Package ‘echarty’

January 9, 2026
Title Minimal R/Shiny Interface to JavaScript Library 'ECharts'
Date 2026-01-06
Version 1.7.1

Description Deliver the full functionality of 'ECharts' with minimal over-
head. 'echarty' users build R lists for 'ECharts' API. Lean set of powerful commands.

Depends R (>=4.1.0)
Imports htmlwidgets, dplyr (>= 0.7.0), data.tree (>= 1.0.0),

Suggests htmltools (>= 0.5.0), shiny (>= 1.7.0), jsonlite, crosstalk,
testthat (>= 3.0.0), sf, leaflet (>= 2.2.0), knitr, rmarkdown

RoxygenNote 7.3.3
License Apache License (>=2.0)

URL https://helgasoft.github.io/echarty/

BugReports https://github.com/helgasoft/echarty/issues/
Encoding UTF-8

Language en-US

VignetteBuilder rmarkdown, knitr

NeedsCompilation no

Author Larry Helgason [aut, cre] (initial code from John Coene's library
echarts4r)

Maintainer Larry Helgason <larry@helgasoft.com>
Repository CRAN
Date/Publication 2026-01-09 20:10:02 UTC

Contents

—Introduction — L e e
ec.clmno
ec.data L e e
ecfromlson

https://helgasoft.github.io/echarty/
https://github.com/helgasoft/echarty/issues/

2 — Introduction —
EC.ANIL L e e 9
ECANSPECL .« . . o v i e e e e e 13
EC.PAXIS .+« vt e e e e e 14
eC.PlUZ S . . . e 15
ecregisterMap e e 16
ectheme L 17
C.UPd . . o e e 18
ec.util . . .o e 19
ecr.band L L L e 22
ECL.EDAIS e e e e e e e e 23
BCS.EXEC + & v v v v e 24
ECS.OUIPUL .« . v v vt e e e e e e e e e e e e 25
ECS.PTOXY '+ v v v e v e 26
ecsrender e e 26

Index 28

- Introduction - echarty

Description

echarty
Details
Description:

echarty provides a lean interface between R and Javascript library ECharts. We encourage users to
follow the original ECharts API documentation to construct charts with echarty. Main command
ec.init can set multiple native ECharts options to build a chart. The benefits - learn a very limited
set of commands, and enjoy the full functionality of ECharts.

Package Conventions:

pipe-friendly - supports both %>% and I> commands have three prefixes to help with auto-
completion:

* ec. for general functions, like ec.init
* ecs. for Shiny functions, like ecs.output

* ecr. for rendering functions, like ecrband

Events:

Event handling in Shiny is done through callbacks. See considerable sample code in eshiny.R,
run as demo(eshiny). There are three built-in event callbacks - click, mouseover, mouseout. All
other ECharts events could be initialized through ec.init(capture=...). For event handling in
R (without Shiny) use parameter ec.init(on=...) which expects JavaScript handlers. Search
for ‘event’ in code examples.

https://echarts.apache.org/en/index.html
https://echarts.apache.org/en/option.html
https://github.com/helgasoft/echarty/blob/main/demo/eshiny.R
https://echarts.apache.org/en/api.html#events
https://github.com/helgasoft/echarty/blob/main/demo/examples.R

— Introduction — 3

ECharts initialization parameters:
Chart initialization is performed by the echarty::ec.init() command. Here is full list of ec.init
optional parameters:
* ask, js, elementld, ctype, xtKey, dbg are specific to echarty
* theme, iniOpts, on, off, capture, group belong to the ECharts chart instance object.
* connect, disconnect, registerMap, registerTheme, registerLocale, registerCustomSeries are
commands of the global ECharts object.

There are R code examples for some of these parameters.

R vs Javascript numbering:

R language counting starts from 1. Javascript (JS) counting starts from 0. ec.init supports R-
counting of indexes (ex. encode) and dimension (ex. visualMap). All other contexts like ec.upd
or ecs.proxy require JS-counting of indexes and dimensions.

Javascript built-in functions:

To allow access to charts from JS. ec_chart(id) - get the chart object by id ec_option(id) - get the
chart’s option object by id Parameter id could be the internal JS variable echwid, or the value set
through ec.init parameter elementld. See code examples.

Column-to-style binding with encode:

ECharts series encode enables binding axes and tooltip to data columns. Echarty enhances this
method for all series data parameters like itemStyle,labels,emphasis,etc. The bindings are set
through series$encode$data. For instance encode= list(data= list(value=c('xc', 'yc'),
itemStyle=list(opacity= 'oc'))) would match columns xc,yc,oc to each item’s value and
opacity. The result is a new series$data added to the series. It permits to finely customize
chart elements directly from data. Echarty has also an alternative tool, style-named columns with
ec.data(..nasep), but encode$data offers more flexibility. It is not compatible with timeline
however.

Code examples:
Here is the complete list of sample code locations:

* website gallery

¢ collection of code examples

* Shiny code is in eshiny.R, run with demo(eshiny)
¢ demos on RPubs

* searchable gists

* answers to Github issues

¢ code in Github tests

* command examples, like in ?ec.init

Global Options:

Options are set with R command options. Echarty uses the following options:
* echarty.theme = name of theme file, without extension, from folder /inst/themes
* echarty.font = font family name
e echarty.urlTiles = tiles URL template for leaflet maps

https://echarts.apache.org/en/api.html#echartsInstance
https://echarts.apache.org/en/api.html#echarts
https://github.com/helgasoft/echarty/blob/main/demo/examples.R
https://github.com/helgasoft/echarty/blob/main/demo/examples.R
https://echarts.apache.org/en/option.html#series-bar.encode
https://echarts.apache.org/en/option.html#series-bar.data
https://helgasoft.github.io/echarty/articles/gallery.html
https://github.com/helgasoft/echarty/blob/main/demo/examples.R
https://github.com/helgasoft/echarty/blob/main/demo/eshiny.R
https://rpubs.com/echarty
https://gist.github.com/helgasoft
https://github.com/helgasoft/echarty/issues
https://github.com/helgasoft/echarty/tree/main/tests/testthat
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/options

ec.clmn

set/get global options
options('echarty.theme'="'jazz') # set
getOption('echarty.theme') # get

[1] "jazz"

options('echarty.theme'=NULL) # remove

ec.clmn

Data column format

Description

Helper function to display/format data column(s) by index or name

Usage
ec.clmn(col = NULL, ..., scale = 1)
Arguments
col Can contain one of several types of values:
NULL(default) for charts with single values like tree, pie.
a single column index(number) or column name(quoted string)
a sprintf string template for multiple columns
“json’ to display tooltip with all available values to choose from
’log’ to write all values in the JS console (F12) for debugging.
a string containing a JS function starting with ’function(’ or ’(x) =>".
Comma separated column indexes or names, only when col is sprintf. This al-
lows formatting of multiple columns, as for a tooltip.
scale A positive number, multiplier for numeric columns. When scale is 0, all numeric
values are rounded.
Details

This function is useful for attributes like formatter, color, symbolSize, label.

Column indexes are counted in R and start with 1.

Omit col or use index -1 for single values in tree/pie charts, axisLabel.formatter or valueFormatter.
See ec.data dendrogram example.

Column indexes are decimals for combo charts with multiple series, see ecr.band example. The
whole number part is the serie index, the decimal part is the column index inside.

col as sprintf has the same placeholder % @ for both column indexes or column names.

col as sprintf can contain double quotes, but not single or backquotes.

Template placeholders with formatting:

* %@ will display column value as-is.

ec.data 5

%L @ will display a number in locale format, like *12,345.09°.
* %LR@ rounded number in locale format, like *12,345’.

* %R@ rounded number, like 12345,

* %R2@ rounded number, two digits after decimal point.

* %M@ marker in series’ color.
For trigger="axis’ (multiple series) one can use decimal column indexes.
See definition above and example below.

Value

A JavaScript code string (usually a function) marked as executable, see JS.

Examples

library(dplyr)
tmp <- data.frame(Species = as.vector(unique(iris$Species)),
emoji = c('A','B','C"))
df <- iris |> inner_join(tmp) # add 6th column emoji
df |> group_by(Species) |> ec.init(
series.param= list(label= list(show= TRUE, formatter= ec.clmn('emoji'))),
tooltip= list(formatter=
with sprintf template + multiple column indexes
ec.clmn('%M@ species %@
s.len %@
s.wid %@', 5,1,2))

)

tooltip decimal indexes work with full data sets (no missing/partial data)
ChickWeight |> mutate(Chick=as.numeric(Chick)) |> filter(Chick>47) |> group_by(Chick) |>
ec.init(
tooltip= list(trigger="axis',
formatter= ec.clmn("48: %@
49: %@
50: %", 1.1, 2.1, 3.1)),
xAxis= list(type='category'), legend= list(formatter= 'Ch.{name}'),
series.param= list(type='line', encode= list(x='Time', y='weight')),

)

ec.data Data helper

Description

Make data lists from a data.frame

Usage
ec.data(df, format = "dataset”, header = FALSE, ...)

6
Arguments
df
format
header

ec.data

Required chart data as data.frame.
For format dendrogram df is a list, result of hclust function.
For format flame df is an hierarchical list with name,value,children.

Output list format

¢ dataset = list to be used in dataset (default), or in series.data (without
header).

 values = list for customized series.data

* names = named lists useful for named data like sankey links.
* dendrogram = build series data for Hierarchical Clustering dendrogram

 flame = build series data (lists of name,id,value) for hierarchy display by
renderltem

* treePC = build series data for tree charts from parent/children data.frame
* treeTT = build series data for tree charts from data.frame like Titanic.
* boxplot = build dataset and source lists, see Details

* borders = build geoJson string from map_data region borders, see Details

for dataset, to include the column names or not, default TRUE. Set it to FALSE
for series.data.

optional parameters
Optional parameters for boxplot are:

* layout ="h’ for horizontal(default) or v’ for vertical layout
* outliers boolean to add outlier points (default FALSE)

* jitter value for jitter of numerical values in second column, default O (no
scatter). Adds scatter series on top of boxplot.

Optional parameter for names:

* nasep = single character name separator for nested lists, see Examples.
Purpose is to facilitate conversion from data.frame to nested named lists.

Optional parameter for flame:

e name = name of subtree to search for.

https://echarts.apache.org/en/option.html#dataset.source
https://echarts.apache.org/en/option.html#series-scatter.data
https://echarts.apache.org/en/option.html#series-scatter.data
https://echarts.apache.org/en/option.html#series-sankey.links
https://echarts.apache.org/en/option.html#series-scatter.data

ec.data 7

Details

format="boxplot' requires the first two df columns as:

column for the non-computational categorical axis

column with (numeric) data to compute the five boxplot values

Additional grouping is supported on a column after the second. Groups will show in the legend, if
enabled.

Returns a list(dataset, series, xAxis, yAxis) to set params in ec.init. Make sure there is
enough data for computation, 4+ values per boxplot.

format="treeTT' expects data.frame df columns pathString,value,(optional itemStyle) for From-
DataFrameTable.
It will add column ’pct’” with value percentage for each node. See example below.

format="borders"' expects df columns long,lat,region,subregion as in map_data.
Result to be used as map in ec.registerMap. See borders code example in examples.R.
This is a slow version for borders, another very fast one is offered as echarty extra, see website.

Value

A list for dataset.source, series.data or other lists:
For boxplot - a named list, see Details and Examples
For dendrogram, treePC, flame - a tree structure, see format in tree data

See Also

some live code samples

Examples

library(dplyr)

ds <- iris |> relocate(Species) |>

ec.data(format= 'boxplot', jitter= 0.1, layout= 'v')

ec.init(
dataset= ds$dataset, series= ds$series, xAxis= ds$xAxis, yAxis= ds$yAxis,
legend= list(show= TRUE), tooltip= list(show= TRUE)

)

hc <- hclust(dist(USArrests), "complete")
ec.init(preset= FALSE,
series= list(list(
type= 'tree', orient= 'TB', roam= TRUE, initialTreeDepth= -1,
data= ec.data(hc, format='dendrogram'),
layout= 'radial', # symbolSize= ec.clmn(scale= 0.33),
exclude added labels like 'pXX', leaving only the originals
label= list(formatter= htmlwidgets::JS(
"function(n) { out= /p\\d+/.test(n.name) ? '' : n.name; return out;}"))
)
)

https://echarts.apache.org/en/option.html#series-tree.data
https://rpubs.com/echarty/data-models

8 ec.fromJson

build required pathString,value and optional itemStyle columns
df <- as.data.frame(Titanic) |> rename(value= Freq) |> mutate(
pathString= paste('Titanic\nSurvival', Survived, Age, Sex, Class, sep='/"),

itemStyle= case_when(Survived=='Yes' ~"color='green'"”, TRUE ~"color='LightSalmon'")) |>
select(pathString, value, itemStyle)
ec.init(

series= list(list(
data= ec.data(df, format='treeTT'),
type= 'tree', symbolSize= ec.clmn("(x) => {return Math.log(x)*10}")

),
tooltip= list(formatter= ec.clmn('%@
%@%', 'value', 'pct'))
)
column itemStyle_color will become itemStyle= list(color=...) in data list

non

attribute names separator (nasep) is

df <- data.frame(name= c('A','B','C"), value= c(1,2,3),
itemStyle_color= c('chartreuse', 'lightblue’, 'pink"),
itemStyle_decal_symbol= c('rect', 'diamond', 'none'),
emphasis_itemStyle_color= c('darkgreen', 'blue', 'red"')

)
ec.init(series.param= list(type='pie', data= ec.data(df, 'names', nasep='_"')))
ec.fromJson JSON to chart
Description

Convert JSON string or file to chart

Usage
ec.fromJson(txt, ...)
Arguments
txt Could be one of the following:
class url, like url('https://serv.us/cars.txt"')
class file, like file('c:/temp/cars.txt', 'rb")
class json, like ec.inspect(p), for options or full
class character, JSON string with options only, see example below
Any attributes to pass to internal ec.init when zxt is options only
Details

txt could be either a list of options (x$opts) to be set by setOption,
OR an entire htmlwidget generated thru ec.inspect with target="full’.
The latter imports all JavaScript functions defined by the user.

https://echarts.apache.org/en/api.html#echartsInstance.setOption

ec.init
Value

An echarty widget.
Examples

txt <- '{

"xAxis": { "data": ["Mon", "Tue"”, "Wed"1}, "yAxis": { 3},
"series"”: { "type": "line", "data": [150, 230, 2241 } }'

ec.fromJson(txt)

text json

outFile <- 'c:/temp/cars.json'

cars |> ec.init

() |> ec.inspect(target="full', file=outFile)

ec.fromJson(file(outFile, 'rb'))

ec.fromJson(url

('http://localhost/echarty/cars.json'))

ec.fromJson('https://helgasoft.github.io/echarty/test/pfull.json')

ec.init

Initialize a chart

Description

Required to build a chart. In most cases this will be the only command necessary.

Usage

ec.init(
df = NULL,
preset = TRUE

°

’

series.param = NULL,
tl.series = NULL,

width = NULL,
height = NULL

Arguments

df

Optional data.frame to be preset as dataset, default NULL

By default the first column is for X values, second column is for Y, and third is
for Z when in 3D.

Best practice is to have the grouping column placed last. Grouping column can-
not be used as axis.

Timeline requires a grouped data.frame to build its options.

If grouping is on multiple columns, only the first one is used to determine set-
tings.

https://echarts.apache.org/en/option.html#dataset
https://echarts.apache.org/en/option.html#options

10

preset

series.param

tl.series

width, height

Details

ec.init

Boolean (default TRUE). Build preset attributes like dataset, series, X Axis, yAXxis,
etc.
When preset is FALSE, these attributes need to be set explicitly.

Optional widget attributes. See Details.

Additional attributes for single preset series, default is NULL.
Defines a single series for both non-timeline and timeline charts. Default type
is ’scatter’.

Multiple series need to be defined directly with series=list(list(type=...),list(type=...

or added with ec.upd.

Deprecated, use timeline and series.param instead.

Optional valid CSS unit (like '100%', '500px"', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

Command ec.init creates a widget with createWidget, then adds some ECharts features to it.

Numerical indexes

Presets

for series,visualMap,etc. are R-counted (1,2...)

A dataset is pre-set when data.frame df is present.

When df is grouped, more datasets with legend and series are also preset.

Axes for some charts are preset with name and type when suitable.

Plugin *3D’ (load="3D’) is required for GL series like scatterGL, linesGL, etc.
Plugins ’leaflet’ and *world’ preset center to the mean of all coordinates from df.
Users can delete or overwrite any presets as needed.

Widget attributes

Optional echarty widget attributes include:

* elementld - Id of the widget, default is NULL(auto-generated, stored as echwid variable for

1S)

* load - name(s) of plugin(s) to load. A character vector or comma-delimited string. default

NULL.

* ask - boolean to prompt user before downloading plugins when load is present, default is

FALSE.

Could also be string "loadRemote’ to load plugins remotely.

* ctype - alternative way of setting chart type name, default is ’scatter’.

* js - single string or a vector with JavaScript expressions to evaluate.
single: exposed chart object (most common)

vector:

see code in examples

)

https://echarts.apache.org/en/option.html#dataset
https://github.com/helgasoft/echarty/blob/main/demo/examples.R

ec.init 11

First expression evaluated with exposed objects window and echarts
Second is evaluated with exposed object opts.
Third is evaluated with exposed chart object after initialization with opts already set.
* theme - name of built-in theme to apply, or JSON object from fromJSON, see opts in echarts.init

* iniOpts - a list of initialization options, see opts in echarts.init
Defaults: renderer="canvas’, locale="EN’, useDirtyRect=FALSE

* on,off,capture,group - chart instance properties, namely:
on/off is a list of events to handle with JS, each in a list, see chart.on and example below
capture is a vector of event names to capture in Shiny, etc.

* connect,disconnect,register,etc. - see echarts object methods

Built-in plugins

* leaflet - Leaflet maps with customizable tiles, see source
* world - world map with country boundaries, see source
* lottie - support for lotties

» ecStat - statistical tools, seeecharts-stat

e custom - renderers for ecr.band and ecr.ebars

Plugins with one-time installation

* 3D - support for 3D charts and WebGL acceleration, see source and docs
This plugin is auto-loaded when 3D/GL axes/series are detected.

* liquid - liquid fill, see source
* gmodular - graph modularity, see source

e wordcloud - cloud of words, see source
or install your own third-party plugins.

Crosstalk

Parameter df should be of type SharedData, see more info.

Optional parameter xtKey: unique ID column name of data frame df. Must be same as key parameter
used in SharedData$new(). If missing, a new column XkeyX will be appended to df.

https://echarts.apache.org/en/api.html#echarts.init
https://echarts.apache.org/en/api.html#echarts.init
https://echarts.apache.org/en/api.html#echartsInstance.on
https://echarts.apache.org/en/api.html#echarts
https://github.com/gnijuohz/echarts-leaflet#readme
https://github.com/apache/echarts/tree/master/test/data/map/js
https://lottiefiles.com
https://github.com/ecomfe/echarts-stat
https://github.com/ecomfe/echarts-gl
https://echarts.apache.org/en/option-gl.html#series
https://github.com/ecomfe/echarts-liquidfill
https://github.com/ecomfe/echarts-graph-modularity
https://github.com/ecomfe/echarts-wordcloud
https://helgasoft.github.io/echarty/articles/gallery.html#crosstalk-2d

12 ec.init
Enabling crosstalk will also generate an additional dataset called Xralk and bind the first series to it.

Timeline

Defined by series.param for the options series and a timeline list for the actual control. A grouped
df is required, each group providing data for one option serie. Timeline data and options will be
preset for the chart.

Each option title can include the current timeline item by adding a placeholder *% @’ in title$text.
See example below.

Another preset is encode(x=1,y=2,z=3), which are the first 3 columns of df. Parameter z is ignored
in 2D. See Details below.

Optional attribute groupBy, a df column name, can create series groups inside each timeline option.
Options/timeline for hierarchical charts like graph,tree,treemap,sankey have to be built directly, see
example.

Optional series attribute encode defines which columns to use for the axes, depending on chart type
and coordinate system:

* set x and y for coordinateSystem cartesian2d

* set Ing and lat for coordinateSystem geo and scatter series

* set value and name for coordinateSystem geo and map series
* set radius and angle for coordinateSystem polar

* set value and itemName for pie chart.

There is an advanced usage of encode when each series’ item needs to be customized.

For example encode= list(itemStyle= list(opacity="opac')) will create series data where
each series item’s opacity comes from df column ’opac’.

This binding feature is specific to echarty and does not exist in ECharts. See example below.

Value

A widget to plot, or to save and expand with more features.

Examples

basic scatter chart from a data.frame using presets
cars |> ec.init()

custom inititlization options and theme
myth <- '{"color”: ["green"], "backgroundColor”: "lemonchiffon"”}'
ec.init(cars,
theme= jsonlite::fromJSON(myth),
iniOpts= list(renderer= 'svg', width= '222px'),
toolbox= list(feature= list(saveAsImage= list()))
)

grouping, tooltips, formatting, events
iris |> dplyr::group_by(Species) |>
ec.init(# init with presets

https://echarts.apache.org/en/option.html#series
https://echarts.apache.org/en/option.html#timeline
https://echarts.apache.org/en/option.html#timeline.data
https://echarts.apache.org/en/option.html#options
https://helgasoft.github.io/echarty/uc4.html
https://echarts.apache.org/en/option.html#series-line.encode

ec.inspect 13

tooltip= list(show= TRUE),

series.param= list(

symbolSize= ec.clmn('Petal.Width', scale=7),

tooltip= list(formatter= ec.clmn('Petal.Width: %@', 'Petal.Width'))
),

on= list(# events with Javascript handler
list(event= 'legendselectchanged', handler= ec.clmn(”(e) => alert('legend:'+e.name);"))

)
)

data.frame(n=1:5) |> dplyr::group_by(n) |> ec.init(
title= list(text= "gauge #%@"),
timeline= list(show=TRUE, autoPlay=TRUE),
series.param= list(type='gauge', max=5)

)

ec.inspect Chart to JSON

Description

Convert chart to JSON string

Usage
ec.inspect(wt, target = "opts”, ...)
Arguments

wt An echarty widget as returned by ec.init

target type of resulting value:
“opts’ - the htmlwidget options as JSON (default)
“full’ - the entire htmlwidget as JSON
’data’ - info about chart’s embedded data (char vector)
Additional attributes to pass to toJSON
’file’ - optional file name to save to when target="full’

Details

Must be invoked or chained as last command.

target="full” will export all JavaScript custom code, ready to be used on import.
See also ec.fromJson.

Value

A JSON string, except when target is ’data’ - then a character vector.

14 ec.paxis

Examples

extract JSON
json <- cars |> ec.init() |> ec.inspect()
json

get from JSON and modify plot
ec.fromJson(json) |> ec.theme('macarons')

ec.paxis Parallel Axis

Description

Build ’parallelAxis’ for a parallel chart

Usage
ec.paxis(dfwt = NULL, cols = NULL, minmax = TRUE, ...)
Arguments
dfwt An echarty widget OR a data.frame(regular or grouped)
cols A string vector with columns names in desired order
minmax Boolean to add max/min limits or not, default TRUE
Additional attributes for parallel Axis.
Details

This function could be chained to ec.init or used with a data.frame

Value

A list, see format in parallelAxis.

Examples

iris |> dplyr::group_by(Species) |> # chained
ec.init(series.param= list(type= 'parallel', lineStyle= list(width=3))) |>
ec.paxis(cols= c('Petal.Length', 'Petal.Width', 'Sepal.Width'))

mtcars |> ec.init(
parallelAxis= ec.paxis(mtcars, cols= c('gear',6'cyl', 'hp','carb'), nameRotate= 45),
series.param= list(type= 'parallel', smooth= TRUE)

https://echarts.apache.org/en/option.html#parallelAxis
https://echarts.apache.org/en/option.html#parallelAxis

ec.plugjs 15

ec.plugjs Install Javascript plugin from URL source

Description

Install Javascript plugin from URL source

Usage

ec.plugjs(wt = NULL, source = NULL, ask = FALSE)

Arguments
wt A widget to add dependency to, see createWidget
source URL or file:// of a Javascript plugin,
file name suffix is ’.js’. Default is NULL.
ask Boolean, whether to ask the user to download source if missing, default is
FALSE. Could also be string "loadRemote’ to load plugins remotely.
Details

When source is URL, the plugin file is installed with an optional popup prompt.

When source is a file name (file://xxx.js), it is assumed installed and only a dependency is added.
When source is invalid, an error message will be written in the chart’s title.

Called internally by ec.init. It is recommended to use ec.init(load=...) instead of ec.plugjs.

Value

A widget with JS dependency added if successful, otherwise input wt

Examples

import map plugin and display two (lon,lat) locations
if (interactive()) {
durl <- paste@('https://raw.githubusercontent.com/apache/echarts/',
'master/test/data/map/js/china-contour.js"')
ec.init(# load= durl,
geo = list(map= 'china-contour', roam= TRUE),
series.param = list(
type= 'scatter', coordinateSystem= 'geo',
symbolSize= 9, itemStyle= list(color= 'red'),
data= list(list(value= c(113, 40)), list(value= c(118, 39))))
) 1>
ec.plugjs(durl)
3

16 ec.registerMap

ec.registerMap Register a geoJson map

Description

Read geoJSON file to be used in a map chart
Deprecated since v.1.7.0, use ec.init(registerMap=...) instead.

Usage

ec.registerMap(wt = NULL, name = "loadedMapName"”, data = NULL)

Arguments
wt An echarty widget as returned by ec.init.
name Name of map.
data A string starting with http or file. URL strings ending with .svg are assumed to
be SVG map files.
Could also be a valid geoJSON or SVG text string. SVG strings start with either
<?xml or <svg.
Details

This command replaces the manual setting through pxregisterMap.
It should always be piped after ec.init.
There should be one map series with attribute *'map’ matching the name parameter.

Value

An echarty widget.

Examples

data.frame(name= c('Texas', 'California'), value= c(111, 222)) |[>
ec.init(color= c('lightgray'), visualMap= list(min=111),
series.param= list(type= 'map', map= 'usa')
) 1>
ec.registerMap('usa', 'https://echarts.apache.org/examples/data/asset/geo/USA. json')

ec.theme 17

ec.theme Themes

Description

Apply a pre-built or custom coded theme to a chart

Usage
ec.theme(wt, name = "custom”, code = NULL)
Arguments
wt Required echarty widget as returned by ec.init
name Name of existing theme file (without extension), or name of custom theme de-
fined in code.
code Custom theme as JSON formatted string, default NULL.
Details

Just a few built-in themes are included in folder inst/themes.

Their names are dark, gray, jazz, dark-mushroom and macarons.

The entire ECharts theme collection could be found here and files copied if needed.
To create custom themes or view predefined ones, visit theme-builder.

See also alternative registerTheme in ec.init.

Value

An echarty widget.

Examples

mtcars |> ec.init() |> ec.theme('dark-mushroom")
cars |> ec.init() |> ec.theme('mine', code=
'"{"color": ["green","#eeaa33"], "backgroundColor": "lemonchiffon"}"')

https://github.com/apache/echarts/tree/master/theme
https://echarts.apache.org/en/theme-builder.html

18 ec.upd

ec.upd Update option lists

Description

Chain commands after ec.init to add or update chart items

Usage
ec.upd(wt, ...)
Arguments
wt An echarty widget
R commands to add/update chart option lists
Details

ec.upd makes changes to a chart already set by ec.init.
It should be always piped(chained) after ec.init.
All numerical indexes for series,visualMap,etc. are JS-counted starting at O.

Examples

library(dplyr)
df <- data.frame(x= 1:30, y= runif(30, 5, 10), cat= sample(LETTERS[1:3],size=30,replace=TRUE)) |>
mutate(lwr= y-runif(30, 1, 3), upr= y+runif(30, 2, 4))
band.df <- df |> group_by(cat) |> group_split()
sband <- list()
for(ii in seqg_along(band.df)) # build all bands
sband <- append(sband,
ecr.band(band.df[[ii]], 'lwr', 'upr', type='stack', smooth=FALSE,
name= unique(band.df[[ii]]$cat), areaStyle= list(color=c('blue','green', 'yellow')[ii]))
)

df |> group_by(cat) |>

ec.init(load="'custom', series.param= list(type='line'),
xAxis=list(data=c(@,unique(df$x)), boundaryGap=FALSE)) |>

ec.upd({ series <- append(series, sband) })

ec.util 19

ec.util Utility functions

Description

tabset, table layout, support for GIS shapefiles through library ’sf’

Usage

ec.util(cmd = "sf.series”, ..., js = NULL, event = "click")
Arguments

cmd Utility command name, see Details.

Optional parameters for each command.

js Optional JavaScript function, default is NULL.

event Optional event name for cmd="morph’, default is ’click’.
Details

cmd = ’sf.series’

Build leaflet or geo map series from shapefiles.

Supported types: POINT, MULTIPOINT, LINESTRING, MULTILINESTRING, POLYGON, MUL-
TIPOLYGON

Coordinate system is leaflet(default), geo or cartesian3D (for POINT(xyz))

Limitations:

polygons can have only their name in tooltip,

assumes Geodetic CRS is WGS 84, for conversion use st_transform with crs=4326.
Parameters:

df - value from st_read

nid - optional column name for name-id used in tooltips

cs - optional coordinateSystem value, default ’leaflet’

verbose - optional, print shapefile item names in console

Returns a list of chart series

cmd = ’sf.bbox’

Returns JavaScript code to position a map inside a bounding box from st_bbox, for leaflet only.

cmd = ’sf.unzip’

Unzips a remote file and returns local file name of the unzipped .shp file

url - URL of remote zipped shapefile

shp - optional name of .shp file inside ZIP file if multiple exist. Do not add file extension.
Returns full name of unzipped .shp file, or error string starting with ’"ERROR’

cmd = ’geojson’
Custom series list from geoJson objects
geojson - object from fromJSON

https://echarts.apache.org/en/option.html#geo.map

20

ec.util

cs - optional coordinateSystem value, default ’leaflet’

ppfill - optional fill color like *#F00’, OR NULL for no-fill, for all Points and Polygons

nid - optional feature property for item name used in tooltips

... - optional custom series attributes like itemStyle

Can display also geoJson feature properties: color; lwidth, 1dash (lines); ppfill, radius (points)

cmd = ’layout’

Multiple charts in table-like rows/columns format

... - List of charts

title - optional title for the entire set

rows - optional number of rows

cols - optional number of columns

Returns a container div in rmarkdown, otherwise browsable.

For 3-4 charts one would use multiple series within a grid.

For greater number of charts ec.util(cmd="layout’) comes in handy

cmd = ’tabset’

... - a list of name/chart pairs like n/=chartl, n2=chart2, each tab may contain a chart, see example
tabStyle - tab style string, see default strTabStyle variable in the code

width - optional width size for the tabset, in CSS format, default is 100%

Returns A) browsable when ’...” params are provided

Returns B) tagList of tabs when in a pipe (no ’...” params)

Please note that a maximum of five(5) tabs are supported by current rabStyle.

cmd = ’button’

UI button to execute a JS function,

text - the button label

js - the JS function string

... - optional parameters for the rect element
Returns a graphic.elements-rect element.

cmd = morph’

... - a list of charts or chart option lists

event - name of event for switching charts. Default is click.
Returns a chart with ability to morph into other charts

cmd = *fullscreen’
A toolbox feature to toggle fullscreen on/off. Works in a browser, not in RStudio.

cmd = ’rescale’
v - input vector of numeric values to rescale
t - target range c¢(min,max), numeric vector of two

cmd = ’level’

Calculate vertical levels for timeline /ine charts, returns a numeric vector
df - data.frame with from and fo columns

from - name of *from’ column

to - name of ’to’ column

https://echarts.apache.org/en/option.html#grid
https://echarts.apache.org/en/option.html#graphic.elements-rect.type
https://echarts.apache.org/en/option.html#graphic.elements-rect.type

ec.util 21

Examples

library(dplyr)
if (interactive()) { # comm.out: Cran Fedora errors about some 'browser'
library(sf)
fname <- system.file("”shape/nc.shp”, package="sf")
nc <- as.data.frame(st_read(fname))
ec.init(load= c('leaflet', 'custom'), # load custom for polygons
js= ec.util(cmd= 'sf.bbox', bbox= st_bbox(nc$geometry)),
series= ec.util(cmd= 'sf.series', df= nc, nid= 'NAME', itemStyle= list(opacity=0.3)),
tooltip= list(formatter= '{a}')
)
3

if (interactive()) {

pl <- cars |> ec.init(grid= list(top=26), height=333) # move chart up
p2 <- mtcars |> arrange(mpg) |> ec.init(height=333, ctype='line")
ec.util(cmd= 'tabset', cars= pl1, mtcars= p2)

lapply(list('dark', "'macarons', 'gray', 'dark-mushroom'),

function(x) cars |> ec.init(grid= list(bottom=5, top=10)) |> ec.theme(x)) |>
ec.util(cmd="'layout', cols= 2, title= 'Layout')
3

cars |> ec.init(
graphic = list(
ec.util(cmd="button', text='see type', right='center', top=20,
js="function(a) {op=ec_option(echwid); alert(op.series[@].type);}")
)
)

colors <- c("blue”,"red"”,"green")
cyls <- as.character(sort(unique(mtcars$cyl)))
sers <- lapply(mtcars |> group_by(cyl) |> group_split(), \(x) {
cyl <- as.character(unique(x$cyl))
list(type='scatter', id=cyl, dataGrouplId=cyl,
data= ec.data(x |> select(mpg,hp)),
universalTransition= TRUE)
»
oscatter <- list(
title= list(text='Morph', left='center', subtext='click points to morph'),
color= colors, tooltip= list(show=TRUE),
xAxis= list(scale=TRUE, name='mpg'), yAxis= list(scale=TRUE, name='hp'),
series= sers
)
opie <- list(
title= list(text= 'Average hp'),
color= colors, tooltip= list(show=TRUE),
series= list(list(
type= 'pie', label= list(show=TRUE), colorBy= 'data',
data= ec.data(mtcars |> group_by(cyl) |> summarize(value= mean(hp)) |>

22 ecr.band

mutate(groupld= as.character(cyl), name= as.character(cyl)), 'names'),
universalTransition= list(enabled=TRUE, seriesKey= cyls)
D)
)

ec.util(cmd="morph', oscatter, opie)

ecr.band Area band

Description

A ’custom’ serie with lower and upper boundaries

Usage
ecr.band(df = NULL, lower = NULL, upper = NULL, type = "polygon”, ...)
Arguments
df A data.frame with lower and upper numerical columns and first column with X
coordinates.
lower The column name of band’s lower boundary (string).
upper The column name of band’s upper boundary (string).
type Type of rendering
* ’polygon’ - by drawing a polygon as polyline from upper/lower points (de-
fault)
 ’stack’ - by two stacked lines
More attributes for serie
Details

* type="polygon’: coordinates of the two boundaries are chained into one polygon.
xAxis type could be ’category’ or ’value’.
Set fill color with attribute color.

* type=’stack’: two stacked lines are drawn, the lower with customizable areaStyle.
XxAxis type should be ’category’ !
Set fill color with attribute areaStyle$color.
Optional tooltip formatter available in band[[1]]$tipFmz.

Optional parameter name, if given, will show up in legend. Legend merges all series with same
name into one item.

Value

A list of one serie when type="polygon’, or list of two series when type="stack’

https://echarts.apache.org/en/option.html#series-line.stack
https://echarts.apache.org/en/option.html#series-line.type

ecr.ebars 23

Examples

set.seed(222)
df <- data.frame(x = 1:10, y = round(runif(10, 5, 10),2)) |>
dplyr::mutate(lwr= round(y-runif (10, 1, 3),2), upr= round(y+runif(10, 2, 4),2))
banda <- ecr.band(df, 'lwr', 'upr', type='stack', name='stak', areaStyle= list(color='green'))
#banda <- ecr.band(df, 'lwr', 'upr', type='polygon', name='polyl')

df |> ec.init(load='custom', # polygon only
legend= list(show= TRUE),
xAxis= list(type='category', boundaryGap=FALSE), # stack
#xAxis= list(scale=T, min='dataMin'), # polygon
series= append(
list(list(type='line', color="blue', name='linel')),

banda
) ’
tooltip= list(trigger='axis', formatter= banda[[1]]$tipFmt)
)
ecr.ebars Error bars
Description

Custom series to display error-bars for scatter, bar or line series

Usage

ecr.ebars(wt, encode = list(x =1, y = c(2, 3, 4)), hwidth =6, ...)
Arguments

wt An echarty widget to add error bars to, see ec.init.

encode Column selection for both axes (x & y) as vectors, see encode

hwidth Half-width of error bar in pixels, default is 6.

More parameters for custom serie

Details

Command should be called after ec.init where main series are set.

ecr.ebars are custom series, so ec.init(load="custom’) is required.

Horizontal and vertical layouts supported, just switch encode values x and y for both for series and
ecr.ebars.

Have own default tooltip format showing value, high & low.

Grouped bar series are supported.

Non-grouped series could be shown with formatter riErrBarSimple instead of ecrebars. This is
limited to vertical only, see example below.

https://echarts.apache.org/en/option.html#series-bar.encode
https://echarts.apache.org/en/option.html#series-custom.type

24 ecs.exec

Other limitations:

manually add axis type="category’ when needed

error bars cannot have own name when data is grouped
legend select/deselect will not re-position grouped error bars

Value

A widget with error bars added if successful, otherwise the input widget

Examples

library(dplyr)
df <- mtcars |> group_by(cyl,gear) |> summarise(avg.mpg= round(mean(mpg),2)) |>
mutate(low = round(avg.mpg-cyl*xrunif(1),2),
high= round(avg.mpg+cylxrunif(1),2))
ec.init(df, load= 'custom',6 series.param= list(type='bar'),
xAxis= list(type='category'), tooltip= list(show=TRUE)) |>
ecr.ebars(encode= list(y=c('avg.mpg', 'low', 'high'), x='gear'))
#tecr.ebars(encode= list(y=c(3,4,5), x=2)) # ok with data indexes

same but horizontal
ec.init(df, load= 'custom',

yAxis= list(type='category'), tooltip= list(show=TRUE),

series.param= list(type='bar', encode= list(x='avg.mpg', y='gear'))) |>
ecr.ebars(encode= list(x=c('avg.mpg', 'low', 'high'), y='gear'))

#o-—-—- riErrBarSimple ------
df <- mtcars |> mutate(name= row.names(mtcars), hi= hp-drat*3, lo= hp+wt*3) |>
filter(cyl==4) |> select(name,hp,hi,lo)
ec.init(df, load= 'custom', legend= list(show=TRUE)) |>
ec.upd({ series <- append(series, list(
list(type= 'custom', name= 'error',
data= ec.data(df |> select(name,hi,lo)),
renderItem= htmlwidgets::JS('riErrBarSimple')
)))
»

ecs.exec Shiny: Execute a proxy command

Description

Once chart changes had been made, they need to be sent back to the widget for display

Usage

ecs.exec(proxy, cmd = "p_merge")

ecs.output 25

Arguments

proxy A ecs.proxy object

cmd Name of command, default is p_merge
The proxy commands are:
p_update - add new series and axes
p_merge - modify or add series features like style,marks,etc.
p_replace - replace entire chart
p_del_serie - delete a serie by index or name
p_del_marks - delete marks of a serie
p_append_data - add data to existing series
p_dispatch - send action commands, see documentation

Value

A proxy object to update the chart.

See Also

ecs.proxy, ecs.render, ecs.output
Read about event handling in — Introduction —, or from examples.

Examples

if (interactive()) {
run with demo(eshiny, package='echarty')

}

ecs.output Shiny: Ul chart

Description

Placeholder for a chart in Shiny UI

Usage
ecs.output(outputId, width = "100%", height = "400px")

Arguments

outputId Name of output Ul element.

width, height Must be a valid CSS unit (like '100%"', '400px"', ’auto’) or a number, which
will be coerced to a string and have ’px’ appended.

Value

An output or render function that enables the use of the widget within Shiny applications.

https://echarts.apache.org/en/api.html#echartsInstance.dispatchAction
https://github.com/helgasoft/echarty/blob/main/demo/examples.R

26 ecs.render

See Also

ecs.exec for example, shinyWidgetOutput for return value.

€cs.proxy Shiny: Create a proxy

Description

Create a proxy for an existing chart in Shiny UI It allows to add, merge, delete elements to a chart
without reloading it.

Usage

ecs.proxy(id)

Arguments

id Target chart id from the Shiny UI.

Value

A proxy object to update the chart.

See Also

ecs.exec for example.

ecs.render Shiny: Plot command to render chart

Description

This is the initial rendering of a chart in the UL

Usage

ecs.render(wt, env = parent.frame(), quoted = FALSE)

Arguments
wt An echarty widget to generate the chart.
env The environment in which to evaluate expr.

quoted Is expr a quoted expression? default FALSE.

ecs.render

Value

An output or render function that enables the use of the widget within Shiny applications.

See Also

ecs.exec for example, shinyRenderWidget for return value.

27

Index

- Introduction -, 2,25 st_read, 19

st_transform, /9
browsable, 20

taglist, 20
createWidget, 10, 15 toJSON, /3
div, 20
ec.clmn, 4
ec.data, 4,5

ec.fromJson, 8, 13
ec.init, 7, 8,9, 13,15-18, 23
ec.inspect, 8, 13
ec.paxis, 14
ec.plugjs, 15
ec.registerMap, 7, 16
ec.theme, 17
ec.upd, 10, 18
ec.util, 19
ecr.band, 4, 11,22
ecr.ebars, 11,23
ecs.exec, 24, 26, 27
ecs.output, 25, 25
ecs.proxy, 25, 26
ecs.render, 25, 26

FromDataFrameTable, 7
fromJSON, 19

hclust, 6

jitter, 6
JS, 5

map_data, 7

SharedData, /1
shinyRenderWidget, 27
shinyWidgetOutput, 26
sprintf, 4

st_bbox, /9

28

	– Introduction –
	ec.clmn
	ec.data
	ec.fromJson
	ec.init
	ec.inspect
	ec.paxis
	ec.plugjs
	ec.registerMap
	ec.theme
	ec.upd
	ec.util
	ecr.band
	ecr.ebars
	ecs.exec
	ecs.output
	ecs.proxy
	ecs.render
	Index

