIM(dvn,

lvxname = "Sat", lvyname = "Com", est_k = TRUE,
writeTo = tempdir(),
fileName = "latAPIM_indist"

)

scriptBiDy A Function That Writes, Saves, and Exports Syntax for Fitting Bifactor
Dyadic (BiDy) models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying dyadic configural, loading, and intercept invariant
BiDy CFA (BiDy-C) or SEM (BiDy-S) Model. Currently only uses fixed-factor scale-setting

scriptBiDy 33

Usage

scriptBiDy(
dvn,
type = "CFA",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings", "intercepts", "residuals"),
constr_dy_x_struct = c("variances", "means"),
constr_dy_y_meas = c("loadings", "intercepts", "residuals"),
constr_dy_y_struct = c("variances", "means"),
constr_dy_xy_struct = c("actors"),
model = lifecycle::deprecated(),
equate = lifecycle::deprecated(),
writeTo = NULL,
fileName = NULL

)

Arguments

dvn input dvn list from scrapeVarCross

type input character to specify whether to script a BiDy-CFA ("CFA", default) or
BiDy-SEM ("SEM") model

lvxname input character to (arbitrarily) name LV X in lavaan syntax

lvyname input character to (arbitrarily) name LV Y in lavaan syntax
constr_dy_x_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model. Users may also specify more boutique patterns of bifactor
loading constraints with "loadings_source" or "loadings_mutual".

constr_dy_x_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model. Users may also specify more boutique patterns of bifactor
loading constraints with "loadings_source" or "loadings_mutual".

constr_dy_y_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

34 scriptBiDy

constr_dy_xy_struct

input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
fault is c("actors"), but users can also specify "dyadic_zero" or "none".

model Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

equate Deprecated input character to specify which type of structural parameters are
constrained to equivalency between partners. Users should rely upon constr_dy_xy_struct
for making constraints to the structural portion of the model for associative re-
lationship between latent x and y.

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions

See Also

Other bi-construct script-writing functions: scriptAPIM(), scriptCFM(), scriptMIM()

Examples

dvn <- scrapeVarCross(DRES, x_order = "sip", x_stem = "sexsat",
x_delim2=".", distinguish_1="1", distinguish_2="2")

sexsat.bidyc.script <- scriptBiDy(dvn, lvxname = "SexSat", type = "CFA",
writeTo = tempdir(),
fileName = "BiDy_C")

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2",
y_order="spi", y_stem="com", y_delim1 = ".", y_delim2="_")

comsat.bidys.config.script <- scriptBiDy(dvn, lvxname = "Sat",
lvyname = "Com", type = "SEM",
writeTo = tempdir(),
fileName = "BiDy_S")

scriptBifac 35

scriptBifac A Function That Writes, Saves, and Exports Syntax for Fitting Bifactor
Dyadic Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant bifactor models.

Usage

scriptBifac(
dvn,
scaleset = "FF",
lvname = "X",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = c("variances", "means"),
writeTo = NULL,
fileName = NULL

)

Arguments

dvn Input dvn list from scrapeVarCross()

scaleset Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

lvname Input character to (arbitrarily) name the latent variable in lavaan syntax

constr_dy_meas Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct

Input character vector detailing which structural model parameters to constrain
across dyad members. Default is c("variances", "means")(in combination
with defaults for constr_dy_meas, an indistinguishable correlated dyadic fac-
tors model), but user can specify any combination of "variances" and "means",
or "none".

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

36 scriptBifac

Details

• By default, many dySEM:: functions (including scriptBifac()) default to a fixed-factor
method of scale-setting, whereby the latent variance of a given factor is constrained to 1
for both partners in the configurally invariant model, and then one of these variances is
freely estimated in subsequent models of the invariance testing sequence. We have selected
this default for two reasons: (1) the selection of a marker-variable is usually arbitrary, yet
can have a large influence on the estimation and testing of of structural parameters (see
https://stats.stackexchange.com/questions/402133/in-cfa-does-it-matter-which-factor-loading-
is-set-to-1/402732#402732); and (2) the selection of a non-invariant marker-variable can have
disastrous down-stream consequences for the identification of non-invariant measurement pa-
rameters, following a the rejection of an omnibus invariance constraint set (see Lee, Preacher,
& Little, 2011).

Value

Character object of lavaan script that can be passed immediately to lavaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptCor(), scriptHier(), scriptUni()

Examples

dvn <- scrapeVarCross(
dat = commitmentQ,
x_order = "spi",
x_stem = "sat.g",
x_delim1 = ".",
x_delim2 = "_",
distinguish_1 = "1",
distinguish_2 = "2"

)

sat.indist.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat"

)

sat.lvars.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "loadings",
constr_dy_struct = "variances"

)

sat.resids.script <- scriptBifac(
dvn,

scriptCFA 37

scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dBiFac_residual"

)

sat.ints.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dBiFac_intercept"

)

sat.loads.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dBiFac_loading"

)

sat.config.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "none",
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dBiFac_configural"

)

sat.source.script <- scriptBifac(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "loadings_source",
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dBiFac_source"

)

38 scriptCFA

scriptCFA A Function That Writes, Saves, and Exports Syntax for Fitting La-
tent Dyadic Confirmatory Factor Analysis (CFA) Models with Multi-
ple Factors

Description

This function takes the outputted object from scrapeVarCross() when the var_list argument has been
used, and automatically writes, returns, and exports (.txt) lavaan() syntax for specifying dyadic con-
figural, loading, and intercept invariant measurement models for either a group of latent variables
(e.g., different sub-scales from a self-report measures).

Usage

scriptCFA(
dvn,
scaleset = "FF",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = c("variances", "means"),
writeTo = NULL,
fileName = NULL

)

Arguments

dvn input dvn list from scrapeVarCross(); scrapeVarCross must have been run with
the var_list argument

scaleset input character to specify how to set the scale of the latent variable(s). Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

constr_dy_meas input character vector detailing which measurement model parameters to con-
strain across dyad members. Default is c("loadings", "intercepts", "residuals")(in
combination with defaults for constr_dy_struct, an indistinguishable dyadic CFA),
but user can specify any combination of "loadings", "intercepts", and "residu-
als", or "none" to specify an otherwise unconstrained dyadic configural invari-
ance model

constr_dy_struct

input character vector detailing which structural model parameters to constrain
across dyad members. Default is c("variances", "means")(in combination with
defaults for constr_dy_meas, an indistinguishable dyadic CFA), but user can
specify any combination of "variances" and "means", or "none".

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the

scriptCFA 39

.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Details

By default, many dySEM:: functions (including scriptCFA() default to a fixed-factor method of
scale-setting, whereby the latent variance of a given factor is constrained to 1 for both partners in
the configurally invariant #model, and then one of these variances is freely estimated in subsequent
#models of the invariance testing sequence. We have selected this default for two reasons: (1) the
selection of a marker-variable is usually arbitrary, yet can have a large influence on the estimation
and testing of of structural parameters (see https://stats.stackexchange.com/questions/402133/in-
cfa-does-it-matter-which-factor-loading-is-set-to-1/402732#402732); and (2) the selection of a non-
invariant marker-variable can have disastrous down-stream consequences for the identification of
non-invariant measurement parameters, following a the rejection of an omnibus #invariance con-
straint set (see Lee, Preacher, & Little, 2011).

Value

character object of lavaan script that can be passed immediately to lavaan functions

See Also

scrapeVarCross which this function relies on

Other multi-construct script-writing functions: scriptDyEFA()

Examples

When different factor use distinct stems:
imsList <- list(

lvnames = c("Sat", "Q_Alt", "Invest", "Comm"),
stem = c("sat.g", "qalt.g", "invest.g", "com"),
delim1 = c("", "", "", ""),
delim2 = c("_", "_", "_", "_")

)

dvnIMS <- scrapeVarCross(imsM,
var_list = imsList,
var_list_order = "sip",
distinguish_1 = "f",
distinguish_2 = "m"

)

script.ims.config <- scriptCFA(dvnIMS,
scaleset = "FF",
constr_dy_meas = "none",
constr_dy_struct = "none", writeTo = tempdir(), fileName = "ims_config"

)

script.ims.load <- scriptCFA(dvnIMS,
scaleset = "FF",
constr_dy_meas = c("loadings"),

40 scriptCFA

constr_dy_struct = "none", writeTo = tempdir(), fileName = "ims_load"
)

script.ims.int <- scriptCFA(dvnIMS,
scaleset = "FF",
constr_dy_meas = c("loadings", "intercepts"),
constr_dy_struct = "none", writeTo = tempdir(), fileName = "ims_int"

)

script.ims.res <- scriptCFA(dvnIMS,
scaleset = "FF",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none", writeTo = tempdir(), fileName = "ims_res"

)

script.ims.indist <- scriptCFA(dvnIMS,
scaleset = "FF",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = c("variances", "means"), writeTo = tempdir(), fileName = "ims_indist"

)

When different factor use the same stem and muse be detected through numeric position

prqcList <- list(
lvnames = c("Sat", "Comm", "Intim", "Trust", "Pass", "Love"),
stem = c("prqc", "prqc", "prqc", "prqc", "prqc", "prqc"),
delim1 = c(".", ".", ".", ".", ".", "."),
delim2 = c("_", "_", "_", "_", "_", "_"),
min_num = c(1, 4, 7, 10, 13, 16),
max_num = c(3, 6, 9, 12, 15, 18)

)

dvnPRQC <- scrapeVarCross(prqcQ,
var_list = prqcList,
var_list_order = "spi",
distinguish_1 = "1",
distinguish_2 = "2"

)

script.prqc.config <- scriptCFA(dvnPRQC,
scaleset = "FF",
constr_dy_meas = "none",
constr_dy_struct = "none", writeTo = tempdir(), fileName = "prqc_config"

)

script.prqc.load <- scriptCFA(dvnPRQC,
scaleset = "FF",
constr_dy_meas = c("loadings"),
constr_dy_struct = "none", writeTo = tempdir(), fileName = "prqc_load"

)

script.prqc.int <- scriptCFA(dvnPRQC,
scaleset = "FF",

scriptCFM 41

constr_dy_meas = c("loadings", "intercepts"),
constr_dy_struct = "none", writeTo = tempdir(), fileName = "prqc_int"

)

script.prqc.res <- scriptCFA(dvnPRQC,
scaleset = "FF",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none", writeTo = tempdir(), fileName = "prqc_res"

)

script.prqc.indist <- scriptCFA(dvnPRQC,
scaleset = "FF",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = c("variances", "means"), writeTo = tempdir(), fileName = "prqc_indist"

)

scriptCFM A Function That Writes, Saves, and Exports Syntax for Fitting Latent
Common Fate Models (CFMs)

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying Common Fate Models (CFMs). Users can also
invoke configural, loading, and/or intercept invariant measurement models, and particular types of
structural comparisons.

Usage

scriptCFM(
dvn,
scaleset = "FF",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings", "intercepts", "residuals"),
constr_dy_x_struct = c("variances", "means"),
constr_dy_y_meas = c("loadings", "intercepts", "residuals"),
constr_dy_y_struct = c("variances", "means"),
constr_dy_xy_struct = "none",
model = lifecycle::deprecated(),
writeTo = NULL,
fileName = NULL

)

Arguments

dvn input dvn list from scrapeVarCross

42 scriptCFM

scaleset input character to specify how to set the scale of the latent variable(s). Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

lvxname input character to (arbitrarily) name LV X in lavaan syntax

lvyname input character to (arbitrarily) name LV Y in lavaan syntax

constr_dy_x_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_x_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_y_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_xy_struct

input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
faults to "none". Options include "p1_zero" or "p2_zero" (to constrain within-
person latent residual covariances between X and Y to zero), or "covar_zero"
(to constrain both within-person latent residual correlations to zero), and/or
"dyadic_zero" (to constrain the dyadic effect to zero).

model Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

scriptCor 43

Value

character object of lavaan script that can be passed immediately to lavaan functions. Users will
receive message if structural comparisons are specified when the recommended level of invariance
is not also specified. If user supplies dvn with containing X or Y variables, they are alerted to
respecify the dvn object.

See Also

scrapeVarCross which this function relies on

Other bi-construct script-writing functions: scriptAPIM(), scriptBiDy(), scriptMIM()

Examples

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2",
y_order="spi", y_stem="com", y_delim1 = ".", y_delim2="_")
cfm.script.indist <- scriptCFM(dvn, lvxname = "Sat", lvyname = "Com",
writeTo = tempdir(),
fileName = "CFM_indist")

scriptCor A Function That Writes, Saves, and Exports Syntax for Fitting Corre-
lated Dyadic Factor Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant two-factor models.

Usage

scriptCor(
dvn,
scaleset = "FF",
lvname = "X",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = c("variances", "means"),
writeTo = NULL,
fileName = NULL

)

44 scriptCor

Arguments

dvn Input dvn list from scrapeVarCross()

scaleset Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

lvname Input character to (arbitrarily) name the latent variable in lavaan syntax

constr_dy_meas Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct

Input character vector detailing which structural model parameters to constrain
across dyad members. Default is c("variances", "means")(in combination
with defaults for constr_dy_meas, an indistinguishable correlated dyadic fac-
tors model), but user can specify any combination of "variances" and "means",
or "none".

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

Details

• By default, many dySEM:: functions (including scriptCor()) default to a fixed-factor method
of scale-setting, whereby the latent variance of a given factor is constrained to 1 for both part-
ners in the configurally invariant model, and then one of these variances is freely estimated in
subsequent models of the invariance testing sequence. We have selected this default for two
reasons: (1) the selection of a marker-variable is usually arbitrary, yet can have a large influ-
ence on the estimation and testing of of structural parameters (see https://stats.stackexchange.com/questions/402133/in-
cfa-does-it-matter-which-factor-loading-is-set-to-1/402732#402732); and (2) the selection of
a non-invariant marker-variable can have disastrous down-stream consequences for the iden-
tification of non-invariant measurement parameters, following a the rejection of an omnibus
invariance constraint set (see Lee, Preacher, & Little, 2011).

Value

Character object of lavaan script that can be passed immediately to lavaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptBifac(), scriptHier(), scriptUni()

scriptCor 45

Examples

dvn <- scrapeVarCross(
dat = commitmentQ,
x_order = "spi",
x_stem = "sat.g",
x_delim1 = ".",
x_delim2 = "_",
distinguish_1 = "1",
distinguish_2 = "2"

)

sat.indist.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat"

)

sat.lvars.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "loadings",
constr_dy_struct = "variances"

)

sat.resids.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dCor_residual"

)

sat.ints.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dCor_intercept"

)

sat.loads.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings"),
constr_dy_struct = "none",
writeTo = tempdir(),

46 scriptDyEFA

fileName = "dCor_loading"
)

sat.config.script <- scriptCor(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "none",
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dCor_configural"

)

scriptDyEFA A Function That Writes, Saves, and Exports Syntax for Fitting Dyadic
Exploratory Factor Analysis (DEFA) Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying a dyadic EFA model of a given number of ex-
ploratory factors.

Usage

scriptDyEFA(
dvn,
nFactor = 1,
constr_dy_meas = "none",
writeTo = NULL,
fileName = NULL

)

Arguments

dvn input dvn list from scrapeVarCross

nFactor numeric argument for number of exploratory factors to extract. Defaults to 1.
Note that higher values may cause estimation problems as solution becomes
over-factored and/or in the presence of insufficient data.

constr_dy_meas input character vector detailing which measurement model parameters to con-
strain across dyad members. Default is "none" but user can specify "loadings"
and/or "residuals", to fit an exploratory model with loadings and/or residuals
constrained across partners

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

scriptHier 47

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions

See Also

scrapeVarCross which this function relies on

Other multi-construct script-writing functions: scriptCFA()

Examples

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2")

sat.defa1.script <- scriptDyEFA(dvn, nFactor = 1,
writeTo = tempdir(), fileName = "DEFA_1fac")

scriptHier A Function That Writes, Saves, and Exports Syntax for Fitting Hierar-
chical Dyadic Factor Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant hierarchical models.

Usage

scriptHier(
dvn,
scaleset = "FF",
lvname = "X",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = c("variances", "means"),
writeTo = NULL,
fileName = NULL

)

48 scriptHier

Arguments

dvn Input dvn list from scrapeVarCross()

scaleset Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

lvname Input character to (arbitrarily) name the latent variable in lavaan syntax

constr_dy_meas Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct

Input character vector detailing which structural model parameters to constrain
across dyad members. Default is c("variances", "means")(in combination
with defaults for constr_dy_meas, an indistinguishable correlated dyadic fac-
tors model), but user can specify any combination of "variances" and "means",
or "none".

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

Details

• By default, many dySEM:: functions (including scriptHier()) default to a fixed-factor
method of scale-setting, whereby the latent variance of a given factor is constrained to 1
for both partners in the configurally invariant model, and then one of these variances is
freely estimated in subsequent models of the invariance testing sequence. We have selected
this default for two reasons: (1) the selection of a marker-variable is usually arbitrary, yet
can have a large influence on the estimation and testing of of structural parameters (see
https://stats.stackexchange.com/questions/402133/in-cfa-does-it-matter-which-factor-loading-
is-set-to-1/402732#402732); and (2) the selection of a non-invariant marker-variable can have
disastrous down-stream consequences for the identification of non-invariant measurement pa-
rameters, following a the rejection of an omnibus invariance constraint set (see Lee, Preacher,
& Little, 2011).

Value

Character object of lavaan script that can be passed immediately to lavaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptBifac(), scriptCor(), scriptUni()

scriptHier 49

Examples

dvn <- scrapeVarCross(
dat = commitmentQ,
x_order = "spi",
x_stem = "sat.g",
x_delim1 = ".",
x_delim2="_",
distinguish_1="1",
distinguish_2="2"
)

sat.indist.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat"
)

sat.lvars.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "loadings",
constr_dy_struct = "variances"
)

sat.resids.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dHier_residual"
)

sat.ints.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dHier_intercept"
)

sat.loads.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings"),
constr_dy_struct = "none",
writeTo = tempdir(),

50 scriptINULL

fileName = "dHier_loading"
)

sat.config.script <- scriptHier(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "none",
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dHier_configural"
)

scriptINULL A Function That Writes, Saves, and Exports Syntax for Fitting the I-
NULL model for indistinguishable dyads

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for the I-NULL model described in Olsen & Kenny (2006)

Usage

scriptINULL(
dvn,
lvxname = "X",
lvyname = NULL,
writeTo = NULL,
fileName = NULL

)

Arguments

dvn input dvn list from scrapeVarCross

lvxname input character to (arbitrarily) name X LV in lavaan syntax

lvyname (optional) input character to (arbitrarily) name Y LV in lavaan syntax

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

scriptISAT 51

Value

character object of lavaan script that can be passed immediately to lavaan functions

See Also

scrapeVarCross which this function relies on

Other indistinguishable script-writing functions: scriptISAT()

Examples

dvn <- scrapeVarCross(dat = DRES, x_order = "sip", x_stem = "PRQC", x_delim1 = "_",
x_delim2=".", x_item_num="\\d+", distinguish_1="1", distinguish_2="2")
qual.inull.script <- scriptINULL(dvn, lvxname = "Qual",
writeTo = tempdir(),
fileName = "I-NULL_script")

scriptISAT A Function That Writes, Saves, and Exports Syntax for Fitting the I-
SAT model for indistinguishable dyads

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for the I-SAT model described in Olsen & Kenny (2006)

Usage

scriptISAT(dvn, lvxname = "X", lvyname = NULL, writeTo = NULL, fileName = NULL)

Arguments

dvn input dvn list from scrapeVarCross

lvxname input character to (arbitrarily) name X LV in lavaan syntax

lvyname (optional) input character to (arbitrarily) name X LV in lavaan syntax

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions

52 scriptMIM

See Also

scrapeVarCross which this function relies on

Other indistinguishable script-writing functions: scriptINULL()

Examples

dvn <- scrapeVarCross(dat = DRES, x_order = "sip", x_stem = "PRQC", x_delim1 = "_",
x_delim2=".", x_item_num="\\d+", distinguish_1="1", distinguish_2="2")

qual.isat.script <- scriptISAT(dvn, lvxname = "Qual",
writeTo = tempdir(),
fileName = "I-SAT_script")

scriptMIM A Function That Writes, Saves, and Exports Syntax for Fitting Latent
Mutual influence Model

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan() syntax for specifying Mutual Influence Models (MIMs). Users can also
invoke configural, loading, and/or intercept invariant measurement models, and particular types of
structural comparisons.

Usage

scriptMIM(
dvn,
scaleset = "FF",
lvxname,
lvyname,
constr_dy_x_meas = c("loadings", "intercepts", "residuals"),
constr_dy_x_struct = c("variances", "means"),
constr_dy_y_meas = c("loadings", "intercepts", "residuals"),
constr_dy_y_struct = c("variances", "means"),
constr_dy_xy_struct = c("actors", "partners"),
model = lifecycle::deprecated(),
equate = lifecycle::deprecated(),
est_k = FALSE,
writeTo = NULL,
fileName = NULL

)

scriptMIM 53

Arguments

dvn input dvn list from scrapeVarCross

scaleset input character to specify how to set the scale of the latent variable(s). Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable)

lvxname input character to (arbitrarily) name LV X in lavaan syntax

lvyname input character to (arbitrarily) name LV Y in lavaan syntax

constr_dy_x_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_x_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_y_meas

input character vector detailing which measurement model parameters to con-
strain across dyad members for latent X. Default is c("loadings", "intercepts",
"residuals"), but user can specify any combination of "loadings", "intercepts",
and "residuals", or "none" to specify an otherwise unconstrained dyadic config-
ural invariance model

constr_dy_y_struct

input character vector detailing which structural model parameters to constrain
across dyad members for latent X. Default is c("variances", "means"), but user
can specify any combination of "variances" and "means", or "none".

constr_dy_xy_struct

input character vector detailing which structural model parameters to constrain
for modeling the predictive association(s) between partners’ latent x and y. De-
fault is c("actors", "partners"), but users can also specify "all", "actors_zero",
"partners_zero", or "none".

model Deprecated input character used to specify which level of invariance is mod-
eled. Users should rely upon constr_dy_x_meas/constr_dy_y_meas and con-
str_dy_x_struct/constr_dy_y_struct instead, for making constraints to the mea-
surement and/or structural portions of the model for latent x and y.

equate Deprecated input character to specify which type of structural parameters are
constrained to equivalency between partners. Users should rely upon constr_dy_xy_struct
for making constraints to the structural portion of the model for associative re-
lationship between latent x and y.

est_k input logical for whether Kenny & Ledermann’s (2010) k parameter should be
calculated to characterize the dyadic pattern in the APIM. Defaults FALSE, and
requires at least a loading-invariant model to be specified, otherwise a warning
is returned.

54 scriptObsAPIM

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions. Users will
receive message if structural comparisons are specified when the recommended level of invariance
is not also specified. If user supplies dvn with containing X or Y variables, they are alerted to
respecify the dvn object.

See Also

scrapeVarCross which this function relies on

Other bi-construct script-writing functions: scriptAPIM(), scriptBiDy(), scriptCFM()

Examples

dvn <- scrapeVarCross(dat = commitmentQ, x_order = "spi", x_stem = "sat.g", x_delim1 = ".",
x_delim2="_", distinguish_1="1", distinguish_2="2",
y_order="spi", y_stem="com", y_delim1 = ".", y_delim2="_")

mim.script.indist <- scriptMIM(dvn, lvxname = "Sat", lvyname = "Com", est_k = TRUE,
writeTo = tempdir(),
fileName = "MIM_indist")

scriptObsAPIM A Function That Writes, Saves, and Exports Syntax for Fitting Ob-
served Actor-Partner Interdependence Models

Description

A Function That Writes, Saves, and Exports Syntax for Fitting Observed Actor-Partner Interdepen-
dence Models

Usage

scriptObsAPIM(
X1 = NULL,
Y1 = NULL,
X2 = NULL,
Y2 = NULL,
equate = "none",

scriptUni 55

k = FALSE,
writeTo = NULL,
fileName = NULL

)

Arguments

X1 character of vector name containing X variable/composite for partner 1

Y1 character of vector name containing Y variable/composite for partner 1

X2 character of vector name containing X variable/composite for partner 2

Y2 character of vector name containing Y variable/composite for partner 2

equate character of what parameter(s) to constrain ("actor", "partner", "all"); default is
"none" (all freely estimated)

k input logical for whether Kenny & Ledermann’s (2010) k parameter should be
calculated to characterize the dyadic pattern in the APIM. Default to FALSE

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s chosen
directory, it will be overwritten.

Value

character object of lavaan script that can be passed immediately to lavaan functions.

Examples

obsAPIMScript <- scriptObsAPIM (X1 = "SexSatA", Y1 = "RelSatA",
X2 = "SexSatB", Y2 = "RelSatB",
equate = "none",
writeTo = tempdir(),
fileName = "obsAPIM_script")

scriptUni A Function That Writes, Saves, and Exports Syntax for Fitting Unidi-
mensional Dyadic Factor Models

Description

This function takes the outputted object from scrapeVarCross() and automatically writes, returns,
and exports (.txt) lavaan syntax for specifying dyadic configural, loading, intercept, and residual
invariant one-factor models.

56 scriptUni

Usage

scriptUni(
dvn,
scaleset = "FF",
lvname = "X",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none",
writeTo = NULL,
fileName = NULL

)

Arguments

dvn Input dvn list from scrapeVarCross().

scaleset Input character to specify how to set the scale of the latent variable. Default is
"FF" (fixed-factor; see Details for rationale), but user can specify "MV" (Marker
Variable).

lvname Input character to (arbitrarily) name the latent variable in lavaan syntax.

constr_dy_meas Input character vector detailing which measurement model parameters to con-
strain across dyad members.

constr_dy_struct

Input character vector detailing which structural model parameters to constrain
across dyad members. Note: Within the context of scriptUni(), constr_dy_struct
is irrelevant, as the unidimensional dyadic factor model assumes a single latent
variable shared by both partners, leaving no structural parameters to constrain
across the modeled dyad members. For consistency with other scripter func-
tions, constr_dy_struct is included as an argument, but defaults to "none".

writeTo A character string specifying a directory path to where a .txt file of the resulting
lavaan script should be written. If set to “.”, the .txt file will be written to the
current working directory. The default is NULL, and examples use a temporary
directory created by tempdir().

fileName A character string specifying a desired base name for the .txt output file. The
default is NULL. The specified name will be automatically appended with the
.txt file extension. If a file with the same name already exists in the user’s
chosen directory, it will be overwritten.

Details

• Users do not need to modify constr_dy_struct when using scriptUni().

• By default, many dySEM:: functions (including scriptUni()) default to a fixed-factor method
of scale-setting, whereby the latent variance of a given factor is constrained to 1 for both part-
ners in the configurally invariant model, and then one of these variances is freely estimated in
subsequent models of the invariance testing sequence. We have selected this default for two
reasons: (1) the selection of a marker-variable is usually arbitrary, yet can have a large influ-
ence on the estimation and testing of of structural parameters (see https://stats.stackexchange.com/questions/402133/in-
cfa-does-it-matter-which-factor-loading-is-set-to-1/402732#402732); and (2) the selection of

scriptUni 57

a non-invariant marker-variable can have disastrous down-stream consequences for the iden-
tification of non-invariant measurement parameters, following a the rejection of an omnibus
invariance constraint set (see Lee, Preacher, & Little, 2011).

Value

Character object of lavaan script that can be passed immediately to lavaan functions.

See Also

scrapeVarCross which this function relies on.

Other uni-construct script-writing functions: scriptBifac(), scriptCor(), scriptHier()

Examples

dvn <- scrapeVarCross(
commitmentQ,
x_order = "spi",
x_stem = "sat.g",
x_delim1 = ".",
x_delim2 = "_",
distinguish_1 = "1",
distinguish_2 = "2"

)

sat.resids.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dUni_residual"

)

sat.ints.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts"),
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dUni_intercept"

)

sat.loads.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = c("loadings"),
constr_dy_struct = "none",
writeTo = tempdir(),

58 scriptUni

fileName = "dUni_loading"
)

sat.config.script <- scriptUni(
dvn,
scaleset = "FF",
lvname = "Sat",
constr_dy_meas = "none",
constr_dy_struct = "none",
writeTo = tempdir(),
fileName = "dUni_configural"

)

Index

∗ bi-construct script-writing functions
scriptAPIM, 30
scriptBiDy, 32
scriptCFM, 41
scriptMIM, 52

∗ datasets
commitmentM, 2
commitmentQ, 4
DRES, 5
imsM, 11
pnrqM, 25
prqcQ, 26

∗ indistinguishable script-writing functions
scriptINULL, 50
scriptISAT, 51

∗ multi-construct script-writing functions
scriptCFA, 38
scriptDyEFA, 46

∗ supplemental model calculators
getDydmacs, 7
getDyReliability, 8
getIndistFit, 9

∗ uni-construct script-writing functions
scriptBifac, 35
scriptCor, 43
scriptHier, 47
scriptUni, 55

∗ variable-scraping functions
scrapeVarCross, 28

commitmentM, 2
commitmentQ, 4

DRES, 5

getConstraintTests, 6
getDydmacs, 7, 8, 9
getDyReliability, 7, 8, 9
getIndistFit, 7, 8, 9
getInvarCompTable, 10

imsM, 11

outputConstraintTab, 13
outputInvarCompTab, 14
outputModel, 17
outputParamFig, 19
outputParamTab, 20
outputUniConstructComp, 22

pnrqM, 25
prqcQ, 26

scrapeVarCross, 28, 32, 36, 39, 43, 44, 47,
48, 51, 52, 54, 57

scriptAPIM, 30, 34, 43, 54
scriptBiDy, 32, 32, 43, 54
scriptBifac, 35, 44, 48, 57
scriptCFA, 37, 47
scriptCFM, 32, 34, 41, 54
scriptCor, 36, 43, 48, 57
scriptDyEFA, 39, 46
scriptHier, 36, 44, 47, 57
scriptINULL, 50, 52
scriptISAT, 51, 51
scriptMIM, 32, 34, 43, 52
scriptObsAPIM, 54
scriptUni, 36, 44, 48, 55

59

	commitmentM
	commitmentQ
	DRES
	getConstraintTests
	getDydmacs
	getDyReliability
	getIndistFit
	getInvarCompTable
	imsM
	outputConstraintTab
	outputInvarCompTab
	outputModel
	outputParamFig
	outputParamTab
	outputUniConstructComp
	pnrqM
	prqcQ
	scrapeVarCross
	scriptAPIM
	scriptBiDy
	scriptBifac
	scriptCFA
	scriptCFM
	scriptCor
	scriptDyEFA
	scriptHier
	scriptINULL
	scriptISAT
	scriptMIM
	scriptObsAPIM
	scriptUni
	Index

