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choose_k_GMM Visualize BIC indicator to choose the number of clusters
Description

The Baysian Information Criterion (BIC) is the value of the maximized loglikelihood with a penalty
on the number of parameters in the model, and allows comparison of models with differing param-
eterizations and/or differing numbers of clusters. In general the larger the value of the BIC, the
stronger the evidence for the model and number of clusters (see, e.g. Fraley and Raftery 2002a).
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Usage

choose_k_GMM(
sessions,
k,
mclust_tol = 1e-08,
mclust_itmax = 10000,
log = getOption("evprof.log"”, FALSE),
start = getOption("evprof.start.hour")

)
Arguments
sessions tibble, sessions data set in evprof standard format
k sequence with the number of clusters, for example 1:10, for 1 to 10 clusters.
mclust_tol tolerance parameter for clustering

mclust_itmax maximum number of iterations

log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
start integer, start hour in the x axis of the plot.
Value
BIC plot
Examples

choose_k_GMM(california_ev_sessions, k = 1:4, start = 3)

cluster_sessions Cluster sessions with mclust package

Description

Cluster sessions with mclust package

Usage

cluster_sessions(
sessions,
K,
seed,
mclust_tol = 1e-08,
mclust_itmax = 10000,
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log = getOption("evprof.log", FALSE),
start = getOption("evprof.start.hour”)

Arguments
sessions
k
seed
mclust_tol
mclust_itmax

log

start

Value

tibble, sessions data set in evprof standard format
number of clusters

random seed

tolerance parameter for clustering

maximum number of iterations

logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).

integer, start hour in the x axis of the plot.

list with two attributes: sessions and models

Examples

library(dplyr)

# Select working
# disconnect the
sessions_day <- ¢
divide_by_timec
months_cycles
wdays_cycles
) %%
divide_by_disco
division_hour
) %%
filter(
Disconnection
) %%
sample_frac(0.0
plot_points(sessi

# Identify two cl
sessions_clusters
sessions_day, k

)

# The column “Clu
names(sessions_cl
plot_points(sessi

ggplot2: :aes(co

day sessions ("Timecycle == 1°) that

same day ("Disconnection == 17)

alifornia_ev_sessions %>%

ycle(

= list(1:12), # Not differentiation between months

= list(1:5, 6:7) # Differentiation between workdays/weekends

nnection(
= 10, start = 3

== 1, Timecycle ==

5)
ons_day, start = 3)

usters
<- cluster_sessions(
=2, seed = 1234, log = TRUE

ster”™ has been added
usters$sessions)
ons_clusters$sessions) +
lor = Cluster)
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cut_sessions Cut outliers based on minimum and maximum limits of Connection-
Hours and ConnectionStartDateTime variables

Description

Cut outliers based on minimum and maximum limits of ConnectionHours and ConnectionStart-
DateTime variables

Usage

cut_sessions(
sessions,
connection_hours_min = NA,
connection_hours_max = NA,
connection_start_min = NA,
connection_start_max = NA,
log = getOption("evprof.log"”, FALSE),
start = getOption("evprof.start.hour”)

Arguments

sessions tibble, sessions data set in evprof standard format

connection_hours_min
numeric, minimum of connection hours (duration). If NA the minimum value is
considered.

connection_hours_max

numeric, maximum of connection hours (duration). If NA the maximum value
is considered.

connection_start_min
numeric, minimum hour of connection start (hour as numeric). If NA the mini-
mum value is considered.

connection_start_max
numeric, maximum hour of connection start (hour as numeric). If NA the maxi-
mum value is considered.

log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).

start integer, start hour in the x axis of the plot.

Value

session dataframe
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Examples

library(dplyr)
# Localize the outlying sessions above a certain threshold
california_ev_sessions %>%

sample_frac(0.05) %>%

plot_points(start = 3)

# For example sessions that start before 5 AM or that are
# longer than 20 hours are considered outliers
sessions_clean <- california_ev_sessions %>%
sample_frac(0.05) %>%
cut_sessions(
start = 3,
connection_hours_max = 20,
connection_start_min = 5

)

plot_points(sessions_clean, start = 3)

define_clusters Define each cluster with a user profile interpretation

Description

Every cluster has a centroid (i.e. average start time and duration) that can be related to a daily human
behaviour or connection pattern (e.g. Worktime, Dinner, etc.). In this function, a user profile name
is assigned to every cluster.

Usage

define_clusters(
models,
interpretations = NULL,
profile_names = NULL,
log = getOption("evprof.log", FALSE)

)
Arguments
models tibble, parameters of the clusters” GMM models obtained with function cluster_sessions()
(object models of the returned list)
interpretations

character vector with interpretation sentences of each cluster (arranged by clus-
ter number)

profile_names character vector with user profile assigned to each cluster (arranged by cluster
number)

log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
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Value

tibble object

Examples

library(dplyr)

# Select working day sessions (" Timecycle == 17) that
# disconnect the same day ("Disconnection == 1)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = 1list(1:5, 6:7) # Differentiation between workdays/weekends
) %%
divide_by_disconnection(
division_hour = 10, start = 3
) %%
filter(
Disconnection == 1, Timecycle ==
) %%
sample_frac(0.05)
plot_points(sessions_day, start = 3)

# Identify two clusters

sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE

)

# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)

# Define the clusters with user profile interpretations
define_clusters(
models = sessions_clusters$models,
interpretations = c(
"Connections during working hours”,
"Connections during all day (high variability)"”

),
profile_names = c("Workers"”, "Visitors"),
log = TRUE

)

detect_outliers Detect outliers
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Description

Detect outliers

Usage

detect_outliers(
sessions,
MinPts = NULL,
eps = NULL,
noise_th = 2,
log = getOption("evprof.log"”, FALSE),
start = getOption("evprof.start.hour”)

)
Arguments
sessions tibble, sessions data set in evprof standard format
MinPts MinPts parameter for DBSCAN clustering
eps eps parameter for DBSCAN clustering
noise_th noise threshold
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
start integer, start hour in the x axis of the plot.
Value

sessions tibble with extra boolean column OQutlier

Examples

library(dplyr)

sessions_outliers <- california_ev_sessions %>%
sample_frac(0.05) %>%
detect_outliers(start = 3, noise_th = 5, eps = 2.5)

divide_by_disconnection
Divide sessions by disconnection day

Description

Divide sessions by disconnection day
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Usage

divide_by_disconnection(
sessions,
division_hour,
start = getOption("evprof.start.hour”)

Arguments

sessions tibble, sessions data set in evprof standard format
division_hour Hour to divide the groups according to disconnection time

start integer, start hour in the x axis of the plot.

Value

same sessions data set with extra column "Disconnection”

Examples

library(dplyr)
sessions_disconnection <- california_ev_sessions %>%
sample_frac(0.05) %>%
divide_by_disconnection(
start = 2, division_hour =5

)

# The column “Disconnection™ has been added
names(sessions_disconnection)

library(ggplot2)

sessions_disconnection %>%
tidyr::drop_na() %>%
plot_points() +
facet_wrap(vars(Disconnection))

divide_by_timecycle Divide sessions by time-cycle

Description

Divide sessions by time-cycle
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Usage

divide_by_timecycle(
sessions,
months_cycles = list(1:12),
wdays_cycles = list(1:5, 6:7),
start = getOption("evprof.start.hour")

Arguments

sessions tibble, sessions data set in evprof standard format
months_cycles list containing Monthly cycles
wdays_cycles list containing Weekdays cycles

start integer, start hour in the x axis of the plot.

Value

same sessions data set with extra column "Timecycle"

Examples

library(dplyr)
sessions_timecycles <- california_ev_sessions %>%
sample_frac(@.05) %>%
divide_by_timecycle(
months_cycles = list(1:12),
wdays_cycles = list(1:5, 6:7)
)

# The column “Timecycle™ has been added
names(sessions_timecycles)

library(ggplot2)
plot_points(sessions_timecycles) +
facet_wrap(vars(Timecycle))

drop_outliers

drop_outliers Drop outliers

Description

Drop outliers

Usage

drop_outliers(sessions)
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Arguments

sessions tibble, sessions data set in evprof standard format

Value

sessions without outliers nor column Outlier

Examples
library(dplyr)
sessions_outliers <- california_ev_sessions %>%
sample_frac(0.05) %>%
detect_outliers(start = 3, noise_th = 5, eps = 2.5)
plot_outliers(sessions_outliers, start = 3)

sessions_clean <- drop_outliers(sessions_outliers)

plot_points(sessions_clean, start = 3)

get_charging_rates_distribution
Get charging rates distribution in percentages

Description

Get charging rates distribution in percentages

Usage

get_charging_rates_distribution(sessions, unit = "year")

Arguments

sessions tibble, sessions data set in evprof standard format

unit character, lubridate floor_date unit parameter

Value

tibble

Examples

get_charging_rates_distribution(california_ev_sessions, unit="month")
get_charging_rates_distribution(california_ev_sessions, unit="month")
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get_connection_models Get a tibble of connection GMM for every user profile

Description

Get a tibble of connection GMM for every user profile

Usage

get_connection_models(
subsets_clustering = list(),
clusters_definition = list()

)

Arguments

subsets_clustering

list with clustering results of each subset (direct output from function cluser_sessions())
clusters_definition

list of tibbles with clusters definitions (direct output from function define_clusters())

of each sub-set

Value

tibble

Examples

library(dplyr)

# Select working day sessions (" Timecycle == 17) that
# disconnect the same day ("Disconnection == 1)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = list(1:5, 6:7) # Differentiation between workdays/weekends
) %%
divide_by_disconnection(
division_hour = 10, start = 3
) %%
filter(
Disconnection == 1, Timecycle ==
) %%
sample_frac(0.05)
plot_points(sessions_day, start = 3)

# Identify two clusters
sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
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# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)

# Define the clusters with user profile interpretations
clusters_definitions <- define_clusters(
models = sessions_clusters$models,
interpretations = c(
"Connections during working hours”,
"Connections during all day (high variability)"”

))
profile_names = c("Workers"”, "Visitors"),
log = TRUE

)

# Create a table with the connection GMM parameters
get_connection_models(
subsets_clustering = list(sessions_clusters),
clusters_definition = list(clusters_definitions)

get_daily_avg_n_sessions
Get the daily average number of sessions given a range of years,
months and weekdays

Description

Get the daily average number of sessions given a range of years, months and weekdays

Usage

get_daily_avg_n_sessions(sessions, years, months, wdays)

Arguments
sessions tibble, sessions data set in evprof standard format
years vector of integers, range of years to consider
months vector of integers, range of months to consider

wdays vector of integers, range of weekdays to consider
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Value

tibble with the number of sessions of each date in the given time period

Examples

get_daily_avg_n_sessions(
california_ev_sessions,
year = 2018, months = c(5, 6), wdays = 1
)

get_daily_n_sessions  Get daily number of sessions given a range of years, months and week-
days

Description

Get daily number of sessions given a range of years, months and weekdays

Usage

get_daily_n_sessions(sessions, years, months, wdays)

Arguments
sessions tibble, sessions data set in evprof standard format
years vector of integers, range of years to consider
months vector of integers, range of months to consider
wdays vector of integers, range of weekdays to consider
Value

tibble with the number of sessions of each date in the given time period

Examples

get_daily_n_sessions(
california_ev_sessions,
year = 2018, months = c(5, 6), wdays = 1
)
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get_dbscan_params Get the minPts and eps values for DBSCAN to label only a specific
percentage as noise

Description

Get the minPts and eps values for DBSCAN to label only a specific percentage as noise

Usage

get_dbscan_params(
sessions,
MinPts,
epso,
noise_th = 2,
eps_offset_pct = 0.9,
eps_inc_pct = 0.02,
log = getOption("evprof.log"”, FALSE),
start = getOption("evprof.start.hour”)

)
Arguments
sessions tibble, sessions data set in evprof standard format
MinPts DBSCAN MinPts parameter
epso DBSCAN eps parameter corresponding to the elbow of kNN dist plot
noise_th noise threshold

eps_offset_pct eps_offset_pct
eps_inc_pct eps_inc_pct

log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).

start integer, start hour in the x axis of the plot.

Value

tibble with minPts and eps parameters, and the corresponding noise
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get_energy_models Get a tibble of energy GMM for every user profile

Description

This function simulates random energy values, makes the density curve and overlaps the simulated
density curve with the real density curve of the user profile’s energy values. This is useful to
appreciate how the modeled values fit the real ones and increase or decrease the number of Gaussian
components.

Usage

get_energy_models(
sessions_profiles,
log = getOption("evprof.log”, TRUE),
by_power = FALSE

)

Arguments

sessions_profiles
tibble, sessions data set in evprof standard format with user profile attribute

Profile
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
by_power Logical, true to fit the energy models for every charging rate separately
Value
tibble
Examples
library(dplyr)

# Classify each session to the corresponding user profile
sessions_profiles <- california_ev_sessions_profiles %>%
dplyr::sample_frac(0.05)

# Get a table with the energy GMM parameters
get_energy_models(sessions_profiles, log = TRUE)

# If there is a “Power™ variable in the data set
# you can create an energy model per power rate and user profile
# First it is convenient to round the “Power™ values for more generic models
sessions_profiles <- sessions_profiles %>%
mutate(Power = round_to_interval(Power, 3.7)) %>%
filter(Power < 11)


https://resourcefully-dev.github.io/evprof/articles/sessions-format.html
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sessions_profiles$Power[sessions_profiles$Power == 0] <- 3.7
get_energy_models(sessions_profiles, log = TRUE, by_power = TRUE)

get_ev_model Get the EV model object of class evmodel

Description

Get the EV model object of class evmodel

Usage

get_ev_model(
names,
months_lst = list(1:12, 1:12),
wdays_1lst = list(1:5, 6:7),
connection_GMM,

energy_GMM,
connection_log,
energy_log,
data_tz
)
Arguments
names character vector with the given names of each time-cycle model
months_lst list of integer vectors with the corresponding months of the year for each time-
cycle model
wdays_lst list of integer vectors with the corresponding days of the week for each model

(week start = 1)
connection_GMM list of different connection bivariate GMM obtained from get_connection_models
energy_GMM list of different energy univariate GMM obtained from get_energy_models

connection_log logical, true if connection models have logarithmic transformations

energy_log logical, true if energy models have logarithmic transformations
data_tz character, time zone of the original data (necessary to properly simulate new
sessions)
Value

object of class evmodel
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Examples

# The package evprof provides example objects of connection and energy
# Gaussian Mixture Models obtained from California's open data set

# (see California article in package website) created with functions

# “get_connection models™ and “get_energy models™.

# For workdays sessions
workdays_connection_models <- evprof::california_GMM$workdays$connection_models
workdays_energy_models <- evprof::california_GMM$workdays$energy_models

# For weekends sessions
weekends_connection_models <- evprof::california_GMM$weekends$connection_models
weekends_energy_models <- evprof::california_GMM$weekends$energy_models

# Get the whole model
ev_model <- get_ev_model(
names = c("Workdays", "Weekends"),
months_1st = list(1:12, 1:12),
wdays_lst = 1list(1:5, 6:7),
connection_GMM = list(workdays_connection_models, weekends_connection_models),
energy_GMM = list(workdays_energy_models, weekends_energy_models),
connection_log = TRUE,
energy_log = TRUE,

data_tz = "America/Los_Angeles”
)
plot_bivarGMM Plot Bivariate Gaussian Mixture Models
Description

Plot Bivariate Gaussian Mixture Models

Usage

plot_bivarGMM(
sessions,
models,
profiles_names = seq(1, nrow(models)),
points_size = 0.25,
lines_size = 1,
legend_nrow = 2,
log = getOption("evprof.log", FALSE),
start = getOption("evprof.start.hour”)
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Arguments
sessions tibble, sessions data set in evprof standard format
models tibble, parameters of the clusters’ GMM models obtained with function cluster_sessions

(object models of the returned list)

profiles_names names of profiles

points_size size of scatter points in the plot
lines_size size of lines in the plot
legend_nrow number of rows in legend
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
start integer, start hour in the x axis of the plot.
Value
ggplot2 plot
Examples
library(dplyr)
# Select working day sessions ("Timecycle == 17) that
# disconnect the same day ("Disconnection == 17)

sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = 1list(1:5, 6:7) # Differentiation between workdays/weekends
) %%
divide_by_disconnection(
division_hour = 10, start = 3
) %%
filter(
Disconnection == 1, Timecycle ==
) %%
sample_frac(0.05)
plot_points(sessions_day, start = 3)

# Identify two clusters

sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE

)

# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)
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plot_connection_models
Plot all bi-variable GMM (clusters) with the colors corresponding to
the assigned user profile. This shows which clusters correspond to
which user profile, and the proportion of every user profile.

Description

Plot all bi-variable GMM (clusters) with the colors corresponding to the assigned user profile. This
shows which clusters correspond to which user profile, and the proportion of every user profile.

Usage

plot_connection_models(
subsets_clustering = list(),
clusters_definition = list(),
profiles_ratios,
log = getOption("evprof.log"”, TRUE)
)

Arguments

subsets_clustering

list with clustering results of each subset (direct output from function cluser_sessions())
clusters_definition

list of tibbles with clusters definitions (direct output from function define_clusters())

of each sub-set
profiles_ratios

tibble with columns profile and ratio

log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).

Value
ggplot2
Examples
library(dplyr)
# Select working day sessions ("Timecycle == 1) that
# disconnect the same day ("Disconnection == 1)
sessions_day <- evprof::california_ev_sessions_profiles %>%
filter(Timecycle == "Workday") %>%

sample_frac(0.05)
plot_points(sessions_day, start = 3)

# Identify two clusters
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sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
)

# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)

# Define the clusters with user profile interpretations
clusters_definitions <- define_clusters(
models = sessions_clusters$models,
interpretations = c(
"Connections during all day (high variability)"”,
"Connections during working hours"#'

)?
profile_names = c("Visitors”, "Workers"),
log = TRUE

)

# Create a table with the connection GMM parameters

connection_models <- get_connection_models(
subsets_clustering = list(sessions_clusters),
clusters_definition = list(clusters_definitions)

# Plot all bi-variable GMM (clusters) with the colors corresponding
# to their assigned user profile
plot_connection_models(

subsets_clustering = list(sessions_clusters),

clusters_definition = list(clusters_definitions),

profiles_ratios = connection_models[c("profile”, "ratio”)]
)
plot_density_2D Density plot in 2D, considering Start time and Connection duration as
variables
Description

Density plot in 2D, considering Start time and Connection duration as variables

Usage

plot_density_2D(
sessions,
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bins = 15,

by = c("wday”, "month", "year"),

start = getOption("evprof.start.hour”),
log = getOption("evprof.log", FALSE)

)
Arguments
sessions tibble, sessions data set in evprof standard format
bins integer, parameter to pass to ggplot2::stat_density_2d
by variable to facet the plot. Character being "wday", "month" or "year", consider-
ing the week to start at wday=1.
start integer, start hour in the x axis of the plot.
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
Value
ggplot2 plot
Examples
library(dplyr)

california_ev_sessions %>%
sample_frac(0.05) %>%
plot_density_2D(by = "wday", start = 3, bins = 15, log = FALSE)

plot_density_3D Density plot in 3D, considering Start time and Connection duration as
variables

Description

Density plot in 3D, considering Start time and Connection duration as variables

Usage

plot_density_3D(
sessions,
start = getOption("evprof.start.hour”),
eye = list(x = -1.5, y = -1.5, z = 1.5),
log = getOption("evprof.log"”, FALSE)
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Arguments
sessions tibble, sessions data set in evprof standard format
start integer, start hour in the x axis of the plot.
eye list containing x, y and z points of view. Example: list(x=-1.5, y=-1.5, z
=1.5)
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
Value
plotly plot (html)
Examples
library(dplyr)

california_ev_sessions %>%
sample_frac(0.05) %>%
plot_density_3D(start = 3)

plot_division_lines Iteration over evprof::plot_division_line function to plot multiple lines

Description

Iteration over evprof::plot_division_line function to plot multiple lines

Usage

plot_division_lines(ggplot_points, n_lines, division_hour)

Arguments

ggplot_points ggplot2 returned by evprof::plot_points function
n_lines number of lines to plot
division_hour Hour to divide the groups according to disconnection time

Value

ggplot2 function

Examples

library(dplyr)

california_ev_sessions %>%
sample_frac(@.05) %>%
plot_points(start = 3) %>%
plot_division_lines(n_lines = 1, division_hour = 5)



24 plot_histogram

plot_energy_models Compare density of estimated energy with density of real energy vector

Description

Compare density of estimated energy with density of real energy vector

Usage

plot_energy_models(energy_models, nrow = 2)

Arguments

energy_models energy models returned by function get_energy_models

nrow integer, number of rows in the plot grid (passed to cowplot::plot_grid)

Value

ggplot

Examples

# The package evprof provides example objects of connection and energy
# Gaussian Mixture Models obtained from California's open data set

# (see California article in package website) created with functions
# “get_connection models™ and “get_energy models™.

# Get the working days energy models
energy_models <- evprof::california_GMM$workdays$energy_models

# Plot energy models
plot_energy_models(energy_models)

plot_histogram Histogram of a variable from sessions data set

Description

Histogram of a variable from sessions data set

Usage

plot_histogram(sessions, var, binwidth = 1)
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Arguments
sessions tibble, sessions data set in evprof standard format
var character, column name to compute the histogram for
binwidth integer, with of histogram bins
Value
ggplot plot
Examples
plot_histogram(california_ev_sessions, "Power”, binwidth = 2)
plot_histogram(california_ev_sessions, "Power”, binwidth = 0.1)
plot_histogram_grid Grid of multiple variable histograms
Description
Grid of multiple variable histograms
Usage
plot_histogram_grid(
sessions,
vars = evprof::sessions_summary_feature_names,
binwidths = rep(1, length(vars)),
nrow = NULL,
ncol = NULL
)
Arguments
sessions tibble, sessions data set in evprof standard format
vars vector of characters, variables to plot
binwidths vector of integers, binwidths of each variable histogram. The length of the vector
must correspond to the length of the vars parameter.
nrow integer, number of rows of the plot grid
ncol integer, number of columns of the plot grid
Value

grid plot
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Examples

plot_histogram_grid(california_ev_sessions)

plot_histogram_grid(california_ev_sessions, vars = c("Energy"”, "Power"))
plot_kNNdist Plot kNNdist
Description

Plot the kNN (k-nearest neighbors) distance plot to visually detect the "elbow" and define an appro-
priate value for eps DBSCAN parameter.

Usage

plot_kNNdist(
sessions,
MinPts = NULL,
log = getOption("evprof.log"”, FALSE),
start = getOption("evprof.start.hour”)

)
Arguments
sessions tibble, sessions data set in evprof standard format
MinPts integer, DBSCAN MinPts parameter. If null, a value of 200 will be considered.
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
start integer, start hour in the x axis of the plot.
Details

The kNN (k-nearest neighbors) distance plot can provide insights into setting the eps parameter in
DBSCAN. The "elbow" in the kNN distance plot is the point where the distances start to increase
significantly. At the same time, for DBSCAN, the eps parameter defines the radius within which a
specified number of points must exist for a data point to be considered a core point. Therefore, the
"elbow" of the kNN distance plot can provide a sense of the scale of the data and help you choose
a reasonable range for the eps parameter in DBSCAN.

Value

plot
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Examples

library(dplyr)

california_ev_sessions %>%
sample_frac(0.05) %>%
plot_kNNdist(start = 3, log = TRUE)
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plot_outliers Plot outlying sessions

Description

Plot outlying sessions

Usage

plot_outliers(
sessions,
start = getOption("evprof.start.hour”),
log = getOption("evprof.log"”, FALSE),

)
Arguments
sessions tibble, sessions data set in evprof standard format
start integer, start hour in the x axis of the plot.
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
arguments to pass to function ggplot2::plot_point
Value
ggplot2 plot
Examples
library(dplyr)

sessions_outliers <- california_ev_sessions %>%
sample_frac(0.05) %>%
detect_outliers(start = 3, noise_th = 5, eps = 2.5)
plot_outliers(sessions_outliers, start = 3)
plot_outliers(sessions_outliers, start = 3, log = TRUE)
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plot_points Scatter plot of sessions

Description

Scatter plot of sessions

Usage

plot_points(
sessions,
start = getOption("evprof.start.hour”),
log = getOption("evprof.log"”, FALSE),

)
Arguments
sessions tibble, sessions data set in evprof standard format
start integer, start hour in the x axis of the plot.
log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).
arguments to ggplot2: :geom_point function
Value

ggplot scatter plot

Examples

library(dplyr)
california_ev_sessions %>%
sample_frac(0.05) %>%
plot_points()
california_ev_sessions %>%
sample_frac(0.05) %>%
plot_points(start = 3)
california_ev_sessions %>%
sample_frac(0.05) %>%
plot_points(log = TRUE)
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read_ev_model Read an EV model JSON file and convert it to object of class evmodel

Description

Read an EV model JSON file and convert it to object of class evmodel

Usage

read_ev_model(file)

Arguments

file path to the JSON file

Value

object of class evmodel

Examples
ev_model <- california_ev_model # Model of example
save_ev_model(ev_model, file = file.path(tempdir(), "evmodel.json"))

read_ev_model (file = file.path(tempdir(), "evmodel.json"))

round_to_interval Round to nearest interval

Description

Round to nearest interval

Usage

round_to_interval(dbl, interval)

Arguments
dbl number to round
interval rounding interval
Value

numeric value
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Examples

set.seed(1)
random_vct <- rnorm(1@, 5, 5)
round_to_interval(random_vct, 2.5)

save_clustering_iterations
Save iteration plots in PDF file

Description

Save iteration plots in PDF file

Usage

save_clustering_iterations(
sessions,
k,
filename,
it = 6,
seeds = round(runif(it, min = 1, max = 1000)),
plot_scale = 2,
points_size = 0.25,
mclust_tol = 1e-08,
mclust_itmax = 10000,
log = getOption("evprof.log”, FALSE),
start = getOption("evprof.start.hour”)

)
Arguments
sessions tibble, sessions data set in evprof standard format
k number of clusters
filename string defining the PDF output file path (with extension .pdf)
it number of iterations
seeds seed for each iteration
plot_scale scale of each iteration plot for a good visualization in pdf file
points_size integer, size of points in the scatter plot
mclust_tol tolerance parameter for clustering

mclust_itmax maximum number of iterations

log logical, whether to transform ConnectionStartDateTime and ConnectionHours
variables to natural logarithmic scale (base = exp(1)).

start integer, start hour in the x axis of the plot.
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Value

nothing, but a PDF file is saved in the path specified by parameter filename

Examples

temp_file <- file.path(tempdir(), "iteration.pdf")
save_clustering_iterations(california_ev_sessions, k = 2, it = 4, filename
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temp_file)

save_ev_model Save the EV model object of class evmodel to a JSON file

Description

Save the EV model object of class evmodel to a JSON file

Usage

save_ev_model (evmodel, file)

Arguments
evmodel object of class evmodel (see this link for more information)
file character string with the path or name of the file

Value

nothing but saves the evmodel object in a JSON file

Examples
ev_model <- california_ev_model # Model of example

save_ev_model(ev_model, file = file.path(tempdir(), "evmodel.json"))


https://resourcefully-dev.github.io/evprof/articles/evmodel.html
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set_profiles Classify sessions into user profiles

Description

Joins all sub-sets from the list, adding a new column Profile

Usage

set_profiles(sessions_clustered = list(), clusters_definition = list())

Arguments

sessions_clustered

list of tibbles with sessions clustered (sessionsobject of the output from func-
tion cluser_sessions()) from each sub-set

clusters_definition

list of tibbles with clusters definitions (direct output from function define_clusters())
of each sub-set

Value

tibble

Examples

library(dplyr)

# Select working day sessions (" Timecycle == 17) that
# disconnect the same day ("Disconnection == 17)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = 1list(1:5, 6:7) # Differentiation between workdays/weekends
) %%
divide_by_disconnection(
division_hour = 10, start = 3
) %%
filter(
Disconnection == 1, Timecycle == 1
) %%
sample_frac(0.05)

# Identify two clusters

sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE

)

# Plot the clusters found
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plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3

)

# Define the clusters with user profile interpretations
clusters_definitions <- define_clusters(
models = sessions_clusters$models,
interpretations = c(
"Connections during working hours”,
"Connections during all day (high variability)"”

),
profile_names = c("Workers"”, "Visitors"),
log = TRUE

)

# Classify each session to the corresponding user profile
sessions_profiles <- set_profiles(
sessions_clustered = list(sessions_clusters$sessions),
clusters_definition = list(clusters_definitions)

summarise_sessions Statistic summary of sessions features

Description

Statistic summary of sessions features

Usage
summarise_sessions(
sessions,
.funs,
vars = evprof::sessions_summary_feature_names
)
Arguments
sessions tibble, sessions data set in evprof standard format standard format
.funs A function to compute, €.g. mean, max, etc.
vars character vector, variables to compute the histogram for
Value

Summary table
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Examples

summarise_sessions(california_ev_sessions, mean)
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