Package ‘fastml’

January 10, 2026

Type Package

Title Guarded Resampling Workflows for Safe and Automated Machine
Learning in R

Version 0.7.6

Description
Provides a guarded resampling workflow for training and evaluating machine-learning models.
When the guarded resampling path is used, preprocessing and model fitting are re-estimated within
each resampling split to reduce leakage risk. Supports multiple resampling schemes, integrates
with established engines in the 'tidymodels' ecosystem, and aims to improve evaluation reliabil-
ity by
coordinating preprocessing, fitting, and evaluation within supported workflows. Of-
fers a lightweight
AutoML-style workflow by automating model training, resampling, and tuning across multi-
ple algorithms,
while keeping evaluation design explicit and user-controlled.

Encoding UTF-8
License MIT + file LICENSE

URL https://selcukorkmaz.github.io/fastml-tutorial/,
https://github.com/selcukorkmaz/fastml

BugReports https://github.com/selcukorkmaz/fastml/issues
Depends R (>=4.1.0)

Imports stats, recipes, dplyr, ggplot2, reshape2, rsample, parsnip,
tune, workflows, yardstick, tibble, rlang, dials, RColorBrewer,
baguette, discrim, doFuture, finetune, future, plsmod,
probably, viridisLite, DALEX, magrittr, pROC, janitor, stringr,
broom, tidyr, purrr, survival, flexsurv, rstpm?2, iml, lime,
survRM2, iBreakDown, xgboost, pdp, modelStudio, fairmodels

Suggests testthat (>= 3.0.0), C50, ranger, aorsf, censored, crayon,
kernlab, klaR, kknn, keras, lightgbm, rstanarm, mixOmics,
patchwork, GGally, glmnet, DT, UpSetR, VIM, dbscan, ggpubr,
gridExtra, htmlwidgets, kableExtra, moments, naniar, plotly,
scales, skimr, sparsediscrim, knitr, rmarkdown

1

https://selcukorkmaz.github.io/fastml-tutorial/
https://github.com/selcukorkmaz/fastml
https://github.com/selcukorkmaz/fastml/issues

2 Contents

RoxygenNote 7.3.3
Config/testthat/edition 3
NeedsCompilation no

Author Selcuk Korkmaz [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4632-6850>),
Dincer Goksuluk [aut] (ORCID: <https://orcid.org/0000-0002-2752-7668>),
Eda Karaismailoglu [aut] (ORCID:
<https://orcid.org/0000-0003-3085-7809>)

Maintainer Selcuk Korkmaz <selcukorkmaz@gmail.com>
Repository CRAN
Date/Publication 2026-01-10 22:50:02 UTC

Contents
availableMethods 3
counterfactual_explain 4
explain_ale 5
explain_dalex L 5
explain_lime L 6
fastexplain 7
fastexplore 9
fastml e 11
fastml_compute_holdout_results 16
fastml_guard_detect_full_analysis 18
fastml _normalize survival_status. 18
flatten_and_rename_models 19
get_best_model_idx 19
get_best_ model_names L L 20
get_best_workflows 21
get_default_engine 21
get_default_params 22
get_default_tune_params L. 23
Et_eNZINE_NAMES« . o vt v v e e e e e e e e e e e e e 24
get_model_engine_names. Lo 25
interaction_strength L. 25
load_model e 26
plotfastmlo 26
plot_ice 28
predict.fastml 28
predict_survival L 30
process_model 30
SANIIZE e 33
save.fastml L 33
summary.fastml 34
SUITOZAE_LIEE . . « . v v v v e e it e e e e e e e e e e e e 35

train_models e 36

https://orcid.org/0000-0003-4632-6850
https://orcid.org/0000-0002-2752-7668
https://orcid.org/0000-0003-3085-7809

availableMethods 3

Index 39

availableMethods Get Available Methods

Description

Returns a character vector of algorithm names available for classification, regression or survival

tasks.
Usage
availableMethods(type = c("classification”, "regression”, "survival”), ...)
Arguments
type A character string specifying the type of task. Must be one of "classification”,
"regression”, or "survival”. Defaults to c("classification”, "regression”,
"survival") and uses match.arg to select one.
Additional arguments (currently not used).
Details

Depending on the specified type, the function returns a different set of algorithm names:

* For "classification”, it returns algorithms such as "logistic_reg"”, "multinom_reg”,

n on

"decision_tree", "C5_rules”, "rand_forest”, "xgboost”, "lightgbm”, "svm_linear"”,

non non

"svm_rbf", "nearest_neighbor”, "naive_Bayes", "mlp”, "discrim_linear"”, "discrim_quad"”,
and "bag_tree".

n on non

* For "regression”, itreturns algorithms such as "linear_reg"”, "ridge_reg"”, "lasso_reg”,

non n on

"elastic_net”, "decision_tree”, "rand_forest"”, "xgboost”, "lightgbm", "svm_linear”,

non n o n

"svm_rbf"”, "nearest_neighbor”, "mlp”, "pls”, and "bayes_glm".

non

e For "survival”, it returns algorithms such as "rand_forest”, "cox_ph", "penalized_cox",

"stratified_cox”, "time_varying_cox", "survreg", "royston_parmar”, "parametric_surv”,

" i - n n n
_ , .
"piecewise_exp", and "xgboost

Value

A character vector containing the names of the available algorithms for the specified task type.

4 counterfactual_explain

counterfactual_explain

Generate counterfactual explanations for a fastml model

Description

Uses DALEX ceteris-paribus profiles (‘predict_profile‘) to compute counterfactual-style what-if
explanations for a given observation.

Usage

counterfactual_explain(
object,
observation,
variables = NULL,
positive_class = NULL,
event_class = NULL,
label_levels = NULL,

Arguments
object A ‘fastml® object.
observation A single observation (data frame with one row) to compute counterfactuals for.
variables Optional character vector of candidate variables to vary. Only numeric variables

are used for counterfactual profiling.

positive_class Optional string used to filter lines/points in the resulting profiles for classifica-
tion tasks.

event_class Optional event class indicator propagated from ‘fastml_prepare_explainer_inputs()*
(kept for compatibility).

label_levels Optional vector of label levels propagated from ‘fastml_prepare_explainer_inputs()*
(kept for compatibility).

Additional arguments passed to ‘DALEX::predict_profile°.

Value

A list (returned invisibly) containing the DALEX profile, filtered lines/points when ‘positive_class*
is supplied, and the plotted object if rendering succeeds.

explain_ale 5

explain_ale Compute Accumulated Local Effects (ALE) for a fastml model

Description

Uses the ‘iml‘ package to calculate ALE for the specified feature.

Usage
explain_ale(object, feature, ...)
Arguments
object A ‘fastml® object.
feature Character string specifying the feature name.
Additional arguments passed to ‘iml::FeatureEffect®.
Value

An ‘iml‘ object containing ALE results.

Examples
Not run:
data(iris)
iris <- iris[iris$Species != "setosa”,]
iris$Species <- factor(iris$Species)
model <- fastml(data = iris, label = "Species"”)

explain_ale(model, feature = "Sepal.lLength”)

End(Not run)

explain_dalex Generate DALEX explanations for a fastml model

Description

Creates a DALEX explainer and computes permutation based variable importance, partial depen-
dence (model profiles) and Shapley values.

Usage

explain_dalex(

object,
features =

explain_lime

NULL,

grid_size = 20,

shap_sample
vi_iterations

seed = 123,

loss_function

Arguments

object

features

grid_size

shap_sample

vi_iterations
seed

loss_function

Value

5’
=109,

= NULL

A fastml object.

Character vector of feature names for partial dependence (model profiles). De-
fault NULL.

Number of grid points for partial dependence. Default 20.

Integer number of observations from processed training data to compute SHAP
values for. Default 5.

Integer. Number of permutations for variable importance (B). Default 10.
Integer. A value specifying the random seed.
Function. The loss function for model_parts.

e If NULL and task = ’classification’, defaults to DALEX: : loss_cross_entropy.
* IfNULL and task = regression’, defaults to DALEX: : loss_root_mean_square.

Invisibly returns a list with variable importance, optional model profiles and SHAP values.

explain_lime

Generate LIME explanations for a fastml model

Description

Creates a ‘lime* explainer using the processed training data stored in the ‘fastml‘ object and returns
feature explanations for new observations.

Usage

explain_lime(object, new_observation, n_features = 5, n_labels =1, ...)

fastexplain 7

Arguments

object A ‘fastml® object.
new_observation
A data frame containing the new observation(s) to explain.

n_features Number of features to show in the explanation. Default 5.
n_labels Number of labels to explain (classification only). Default 1.

Additional arguments passed to ‘lime::explain‘.

Value

An object produced by ‘lime::explain®.

Examples
Not run:
data(iris)
iris <- iris[iris$Species != "setosa"”, 1]
iris$Species <- factor(iris$Species)
model <- fastml(data = iris, label = "Species")

explain_lime(model, new_observation = iris[1, 1)

End(Not run)

fastexplain Explain a fastml model using various techniques

Description
Provides model explainability across several backends. With method = "dalex" it:

* Creates a DALEX explainer from the trained model.

» Computes permutation-based variable importance with vi_iterations permutations and dis-
plays the table and plot.

* Computes partial dependence-like model profiles when features are supplied.

* Computes Shapley values (SHAP) for shap_sample training rows, displays the SHAP table,
and plots a summary bar chart of mean(|SHAP value|) per feature. For classification, separate
bars per class are shown.

Usage

fastexplain(
object,
method = "dalex”,
features = NULL,
variables = NULL,
observation = NULL,

8 fastexplain

grid_size = 20,
shap_sample = 5,
vi_iterations =
seed = 123,
loss_function = NULL,
protected = NULL,

10,

)
Arguments

object A fastml object.

method Character string specifying the explanation method. Supported values are "dalex”,
"lime", "ice", "ale"”, "surrogate”, "interaction”, "studio”, "fairness”,
"breakdown”, and "counterfactual”. Defaults to "dalex".

features Character vector of feature names for partial dependence (model profiles). De-
fault NULL.

variables Character vector. Variable names to compute explanations for (used for coun-
terfactuals).

observation A single observation for methods that need a new data point (method = "counterfactual”
or method = "breakdown"). Default NULL.

grid_size Number of grid points for partial dependence. Default 20.

shap_sample Integer number of observations from processed training data to compute SHAP

values for. Default 5.
vi_iterations Integer. Number of permutations for variable importance (B). Default 10.
seed Integer. A value specifying the random seed.
loss_function Function. The loss function for model_parts.
e IfNULL and task = ’classification’, defaults to DALEX: : loss_cross_entropy.
* IfNULL and task = regression’, defaults to DALEX: : loss_root_mean_square.

protected Character or factor vector of protected attribute(s) required for method = "fairness”.
Default NULL.

Additional arguments passed to the underlying helper functions for the chosen
method.

Details

* Method dispatch: method can route to LIME, ICE, ALE, surrogate tree, interaction strengths,
DALEX/modelStudio dashboards, fairness diagnostics, iBreakDown contributions, or coun-
terfactual search.

* Variable importance controls: Use vi_iterations to tune permutation stability and loss_function
to override the default DALEX loss (cross-entropy for classification, RMSE for regression).

* Fairness and breakdown support: Provide protected for method = "fairness” and an
observation for method = "breakdown" or method = "counterfactual”. Observations are
aligned to the explainer data before scoring.

fastexplore

Value

For DALEX-based methods, prints variable importance, model profiles, and SHAP summaries.
Other methods return their respective explainer objects (e.g., LIME explanations, ALE plot, sur-
rogate tree, interaction strengths, modelStudio dashboard, fairmodels object, breakdown object, or
counterfactual results), usually invisibly after plotting or printing.

fastexplore Lightweight exploratory helper

Description

‘fastexplore()‘ is an optional, lightweight exploratory data analysis (EDA) helper. It returns sum-
mary tables and plot objects; it only writes to disk or renders a report when you explicitly request it

via ‘save_results‘ or ‘render_report*.

Usage

fastexplore(
data,
label = NULL,

visualize = c("histogram”, "boxplot”, "barplot"”, "heatmap"”, "scatterplot”),

save_results = FALSE,
render_report = FALSE,
output_dir = NULL,

sample_size = NULL,

interactive = FALSE,
corr_threshold = 0.9,
auto_convert_numeric = TRUE,
visualize_missing = TRUE,
imputation_suggestions = FALSE,
report_duplicate_details = TRUE,
detect_near_duplicates = FALSE,
auto_convert_dates = FALSE,
feature_engineering = FALSE,

outlier_method = c("iqgr", "zscore", "dbscan”, "lof"),

run_distribution_checks = TRUE,
normality_tests = c("”shapiro”),
pairwise_matrix = TRUE,
max_scatter_cols = 5,
grouped_plots = TRUE,

use_upset_missing = TRUE

Arguments

data A ‘data.frame* to explore.

10

fastexplore

label Optional column name of the target/label. If supplied and categorical, grouped
plots and class balance summaries are produced.

visualize Character vector indicating which plot families to build. Defaults to ‘c("histogram",

non

"boxplot", "barplot”, "heatmap", "scatterplot")*.

save_results Logical; if ‘TRUE’, plots/results are saved under ‘output_dir‘ (defaults to the
working directory). Default is ‘FALSE".

render_report Logical; if “TRUE, a short HTML report is rendered via ‘rmarkdown* (if avail-
able). Default is ‘FALSE‘.

output_dir Directory to save results/report when ‘save_results‘ or ‘render_report*is ‘TRUE".

sample_size Optional integer; if supplied, visualizations are produced on a random sample
of this size.

interactive Logical; if “TRUE* and ‘plotly* is available, an interactive correlation heatmap
is produced. Falls back to static ggplot output otherwise.

corr_threshold Absolute correlation threshold for flagging high correlations.
auto_convert_numeric

Logical; convert factor/character columns that look numeric into numeric.
visualize_missing

Logical; if ‘TRUE®, include simple missingness visualizations.
imputation_suggestions

Logical; if ‘TRUE', prints lightweight suggestions based on missingness pat-

terns.
report_duplicate_details

Logical; if ‘TRUE®, returns a small sample of duplicated rows when present.
detect_near_duplicates
Placeholder for future fuzzy duplicate checks.
auto_convert_dates
Logical; convert YYYY-MM-DD strings to ‘Date".
feature_engineering
Logical; if “TRUE®, derive day/month/year from date columns to aid inspection
of temporal structure.

ne <n

outlier_method One of "iqr"*, ‘"zscore"*, ‘"dbscan"‘, ‘"lof"*.
run_distribution_checks

Logical; if ‘TRUE®, run normality tests on numeric columns.
normality_tests

Character vector of normality tests to run; currently supports

AHkSH6
pairwise_matrix

Logical; if ‘TRUE* and ‘GGally* is available, returns a ggpairs scatterplot matrix

for a subset of numeric columns.
max_scatter_cols

Maximum number of numeric columns to include in the pairwise matrix.

on

shapiro"* and

grouped_plots Logical; if “TRUE® and ‘label is a factor, group histograms/boxplots/density
plots by label.

use_upset_missing
Logical; retained for compatibility. When ‘TRUE‘ and ‘UpSetR‘ is installed, an
UpSet plot of missingness is returned; otherwise a simpler missingness heatmap
is used.

fastml 11

Details

This helper is intentionally decoupled from the core modeling workflow. Most of its heavy depen-
dencies are treated as optional and loaded via ‘requireNamespace()‘ when requested features are
used.

Value

A list of summaries (tables/tibbles) and plot objects (ggplot/plotly), plus any saved file paths when
‘save_results‘/‘render_report* are enabled.

fastml Fast Machine Learning Function

Description

Trains and evaluates multiple classification or regression models automatically detecting the task
based on the target variable type.

Usage

fastml(
data = NULL,
train_data = NULL,
test_data = NULL,

label,
algorithms = "all",
task = "auto”,

test_size = 0.2,

resampling_method = if (identical(task, "survival”)) "none" else "cv",
folds = ifelse(grepl("cv"”, resampling_method), 10, 25),

repeats = NULL,

group_cols = NULL,

block_col = NULL,

block_size = NULL,

initial_window = NULL,

assess_window = NULL,

skip = 0,
outer_folds = NULL,
event_class = "first”,

exclude = NULL,

recipe = NULL,
tune_params = NULL,
engine_params = list(),
metric = NULL,
algorithm_engines = NULL,
n_cores = 1,

stratify = TRUE,

12 fastml
impute_method = "error”,
encode_categoricals = TRUE,
scaling_methods = c("center"”, "scale"),
balance_method = "none",
resamples = NULL,
summaryFunction = NULL,
use_default_tuning = FALSE,
tuning_strategy = "grid”,
tuning_iterations = 10,
early_stopping = FALSE,
adaptive = FALSE,
learning_curve = FALSE,
seed = 123,
verbose = FALSE,
eval_times = NULL,
bootstrap_ci = TRUE,
bootstrap_samples = 500,
bootstrap_seed = NULL,
at_risk_threshold = 0.1,
audit_mode = FALSE
)
Arguments
data A data frame containing the complete dataset. If both ‘train_data‘ and ‘test_data“
are ‘NULL®, ‘fastml()‘ will split this into training and testing sets according
to ‘test_size* and ‘stratify‘. When ‘group_cols‘ is supplied, the holdout keeps
groups intact; when ‘block_col® is supplied, the holdout uses the last rows in
time order. Defaults to ‘NULL".
train_data A data frame pre-split for model training. If provided, ‘test_data‘ must also be
supplied, and no internal splitting will occur. Defaults to ‘NULL*.
test_data A data frame pre-split for model evaluation. If provided, ‘train_data‘ must also
be supplied, and no internal splitting will occur. Defaults to ‘NULL".
label A string specifying the name of the target variable. For survival analysis, supply
a character vector with the names of the time and status columns.
algorithms A vector of algorithm names to use. Default is "all"” to run all supported algo-
rithms.
task Character string specifying model type selection. Use "auto" to let the function
detect whether the target is for classification, regression, or survival based on
the data. Survival is detected when ‘label is a character vector of length 2 that
matches time and status columns in the data. You may also explicitly set to
"classification", "regression", or "survival".
test_size A numeric value between 0 and 1 indicating the proportion of the data to use for

testing. For grouped holdout, this is applied to groups; for time-ordered holdout,
it selects the final proportion of rows. Default is 0. 2.

resampling_method

A string specifying the resampling method for model evaluation. Defaultis "cv"
(cross-validation) for classification/regression. Other options include "none”,

fastml 13

"boot"”, "repeatedcv”, "grouped_cv”, "blocked_cv", "rolling_origin”,
and "nested_cv". For survival tasks, resampling is supported for parsnip-
compatible engines (e.g., censored/ranger, glmnet). Native survival engines
(flexsurv/rstpm2/custom xgboost) ignore resampling and will error if custom re-
samples are supplied. When the task auto-detects survival and resampling_method
is omitted, it defaults to "none” so native engines continue to run; set it explic-
itly to enable resampling for parsnip survival fits.

folds An integer specifying the number of folds for cross-validation. Default is 10 for
methods containing "cv" and 25 otherwise.

repeats Number of times to repeat cross-validation (only applicable for methods like
"repeatedcv").

group_cols Character vector naming one or more grouping columns used when resampling_method
= "grouped_cv" or when grouped nested cross-validation is desired. All rows
that share the same combination of values remain together in every fold. Columns
must exist in the training data and cannot contain missing values.

block_col Single column name that defines the ordering variable for resampling_method
= "blocked_cv" or "rolling_origin”. Data must already be sorted in ascend-
ing order by this column to avoid leakage from future observations.

block_size Positive integer specifying the block size for "blocked_cv".

initial_window Positive integer giving the number of observations in the initial training window
for "rolling_origin” resampling.

assess_window Positive integer giving the number of observations in each assessment window
for "rolling_origin” resampling.

skip Non-negative integer specifying how many potential rolling windows to skip be-
tween successive resamples when resampling_method = "rolling_origin”.

outer_folds Positive integer giving the number of outer folds to use when resampling_method
= "nested_cv" and no custom resamples object is supplied.

event_class A single string. Either "first" or "second" to specify which level of truth to
consider as the "event". Default is "first".

exclude A character vector specifying the names of the columns to be excluded from the
training process.

recipe A user-defined recipe object for custom preprocessing. If provided, internal
recipe steps (imputation, encoding, scaling) are skipped.

tune_params A named list of tuning ranges for each algorithm and engine pair. Example:
list(rand_forest = list(ranger = list(mtry =c(1, 3)))) will override the
defaults for the ranger engine. Default is NULL.

engine_params A named list of engine-level arguments to pass directly to the underlying model
fitting functions. Use this for fixed settings that should apply whenever an engine
is fitted (for example, list(royston_parmar = list(rstpm2 =1list(link =
"P0"))), list(cox_ph=1ist(survival =1list(ties = "breslow”))),orlist(rand_forest
=list(ranger = list(importance = "impurity"”)))). These arguments are
distinct from tune_params, which define ranges of hyperparameters to explore
during tuning. Default is an empty list.

metric The performance metric to optimize during training.

14

fastml
algorithm_engines
A named list specifying the engine to use for each algorithm.
n_cores An integer specifying the number of CPU cores to use for parallel processing.
Default is 1.
stratify Logical indicating whether to use stratified sampling when splitting the data.

Only applied to random holdout splitting. Default is TRUE for classification and
FALSE for regression.

impute_method Method for handling missing values. Options include:

"medianImpute” Impute missing values using median imputation (recipe-based).

"knnImpute” Impute missing values using k-nearest neighbors (recipe-based).

"bagImpute” Impute missing values using bagging (recipe-based).

"remove” Remove rows with missing values from the data (recipe-based).

"error” Do not perform imputation; if missing values are detected, stop exe-
cution with an error.

NULL Equivalent to "error”. No imputation is performed, and the function will
stop if missing values are present.

All imputation occurs inside the recipe so the same trained preprocessing can be
applied at prediction time. Default is "error”.
encode_categoricals
Logical indicating whether to encode categorical variables. Default is TRUE.
scaling_methods
Vector of scaling methods to apply. Default is c("center”, "scale").

non

balance_method Method to handle class imbalance. One of "none”, "upsample”, or "downsample”.
Applied to the training set for classification tasks. Default is "none”.

resamples Optional rsample object providing custom resampling splits. If supplied, resampling_method,
folds, and repeats are ignored.

summaryFunction
A custom summary function for model evaluation. Default is NULL.

use_default_tuning
Logical. Tuning only runs when resamples are supplied and tuning_strategy
is not "none"”. If TRUE and tune_params is NULL, default grids are used; if
tune_params is provided, those values override/extend defaults. When FALSE
and no custom parameters are given, models are fitted once with default settings.
If no resamples are available or tuning_strategy = "none”, tuning requests
are ignored with a warning. Default is FALSE.

tuning_strategy
A string specifying the tuning strategy. Must be one of "grid”, "bayes”,
or "none”. Default is "grid”. If custom tune_params are provided while
tuning_strategy = "none”, they will be ignored with a warning.

tuning_iterations
Number of iterations for Bayesian tuning. Ignored when tuning_strategy is
not "bayes”. Validation of this argument only occurs for the Bayesian strategy.
Default is 10.

early_stopping Logical indicating whether to use early stopping in Bayesian tuning methods (if
supported). Default is FALSE.

fastml

adaptive

learning_curve
seed

verbose

eval_times

bootstrap_ci

15

Logical indicating whether to use adaptive/racing methods for tuning. Default
is FALSE.

Logical. If TRUE, generate learning curves (performance vs. training size).
An integer value specifying the random seed for reproducibility.

Logical; if TRUE, prints progress messages during the training and evaluation
process.

Optional numeric vector of evaluation horizons for survival models. When
NULL, defaults to the median and 75th percentile of the observed follow-up times
(rounded to the dataset’s time unit).

Logical indicating whether bootstrap confidence intervals should be computed
for performance metrics. Applies to all task types.

bootstrap_samples

bootstrap_seed

Integer giving the number of bootstrap resamples to use when bootstrap_ci =
TRUE. Defaults to 500.

Optional seed passed to the bootstrap procedure used to estimate confidence
intervals.

at_risk_threshold

audit_mode

Details

Numeric value between 0 and 1 used for survival metrics to determine the last
follow-up time (¢,,4,). The maximum time is set to the largest observed time
where at least this proportion of subjects remain at risk.

Logical; if TRUE, enables runtime auditing of custom preprocessing hooks and
records potentially unsafe behaviour (such as global environment access or file
I/O) while flagging the run as potentially unsafe.

Fast Machine Learning Function

Trains and evaluates multiple classification or regression models. The function automatically de-
tects the task based on the target variable type and can perform advanced hyperparameter tuning
using various tuning strategies.

Value

An object of class fastml containing the best model, performance metrics, and other information.

Examples

Example 1: Using the iris dataset for binary classification (excluding 'setosa')

data(iris)

iris <- iris[iris$Species != "setosa”,] # Binary classification
iris$Species <- factor(iris$Species)

Define a custom tuning grid for the ranger engine

tune <- list(

rand_forest = list(
ranger = list(mtry = c(1, 3))

)

16

)

Train models with custom tuning
model <- fastml(
data = iris,
label = "Species”,
algorithms = "rand_forest”,
tune_params = tune,
use_default_tuning = TRUE
)

View model summary
summary (model)

fastml_compute_holdout_results

fastml_compute_holdout_results
Evaluate Models Function

Description

Evaluates the trained models on the test data and computes performance metrics.

Usage

fastml_compute_holdout_results(
models,
train_data,
test_data,
label,
start_col = NULL,
time_col = NULL,
status_col = NULL,
task,
metric = NULL,
event_class,
eval_times = NULL,
bootstrap_ci = TRUE,
bootstrap_samples = 500,
bootstrap_seed = 1234,
at_risk_threshold = 0.1,
precomputed_predictions = NULL,
summaryFunction = NULL

fastml_compute_holdout_results 17

Arguments

models A list of trained model objects.

train_data Preprocessed training data frame.

test_data Preprocessed test data frame.

label Name of the target variable. For survival analysis this should be a character
vector of length two giving the names of the time and status columns.

start_col Optional string. The name of the column specifying the start time in count-
ing process (e.g., ‘(start, stop, event)) survival data. Only used when task =
"survival”.

time_col String. The name of the column specifying the event or censoring time (the
"stop" time in counting process data). Only used when task = "survival”.

status_col String. The name of the column specifying the event status (e.g., 0 for censored,
1 for event). Only used when task = "survival”.

task Type of task: "classification", "regression", or "survival".

metric The performance metric to optimize (e.g., "accuracy", "rmse").

event_class A single string. Either "first" or "second" to specify which level of truth to
consider as the "event".

eval_times Optional numeric vector of evaluation horizons for survival metrics. Passed

through to process_model.

bootstrap_ci Logical indicating whether bootstrap confidence intervals should be computed
for the evaluation metrics.
bootstrap_samples
Number of bootstrap resamples used when bootstrap_ci = TRUE.
bootstrap_seed Optional integer seed for the bootstrap procedure used in metric estimation.
at_risk_threshold

Minimum proportion of subjects that must remain at risk to define ¢,,,,, When

computing survival metrics such as the integrated Brier score.
precomputed_predictions

Optional data frame or nested list of previously generated predictions (per al-

gorithm/engine) to reuse instead of recomputing. This is mainly used when

combining results across engines.

summaryFunction

Optional custom classification metric function passed through to process_model
for holdout evaluation.

Value

A list with two elements:

performance A named list of performance metric tibbles for each model.

predictions A named list of data frames with columns including truth, predictions, and probabili-
ties per model.

18 fastml_normalize_survival_status

fastml_guard_detect_full_analysis
Guarded Resampling Utilities

Description

Internal helpers that enforce the Guarded Resampling Principle by fitting preprocessing pipelines
independently within each resampling split. These functions are not exported.

Usage

fastml_guard_detect_full_analysis(split, total_rows)

Arguments
split An ‘rsample® split object representing a single resample.
total_rows Integer; total number of rows in the original dataset.

fastml_normalize_survival_status

Internal helpers for survival-specific preprocessing

Description

These utilities standardize survival status indicators so that downstream metrics always receive the
conventional coding (0 = censored, 1 = event). The functions are intentionally unexported and are
used across multiple internal modules. Normalize survival status coding to 0/1 representation

Usage

fastml_normalize_survival_status(status_vec, reference_length = NULL)

Arguments

status_vec A vector containing survival status information. May be numeric, logical, factor,
or character.
reference_length

Optional integer specifying the desired length of the returned vector. When

‘status_vec‘ is ‘NULL’, this value controls the length of the output (defaulting
to O when not supplied).

Details

This helper attempts to coerce a status vector into a numeric format where 0 represents censoring
and 1 represents the event indicator. It accepts a variety of common encodings such as 1/2, logical
values, factors, or character labels. When the supplied values deviate from the canonical coding,
the function records that a recode was performed so callers can communicate this to the user (once).

flatten_and_rename_models 19

Value

A list with two elements: ‘status‘, the recoded numeric vector, and ‘recoded’, a logical flag indicat-
ing whether a non-standard encoding was detected.

flatten_and_rename_models
Flatten and Rename Models

Description
Flattens a nested list of models and renames the elements by combining the outer and inner list
names.

Usage

flatten_and_rename_models(models)

Arguments
models A nested list of models. The outer list should have names. If an inner element
is a named list, the names will be combined with the outer name in the format
"outer_name (inner_name)".
Details

The function iterates over each element of the outer list. For each element, if it is a list with names,
the function concatenates the outer list name and the inner names using paste@ and setNames. If
an element is not a list or does not have names, it is included in the result without modification.

Value

A flattened list with each element renamed according to its original outer and inner list names.

get_best_model_idx Get Best Model Indices by Metric and Group

Description
Identifies and returns the indices of rows in a data frame where the specified metric reaches the
overall maximum within groups defined by one or more columns.

Usage

get_best_model_idx(df, metric, group_cols = c("Model”, "Engine"))

20 get_best_model_names

Arguments
df A data frame containing model performance metrics and grouping columns.
metric A character string specifying the name of the metric column in df. The metric
values are converted to numeric for comparison.
group_cols A character vector of column names used for grouping. Defaults to c("Model”,
"Engine").
Details

The function converts the metric values to numeric and creates a combined grouping factor using
the specified group_cols. It then computes the maximum metric value within each group and
determines the overall best metric value across the entire data frame. Finally, it returns the indices
of rows belonging to groups that achieve this overall maximum.

Value

A numeric vector of row indices in df corresponding to groups whose maximum metric equals the
overall best metric value.

get_best_model_names Get Best Model Names

Description

Extracts and returns the best engine names from a named list of model workflows.

Usage

get_best_model_names(models)

Arguments
models A named list where each element corresponds to an algorithm and contains a list
of model workflows. Each workflow should be compatible with tune: :extract_fit_parsnip.
Details

For each algorithm, the function extracts the engine names from the model workflows using tune: :extract_fit_parsnip.
It then chooses "randomForest” if it is available; otherwise, it selects the first non-NA engine. If no
engine names can be extracted for an algorithm, NA_character_ is returned.

Value

A named character vector. The names of the vector correspond to the algorithm names, and the
values represent the chosen best engine name for that algorithm.

get_best_workflows 21

get_best_workflows Get Best Workflows

Description

Extracts the best workflows from a nested list of model workflows based on the provided best model
names.

Usage

get_best_workflows(models, best_model_name)

Arguments

models A nested list of model workflows. Each element should correspond to an algo-
rithm and contain sublists keyed by engine names.

best_model_name
A named character vector where the names represent algorithm names and the
values represent the chosen best engine for each algorithm.

Details

The function iterates over each element in best_model_name and attempts to extract the corre-
sponding workflow from models using the specified engine. If the workflow for an algorithm-
engine pair is not found, a warning is issued and NULL is returned for that entry.

Value

A named list of workflows corresponding to the best engine for each algorithm. Each list element
is named in the format "algorithm (engine)”.

get_default_engine Get Default Engine

Description

Returns the default engine corresponding to the specified algorithm.

Usage

get_default_engine(algo, task = NULL)

22 get_default_params

Arguments
algo A character string specifying the name of the algorithm. The value should match
one of the supported algorithm names.
task Optional task type (e.g., "classification”, "regression”, or "survival”).
Used to determine defaults that depend on the task.
Details

The function uses a switch statement to select the default engine based on the given algorithm. For
survival random forests, the function defaults to "aorsf"”. If the provided algorithm does not have
a defined default engine, the function terminates with an error.

Value

A character string containing the default engine name associated with the provided algorithm.

get_default_params Get Default Parameters for an Algorithm

Description

Returns a list of default tuning parameters for the specified algorithm based on the task type, number
of predictors, and engine.

Usage

get_default_params(algo, task, num_predictors = NULL, engine = NULL)

Arguments

algo A character string specifying the algorithm name. Supported values include:

n on n on

"rand_forest"”, "C5_rules”, "xgboost"”, "lightgbm"”, "logistic_reg"”, "multinom_reg",
"decision_tree"”, "svm_linear”, "svm_rbf", "nearest_neighbor”, "naive_Bayes",
"mlp”, "deep_learning”, "discrim_linear”, "discrim_quad”, "bag_tree",

n n n n n n

"elastic_net"”, "bayes_glm”, "pls”, "linear_reg", "ridge_reg", "lasso_reg",
and "penalized_cox".

task A character string specifying the task type, typically "classification” or
"regression”.

num_predictors An optional numeric value indicating the number of predictors. This value is
used to compute default values for parameters such as mtry. Defaults to NULL.

engine An optional character string specifying the engine to use. If not provided, a
default engine is chosen where applicable.

get_default_tune_params 23

Details

The function employs a switch statement to select and return a list of default parameters tailored
for the given algorithm, task, and engine. The defaults vary by algorithm and, in some cases, by
engine. For example:

» For "rand_forest”, if engine is not provided, it defaults to "ranger”. The parameters such
as mtry, trees, and min_n are computed based on the task and the number of predictors.

e For "C5_rules”, the defaults include trees, min_n, and sample_size.

* For "xgboost” and "lightgbm"”, default values are provided for parameters like tree depth,
learning rate, and sample size.

* For "logistic_reg” and "multinom_reg”, the function returns defaults for regularization
parameters (penalty and mixture) that vary with the specified engine.

* For "decision_tree”, the parameters (such as tree_depth, min_n, and cost_complexity)
are set based on the engine (e.g., "rpart”, "C5.0", "partykit”, "spark").
* Other algorithms, including "svm_linear”, "svm_rbf", "nearest_neighbor”, "naive_Bayes"”,

"mlp"”, "deep_learning”, "elastic_net", "bayes_glm", "pls”, "linear_reg", "ridge_reg",
and "lasso_reg", have their respective default parameter lists.

Value

A list of default parameter settings for the specified algorithm. If the algorithm is not recognized,
the function returns NULL.

get_default_tune_params
Get Default Tuning Parameters

Description

Returns a list of default tuning parameter ranges for a specified algorithm based on the provided
training data, outcome label, and engine.

Usage

get_default_tune_params(algo, train_data, label, engine)

Arguments

algo A character string specifying the algorithm name. Supported values include:
"rand_forest”, "C5_rules”, "xgboost”, "lightgbm”, "logistic_reg”, "multinom_reg",
"decision_tree"”, "svm_linear”, "svm_rbf", "nearest_neighbor”, "naive_Bayes",
"mlp"”, "deep_learning”, "discrim_linear", "discrim_quad”, "bag_tree",

n on n on

"elastic_net”, "bayes_glm", "pls”, "linear_reg", "ridge_reg", and "lasso_reg".

train_data A data frame containing the training data.

24 get_engine_names

label A character string specifying the name of the outcome variable in train_data.
This column is excluded when calculating the number of predictors.

engine A character string specifying the engine to be used for the algorithm. Different
engines may have different tuning parameter ranges.

Details

The function first determines the number of predictors by removing the outcome variable (speci-
fied by label) from train_data. It then uses a switch statement to select a list of default tuning
parameter ranges tailored for the specified algorithm and engine. The tuning ranges have been ad-
justed for efficiency and may include parameters such as mtry, trees, min_n, and others depending
on the algorithm.

Value

A list of tuning parameter ranges for the specified algorithm. If no tuning parameters are defined
for the given algorithm, the function returns NULL.

get_engine_names Get Engine Names from Model Workflows

Description

Extracts and returns a list of unique engine names from a list of model workflows.

Usage

get_engine_names(models)

Arguments
models A list where each element is a list of model workflows. Each workflow is ex-
pected to contain a fitted model that can be processed with tune: :extract_fit_parsnip.
Details

The function applies tune: :extract_fit_parsnip to each model workflow to extract the fitted
model object. It then retrieves the engine name from the model specification (spec$engine). If the
extraction fails, NA_character_ is returned for that workflow. Finally, the function removes any
duplicate engine names using unique.

Value

A list of character vectors. Each vector contains the unique engine names extracted from the corre-
sponding element of models.

get_model_engine_names 25

get_model_engine_names
Get Model Engine Names

Description
Extracts and returns a named vector mapping algorithm names to engine names from a nested list
of model workflows.

Usage

get_model_engine_names(models)

Arguments
models A nested list of model workflows. Each inner list should contain model objects
from which a fitted model can be extracted using tune: :extract_fit_parsnip.
Details

The function iterates over a nested list of model workflows and, for each workflow, attempts to
extract the fitted model object using tune: :extract_fit_parsnip. If successful, it retrieves the
algorithm name from the first element of the class attribute of the model specification and the engine
name from the specification. The results are combined into a named vector.

Value

A named character vector where the names correspond to algorithm names (e.g., "rand_forest”,
"logistic_reg") and the values correspond to the associated engine names (e.g., "ranger”, "glm").

interaction_strength Compute feature interaction strengths for a fastml model

Description

Uses the ‘iml‘ package to quantify the strength of feature interactions.

Usage

interaction_strength(object, ...)
Arguments

object A ‘fastml® object.

Additional arguments passed to ‘iml::Interaction’.

26

Value

An ‘iml::Interaction® object.

Examples
Not run:
data(iris)
iris <- iris[iris$Species != "setosa"”,]
iris$Species <- factor(iris$Species)
model <- fastml(data = iris, label = "Species")

interaction_strength(model)

End(Not run)

plot.fastml

load_model Load Model Function

Description

Loads a trained model object from a file.

Usage
load_model (filepath)

Arguments

filepath A string specifying the file path to load the model from.

Value

An object of class fastml.

plot.fastml Plot Methods for fastml Objects

Description

plot.fastml produces visual diagnostics for a trained fastml object.

Usage

S3 method for class 'fastml'
plot(

X,

algorithm = "best”,

type = c("all”, "bar", "roc"”, "calibration”, "residual”, "learning_curve"),

plot.fastml

Arguments

X

algorithm

type

Details

27

A fastml object (output of fastml()).

Character vector specifying which algorithm(s) to include when generating cer-
tain plots (e.g., ROC curves). Defaults to "best".

Character vector indicating which plot(s) to produce. Options are:
"bar” Bar plot of performance metrics across all models/engines.
"roc” ROC curve(s) for binary classification models.
"calibration” Calibration plot for the best model(s).

"residual” Residual diagnostics for the best model.
"learning_curve"” Learning-curve plot if recorded during training.
"all” Produce all available plots.

Additional arguments (currently unused).

When type = "all”, plot.fastml will produce a bar plot of metrics, ROC curves (classification),
calibration plot, and residual diagnostics (regression). If you specify a subset of types, only those

will be drawn.

Examples

Create a binary classification dataset from iris

data(iris)

iris <- iris[iris$Species != "setosa",]
iris$Species <- factor(iris$Species)

Fit fastml model on binary classification task
model <- fastml(data = iris, label = "Species”, algorithms = c("rand_forest”, "svm_rbf"))

1. Plot all available diagnostics
plot(model, type = "all")

2. Bar plot of performance metrics
plot(model, type = "bar")

3. ROC curves (only for classification models)
plot(model, type = "roc")

4. Calibration plot (requires 'probably' package)
plot(model, type = "calibration”)

5. ROC curves for specific algorithm(s) only

n

plot(model, type = "roc"”, algorithm = "rand_forest")

6. Residual diagnostics (only available for regression tasks)
model <- fastml(data = mtcars, label = "mpg"”, algorithms = c("linear_reg"”, "xgboost"))
plot(model, type = "residual”)

28 predict.fastml

plot_ice Plot ICE curves for a fastml model

Description

Generates Individual Conditional Expectation (ICE) plots for selected features using the ‘pdp‘ pack-
age (ggplot2 engine), and returns both the underlying data and the plot object.

Usage
plot_ice(object, features, ...)
Arguments
object A ‘fastml® object.
features Character vector of feature names to plot.
Additional arguments passed to ‘pdp::partial‘.
Value

A list with two elements: ‘data‘ (the ICE data frame) and ‘plot* (the ggplot object).

Examples

Not run:

data(iris)

iris <- iris[iris$Species != "setosa”, 1]
iris$Species <- factor(iris$Species)

model <- fastml(data = iris, label = "Species”)
plot_ice(model, features = "Sepal.Length")

End(Not run)

predict.fastml Predict method for fastml objects

Description

Generates predictions from a trained ‘fastml‘ object on new data. Supports both single-model
and multi-model workflows, and handles classification and regression tasks with optional post-
processing and verbosity.

predict.fastml

Usage

S3 method for class

predict(
object,
newdata,

29

'fastml'

type = "auto",

model_name =

verbose =

NULL,
FALSE,
postprocess_fn =

NULL,

eval_time = NULL,

Arguments

object

newdata

type

model_name

verbose

postprocess_fn

eval_time

Value

A fitted ‘fastml® object created by the ‘fastml()‘ function.

A data frame or tibble containing new predictor data for which to generate pre-
dictions.

Type of prediction to return. One of ‘"auto"* (default), *"class"*, “"prob"‘, ‘"nu-
meric"‘, “"survival"‘, or ‘"risk"‘. - “"auto"‘: chooses ‘"class"* for classification,
“"numeric"‘ for regression, and ‘"survival"‘ for survival. - *"prob"‘: returns class

o "ne,

probabilities (only for classification). - ‘"class"‘: returns predicted class labels.
- “"numeric"‘: returns predicted numeric values (for regression). - ‘"survival"‘:
returns survival probabilities at the supplied ‘eval_time* horizons (for survival
tasks). - “"risk"‘: returns risk scores on the linear predictor scale (for survival

tasks).

(Optional) Name of a specific model to use when ‘object$best_model* contains
multiple models.

Logical; if “TRUE, prints progress messages showing which models are used
during prediction.

(Optional) A function to apply to the final predictions (e.g., inverse transforms,
thresholding).

Optional numeric vector of time points (on the original time scale) at which
to return survival probabilities when ‘type = "survival"‘. Required for survival
tasks when requesting survival curves.

Additional arguments (currently unused).

A vector of predictions, or a named list of predictions (if multiple models are used). If ‘postpro-
cess_fn‘ is supplied, its output will be returned instead.

30 process_model

predict_survival Predict survival probabilities from a survival model

Description

Predict survival probabilities from a survival model

Usage

predict_survival(fit, newdata, times, ...)

S3 method for class 'fastml_native_survival'
predict_survival(fit, newdata, times, ...)

S3 method for class 'workflow'
predict_survival(fit, newdata, times, ...)

Default S3 method:

predict_survival(fit, newdata, times, ...)
Arguments
fit A fitted survival model.
newdata A data frame of predictors for which to compute survival curves.
times Numeric vector of evaluation times.

Additional arguments passed to methods.

Value

A numeric matrix with one row per observation and one column per time.

process_model Process and Evaluate a Model Workflow

Description

This function processes a fitted model or a tuning result, finalizes the model if tuning was used,
makes predictions on the test set, and computes performance metrics depending on the task type
(classification or regression). It supports binary and multiclass classification, and handles proba-
bilistic outputs when supported by the modeling engine.

process_model 31

Usage

process_model (
model_obj,
model_id,
task,
test_data,
label,
event_class,
start_col = NULL,
time_col = NULL,
status_col = NULL,
engine,
train_data,
metric,
eval_times_user = NULL,
bootstrap_ci = TRUE,
bootstrap_samples = 500,
bootstrap_seed = 1234,
at_risk_threshold = 0.1,
metrics = NULL,
summaryFunction = NULL,
precomputed_predictions = NULL

event_class

)
Arguments
model_obj A fitted model or a tuning result (‘tune_results‘ object).
model_id A character identifier for the model (used in warnings).
task Type of task, either ‘"classification"*, ‘"regression"*, or ‘"survival"‘.
test_data A data frame containing the test data.
label The name of the outcome variable (as a character string).

For binary classification, specifies which class is considered the positive class:
“"first"‘ or “"second"*.

start_col Optional string. The name of the column specifying the start time in count-
ing process (e.g., ‘(start, stop, event)) survival data. Only used when task =
"survival”.

time_col String. The name of the column specifying the event or censoring time (the
"stop" time in counting process data). Only used when task = "survival”.

status_col String. The name of the column specifying the event status (e.g., 0 for censored,
1 for event). Only used when task = "survival”.

engine A character string indicating the model engine (e.g., ‘"xgboost"‘, "randomFor-
est"‘). Used to determine if class probabilities are supported. If ‘NULL®, prob-
abilities are skipped.

train_data A data frame containing the training data, required to refit finalized workflows.

32 process_model

ne n ne n "e

metric The name of the metric (e.g., ‘"roc_auc", ‘"accuracy"‘, ‘"rmse") used for se-
lecting the best tuning result.

eval_times_user
Optional numeric vector of time horizons at which to evaluate survival Brier
scores. When ‘NULL', sensible defaults based on the observed follow-up dis-
tribution are used.

bootstrap_ci Logical; if ‘TRUE®, bootstrap confidence intervals are estimated for perfor-
mance metrics.

bootstrap_samples
Integer giving the number of bootstrap resamples used when computing confi-
dence intervals.

bootstrap_seed Optional integer seed applied before bootstrap resampling to make interval esti-
mates reproducible.

at_risk_threshold
Numeric value between 0 and 1 defining the minimum proportion of subjects
required to remain at risk when determining the maximum follow-up time used
in survival metrics.

metrics Optional yardstick metric set (e.g., ‘yardstick::metric_set(yardstick::rmse)*) used
for computing regression performance.

summaryFunction
Optional custom classification metric function passed to ‘yardstick::new_class_metric()*
and included in holdout evaluation.

precomputed_predictions
Optional data frame or nested list of previously generated predictions (per algo-
rithm/engine) to reuse instead of re-predicting; primarily used when combining
results across engines.

Details

- If the input ‘model_obj‘ is a ‘tune_results‘ object, the function finalizes the model using the best
hyperparameters according to the specified ‘metric‘, and refits the model on the full training data.

- For classification tasks, performance metrics include accuracy, kappa, sensitivity, specificity, pre-
cision, F1-score, and ROC AUC (if probabilities are available).

- For regression tasks, RMSE, R-squared, and MAE are returned.

- For models with missing prediction lengths, a helpful imputation error is thrown to guide data
preprocessing.

Value
A list with two elements:

performance A tibble with computed performance metrics.

predictions A tibble with predicted values and corresponding truth values, and probabilities (if
applicable).

sanitize 33

sanitize Clean Column Names or Character Vectors by Removing Special
Characters

Description
This function can operate on either a data frame or a character vector:

* Data frame: Detects columns whose names contain any character that is not a letter, number,
or underscore, removes colons, replaces slashes with underscores, and spaces with under-
scores.

* Character vector: Applies the same cleaning rules to every element of the vector.

Usage
sanitize(x)
Arguments
X A data frame or character vector to be cleaned.
Value
e If x is a data frame: returns a data frame with cleaned column names.
 If x is a character vector: returns a character vector with cleaned elements.
save.fastml Save Model Function
Description

Saves the trained model object to a file.

Usage

save.fastml(model, filepath)

Arguments

model An object of class fastml.

filepath A string specifying the file path to save the model.
Value

No return value, called for its side effect of saving the model object to a file.

34

summary.fastml

summary . fastml

Summary Function for fastml (Using yardstick for ROC Curves)

Description

Summarizes the results of machine learning models trained using the ‘fastml‘ package. Depending
on the task type (classification or regression), it provides customized output such as performance
metrics, best hyperparameter settings, and confusion matrices. It is designed to be informative and
readable, helping users quickly interpret model results.

Usage
S3 method for class 'fastml'
summary (
object,
algorithm = "best",
type = c("all”, "metrics"”, "params”, "conf_mat"),

sort_metric

NULL,

show_ci = FALSE,

brier_times

Arguments

object
algorithm
type

sort_metric

show_ci

brier_times

Details

NULL,

An object of class fastml.
A vector of algorithm names to display summary. Default is "best”.

Character vector indicating which outputs to produce. Options are "all” (all
available outputs), "metrics” (performance metrics), "params” (best hyperpa-
rameters), and "conf_mat" (confusion matrix). Default is "all".

The metric to sort by. Default uses optimized metric.

Logical indicating whether to display 95% confidence intervals for performance
metrics in survival models. Defaults to FALSE.

Optional numeric or character vector that selects which time-specific Brier scores
to display for survival models. When NULL (the default), time-specific Brier
scores are omitted from the summary.

Additional arguments.

For classification tasks, the summary includes metrics such as Accuracy, F1 Score, Kappa, Pre-
cision, ROC AUC, Sensitivity, and Specificity. A confusion matrix is also provided for the best
model(s). For regression tasks, the summary reports RMSE, R-squared, and MAE.

Users can control the type of output with the ‘type‘ argument: ‘metrics‘ displays model performance
metrics. ‘params‘ shows the best hyperparameter settings. ‘conf_mat‘ prints confusion matrices
(only for classification). ‘all‘ includes all of the above.

surrogate_tree 35

If multiple algorithms are trained, the summary highlights the best model based on the optimized
metric. For survival tasks, Harrell’s C-index, Uno’s C-index, the integrated Brier score, and (when
available) the RMST difference are shown by default. Specific Brier(t) horizons can be requested
through the brier_times argument.

Value

Prints summary of fastml models.

surrogate_tree Fit a surrogate decision tree for a fastml model

Description

Builds an interpretable tree approximating the behaviour of the underlying model using the ‘iml*
package.

Usage
surrogate_tree(object, maxdepth = 3, ...)
Arguments
object A ‘fastml® object.
maxdepth Maximum depth of the surrogate tree. Default 3.
Additional arguments passed to ‘iml::TreeSurrogate*.
Value

An ‘iml:: TreeSurrogate‘ object.

Examples
Not run:
data(iris)
iris <- iris[iris$Species != "setosa”, 1]
iris$Species <- factor(iris$Species)
model <- fastml(data = iris, label = "Species”)

surrogate_tree(model)

End(Not run)

36

train_models

train_models

Train Specified Machine Learning Algorithms on the Training Data

Description

Trains specified machine learning algorithms on the preprocessed training data.

Usage

train_models(
train_data,
label,
task,
algorithms,
resampling_method,
folds,
repeats,
group_cols = NULL,
block_col = NULL,
block_size = NULL,
initial_window = NULL,
assess_window = NULL,
skip = 0,
outer_folds = NULL,
resamples = NULL,
tune_params,
engine_params = list(),
metric,
summaryFunction = NULL,
seed = 123,
recipe,

use_default_tuning = FALSE,
tuning_strategy = "grid",

tuning_iterations = 10,
early_stopping = FALSE,
adaptive = FALSE,

algorithm_engines = NULL,

event_class = "first”,
start_col = NULL,
time_col = NULL,
status_col = NULL,
eval_times = NULL,

at_risk_threshold = 0.1,

audit_env = NULL

train_models

Arguments

train_data
label

task
algorithms

37

Preprocessed training data frame.
Name of the target variable.

Type of task: "classification", "regression", or "survival".
Vector of algorithm names to train.

resampling_method

folds
repeats

group_cols

block_col
block_size
initial_window
assess_window
skip
outer_folds

resamples

tune_params

engine_params

metric

summaryFunction

seed

recipe

Resampling method for cross-validation. Supported options include standard

n n on

cv”, "repeatedcv”, and "boot"”, as well as grouped resampling via "grouped_cv”,
blocked/rolling schemes via "blocked_cv"” or "rolling_origin”, nested re-
sampling via "nested_cv", and the passthrough "none” option.

Number of folds for cross-validation.

Number of times to repeat cross-validation (only applicable for methods like
"repeatedcv").

Optional character vector of grouping columns used with ‘resampling_method
= "grouped_cv"*. For classification problems the outcome column is used to re-
quest grouped stratification where supported; if class imbalance prevents strati-
fication, grouped folds are still created and a warning is emitted to document the
limitation.

Optional name of the ordering column used with blocked or rolling resampling.
Optional integer specifying the block size for ‘resampling_method = "blocked_cv"‘.
Optional integer specifying the initial window size for rolling resampling.
Optional integer specifying the assessment window size for rolling resampling.
Optional integer number of resamples to skip between rolling resamples.

Optional integer specifying the number of outer folds for ‘resampling_method

ne

= "nested_cv"‘.

Optional rsample object. If provided, custom resampling splits will be used
instead of those created internally.

A named list of tuning ranges. For each algorithm, supply a list of engine-
specific parameter values, e.g. list(rand_forest = list(ranger = list(mtry
=c(1,3)))).

A named list of fixed engine-level arguments passed directly to the model fitting
call for each algorithm/engine combination. Use this to control options like ties
= "breslow" for Cox models or importance = "impurity"” for ranger. Unlike
tune_params, these values are not tuned over a grid.

The performance metric to optimize.

A custom summary function for model evaluation. Default is NULL.
An integer value specifying the random seed for reproducibility.

A recipe object for preprocessing.

use_default_tuning

Logical; if TRUE and tune_params is NULL, tuning is performed using default
grids. Tuning also occurs when custom tune_params are supplied. When FALSE
and no custom parameters are given, the model is fitted once with default set-
tings.

38

train_models

tuning_strategy
A string specifying the tuning strategy. Must be one of "grid”, "bayes”, or
"none”. Adaptive methods may be used with "grid”. If "none" is selected, the
workflow is fitted directly without tuning. If custom tune_params are supplied
with tuning_strategy = "none”, they will be ignored with a warning.
tuning_iterations
Number of iterations for Bayesian tuning. Ignored when tuning_strategy is
not "bayes”; validation occurs only for the Bayesian strategy.

early_stopping Logical for early stopping in Bayesian tuning.
adaptive Logical indicating whether to use adaptive/racing methods.

algorithm_engines
A named list specifying the engine to use for each algorithm.

event_class Character string identifying the positive class when computing classification
metrics ("first" or "second").

start_col Optional name of the survival start time column passed through to downstream
evaluation helpers.

time_col Optional name of the survival stop time column.

status_col Optional name of the survival status/event column.

eval_times Optional numeric vector of time horizons for survival metrics.

at_risk_threshold
Numeric cutoff used to determine the evaluation window for survival metrics
within guarded resampling.

audit_env Internal environment that tracks security audit findings when custom prepro-
cessing hooks are executed. Typically supplied by fastml() and should be left
as NULL when calling train_models() directly.

Value

A list of trained model objects.

Index

availableMethods, 3
counterfactual_explain, 4

explain_ale, 5
explain_dalex, 5
explain_lime, 6

fastexplain, 7

fastexplore, 9

fastml, 11, 27
fastml_compute_holdout_results, 16
fastml_guard_detect_full_analysis, 18
fastml_normalize_survival_status, 18
flatten_and_rename_models, 19

get_best_model_idx, 19
get_best_model_names, 20
get_best_workflows, 21
get_default_engine, 21
get_default_params, 22
get_default_tune_params, 23
get_engine_names, 24
get_model_engine_names, 25

interaction_strength, 25
load_model, 26
match.arg, 3

plot.fastml, 26
plot_ice, 28
predict.fastml, 28
predict_survival, 30
process_model, 30

sanitize, 33
save.fastml, 33
summary.fastml, 34
surrogate_tree, 35

train_models, 36

39

	availableMethods
	counterfactual_explain
	explain_ale
	explain_dalex
	explain_lime
	fastexplain
	fastexplore
	fastml
	fastml_compute_holdout_results
	fastml_guard_detect_full_analysis
	fastml_normalize_survival_status
	flatten_and_rename_models
	get_best_model_idx
	get_best_model_names
	get_best_workflows
	get_default_engine
	get_default_params
	get_default_tune_params
	get_engine_names
	get_model_engine_names
	interaction_strength
	load_model
	plot.fastml
	plot_ice
	predict.fastml
	predict_survival
	process_model
	sanitize
	save.fastml
	summary.fastml
	surrogate_tree
	train_models
	Index

