Package ‘extremeStat’

January 10, 2026
Type Package

Title Extreme Value Statistics and Quantile Estimation
Version 1.5.12

Date 2026-01-10

Depends R (>=2.10)

Imports Imomco (>= 2.2.5), berryFunctions (>= 1.15.6), pbapply,
RColorBrewer, grDevices, graphics, methods, stats, utils, evir,
ismev, fExtremes, extRemes, evd, Renext

Maintainer Berry Boessenkool <berry-b@gmx.de>

Description Fit, plot and compare several (extreme value) distribution functions.
Compute (truncated) distribution quantile estimates and plot return periods on a linear scale.
On the fitting method, see Asquith (2011): Distributional Analysis with L-
moment Statistics [...] ISBN 1463508417.

License GPL (>=2)

URL https://github.com/brry/extremeStat
RoxygenNote 7.3.3

Encoding UTF-8

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

BugReports https://github.com/brry/extremeStat/issues
NeedsCompilation no

Author Berry Boessenkool [aut, cre]

Repository CRAN

Date/Publication 2026-01-10 14:20:02 UTC

Contents

annMax L L e e e e
distLexBoot e

https://github.com/brry/extremeStat
https://github.com/brry/extremeStat/issues

2 annMax

distLextreme e e e 4
distLAt o e 9
distLquantile L e 12
distLweights L 16
eXtremeStat e e e e 18
plotLexBoot e e e e 19
plotLextreme 20
plotLfit e 23
plotLquantile 25
plotLweights e e e e 26
printL . .o e 27
quantGPD L e e 28
q_gpd . . e e 30
g_weighted 34
weightp e 36

Index 37

annMax annual discharge maxima (streamflow)
Description

Annual discharge maxima of a stream in Austria called Griesler or Fuschler Ache, at the measure-
ment station (gauge) near St. Lorenz, catchment area ca 100 km”2. Extracted from the time series
1976-2010 with a resolution of 15 Minutes.

Format

num [1:35] 61.5 77 37 69.3 75.6 74.9 43.7 50.8 55.6 84.1 ...

Source

Hydrographische Dienste Oberoesterreich und Salzburg, analyzed by package author (<berry-b@gmx. de>)

Examples

data(annMax)

str(annMax)

str(annMax)

plot(1976:2010, annMax, type="1", las=1, main="annMax dataset from Austria")
Moving Average with different window widths:

berryFunctions: :movAvLines(annMax, x=1976:2010, lwd=3, alpha=0.7)

distLexBoot

distLexBoot

Bootstrapping uncertainty intervals for return periods

Description

Calculates and plots bootstrap uncertainty intervals for plotLextreme.

Usage

distLexBoot(
dlf,
nbest = 3,
selection
n = 100,

prop = 0.8,
conf.lev =

NULL,

0.95,

replace = FALSE,
RPs = NULL,

log = TRUE,
progbars = TRUE,
quiet = FALSE

Arguments

dif

nbest

selection

prop
conf.lev

replace
RPs

log
progbars

quiet

Details

d1f object, as returned by distLextreme

Number of best fitted distribution functions in dlf for which bootstrapping is to
be done. Overridden by selection. DEFAULT: 3

Character vector with distribution function names to be used. Suggested to keep
this low. DEFAULT: NULL

Number of subsamples to be processed (computing time increases extraordinar-
ily). DEFAULT: 100

Proportion of sample to be used in each run. DEFAULT: 0.8

Confidence level (Proportion of subsamples within ’confidence interval’). Quan-
tiles extracted from this value are passed to quantileMean. DEFAULT: 0.95

Logical: replace in each sample? DEFAULT: FALSE

Return Period vector, by default calculated internally based on value of log.
DEFAULT: NULL

RPs suitable for plot on a logarithmic axis? DEFAULT: TRUE
Show progress bar for Monte Carlo simulation? DEFAULT: TRUE
Logical: suppress messages? See distLquantile. DEFAULT: FALSE

Has not been thoroughly tested yet. Bootstrapping defaults can probably be improved.

4 distLextreme

Value

invisible dIf object, see printL. Additional elements are: exBootCL (confidence level), exBootRPs
(x values for plot) exBootSim (all simulation results) and exBootCI (aggregated into CI band). The
last two are each a list with a matrix (return levels)

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Sept 2015 + Dec 2016

See Also

plotLexBoot, distLextreme

Examples

data(annMax)

dlf <- distLextreme(annMax, selection=c("gum”,"gev","wak","nor"))

d1fB <- distlLexBoot(dlf, nbest=4, conf.lev=0.5, n=10) # n low for quick example tests
plotLexBoot(d1fB)

plotLexBoot(dlfB, selection=c("nor”,"gev"))

n on

plotLexBoot (d1fB, selection=c("gum”,"gev","wak","nor"), order=FALSE)

distLextreme Extreme value stats

Description

Extreme value statistics for flood risk estimation. Input: vector with annual discharge maxima (or all
observations for POT approach). Output: discharge estimates for given return periods, parameters
of several distributions (fit based on L-moments), quality of fits, plot with linear/logarithmic axis.
(plotting positions by Weibull and Gringorton).

Usage
distlLextreme(
dat = NULL,
dlf = NULL,
RPs = c(2, 5, 10, 20, 50),
npy =1,

truncate = 0,
quiet = FALSE,

distLextreme

Arguments

dat

dif

RPs
npy

truncate

quiet

Details

Vector with either (for Block Maxima Approach) extreme values like annual
discharge maxima or (for Peak Over Threshold approach) all values in time-
series. Ignored if dIf is given. DEFAULT: NULL

List as returned by distLfit. See also distlLquantile. Overrides dat! DE-
FAULT: NULL

Return Periods (in years) for which discharge is estimated. DEFAULT: ¢(2,5,10,20,50)

Number of observations per year. Leave npy=1 if you use annual block maxima
(and leave truncate at 0). If you use a POT approach (see vignette and examples
below) e.g. on daily data, use npy=365.24. DEFAULT: 1

Truncated proportion to determine POT threshold, see distLquantile. DE-
FAULT: 0

Suppress notes and progbars? DEFAULT: FALSE

Further arguments passed to distLquantile like truncate, selection, time, prog-
bars

plotLextreme adds weibull and gringorton plotting positions to the distribution lines, which are
estimated from the L-moments of the data itself.

I personally believe that if you have, say, 35 values in dat, the highest return period should be
around 36 years (Weibull) and not 60 (Gringorton).

The plotting positions don’t affect the distribution parameter estimation, so this dispute is not really
important. But if you care, go ahead and google "weibull vs gringorton plotting positions".

Plotting positions are not used for fitting distributions, but for plotting only. The ranks of ascend-
ingly sorted extreme values are used to compute the probability of non-exceedance Pn:

Pn_w <-Rank /(n+1) # Weibull

Pn_g <- (Rank-0.44)/(n+0.12) # Gringorton (taken from 1lmom:: :evplot.default)
Finally: RP = Return period = recurrence interval = 1/P_exceedance = 1/(1-P_nonexc.), thus:
RPweibull = 1/(1-Pn_w) and analogous for gringorton.

Value

invisible dIf object, see printL. The added element is returnlev, a data.frame with the return level
(discharge) for all given RPs and for each distribution. Note that this differs from distLquantile
(matrix output, not data.frame)

Note

This function replaces berryFunctions: :extremeStatLmom

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, 2012 (first draft) - 2014 & 2015 (main updates)

../doc/extremeStat.html

6 distLextreme

References

https://RclickHandbuch.wordpress.com Chapter 15 (German)
Christoph Mudersbach: Untersuchungen zur Ermittlung von hydrologischen Bemessungsgroessen
mit Verfahren der instationaeren Extremwertstatistik

See Also

distLfit. distLexBoot for confidence interval from Bootstrapping. fevd in the package extRemes.

Examples

Basic examples

BM vs POT

Plotting options

weighted mean based on Goodness of fit (GOF)
Effect of data proportion used to estimate GOF
compare extremeStat with other packages

BN

library(1lmomco)
library(berryFunctions)

data(annMax) # annual streamflow maxima in river in Austria

Basic examples ——=——==——mmmmmm e
dlf <- distlLextreme(annMax)

plotLextreme(dlf, log=TRUE)

plotLextreme(dlf, log="xy")

plotLextreme(dlf)

Object structure:
str(dlf, max.lev=2)
printL(dlf)

discharge levels for default return periods:
dlf$returnlev

Estimate discharge that could occur every 8@ years (at least empirically):
Q80 <- distlLextreme(dlf=dlf, RPs=80)$returnlev

round(sort(Q80[1:17,1]1),1)

99 to 143 m"*3/s can make a relevant difference in engineering!

That's why the rows weighted by GOF are helpful. Weights are given as in
plotLweights(dlf) # See also section weighted mean below

For confidence intervals see ?distlLexBoot

Return period of a given discharge value, say 120 m"3/s:
roundd(sort(1/(1-sapply(dlf$parameter, plmomco, x=120))),1)

exponential: every 29 years
gev (general extreme value dist): 59,
Weibull: every 73 years only

R B

https://RclickHandbuch.wordpress.com

distLextreme

Return levels by Block Maxima approach vs Peak Over Threshold approach:
BM distribution theoretically converges to GEV, POT to GPD

data(rain, package="ismev")

days <- seq(as.Date("1914-01-01"), as.Date("1961-12-30"), by="days")

BM <- tapply(rain, format(days,"%Y"), max) ; rm(days)

d1fBM <- plotLextreme(distLextreme(BM, emp=FALSE), ylim=1im@(100), log=TRUE, nbest=10)
plotLexBoot(distLexBoot(d1fBM, quiet=TRUE), ylim=1im@(100))

plotLextreme(dl1fBM, log=TRUE, ylim=1im@(100))

d1fPOT99 <- distlLextreme(rain, npy=365.24, trunc=0.99, emp=FALSE)
d1fPOT99 <- plotLextreme(dlfPOT99, ylim=1im@(100), log=TRUE, nbest=10, main="POT 99")
printL(d1fPOT99)

using only nonzero values (normally yields better fits, but not here)

rainnz <- rain[rain>0]

d1fPOT99nz <- distlLextreme(rainnz, npy=length(rainnz)/48, trunc=0.99, emp=FALSE)

d1fPOT99nz <- plotLextreme(dlfP0T99nz, ylim=1im@(100), log=TRUE, nbest=10,
main=paste("POT 99 x>0, npy =", round(d1fPOT99nz$npy,2)))

Not run: ## Excluded from CRAN R CMD check because of computing time

d1fPOT99boot <- distlLexBoot(d1fPOT99, prop=0.4)
printL(d1fPOT99boot)
plotLexBoot(d1fPOT99boot)

d1fPOT90 <- distLextreme(rain, npy=365.24, trunc=0.90, emp=FALSE)
d1fPOT90 <- plotLextreme(dl1fP0T90, ylim=1im@(100), log=TRUE, nbest=10, main="POT 90")

d1fPOT50 <- distLextreme(rain, npy=365.24, trunc=0.50, emp=FALSE)
d1fPOT50 <- plotLextreme(dl1fPOT50, ylim=1im@(100), log=TRUE, nbest=10, main="POT 50")

End(Not run)

ig99 <- ismev::gpd.fit(rain, d1fPOT99%$threshold)
ismev::gpd.diag(ig99); title(main=paste(99, ig99$threshold))
Not run:

ig90 <- ismev::gpd.fit(rain, d1fPOT90$threshold)
ismev::gpd.diag(ig90); title(main=paste(90, ig90$threshold))
igho <- ismev::gpd.fit(rain, d1fPOT50$threshold)
ismev::gpd.diag(igh0); title(main=paste(50, igh0$threshold))

End(Not run)

Plotting options ————————=——————————————

plotLextreme(dlf=dlf)

Line colors / select distributions to be plotted:

plotLextreme(dlf, nbest=17, distcols=heat.colors(17), lty=1:5) # 1ty is recycled

plotLextreme(dlf, selection=c("gev"”, "gam"”, "gum"), distcols=4:6, PPcol=3, 1lty=3:2)

plotLextreme(dlf, selection=c("gpa”,"glo","wei”,"exp"), pch=c(NA,NA,6,8),
order=TRUE, cex=c(1,0.6, 1,1), log=TRUE, PPpch=c(16,NA), n_pch=20)

distLextreme

use n_pch to say how many points are drawn per line (important for linear axis)

plotLextreme(dlf, legarg=list(cex=0.5, x="bottom"”, box.col="red”, col=3))
col in legarg list is (correctly) ignored

Not run:

Excluded from package R CMD check because it's time consuming

plotLextreme(dlf, PPpch=c(1,NA)) # only Weibull plotting positions
add different dataset to existing plot:
distLextreme(Nile/15, add=TRUE, PPpch=NA, distcols=1, selection="wak", legend=FALSE)

Logarithmic axis
plotLextreme(distLextreme(Nile), log=TRUE, nbest=8)

weighted mean based on Goodness of fit (GOF) ------—-—---—-———-———mm——
Add discharge weighted average estimate continuously:

plotLextreme(dlf, nbest=17, legend=FALSE)

abline(h=115.6, v=50)

RP <- seq(1, 70, len=100)

DischargeEstimate <- distlLextreme(dlf=dlf, RPs=RP, plot=FALSE)$returnlev
lines(RP, DischargeEstimate["weighted2"”,], lwd=3, col="orange")

Or, on log scale:

plotLextreme(dlf, nbest=17, legend=FALSE, log=TRUE)
abline(h=115.9, v=50)

RP <- unique(round(logSpaced(min=1, max=7@, n=200, plot=FALSE),2))
DischargeEstimate <- distLextreme(dlf=dlf, RPs=RP)$returnlev
lines(RP, DischargeEstimate["weighted2”,], lwd=5)

Minima@ -----------—-------—---——--

browseURL("https://nrfa.ceh.ac.uk/data/station/meanflow/39072")

gfile <- system.file("extdata/discharge39072.csv", package="berryFunctions”)
Q <- read.table(qgfile, skip=19, header=TRUE, sep=",", fill=TRUE)[,1:2]
rm(qgfile)

colnames(Q) <- c("date”,"discharge”)

Q%$date <- as.Date(Q$date)

plot(Q, type="1")

Qmax <- tapply(Q$discharge, format(Q$date,”%Y"), max)
plotLextreme(distLextreme(Qmax, quiet=TRUE))

Qmin <- tapply(Q$discharge, format(Q$date,”%Y"), min)

dlf <- distLextreme(-Qmin, quiet=TRUE, RPs=c(2,5,10,20,50,100,200,500))
plotLextreme(dlf, ylim=c(@,-31), yaxs="i", yaxt="n", ylab="Q annual minimum”, nbest=14)
axis(2, -(0:3x10), 0:3*x10, las=1)

-dlf$returnlevlc(1:14,21),]

Some distribution functions are an obvious bad choice for this, so I use

weighted 3: Values weighted by GOF of dist only for the best half.

For the Thames in Windsor, we will likely always have > 9 m*3/s streamflow

distLfit 9

compare extremeStat with other packages: --------------------———------————————-
library(extRemes)

plot(fevd(annMax))

par(mfrow=c(1,1))

return.level(fevd(annMax, type="GEV")) # "GP", "PP", "Gumbel”, "Exponential”
distLextreme(dlf=dlf, RPs=c(2,20,100))%returnlev["gev”,]

differences are small, but noticeable...

if you have time for a more thorough control, please pass me the results!

yet another dataset for testing purposes:

Dresden_AnnualMax <- c(403, 468, 497, 539, 542, 634, 662, 765, 834, 847, 851, 873,
885, 983, 996, 1020, 1028, 1090, 1096, 1110, 1173, 1180, 1180,

1220, 1270, 1285, 1329, 1360, 1360, 1387, 1401, 1410, 1410, 1456,

1556, 1580, 1610, 1630, 1680, 1734, 1740, 1748, 1780, 1800, 1820,

1896, 1962, 2000, 2010, 2238, 2270, 2860, 4500)
plotLextreme(distLextreme(Dresden_AnnualMax))

End(Not run) # end dontrun

distLfit Fit distributions via L-moments

Description

Fit several distributions via L-moments with Imomco: : Imom2par and compute goodness of fit mea-
sures.

Usage

distLfit(
dat,
datname = deparse(substitute(dat)),
selection = NULL,
speed = TRUE,
ks = FALSE,
truncate = 0,
threshold = berryFunctions::quantileMean(dat, truncate),
progbars = length(dat) > 200,
time = TRUE,
quiet = FALSE,
ssquiet = quiet,

10 distLfit

Arguments

dat Vector with values

datname Character string for main, xlab etc. DEFAULT: deparse(substitute(dat))

selection Selection of distributions. Character vector with types as in lmom2par. Over-
rides speed. DEFAULT: NULL

speed If TRUE, several distributions are omitted, for the reasons shown in Imomco: :dist.1list().
DEFAULT: TRUE

ks Include ks.test results and CDF R”2 in d1f$gof? Computing is much faster
when FALSE. DEFAULT: FALSE

truncate Number between 0 and 1. POT Censored distLquantile: fit to highest values
only (truncate lower proportion of x). Probabilities are adjusted accordingly.
DEFAULT: 0

threshold POT cutoff value. If you want correct percentiles, set this only via truncate, see
Details of q_gpd. DEFAULT: quantileMean(x, truncate)

progbars Show progress bars for each loop? DEFAULT: TRUE if n > 200

time message execution time? DEFAULT: TRUE

quiet Suppress notes? DEFAULT: FALSE

ssquiet Suppress sample size notes? DEFAULT: quiet
Further arguments passed to distLweights like weightc, order=FALSE

Value

invisible dIf object, see printL.

Author(s)
Berry Boessenkool, <berry-b@gmx.de>, Sept 2014, July 2015, Dec 2016

See Also

plotLfit, distLweights, plotLweights, extRemes: :fevd, MASS: :fitdistr.
More complex estimates of quality of fits: Fard, M.N.P. and Holmquist, B. (2013, Chilean Journal of
Statistics): Powerful goodness-of-fit tests for the extreme value distribution. https://chjs.mat.utfsm.cl/volumes/04/01/Fard_Hc

Examples

data(annMax)

basic usage on real data (annual discharge maxima in Austria)
dlf <- distLfit(annMax)

str(dlf, max.lev=2)

printL(dlf)

plotLfit(dlf)

arguments that can be passed to plotting function:
plotLfit(dlf, 1lty=2, col=3, nbest=17, legargs=list(lwd=3), main="booh!")
set.seed(42)

distLfit 11

dlf_b <- distLfit(rbeta(100, 5, 2))

plotLfit(dlf_b, nbest=10, legargs=c(x="left"))

plotLfit(dlf_b, selection=c("gpa”, "glo", "gev", "wak"))
plotLfit(dlf_b, selection=c("gpa", "glo", "gev"”, "wak"), order=TRUE)
plotLfit(dlf_b, distcols=c("orange”,3:6), lty=1:3) # 1ty is recycled
plotLfit(dlf_b, cdf=TRUE)

plotLfit(dlf_b, cdf=TRUE, histargs=list(do.points=FALSE), sel="nor")

logarithmic axes:

set.seed(1)

y <= 10*rnorm(300, mean=2, sd=0.3) # if you use le4, distLfit will be much slower
hist(y, breaks=20)

berryFunctions::logHist(y, col=8)

dlf <- distLfit(loglo(y))

plotLfit(dlf, breaks=50)

plotLfit(dlf, breaks=50, log=TRUE)

Goodness of fit: how well do the distributions fit the original data?

measured by RMSE of cumulated distribution function and ?ecdf

RMSE: root of average of (errors squared) |, errors = line distances

dlf <- distLfit(annMax, ks=TRUE)

plotLfit(dlf, cdf=TRUE, sel=c("wak”, "revgum"))

x <- sort(annMax)

segments(x@0=x, y@=lmomco::plmomco(x, dlf$parameter$revgum), yl=ecdf(annMax)(x), col=2)
segments(x0=x, y@=1momco: :plmomco(x, dlf$parameters$wak), yl=ecdf(annMax)(x), col=4, lwd=2)
weights by three different weighting schemes, see distLweights:

plotLweights(dlf)

plotLfit(distLfit(annMax), cdf=TRUE, nbest=17)$gof
plotLfit(distLfit(annMax, truncate=0.7), cdf=TRUE, nbest=17)$gof
pairs(dlf$gof[,-(2:5)1) # measures of goodness of fit are correlated quite well here.
dlfsgof

Kolmogorov-Smirnov Tests for normal distribution return slightly different values:
library(lmomco)

ks.test(annMax, "pnorm”, mean(annMax), sd(annMax))$p.value

ks.test(annMax, "cdfnor”, parnor(lmoms(annMax)))$p.value

Fit all available distributions (30):

Not run: # this takes a while...

d_all <- distLfit(annMax, speed=FALSE, progbars=TRUE) # 20 sec
printL(d_all)

plotLfit(d_all, nbest=30, distcols=grey(1:22/29), xlim=c(20,140))
plotLfit(d_all, nbest=30, ylim=c(0,0.04), xlim=c(20,140))
plotLweights(d_all)

d_allsgof

End(Not run)

distLquantile

distLquantile distribution quantiles

Description

Parametric quantiles of distributions fitted to a sample.

Usage

distLquantile(
x = NULL,
probs = c(0.8, 0.9, 0.99),
truncate = 0,

threshold = quantileMean(dlf$dat_fulllis.finite(d1lf$dat_full)], truncate),

sanerange = NA,

sanevals = NA,

selection = NULL,

order = TRUE,

d1f = NULL,

datname = deparse(substitute(x)),
list = FALSE,

empirical = TRUE,

gemp. type = 8,

weighted = empirical,

gpd = empirical,

speed = TRUE,

quiet = FALSE,

ssquiet = quiet,

ttquiet = quiet,

gpquiet = missing(quiet) | quiet,

Arguments

X Sample for which parametric quantiles are to be calculated. If it is NULL (the
default), dat from d1f is used. DEFAULT: NULL

probs Numeric vector of probabilities with values in [0,1]. DEFAULT: ¢(0.8,0.9,0.99)

truncate Number between 0 and 1 (proportion of sample discarded). Censored quantile:
fit to highest values only (truncate lower proportion of x). Probabilities are
adjusted accordingly. DEFAULT: 0

threshold POT cutoff value. If you want correct percentiles, set this only via truncate, see
Details of g_gpd. DEFAULT: berryFunctions: :quantileMean(x, truncate)

sanerange Range outside of which results should be changed to sanevals. This can cap-

ture numerical errors in small samples (notably GPD_MLE_extRemes). If NA,
this is ignored. Attention: the RMSE column is also checked and changed. DE-
FAULT: NA

distLquantile 13

sanevals Values to be used below [1] and above [2] sanerange. DEFAULT: NA

selection Distribution type, eg. "gev" or "wak", see lmomco: :dist.1list. Can be a vector.
If NULL (the default), all types present in dlf$distnames are used. DEFAULT:
NULL

order Logical: sort by RMSE, even if selection is given? See distLweights. DE-
FAULT: TRUE

dif dIf object described in extremeStat. Use this to save computing time for large
datasets where you already have dlf. DEFAULT: NULL

datname Character string: data name, important if list=TRUE. DEFAULT: deparse(substitute(x))

list Return full d1flist with output attached as element quant? If FALSE (the de-

fault), just the matrix with quantile estimates is returned. DEFAULT: FALSE

empirical Add rows "empirical" and "quantileMean" in the output matrix? Uses quantile
with gemp. type (ignoring truncation) and berryFunctions: :quantileMean.
DEFAULT: TRUE

gemp. type Method passed to quantile for row "empirical". Only used if empirical=TRUE.
DEFAULT: 8 (NOT the stats: :quantile default)
weighted Include weighted averages across distribution functions to the output? DE-

FAULT: empirical, so additional options can all be excluded with emp=F.

gpd Include GPD quantile estimation via q_gpd? Note that the ’GPD_LMO_Imomco’
result differs slightly from "gpa’, especially if truncate=0. This comes from us-
ing x>threshold (all ’GPD_*’ distributions) or x>=threshold ("gpa’ and all other
distributions in extremeStat). DEFAULT: empirical

speed Compute q_gpd only for fast methods? Currently, only the Bayesian method is
excluded. DEFAULT: TRUE

quiet Suppress notes? If it is actually set to FALSE (not missing), gpquiet is set to
FALSE to print all the warnings including stacks. DEFAULT: FALSE

ssquiet Suppress sample size notes? DEFAULT: quiet

ttquiet Suppress truncation!=threshold note? DEFAULT: quiet

gpquiet Suppress warnings in q_gpd? DEFAULT: TRUE if quiet is not specified, else
quiet

Arguments passed to distLfit and distLweights like weightc, kss=TRUE

Details

Very high quantiles (99% and higher) need large sample sizes for quantile to yield a robust esti-
mate. Theoretically, at least 1/(1-probs) values must be present, e.g. 10’000 for Q99.99%. With
smaller sample sizes (eg n=35), they underestimate the actual (but unknown) quantile. Parametric
quantiles need only small sample sizes. They don’t have a systematical underestimation bias, but
have higher variability.

Value

if list=FALSE (default): invisible matrix with distribution quantile values . if list=TRUE: invisible
dIf object, see printL

14 distLquantile

Note

NAs are always removed from x in distLfit

Author(s)
Berry Boessenkool, <berry-b@gmx.de>, March + July 2015, Feb 2016

References

On GPD: https://stats.stackexchange.com/questions/69438

See Also

g_gpd, distLfit, require("truncdist") Xian Zhou, Liuquan Sun and Haobo Ren (2000): Quantile
estimation for left truncated and right censored data, Statistica Sinica 10 https://www3.stat.
sinica.edu.tw/statistica/oldpdf/A10n411.pdf

Examples

data(annMax) # Annual Discharge Maxima (streamflow)
distLquantile(annMax, emp=FALSE)[,] # several distribution functions in lmomco

Not run:

Taken out from CRAN package check because it's slow

distLquantile(annMax, truncate=0.8, probs=0.95)[,] # POT (annMax already block maxima)
dlf <- distLquantile(annMax, probs=0.95, list=TRUE)

plotLquantile(dlf, linargs=list(lwd=3), nbest=5, breaks=10)

dlf$quant

Parametric 95% quantile estimates range from 92 to 111!

But the best fitting distributions all lie aroud 103.

compare General Pareto Fitting methods

Theoretically, the tails of distributions converge to GPD (General Pareto)

g_gpd compares several R packages for fitting and quantile estimation:

dlg <- distLquantile(annMax, weighted=FALSE, quiet=TRUE, probs=0.97, 1ist=TRUE)

dlg$quant

plotLquantile(dlq) # per default best fitting distribution functions

plotLquantile(dlqg, row=c("wak"”,"GPD*"), nbest=14)

#pdf ("dummy.pdf"”, width=9)

plotLquantile(dlg, row="GPD*", nbest=13, xlim=c(102,110),
linargs=list(lwd=3), heights=seq(0.02, 0.005, len=14))

#dev.off ()

Sanity checks: important for very small samples:

x1 <- ¢(2.6, 2.5, 2.9, 3,5, 2.7, 2.7, 5.7, 2.8, 3.1, 3.6, 2.6, 5.8, 5.6, 5.7, 5.3)
gl <- distlLquantile(x1, sanerange=c(0,500), sanevals=c(NA,6500))

x2 <- c(6.1, 2.4, 4.1, 2.4, 6, 6.3, 2.9, 6.8, 3.5)

g2 <- distLquantile(x2, sanerange=c(@,500), sanevals=c(NA,500), quiet=FALSE)

https://stats.stackexchange.com/questions/69438
https://www3.stat.sinica.edu.tw/statistica/oldpdf/A10n411.pdf
https://www3.stat.sinica.edu.tw/statistica/oldpdf/A10n411.pdf

distLquantile 15

x3 <- c(4.4, 3, 1.8, 7.3, 2.1, 2.1, 1.8, 1.8)
g3 <- distLquantile(x3, sanerange=c(0,500), sanevals=c(NA,6500))

weighted distribution quantiles are calculated by different weighting schemes:
plotLweights(dlf)

If speed is important and parameters are already available, pass them via dlf:
distLquantile(dlf=dlf, probs=0:5/5, selection=c("wak"”,"gev","kap"))
distlLquantile(dlf=dlf, truncate=0.3, list=TRUE)$truncate

censored (truncated, trimmed) quantile, Peak Over Treshold (POT) method:

gwak <- distlLquantile(annMax, sel="wak"”, prob=0.95, emp=FALSE, 1list=TRUE)
plotLquantile(qwak, ylim=c(0,0.06)); gwak$quant

gwak2 <-distlLquantile(annMax, sel="wak"”, prob=0.95, emp=FALSE, 1ist=TRUE, truncate=0.6)
plotLquantile(qwak2, add=TRUE, distcols="blue")

Simulation of truncation effect

library(1lmomco)

#set.seed(42)

rnum <- rlmomco(n=1e3, para=dlf$parametersgev)

myprobs <- c(0.9, .95, 0.99, 0.999)

mytrunc <- seq(@, 0.9, length.out=20)

trunceffect <- sapply(mytrunc, function(mt) distLquantile(rnum, selection="gev",
probs=myprobs, truncate=mt, quiet=TRUE,
pempirical=FALSE)["gev", 1)

If more values are truncated, the function runs faster

op <- par(mfrow=c(2,1), mar=c(2,4.5,2,0.5), cex.main=1)
dlf1 <- distLquantile(rnum, sel="gev", probs=myprobs, emp=FALSE, list=TRUE)
dlf2 <- distLquantile(rnum, sel="gev", probs=myprobs, emp=FALSE, 1ist=TRUE, truncate=0.3)
plotLquantile(dlf1, ylab="", xlab="")
plotLquantile(dlf2, add=TRUE, distcols=4)
legend("right”, c("fitted GEV", "fitted with truncate=0.3"), 1ty=1, col=c(2,4), bg="white")
par(mar=c(3,4.5,3,0.5))
plot(mytrunc, trunceffect[1,], ylim=range(trunceffect), las=1, type="1",

main=c("High quantiles of 1000 random numbers from gev distribution”,

"Estimation based on proportion of lower values truncated”),

xlab="", ylab="parametric quantile”)
title(xlab="Proportion censored”, mgp=c(1.8,1,0))
for(i in 2:4) lines(mytrunc, trunceffect[i,])
library("berryFunctions”)
textField(rep(@.5,4), trunceffect[,11], paste@("Q",myprobsx100,"%"))
par(op)

trunc <- seq(9,0.1,1en=200)
dd <- pbsapply(trunc, function(t) distLquantile(annMax,

selection="gpa", weight=FALSE, truncate=t, prob=0.99, quiet=T)[c(1,3),1)
plot(trunc, dd[1,], type="o", las=1)

n.n

lines(trunc, dd[2,], type="o", col=2)

set.seed(3); rnum <- rlmomco(n=1e3, para=dlf$parameters$gpa)

16 distLweights

qd99 <- evir::quant(rnum, p=0.99, start=15, end=1000, ci=0.5, models=30)

axis(3, at=seq(-1000,0, length=6), labels=0:5/5, pos=par("usr”)[3])

title(xlab="Proportion truncated”, line=-3)

mytrunc <- seq(@, 0.9, length.out=30)

trunceffect <- sapply(mytrunc, function(mt) distLquantile(rnum, selection="gpa",
probs=0.99, truncate=mt, plot=FALSE, quiet=TRUE,
empirical=FALSE, gpd=TRUE))

lines(-1000*(1-mytrunc), trunceffect[1,], col=4)

lines(-1000*(1-mytrunc), trunceffect[2,], col=3) # interesting...

for(i in 3:13) lines(-1000x(1-mytrunc), trunceffect[i,], col=3) # interesting...

If you want the estimates only for one single truncation, use
g_gpd(rnum, probs=myprobs, truncate=0.5)

End(Not run) # end dontrun

distLweights Compute distribution weights from GOF

Description

Determine distribution function weights from RMSE for weighted averages. The weights are in-
verse to RMSE: weightl for all dists, weight2 places zero weight on the worst fitting function,
weight3 on the worst half of functions.

Usage

distLweights(
RMSE,
order = TRUE,
onlydn = TRUE,
weightc = NA,
quiet = FALSE,

)
Arguments

RMSE Numeric: Named vector with goodness of fit values (RMSE). Can also be a
data.frame, in which case the column rmse or RMSE is used.

order Logical: should result be ordered by RMSE? If order=FALSE, the order of ap-
pearance in RMSE is kept (alphabetic or selection in distLfit). DEFAULT:
TRUE

onlydn Logical: weight only distributions from 1momco: :dist.1list? DEFAULT: TRUE

(all other RMSE:s are set to 0)

distLweights 17

weightc Optional: a named vector with custom weights for each distribution. Are in-
ternally normalized to sum=1 after removing nonfitted dists. Names match the
parameter names from RMSE. DEFAULT: NA

quiet Logical: Suppress messages. DEFAULT: FALSE

Ignored arguments (so a set of arguments can be passed to distLfit and dis-
tLquantile and arguments used only in the latter will not throw errors)

Value

data.frame

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Dec 2016

See Also

distLfit, distLquantile

Examples

weights from RMSE vector:

RMSE <- c(gum=0.20, wak=0.17, gam=0.21, gev=0.15)
distLweights(RMSE)

distLweights(RMSE, order=FALSE)

weights from RMSE in data.frame:

df <- data.frame("”99.9%"=2:5, RMSE=sample(3:6))
rownames (df) <- letters[1:4]

df ; distLweights(df, onlydn=FALSE)

custom weights:

set.seed(42); x <- data.frame(A=1:5, RMSE=runif(5)) ; x
distLweights(x) # two warnings

distlLweights(x, weightc=c("1"=3, "3"=5), onlydn=FALSE)
distLweights(x, weightc=c("”1"=3, "3"=5), order=FALSE, onlydn=FALSE)

real life example:

data(annMax)

cw <- c("gpa"=7, "gev"=3, "wak"=6, "wei"=4, "kap"=3.5, "gum"=3, "ray"=2.1,
"1n3"=2, "pe3"=2.5, "gno"=4, "gam"=5)

dlf <- distLfit(annMax, weightc=cw, quiet=TRUE, order=FALSE)

plotLweights(dlf)

GOF judgement by RMSE, not R2 --------

Both RMSE and R2 are computed with ECDF and TCDF

R2 may be very good (see below), but fit needs to be close to 1:1 line,
which is better measured by RMSE

dlf <- distLfit(annMax, ks=TRUE)

18 extremeStat

op <- par(mfrow=c(1,2), mar=c(3,4,0.5,0.5), mgp=c(1.9,0.7,0))

yy <- nrow(dlf$gof):1 # depends on length of lmomco::dist.list()

plot(dlfgofRMSE, yy, yaxt="n", ylab="", type="0"); axis(2, yy, rownames(dlf$gof), las=1)
plot(dlfgofR2, vyy, yaxt="n", ylab="",6 type="0"); axis(2, yy, rownames(dlf$gof), las=1)
par(op)

sel <- c("wak"”,"lap"”,"nor"”,"revgum")

plotLfit(dlf, selection=sel, cdf=TRUE)

dlf$goflsel,-(2:7)]

x <- sort(annMax, decreasing=TRUE)
ECDF <- ecdf(x)(x)
TCDF <- sapply(sel, function(d) lmomco::plmomco(x,dlf$parameter[[d]]))

plot(TCDF[, "1lap"], ECDF, col="cyan", asp=1, las=1)
points(TCDF[, "nor"], ECDF, col="green")
#points(TCDF[, "wak"], ECDF, col="blue")

#points(TCDF[, "revgum”], ECDF, col="red")

abline(a=0, b=1, lwd=3, 1ty=3)

legend("bottomright”, c("lap good RMSE bad R2", "nor bad RMSE good R2"),
col=c("cyan"”,"green"), lwd=2)

berryFunctions::1inReg(TCDF[,"lap"”], ECDF, add=TRUE, digits=3, col="cyan", posi="topleft")

berryFunctions::1inReg(TCDF[,"nor"], ECDF, add=TRUE, digits=3, col="green", posi="left")

more distinct example (but with fake data)

set.seed(42); x <- runif(30)

y1 <= x+rnorm(30,sd=0.09)

y2 <= 1.5%x+rnorm(30,sd=0.01)-0.3

plot(x,x, asp=1, las=1, main="High cor (R2) does not necessarily mean good fit!")
berryFunctions::1linReg(x, y2, add=TRUE, digits=4, posl="topleft"”)

points(x,y2, col="red"”, pch=3)

points(x,yl, col="blue")

berryFunctions::1linReg(x, y1, add=TRUE, digits=4, col="blue"”, posl="left")
abline(a=0, b=1, lwd=3, lty=3)

extremeStat Extreme value statistics on a linear scale

Description

Fit (via L moments), plot (on a linear scale) and compare (by goodness of fit) several (extreme
value) distributions. Compute high quantiles even in small samples and estimate extrema at given
return periods.

Open the Vignette for an introduction to the package: vignette("extremeStat")

This package heavily relies on and thankfully acknowledges the package 1momco by WH Asquith.

Package overview

The main functions in the extremeStat package are:

https://cran.r-project.org/package=extremeStat/vignettes/extremeStat.html

plotLexBoot 19

distlLweights ->plotlLweights
distLfit ->plotLfit
g_gpd + g_weighted -> distLquantile ->plotLquantile
distLextreme ->plotLextreme
distLexBoot

They create and modify a list object printed by (and documented in) printL.

Author(s)
Berry Boessenkool, <berry-b@gmx.de>, 2014-2016

See Also

If you are looking for more detailed (uncertainty) analysis, eg confidence intervals, check out
the package extRemes, especially the function fevd. https://cran.r-project.org/package=
extRemes

Intro slides: https://sites.lsa.umich.edu/eva2015/wp-content/uploads/sites/44/2015/
06/Intro2EVT. pdf

Parameter fitting and distribution functions: https://cran.r-project.org/package=1momco
Distributions: https://web.archive.org/web/20110807225801/https://www.rmetrics.org/
files/Meielisalp2009/Presentations/Scott.pdf and: https://cran.r-project.org/view=
Distributions

R in Hydrology: https://abouthydrology.blogspot.de/2012/08/r-resources-for-hydrologists.
html

Examples

data(annMax) # annual discharge maxima from a stream in Austria
plot(annMax, type="1")

dle <- distlLextreme(annMax)

dle$returnlev

plotLexBoot Bootstrapping uncertainty intervals for return periods

Description

plot bootstrap uncertainty intervals for plotLextreme.

Usage

plotLexBoot(dlf, selection = NULL, add = FALSE, log = TRUE, ...)

https://cran.r-project.org/package=extRemes
https://cran.r-project.org/package=extRemes
https://sites.lsa.umich.edu/eva2015/wp-content/uploads/sites/44/2015/06/Intro2EVT.pdf
https://sites.lsa.umich.edu/eva2015/wp-content/uploads/sites/44/2015/06/Intro2EVT.pdf
https://cran.r-project.org/package=lmomco
https://web.archive.org/web/20110807225801/https://www.rmetrics.org/files/Meielisalp2009/Presentations/Scott.pdf
https://web.archive.org/web/20110807225801/https://www.rmetrics.org/files/Meielisalp2009/Presentations/Scott.pdf
https://cran.r-project.org/view=Distributions
https://cran.r-project.org/view=Distributions
https://abouthydrology.blogspot.de/2012/08/r-resources-for-hydrologists.html
https://abouthydrology.blogspot.de/2012/08/r-resources-for-hydrologists.html

20

Arguments

dif

selection

add
log

Value

plotLextreme

d1f object, as returned by distLexBoot

Character vector with distribution function names to be used. Suggested to keep
this low. DEFAULT: NULL

Add to existing plot? DEFAULT: FALSE
Plot on a logarithmic axis. DEFAULT: TRUE

Further arguments passed to plotLextreme. If add=TRUE, they are instead
passed to berryFunctions: :ciBand

invisible dIf object, see printL

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Dec 2016

See Also

distlLexBoot

Examples

see distlLexBoot

plotLextreme

Plot extreme value statistics

Description

Plots distributions fitted by L-moments and adds plotting positions by Weibull and Gringorton. This
is an auxiliary graphing function to distLextreme

NULL,

Usage

plotLextreme(
dif,
selection =
order = FALSE,
add = FALSE,
nbest = 5,
log = "",
xlim = NULL,
ylim = NULL,

las =1,

plotLextreme

main

21

dlf$datname,

xlab = "Return Period RP [a]",
ylab = "Discharge HQ [m\U@eB3/s]",
PPcol = "black”,

PPpch = c(16, 3),

distcols = berryFunctions::rainbow2(nbest),

PPcex = 1
1ty =1,
Iwd =1,
pch = NA,
cex =1,
n_pch = 15,
legend =
rmse = 4,
legargs =

TRUE,

NULL,

quiet = FALSE,
logargs = NULL,

Arguments

d1lf

selection
order

add

nbest

log

x1lim
ylim

las

main

x1lab

ylab

PPcol

PPpch

PPcex

List as returned by distLextreme or distLexBoot

Selection of distributions. Character vector with type as in 1lmom2par. DE-
FAULT: NULL

If selection is given, should legend and colors be ordered by gof anyways? DE-
FAULT: FALSE

If TRUE, plot is not called before adding lines. This lets you add lines to an
existing plot. DEFAULT: FALSE

Number of distributions plotted, in order of goodness of fit. Overwritten inter-
nally if selection is given. DEFAULT: 5

Ny oo non

Charstring ("x", "y", "xy") for logarithmic axes. See logargs. DEFAULT: ""
X-axis limits. DEFAULT: xlim of plotting positions

Y-lim. DEFAULT: from min to extended max

LabelAxisStyle to orient labels, see par. DEFAULT: 1

Title of plot. DEFAULT: dIf$datname

X axis label. DEFAULT: "Return Period RP [a]"

Y axis label. Please note that the ubuntu pdf viewer might be unable to display
unicode superscript. DEFAULT: "Discharge HQ [m3/s]"

Plotting Position point colors, vector of length two for Weibull and Gringorton,
recycled. PP are not used for fitting distributions, but for plotting only. DE-
FAULT: "black"

point characters for plotting positions after Weibull and Gringorton, respectively.
NA to suppress in plot and legend. DEFAULT: ¢(16,3)

Character EXpansion of plotting points. DEFAULT: 1

22

distcols

1ty

1wd

pch

cex

n_pch

legend

rmse

legargs

quiet

logargs

Value

plotLextreme

Color for each distribution added with lines. Recycled, if necessary. DE-
FAULT: berryFunctions: :rainbow?2

Line TYpe for plotted distributions. Is recycled to from a vector of length nbest,
i.e. a value for each dist. DEFAULT: 1

Line WiDth of distribution lines. Recycled vector of length nbest. DEFAULT: 1

Point CHaracter of points added at regular intervals. This makes lines more
distinguishable from each other. NA to suppress. Recycled vector of length
nbest. DEFAULT: NA

if pch = NA, size of points. Recycled vector of length nbest. DEFAULT: 1

Number of points spread evenly along the line. Recycled vector of length nbest.
DEFAULT: 15

Logical. Add alegend? DEFAULT: TRUE

Integer. If rmse > 0, RMSE values are added to legend. They are rounded to
rmse digits. DEFAULT: 4

list of arguments passed to legend except for legend, col, pch, Iwd, Ity. DE-
FAULT: NULL

Suppress notes? DEFAULT: FALSE
list of arguments passed to berryFunctions: :logAxis.

n_n

Further arguments passed to plot like yaxt="n", ...

invisible dIf object, see printL

Author(s)

Berry Boessenkool, <berry-b@gmx. de>, March 2015, updated heavily Aug 2015

See Also

distLextreme, plotLfit

Examples

#see
?distLextreme

plotLfit

23

plotLfit

Plot distributions fitted with L-moments

Description

Plot histogram and distribution densities or ecdf with cumulated probability

Usage

plotLfit(
dlf,

nbest = 5,

selecti

order =

rmse =
cdf = F
log = F
support
breaks
xlim =

<
—
.

E]

1

n

x 3
—
Qe
o >
non

ylab =

"Prob
las =1
distcol
1ty =1
add = F
logargs
legend
legargs

on = NULL,
TRUE,
4,
ALSE,
ALSE,
ends = TRUE,
= 20,
extendrange(dlf$dat, f = 0.15),
NULL,
grey”,
paste(if (cdf) "Cumulated”, "density distributions of”, dlf$datname),
dlf$datname,
if (cdf) "(Empirical) Cumulated Density (CDF)" else
ability Density Function (PDF)",

s = berryFunctions::rainbow2(nbest),
ALSE,

= NULL,

= TRUE,

= NULL,

histargs = NULL,

Arguments

dif

nbest

selection

order

List as returned by distLfit, containing the elements dat, parameter, gof,
datname

Number of distributions plotted, in order of goodness of fit. DEFAULT: 5

Names of distributions in d1f$parameter that will be drawn. Overrides nbest.
DEFAULT: NULL

Logical: order legend and colors by RMSE, even if dlf$gof is unordered or
selection is given? DEFAULT: TRUE

24

rmse

cdf
log

supportends
breaks

xlim, ylim

col

main, xlab, ylab
las

distcols

1ty

add

logargs

legend
legargs

histargs

Details

plotLfit

Integers. If rmse != 0, RMSE values are added to legend. They are rounded to
rmse digits. DEFAULT: 4

If TRUE, plot cumulated DF instead of probability density. DEFAULT: FALSE

If TRUE, berryFunctions: :logAxis is called. Only makes sense if dif$dat is
already logarithmic and ranges eg. from -2 to 3. DEFAULT: FALSE

If TRUE, dots are placed at the support bounds. DEFAULT: TRUE

hist breaks. DEFAULT: 20

hist or ecdf axis limits.

hist bar color or ecdf point color. DEFAULT: "grey"

hist or ecdf main, xlab, ylab. DEFAULT: abstractions from d1f$datname

Label Axis Style for orientation of numbers along axes. DEFAULT: 1

Color for each distribution added with 1ines. DEFAULT: berryFunctions: : rainbow2

Line TYpe for plotted distributions. Recycled vector of length nbest. DE-
FAULT: 1

If TRUE, hist/ecdf is not called before adding lines. This lets you add lines
highly customized one by one. DEFAULT: FALSE

List of arguments passed to berryFunctions: : logAxis if 1log=TRUE. DEFAULT:
NULL

Should legend be called? DEFAULT: TRUE

List of arguments passed to legend except for legend and col. DEFAULT:
NULL

List of arguments passed to hist or ecdf except for x, freq. DEFAULT: NULL

Further arguments passed to lines, like type, pch, ...

By default, this plots density instead of CDF, because the distributions are easier to discern and tail
behavior is easier to judge visually.

Value

invisible dIf object, see printL

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Sept 2014

See Also

distLfit, plotLquantile

Examples

See distLfit

plotLquantile 25

plotLquantile Plot quantiles of distributions fitted with L-moments

Description

Plot quantiles of distributions fitted with L-moments

Usage
plotLquantile(
dlf,
nbest = 5,

selection = NULL,

order = FALSE,

rows = NULL,

heights = stats::quantile(par("usr”)[3:4], 0.2),
distcols = dlfplot$distcols,

linargs = NULL,

Arguments

dlf List as returned by distLquantile, containing the elements dat, parameter,

gof, datname, quant

nbest, selection, order

Distributions to be plotted, see plotLfit

rows Rowname(s) of d1f$quant that should be drawn instead of the selection / nbest

highest ranking distribution functions. ’GPD*’ will select all the gpd fits. heights
and distcols must then accordingly have at least 13 elements (or will be recy-
cled). DEFAULT: NULL

heights Coordinates of quantile line ends, recycled if necessary. DEFAULT: 20% of plot
height.

distcols Color for each distribution added with 1ines. DEFAULT: dlfplot$distcols

linargs Arguments passed to lines. DEFAULT: NULL

Value

Further arguments passed to plotLfit

invisible dIf object, see printL

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Dec 2016

26

plotLweights

See Also

distLquantile, plotLfit

Examples

See distLquantile

plotLweights Distribution rank comparison

Description

Plot rank comparison of fitted distributions calculated by distLfit.

Usage

plotLweights(
dlf,
type = "o",
col = RColorBrewer: :brewer.pal(5, "Set2"),
pch = c(1:4, NA),
1ty =1,
Iwd =1,
legargs = NULL,
main = "Distribution function GOF and weights”,
xlab = "Weight / RMSE",
ylab = ""

xlim = range(gof[, grep("weight”, colnames(gof))], na.rm = TRUE),

Arguments

d1lf List as returned by distLfit, containing the element gof

type, col, pch, 1ty, 1wd

Vectors with 5 values for line customization. Recycled if necessary.

legargs List of arguments passed to legend, like cex, bg, etc.

main, x1lab, ylab plot title and axis labels
x1im Range of x axis. DEFAULT: range(gof$weight*)

Value

Further arguments passed to plot.

None.

printL

Author(s)

27

Berry Boessenkool, <berry-b@gmx.de>, Sept 2014

See Also

distLweights, distLfit

Examples

see distLweights and distLfit

printL

print dlf objects

Description

print list objects created in this package

Usage
printL(dlf, digits = 1)
Arguments
d1lf List as explained in section Details
digits number of digits rounded to. DEFAULT: 1
Details

The common object to share between functions (see overview in extremeStat) is a list with the

following elements:

dat

dat_full

datname

parameter

gof

distnames
distfailed
distcols
distselector
truncate, threshold

numeric vector with (extreme) values, with all NAs and values below threshold removed

original input data complete with NAs

character string for main, xlab etc

list (usually of length 17 if speed=TRUE in distLfit) with parameters of each distribution
dataframe with *Goodness of Fit’ measures, sorted by RMSE of theoretical and empirical cumulated
character vector with selected distribution names

Names of nonfitted distributions or ""

colors for distnames (for plotting). If not given manually, determined by berryFunctions: :rainbc
character string with function name creating the selection

Truncation percentage and threshold value, relevant for distLquantile

optionally, it can also contain:

28

returnlev, npy

RPweibull, RPgringorton

quant

exBootRPs, gexBootSim, exBootCI, exBootCL

Value

none, prints via message.

Author(s)

quantGPD

dataframe with values of distributions for given return periods (RPs), num
Return periods according to plotting positions, added in plotLextreme
Quantile estimates from distLquantile

objects from distLexBoot

Berry Boessenkool, <berry-b@gmx.de>, Sept 2014, March + July 2015, Dec 2016

See Also

extremeStat

Examples

see
?distLextreme

quantGPD Fast GPD quantile estimate

Description

Fast GPD quantile estimate through L-moments

Usage

quantGPD(
X,
probs = ¢c(0.8, 0.9, 0.99),
truncate = 0,

threshold = berryFunctions::quantileMean(x, truncate),

addn = TRUE,
quiet = FALSE,

quantGPD 29

Arguments
X Vector with numeric values. NAs are silently ignored.
probs Probabilities. DEFAULT: ¢(0.8,0.9,0.99)

truncate, threshold
Truncation proportion or threshold. DEFAULT: 0, computed See q_gpd.

addn Logical: add element with sample size (after truncation). DEFAULT: TRUE
quiet Should messages from this function be suppressed? DEFAULT: FALSE

Further arguments passed to Imomco: : pargpa

Value

Vector with quantiles

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Jun 2017

See Also

g_gpd for a comparison across R packages and methods, distLquantile to compare distributions

Examples

data(annMax)
quantile(annMax, 0.99)
quantGPD(annMax, 0.99)

Not run: # Excluded from CRAN checks to reduce checking time

data(rain, package="ismev") ; rain <- rain[rain>0]

hist(rain, breaks=50, col=7)

tr <- seq(0,0.999, len=50)

qu <- pbapply: :pbsapply(tr, quantGPD, x=rain, probs=c(0.9,0.99,0.999)) # 30 s
plot(tr, qul3,], ylim=range(rain), las=1, type="1")

lines(tr, qul2,], col=2); lines(tr, qul[1,], col=4)

tr <- seq(0.88,0.999, len=50)

qu <- pbapply::pbsapply(tr, quantGPD, x=rain, probs=c(0.9,0.99,0.999)) # 5 s
plot(tr, qul3,], ylim=range(rain), las=1, type="1")

lines(tr, qu[2,], col=2); lines(tr, qul[1,], col=4);

tail(qul"n",])

library(microbenchmark)

data(rain, package="ismev"); rain <- rain[rain>@]

mb <- microbenchmark(quantGPD(rain[1:200], truncate=0.8, probs=0.99, addn=F),
distLquantile(rain[1:200], sel="gpa", emp=F, truncate=0.8, quiet=T, probs=0.99)[1,1]
)

boxplot(mb)

since computing the lmoments takes most of the computational time,

there's not much to optimize in large samples like n=2000

30 q_gpd

End(Not run)

q_gpd GPD quantile of sample

Description

Compute quantile of General Pareto Distribution fitted to sample by peak over threshold (POT)
method using threshold from truncation proportion, comparing several R packages doing this

Usage

q_gpd(
X’
probs = c(0.8, 0.9, 0.99),
truncate = 0,
threshold = berryFunctions::quantileMean(x, truncate),

package = "extRemes",
method = NULL,
list = FALSE,

undertruncNA = TRUE,
quiet = FALSE,
ttquiet = quiet,
efquiet = quiet,

Arguments

X Vector with numeric values. NAs are silently ignored.

probs Probabilities of truncated (Peak over threshold) quantile. DEFAULT: ¢(0.8,0.9,0.99)

truncate Truncation percentage (proportion of sample discarded). DEFAULT: 0

threshold POT cutoff value. If you want correct percentiles, set this only via truncate, see
Details. DEFAULT: quantileMean(x, truncate)

package Character string naming package to be used. One of c("lmomco","evir","evd","extRemes","fExtremes","i
DEFAULT: "extRemes"

method method passed to the fitting function, if applicable. Defaults are internally spec-
ified (See Details), depending on package, if left to the DEFAULT: NULL.

list Return result from the fitting function with the quantiles added to the list as ele-
ment quant and some information in elements starting with q_gpd_. DEFAULT:
FALSE

undertruncNA Return NAs for probs below truncate? Highly recommended to leave this at the
DEFAULT: TRUE

q_gpd 31

quiet Should messages from this function be suppressed? DEFAULT: FALSE

ttquiet Should truncation!=threshold messages from this function be suppressed? DE-
FAULT: quiet

efquiet Should warnings in function calls to the external packages be suppressed via
options(warn=-1)? The usual type of warning is: NAs produced in log(...).
DEFAULT: quiet

Further arguments passed to the fitting function listed in section Details.

Details

Depending on the value of "package", this fits the GPD using
Imomco: :pargpa

evir::gpd

evd: : fpot

extRemes: : fevd

fExtremes: :gpdFit

ismev::gpd.fit

Renext: :Renouv or Renext: : fGPD

The method defaults (and other possibilities) are

Imomco: none, only L-moments

evir: "pwm" (probability-weighted moments), or "ml" (maximum likelihood)

evd: none, only Maximum-likelihood fitting implemented

extRemes: "MLE", or "GMLE", "Bayesian", "Lmoments"

fExtremes: "pwm", or "mle"

ismev: none, only Maximum-likelihood fitting implemented

Renext: "r" for Renouv (since distname.y = "gpd", evd::fpot is used), or ’f* for fGPD (with minimum
POTs added)

The Quantiles are always given with probs in regard to the full (uncensored) sample. If e.g. truncate
is 0.90, the distribution function is fitted to the top 10% of the sample. The 95th percentile of the full
sample is equivalent to the 50% quantile of the subsample actually used for fitting. For computation,
the probabilities are internally updated with p2=(p-t)/(1-t) but labeled with the original p. If you
truncate 90% of the sample, you cannot compute the 70th percentile anymore, thus undertruncNA
should be left to TRUE.

If not exported by the packages, the quantile functions are extracted from their source code (Nov
2016).

Value

Named vector of quantile estimates for each value of probs,
or if(list): list with element g_gpd_quant and info-elements added. q_gpd_n_geq is number of
values greater than or equal to q_gpd_threshold. gt is only greater than.

32 q_gpd

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Feb 2016

References

https://stackoverflow.com/q/27524131, https://stats.stackexchange.com/q/129438

See Also

distLquantile which compares results for all packages
Other related packages (not implemented):
https://cran.r-project.org/package=gPdtest
https://cran.r-project.org/package=actuar
https://cran.r-project.org/package=fitdistrplus
https://cran.r-project.org/package=1mom

Examples

data(annMax)
g_gpd(annMax)
g_gpd(annMax, truncate=0.6)
g_gpd(annMax, truncate=0.85)
g_gpd(annMax, truncate=0.91)

g_gpd(annMax, package="evir")

g_gpd(annMax, package="evir", method="ml")

g_gpd(annMax, package="evd")

g_gpd(annMax, package="extRemes")

g_gpd(annMax, package="extRemes", method="GMLE")

#g_gpd(annMax, package="extRemes", method="Bayesian") # computes a while
g_gpd(annMax, package="extRemes", method="Lmoments")

g_gpd(annMax, package="extRemes"”, method="nonsense") # NAs
g_gpd(annMax, package="fExtremes") # log warnings
g_gpd(annMax, package="fExtremes", efquiet=TRUE) # silenced warnings
g_gpd(annMax, package="fExtremes"”, method= "mle")

g_gpd(annMax, package="ismev")

g_gpd(annMax, package="Renext")

g_gpd(annMax, package="Renext"”, method="f")
berryFunctions::is.error(g_gpd(annMax, package="nonsense"), force=TRUE)

compare all at once with
d <- distLquantile(annMax); d
d <- distlLquantile(annMax, speed=FALSE); d # for Bayesian also

g_gpd(annMax, truncate=0.85, package="evd") # Note about quantiles
g_gpd(annMax, truncate=0.85, package="evir")

g_gpd(annMax, truncate=0.85, package="evir"”, quiet=TRUE) # No note
g_gpd(annMax, truncate=0.85, package="evir", undertruncNA=FALSE)

g_gpd(annMax, truncate=0.85, package="evir", 1list=TRUE)

https://stackoverflow.com/q/27524131
https://stats.stackexchange.com/q/129438
https://cran.r-project.org/package=gPdtest
https://cran.r-project.org/package=actuar
https://cran.r-project.org/package=fitdistrplus
https://cran.r-project.org/package=lmom

q_gpd 33

str(qg_gpd(annMax, truncate=0.85, probs=0.6, package="evir"”, list=TRUE))# NAs

str(q_gpd(annMax, package="evir", 1list=TRUE))
str(q_gpd(annMax, package="evd", 1list=TRUE))
str(qg_gpd(annMax, package="extRemes", 1list=TRUE))
str(qg_gpd(annMax, package="fExtremes", list=TRUE))
str(q_gpd(annMax, package="ismev", 1list=TRUE))
str(qg_gpd(annMax, package="Renext", 1list=TRUE))

g_gpd(annMax, package="evir", truncate=0.9, method="ml") # NAs (MLE fails often)

trunc <- seq(9,0.9,1en=500)

library("pbapply")

quant <- pbsapply(trunc, function(tr) g_gpd(annMax, pack="evir"”, method = "pwm",
truncate=tr, quiet=TRUE))

quant <- pbsapply(trunc, function(tr) g_gpd(annMax, pack="1lmomco", truncate=tr, quiet=TRUE))

plot(trunc, quant["99%",], type="1", ylim=c(80,130), las=1)

lines(trunc, quant["90%",1)

lines(trunc, quant["80%",]1)

plot(trunc, quant["RMSE",], type="1", las=1)

Not run:
Not run in checks because simulation takes too long

trunc <- seq(9,0.9,1en=200)

dlfs <- pblapply(trunc, function(tr) distLfit(annMax, truncate=tr, quiet=TRUE, order=FALSE))
rmses <- sapply(dlfs, function(x) xgofRMSE)

plot(trunc, trunc, type="n", ylim=range(rmses,na.rm=TRUE), las=1, ylab="rmse")

cols <- rainbow2(17)[rank(rmses[,1]1)]

for(i in 1:17) lines(trunc, rmses[i,], col=cols[i])

dlfs2 <- lapply(0:8/10, function(tr) distLfit(annMax, truncate=tr, quiet=TRUE))
pdf ("dummy . pdf")

dummy <- sapply(dlfs2, function(x)

{plotLfit(x, cdf=TRUE, main=x$truncate, ylim=0:1, x1lim=c(20,135), nbest=1)
title(sub=round(xgofRMSE[1]1,4))

»

dev.off()

truncation effect

mytruncs <- seq(@, 0.9, len=150)

00 <- options(show.error.messages=FALSE, warn=-1)

myquants <- sapply(mytruncs, function(t) g_gpd(annMax, truncate=t, quiet=TRUE))

options(o0)

plot(1, type="n", ylim=range(myquants, na.rm=TRUE), x1im=c(0,0.9), las=1,
xlab="truncated proportion”, ylab="estimated quantiles")

abline(h=quantileMean(annMax, probs=c(0.8,0.9,0.99)))

for(i in 1:3) lines(mytruncs, myquants[i,], col=i)

text (0.3, c(87,97,116), rownames(myquants), col=1:3)

Underestimation in small samples
create known population:
dat <- extRemes::revd(l1e5, scale=50, shape=-0.02, threshold=30, type="GP")

34 q_weighted

op <- par(mfrow=c(1,2), mar=c(2,2,1,1))

hist(dat, breaks=50, col="tan")
berryFunctions::logHist(dat, breaks=50, col="tan")
par(op)

function to estimate empirical and GPD quantiles from subsamples
samsizeeffect <- function(n, nrep=30, probs=0.999, trunc=0.5, Q=c(0.4,0.5,0.6))
{

res <- replicate(nrep, {

subsample <- sample(dat, n)

gGPD <- g_gpd(subsample, probs=probs, truncate=trunc)

gEMP <- berryFunctions::quantileMean(subsample, probs=probs, truncate=trunc)
c(qGPD=qGPD, QEMP=gEMP)})

apply(res, MARGIN=1, berryFunctions::quantileMean, probs=Q)

3

Run and plot simulations

samplesize <- c(seq(20, 150, 10), seq(200,800, 100))

results <- pbapply::pblapply(samplesize, samsizeeffect)

res <- function(row, col) sapply(results, function(x) x[row,coll])

berryFunctions::ciBand(yu=res(3,1),yl=res(1,1),ym=res(2,1),x=samplesize,
main="99.9% Quantile underestimation”, xlab="subsample size", ylim=c(200,400), colm=4)

berryFunctions::ciBand(yu=res(3,2),yl=res(1,2),ym=res(2,2),x=samplesize, add=TRUE)

abline(h=berryFunctions::quantileMean(dat, probs=0.999))

text (300, 360, "empirical quantile of full sample")

text (300, 340, "GPD parametric estimate”, col=4)

text (300, 300, "empirical quantile estimate”, col="green3")

End(Not run) # end of dontrun

g_weighted Compute weighted averages of quantile estimates

Description

Compute weighted averages of quantile estimates

Usage

g_weighted(quant, weights = distLweights(quant, ...), onlyc = FALSE, ...)
Arguments

quant Data.frame as in distLquantile output.

weights Data.frame as in distLweights output.

onlyc Logical: only return custom weighted quantile estimates as a vector? Useful to

add those to existing results. See examples. DEFAULT: FALSE

q_weighted 35

Arguments passed to distLweights like weightc, onlydn=FALSE. order will
be ignored, as q_weighted only adds/changes the rows weighted*.

Value

data.frame with rows "weighted*" added.

Author(s)

Berry Boessenkool, <berry-b@gmx.de>, Dec 2016

See Also

distLquantile

Examples

x <- data.frame(A=1:5, RMSE=runif(5))
distLweights(x, onlydn=FALSE)

g_weighted(x, onlydn=FALSE)
g_weighted(x, distLweights(x, weightc=c("1"=3, "3"=5), order=FALSE, onlydn=FALSE))

Not run: # time consuming

x <- rexp(190)

d <- distlLquantile(x)

d2 <- g_weighted(d)
stopifnot(all(d==d2, na.rm=TRUE))

fast option for adding custom weighted estimates:

cw <- runif(17)

names(cw) <- c("exp"”, "gam", "gev", "glo", "gno", "gpa", "gum”, "kap", "lap”,
"In3", "nor", "pe3", "ray"”, "revgum”, "rice”, "wak"”, "wei")

dw <- distlLweights(d, weightc=cw)

gwl <- g_weighted(d, weightc=cw); qwl

gqw2 <- g_weighted(d, weights=dw); qw2

stopifnot(all(qwl==gqw2, na.rm=TRUE))

g_weighted(d, weights=dw, onlyc=TRUE)

g_weighted(d, weights=data.frame(weightc=cw), onlyc=TRUE)

n n n "

system.time(pbreplicate(5000, g_weighted(d, weightc=cw))) # 8.5 secs
system.time(pbreplicate (5000, gq_weighted(d, weights=dw, onlyc=TRUE))) # 0.8 secs

End(Not run)

36 weightp

weightp distribution weights

Description

Weights for weighted average as in the submission of revisions for the paper https://nhess.
copernicus.org/articles/17/1623/2017/nhess-17-1623-2017-discussion.html

Format

named num [1:17]

Source

See paper revisions (not yet online at moment of extremeStat update) (<berry-b@gmx.de>)

Examples

data(weightp)

data.frame(weightp)

barplot(weightp, horiz=TRUE, las=1)
stopifnot(all.equal(sum(weightp), 1))

data(annMax) ; data(weightp)

dlf <- distLfit(annMax, weightc=weightp)
dlfsgof

quant <- distLquantile(annMax, weightc=weightp)
quant

https://nhess.copernicus.org/articles/17/1623/2017/nhess-17-1623-2017-discussion.html
https://nhess.copernicus.org/articles/17/1623/2017/nhess-17-1623-2017-discussion.html

Index

* bootstrap
distLexBoot, 3
plotLexBoot, 19

+ datasets
annMax, 2
weightp, 36

* distribution
distLexBoot, 3
distLextreme, 4
distLfit, 9
distLquantile, 12
distLweights, 16
plotlLexBoot, 19
plotLextreme, 20
plotLfit, 23
plotLquantile, 25
plotLweights, 26
a_gpd, 30
g_weighted, 34
quantGPD, 28

* documentation
extremeStat, 18

* dplot
distLexBoot, 3
distLextreme, 4
distLfit, 9
plotLexBoot, 19
plotLextreme, 20

+ hplot
distLexBoot, 3
distLextreme, 4
distLfit, 9
plotLexBoot, 19
plotLextreme, 20
plotLfit, 23
plotLquantile, 25
plotLweights, 26

* list
printL, 27

37

+ methods
printL, 27

+ montecarlo
distLexBoot, 3
plotLexBoot, 19

+ package
extremeStat, 18

* print
printL, 27

* robust
distLquantile, 12
a_gpd, 30
quantGPD, 28

* ts
distLexBoot, 3
distlLextreme, 4
plotLexBoot, 19

* univar
distLfit, 9
distLquantile, 12
g-gpd, 30
quantGPD, 28

annMax, 2
ciBand, 20

dist.list, 10,13, 16
distlLexBoot, 3, 6, 19-21, 28
distLextreme, 3, 4,4, 19-22, 28

distLfit, 5, 6,9, 13, 14, 16, 17, 19, 23, 24,

26, 27

distLquantile, 3, 5, 10, 12, 17, 19, 25-29,

32,34, 35

distLweights, 10, 13, 16, 19, 27, 34, 35

ecdf, 24
extremeStat, /3, 18, 27, 28

fevd, 6, 10, 19, 31
fGPD, 31

38 INDEX

fitdistr, 10
fpot, 31

gpd, 31
gpd.fit, 31/
gpdFit, 31/

hist, 24

legend, 22, 24, 26
lines, 22,24, 25
Imom2par, 9, 10, 21
logAxis, 22, 24

message, 10, 28
options, 31

par, 21

pargpa, 29, 31

plot, 22, 26

plotLexBoot, 4, 19
plotLextreme, 3, 5, 19, 20, 20, 28
plotLfit, 10, 19, 22, 23, 25, 26
plotlLquantile, 19, 24, 25
plotLweights, 10, 19, 26

printL, 4, 5, 10, 13, 19, 20, 22, 24, 25,27

g_gpd, 10, 1214, 19, 29, 30
g_weighted, 19, 34
quantGPD, 28

quantile, 13
quantileMean, 3, 10, 12, 13, 30

rainbow2, 22, 24, 27
Renouv, 31
round, 27

sample, 3

weightp, 36

	annMax
	distLexBoot
	distLextreme
	distLfit
	distLquantile
	distLweights
	extremeStat
	plotLexBoot
	plotLextreme
	plotLfit
	plotLquantile
	plotLweights
	printL
	quantGPD
	q_gpd
	q_weighted
	weightp
	Index

