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Abstract

expectreg is an R package for estimating expectile curves from univari-
ate and multivariate data. Expectile curves are a valuable least squares
alternative to quantile regression which is based on linear programming
techniques. expectreg provides a number of functions for different ap-
proaches taken to estimate expectiles investigated since their introduction
in [NEWEY and POWELL(1987)] using asymmetric least squares.

1 Overview

This section offers an overview over the functions implemented in expectreg.
It assumes that the user already installed the package successfully.

> library(expectreg)

> help(package = "expectreg")
> data(package = "expectreg")

will give you a short overview about the available help files of the package as
well as the data that will be provided with expectreg. The package includes
the following functions:

rb Creates bases for a regression based on covariates

demq Density of a special distribution developed by Roger Koenker [KOENKER(1992)]
ebeta Expectiles of the beta distribution

eemq Expectiles of a special distribution developed by Roger Koenker

enorm Expectiles of the normal distribution

eunif Expectiles of the uniform distribution

expectreg.boost Expectile regression using boosting

expectreg.ls Expectiles regression of additive models

expectreg.qp Expectile sheets with monotonicity constraints

pemq Distribution function for a special distribution developed by Roger Koenker
gemq Quantile function for a special distribution developed by Roger Koenker
quant.boost Quantile regression using boosting

remq Random variable generated from a special distribution developed by Roger Koenker



2 Expectiles in a nutshell

2.1 Introduction to expectiles using LAWS

Asymmetric least squares or least asymmetrically weighted squares (LAWS) is
a weighted generalization of ordinary least squares (OLS) estimation. LAWS
minimizes

S = Zwi(p)(yi—m(p))27

with

I if yi > pi(p)
wi(p) = { 1—-p ity <pi(p) S

where y; is the response and p;(p) is the population expectile for different values
of an asymmetry parameter p with 0 < p < 1. The model is fitted by alternating
between weighted regression and recomputing weights until convergence (when
the weights do not change anymore). Equal weights (p = 0.5) give a convenient
starting point.

For the expectile curve u(p) several choices for the functional form are pos-
sible. The original proposal in [NEWEY and POWELL(1987)] favored a linear
model. We suggest a more flexible functional form for the expectile curve.
[SCHNABEL and EILERS(2009)] proposed to model expectile curves with P—splines.
Other types such as other splines, markov random field or other options are also
possible (see [SOBOTKA and KNEIB(2010)]).

2.2 Expectile bundle model

In theory it is not possible that expectile curves cross, but in estimation practise
it is often encountered due to sampling variation. The expectile bundle model
is a location-scale type of model that allows for the simultaneous estimation of
a set of expectiles. By its construction crossing over of curves is not possible.
In the expectile bundle model the expectiles u(x, p) are defined by

wx,p) = tx)+c(p)s(z) (2)

where ¢(z) is a common smooth trend of all expectile curves specified by a
P-spline. ¢(p) is the asymmetry function of the bundle describing the spread,

i.e. the set of standardized expectiles. s(x) represents the local width of the
expectile bundle and is also formulated as a P-spline. The estimation procedure

consists of two steps. In Step 1 the common trend #(z) is estimated. Then in

step 2 we use the detrended response y — t(x) to estimate s(x) and c(p) in an

iterative procedure.

The expectiles bundle model is explained in more detail in [SCHNABEL and EILERS(2010)].

2.3 Restricted regression quantiles

In [HE(1997)] proposed a version of restricted regression quantiles to avoid the
crossing of quantile curves. His model for computing non-parametric conditional
quantile functions takes the following form

y = f(2) + s(@)e.



[HE(1997)| takes a three-step procedure where he determines first the condi-
tional median function and then in a second step estimate the smooth non-
negative amplitude function. The third step consists of the step wise calculation
of the “asymmetry factor” ¢, for each a—quantile curve separately.

2.4 Expectile and quantile estimation using boosting

A0
1. Initialize all model components as fg](z) =0,j5=1,...,7. Set the
iteration index to m = 1.

2. Compute the current negative gradient vector w with elements

0
Ui = — gﬂ(yu??)
" n=lm—1(z,)

3. Choose the base-learner g ;. that minimizes the Lo-loss, i.e. the best-fitting
function according to

n

j* = argmin Z(ul —§j(2):)?
1<j<r i=1

where §; = S;u.

4. Update the corresponding function estimate to fgm] = fj- +vg,-,

where v € (0,1] is a step size. For all remaining functions set fgm] =
plm—1] . .
fi L Ii#FI

5. Increase m by one. If m < mgop g0 back to step 2., otherwise terminate
the algorithm.

For expectile regression, the empirical risk is given the asymmetric least squares
criterion (1) and the appropriate loss function is defined as p(y,n) = w(7)(y —
n,)?. The corresponding negative gradient is therefore obtained as

u; = 2w (1) (Y — 1)

3 Example and available data

Expectile estimation can be used in a almost any type of situation where one
is interested in estimating smooth curves in non-central parts of the data under
consideration. The data provided with the package are

> data(india)
> data(dutchboys)

india consists of a data sample of 4000 observations with 6 variables from a

"Demographic and Health Survey’ about malnutrition of children in India. Data

set only contains 1/10 of the observations and some basic variables to enable

first analyses. Details are given in [FENSKE et al.(2009)].

dutchboys contains data from the Fourth Dutch growth study and includes 6848

observations on 10 variables. More information can be found in [VAN BUUREN and FREDRIKS(2001)].



3.1 Basic examples

The basic function expectreg.ls can be used to estimate 11 expectiles curves
for different levels of asymmetry parameter p. The results are shown in the
following graph.

> data(dutchboys)

> exp.1l <- expectreg.ls(dutchboys[,3] ~ rb(dutchboysl[,2],"pspline"),smooth="acv")
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Figure 1: Expectile curves estimated using expectreg.ls

Due to the large number of observations in the data set crossing of curves is
already unlikely to happen. Nevertheless we apply also the expectile bundle
model implemented in expectile.bundle to this example.

> exp.b <- expectreg.ls(dutchboys[,3] ~ rb(dutchboysl[,2],"pspline"),smooth="none",estimate

Additionally we analyze the data with the algorithm proposed in [HE(1997)]
implemented in expectile.restricted.

> exp.r <- expectreg.ls(dutchboys[,3] ~ rb(dutchboys[,2],"pspline"),smooth="schall",estima
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Figure 2: Expectile curves estimated using expectreg.ls with bundle estimate

3.2 Applied boosting

> exp.boost <- expectreg.boost(hgt ~ bbs(age,df=5,degree=2),dutchboys,mstop=rep(500,11))
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Figure 3: Expectile curves estimated using expectreg.ls with restricted esti-
mate
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Figure 4: Expectile curves estimated using expectreg.boost



