
Package ‘futile.logger’
December 29, 2025

Type Package

Title A Logging Utility for R

Version 1.4.9

Date 2025-12-22

Maintainer Brian Lee Yung Rowe <r@zatonovo.com>

Depends R (>= 3.0.0)

Imports utils, lambda.r (>= 1.1.0), futile.options

Suggests testit, jsonlite, httr, crayon, rsyslog, glue

Description Provides a simple yet powerful logging utility. Based loosely on
log4j, futile.logger takes advantage of R idioms to make logging a
convenient and easy to use replacement for cat and print statements.

License LGPL-3

LazyLoad yes

NeedsCompilation no

ByteCompile yes

Collate 'options.R' 'appender.R' 'constants.R' 'layout.R' 'logger.R'
'scat.R' 'util.R' 'futile.logger-package.R'

RoxygenNote 7.1.2

URL https://github.com/zatonovo/futile.logger

Author Brian Lee Yung Rowe [aut, cre]

Repository CRAN

Date/Publication 2025-12-29 08:50:01 UTC

Contents
futile.logger-package . 2
flog.appender . 4
flog.carp . 6
flog.layout . 7

1

https://github.com/zatonovo/futile.logger

2 futile.logger-package

flog.logger . 9
flog.remove . 11
flog.threshold . 12
ftry . 13
logger.options . 14
prepare_arg . 14
scat . 15

Index 16

futile.logger-package A Logging Utility for R

Description

This package implements a logging system inspired by log4j. The basic idea of layouts, appenders,
and loggers is faithful to log4j, while the implementation and idiom is all R. This means that support
for hierarchical loggers, custom appenders, custom layouts is coupled with a simple and intuitive
functional syntax.

Details

Package: futile.logger
Type: Package
Version: 1.4.9
Date: 2025-12-22
License: LGPL-3
LazyLoad: yes

The latest version of futile.logger introduces zero-configuration semantics out of the box. This
means that you can use the default configuration as is. It is also easy to interactively change the
configuration of the ROOT logger, as well as create new loggers. Since loggers form a hierarchy
based on their name, the ROOT logger is the starting point of the hierarchy and always exists. By
default the ROOT logger is defined with a simple layout, printing to the console, with an INFO
threshold. This means that writing to any logger with a threshold of INFO or higher will write to
the console.

All of the logging functions take a format string so it is easy to add arbitrary values to log messages.

> flog.info("This song is just %s words %s", 7, "long")

Thresholds range from most verbose to least verbose: TRACE, DEBUG, INFO, WARN, ERROR,
FATAL. You can easily change the threshold of the ROOT logger by calling > flog.threshold(TRACE)
which changes will print all log messages from every package. To suppress most logging by default
but turn on all debugging for a logger ’my.logger’, you would execute

> flog.threshold(ERROR)
> flog.threshold(TRACE, name=’my.logger’)

futile.logger-package 3

Any arbitrary logger can be defined simply by specifying it in any futile.logger write operation
(futile.threshold, futile.appender, futile.layout). If the logger hasn’t been defined, then it will be
defined dynamically. Any unspecified options will be copied from the parent logger.

When writing log messages, futile.logger will search the hierarchy based on the logger name. In
our example, if ’my.logger’ hasn’t been defined then futile.logger will look for a logger named ’my’
and finally the ROOT logger.

Functions calling futile.logger from a package are automatically assigned a logger that has the name
of the package. Suppose we have log messages in a package called ’my.package’. Then any function
that calls futile.logger from within the package will automatically be assigned a default logger of
’my.package’ instead of ROOT. This means that it is easy to change the log setting of any package
that uses futile.logger for logging by just updating the logger for the given package. For instance
suppose you want to output log message for my.package to a file instead.

> flog.appender(appender.file(’my.package.log’), name=’my.package’)

Now all log statements in the package my.package will be written to a file instead of the console.
All other log messages will continue to be written to the console.

Appenders do the actual work of writing log messages to a writeable target, whether that is a con-
sole, a file, a URL, database, etc. When creating an appender, the implementation-specific options
are passed to the appender at instantiation. The package defines two appender generator functions:

appender.file Write to a file

appender.console Write to the console

Each of these functions returns the actual appender function, so be sure to actually call the function!

Layouts are responsible for formatting messages. This operation usually consists of adding the
log level, a timestamp, plus some pretty-printing to make the log messages easy on the eyes. The
package supplies several layouts:

layout.simple Writes messages with a default format

layout.simple.parallel Writes messages with a default format with PID

layout.json Generates messages in a JSON format

layout.format Define your own format

layout.tracearg Print a variable name along with its value

Author(s)

Brian Lee Yung Rowe <r@zatonovo.com>

See Also

flog.logger, flog.threshold, flog.layout, flog.appender

4 flog.appender

Examples

flog.debug("This %s print", "won't")
flog.warn("This %s print", "will")

flog.info("This inherits from the ROOT logger", name='logger.a')
flog.threshold(DEBUG, name='logger.a')
flog.debug("logger.a has now been set to DEBUG", name='logger.a')
flog.debug("But the ROOT logger is still at INFO (so this won't print)")

Not run:
flog.appender(appender.file("other.log"), name='logger.b')
flog.info("This writes to a %s", "file", name='logger.b')

End(Not run)

flog.appender Manage appenders for loggers

Description

Provides functions for adding and removing appenders.

Arguments

... Used internally by lambda.r

Usage

Get the appender for the given logger
flog.appender(name) %::% character : Function
flog.appender(name=’ROOT’)

Set the appender for the given logger
flog.appender(fn, name=’ROOT’)

Print log messages to the console
appender.console()

Write log messages to a file
appender.file(file)

Write log messages to a dynamically-named file
appender.file2(format)

Write log messages to console and a file
appender.tee(file)

Write log messages to a Graylog2 HTTP GELF endpoint
appender.graylog(server, port)

Write log message to syslog. Arguments are passed on to open_syslog.
appender.syslog(identifier, ...)

flog.appender 5

Special meta appender that prints only when the internal counter mod n = 0
appender.modulo(n, appender=appender.console())

Details

Appenders do the actual work of writing log messages to some target. To use an appender in a
logger, you must register it to a given logger. Use flog.appender to both access and set appenders.

The ROOT logger by default uses appender.console.

appender.console is a function that writes to the console. No additional arguments are necessary
when registering the appender via flog.appender.

appender.file writes to a file, so you must pass an additional file argument to the function.
To change the file name, just call flog.appender(appender.file(file)) again with a new file
name.

appender.file2 is similar, but the filename is dynamically determined at runtime. It may include
most of the same tokens as layout.format (all except "~m", the message itself). This allows, for
instance, having separate logfiles for each log level.

To use your own appender create a function that takes a single argument, which represents the log
message. You need to pass a function reference to flog.appender.

appender.tee writes to both the console and file.

appender.graylog writes to a Graylog2 HTTP GELF endpoint.

appender.syslog writes to the POSIX system logger.

appender.modulo is a meta appender. It calls appender every n times.

Value

When getting the appender, flog.appender returns the appender function. When setting an appen-
der, flog.appender has no return value.

Author(s)

Brian Lee Yung Rowe

See Also

flog.logger flog.layout

Examples

Not run:
flog.appender(appender.console(), name='my.logger')

Set an appender to the logger named 'my.package'. Any log operations from
this package will now use this appender.
flog.appender(appender.file('my.package.out'), 'my.package')

Set an appender to a file named using the message level and calling function.
Also tee the messages to the console.

6 flog.carp

flog.appender(appender.file2('~l-~f.log', console = TRUE))

End(Not run)

flog.carp Always return the log message

Description

Indicate whether the logger will always return the log message despite the threshold.

Arguments

carp logical Whether to carp output or not

name character The name of the logger

Details

This is a special option to allow the return value of the flog.* logging functions to return the gener-
ated log message even if the log level does not exceed the threshold. Note that this minorly impacts
performance when enabled. This functionality is separate from the appender, which is still bound
to the value of the logger threshold.

Usage

Indicate whether the given logger should carp
flog.carp(name=ROOT)

Set whether the given logger should carp
flog.carp(carp, name=ROOT)

Author(s)

Brian Lee Yung Rowe

Examples

flog.carp(TRUE)
x <- flog.debug("Returns this message but won't print")
flog.carp(FALSE)
y <- flog.debug("Returns nothing and prints nothing")

flog.layout 7

flog.layout Manage layouts within the ’futile.logger’ sub-system

Description

Provides functions for managing layouts. Typically ’flog.layout’ is only used when manually creat-
ing a logging configuration.

Arguments

... Used internally by lambda.r

Usage

Get the layout function for the given logger
flog.layout(name) %::% character : Function
flog.layout(name=’ROOT’)

Set the layout function for the given logger
flog.layout(fn, name=’ROOT’)

Decorate log messages with a standard format
layout.simple(level, msg, ...)

Decorate log messages with a standard format colored by log level
layout.colored(level, msg, ...)

Decorate log messages with a standard format using glue instead of sprintf
layout.glue(level, msg, ...)

Decorate log messages with a standard format and a pid
layout.simple.parallel(level, msg, ...)

Generate log messages as JSON
layout.json(level, msg, ...)

Decorate log messages using a custom format
layout.format(format, datetime.fmt="

Show the value of a single variable layout.tracearg(level, msg, ...)

Generate log messages in a Graylog2 HTTP GELF accetable format layout.graylog(common.fields)

Details

Layouts are responsible for formatting messages so they are human-readable. Similar to an ap-
pender, a layout is assigned to a logger by calling flog.layout. The flog.layout function is
used internally to get the registered layout function. It is kept visible so user-level introspection is
possible.

layout.simple is a pre-defined layout function that prints messages in the following format:
LEVEL [timestamp] message

This is the default layout for the ROOT logger.

8 flog.layout

layout.format allows you to specify the format string to use in printing a message. The following
tokens are available.

~l Log level

~t Timestamp

~n Namespace

~f The calling function

~m The message

~p The process PID

~i Logger name

layout.json converts the message and any additional objects provided to a JSON structure. E.g.:

flog.info("Hello, world", cat=’asdf’)

yields something like

{"level":"INFO","timestamp":"2015-03-06 19:16:02 EST","message":"Hello, world","func":"(shell)","cat":["asdf"]}

layout.tracearg is a special layout that takes a variable and prints its name and contents.

layout.graylog is a special layout for use with the appender.graylog to generate json acceptable
to a Graylog2 HTTP GELF endpoint. Standard fields to be included with every message can be
included by setting the common.fields to a list of properties. E.g.:

flog.layout(layout.graylog(common.fields = list(host_ip = "10.10.11.23", env = "production")))

Author(s)

Brian Lee Yung Rowe

See Also

flog.logger flog.appender

Examples

Set the layout for 'my.package'
flog.layout(layout.simple, name='my.package')

Update the ROOT logger to use a custom layout
layout <- layout.format('[~l] [~t] [~n.~f] ~m')
flog.layout(layout)

Create a custom logger to trace variables
flog.layout(layout.tracearg, name='tracer')
x <- 5
flog.info(x, name='tracer')

flog.logger 9

flog.logger Manage loggers

Description

Provides functions for writing log messages and managing loggers. Typically only the flog.[trace|debug|info|warn|error|fatal]
functions need to be used in conjunction with flog.threshold to interactively change the log level.

Arguments

msg The message to log
name The logger name to use
capture Capture print output of variables instead of interpolate
logger The logger to use. If NULL (the default), it is looked up based on name. Provide

logger explicitely if the speed of the evaluation of log level is of concern (e.g.,
a flog.trace call in your function which has to be run many times).

... Optional arguments to populate the format string
expr An expression to evaluate
finally An optional expression to evaluate at the end

Usage

Conditionally print a log statement at TRACE log level flog.trace(msg, ..., name=flog.namespace(),
logger=NULL, capture=FALSE)

Conditionally print a log statement at DEBUG log level flog.debug(msg, ..., name=flog.namespace(),
logger=NULL, capture=FALSE)

Conditionally print a log statement at INFO log level flog.info(msg, ..., name=flog.namespace(),
logger=NULL, capture=FALSE)

Conditionally print a log statement at WARN log level flog.warn(msg, ..., name=flog.namespace(),
logger=NULL, capture=FALSE)

Conditionally print a log statement at ERROR log level flog.error(msg, ..., name=flog.namespace(),
logger=NULL, capture=FALSE)

Print a log statement at FATAL log level flog.fatal(msg, ..., name=flog.namespace(), logger=NULL,
capture=FALSE)

Execute an expression and capture any warnings or errors ftry(expr, error=stop, silent=FALSE,
finally=NULL, details=”)

Additional Usage

These functions generally do not need to be called by an end user.

Get the ROOT logger flog.logger()

Get the logger with the specified name flog.logger(name)

Set options for the given logger flog.logger(name, threshold=NULL, appender=NULL, layout=NULL,
carp=NULL)

10 flog.logger

Details

These functions represent the high level interface to futile.logger.

The primary use case for futile.logger is to write out log messages. There are log writers associated
with all the predefined log levels: TRACE, DEBUG, INFO, WARN, ERROR, FATAL. Log mes-
sages will only be written if the log level is equal to or more urgent than the current threshold. By
default the ROOT logger is set to INFO.

> flog.debug("This won’t print") > flog.info("But this %s", ’will’) > flog.warn("As will %s", ’this’)

Typically, the built in log level constants are used in the call, which conform to the log4j levels
(from least severe to most severe): TRACE, DEBUG, INFO, WARN, ERROR, FATAL. It is not a
strict requirement to use these constants (any numeric value will work), though most users should
find this level of granularity sufficient.

Loggers are hierarchical in the sense that any requested logger that is undefined will fall back to
its most immediate defined parent logger. The absolute parent is ROOT, which is guaranteed to be
defined for the system and cannot be deleted. This means that you can specify a new logger directly.

> flog.info("This will fall back to ’my’, then ’ROOT’", name=’my.logger’)

You can also change the threshold or any other setting associated with a logger. This will create an
explicit logger where any unspecified options are copied from the parent logger.

> flog.appender(appender.file("foo.log"), name=’my’) > flog.threshold(ERROR, name=’my.logger’)
> flog.info("This won’t print", name=’my.logger’) > flog.error("This

If you have a function which gets called many times, it is a good strategy to pass the logger directly
instead of its name.

Instead of this: > simulation_fun <- function(i) { > flog.trace("We are in loop > i > }

... you can do this:: > my_logger <- flog.logger("my.logger") > simulation_fun2 <- function(i) { >
flog.trace("We are in loop > i > }

> system.time(for (i in 1:1000) simulation_fun(i)) > system.time(for (i in 1:1000) simulation_fun2(i))

If you define a logger that you later want to remove, use flog.remove.

The option ’capture’ allows you to print out more complicated data structures without a lot of
ceremony. This variant doesn’t accept format strings and instead appends the value to the next line
of output. Consider

> m <- matrix(rnorm(12), nrow=3)
> flog.info("Matrix:",m, capture=TRUE)

which preserves the formatting, whereas using capture=FALSE will have a cluttered output due to
recycling.

Author(s)

Brian Lee Yung Rowe

See Also

flog.threshold flog.remove flog.carp flog.appender flog.layout

flog.remove 11

Examples

flog.threshold(DEBUG)
flog.debug("This debug message will print")

flog.threshold(WARN)
flog.debug("This one won't")

m <- matrix(rnorm(12), nrow=3)
flog.info("Matrix:",m, capture=TRUE)

ftry(log(-1))

Not run:
s <- c('FCX','AAPL','JPM','AMZN')
p <- TawnyPortfolio(s)

flog.threshold(TRACE,'tawny')
ws <- optimizePortfolio(p, RandomMatrixDenoiser())
z <- getIndexComposition()

flog.threshold(WARN,'tawny')
ws <- optimizePortfolio(p, RandomMatrixDenoiser())
z <- getIndexComposition()

End(Not run)

Not run:
flog.appender(appender.modulo(1000), name='counter')
lapply(1:10000, function(i) flog.info("value is %s",i, name='counter'))

End(Not run)

flog.remove Remove a logger

Description

In the event that you no longer wish to have a logger registered, use this function to remove it. Then
any references to this logger will inherit the next available logger in the hierarchy.

Arguments

name The logger name to use

Usage

Remove a logger
flog.remove(name)

12 flog.threshold

Author(s)

Brian Lee Yung Rowe

Examples

flog.threshold(ERROR, name='my.logger')
flog.info("Won't print", name='my.logger')
flog.remove('my.logger')
flog.info("Will print", name='my.logger')

flog.threshold Get and set the threshold for a logger

Description

The threshold affects the visibility of a given logger. When a log statement is called, e.g. flog.debug('foo'),
futile.logger compares the threshold of the logger with the level implied in the log command (in this
case DEBUG). If the log level is at or higher in priority than the logger threshold, a message will
print. Otherwise the command will silently return.

Arguments

threshold integer The new threshold for the given logger

name character The name of the logger

Usage

Get the threshold for the given logger
flog.threshold(name) %::% character : character
flog.threshold(name=ROOT)

Set the threshold for the given logger
flog.threshold(threshold, name=ROOT)

Author(s)

Brian Lee Yung Rowe

Examples

flog.threshold(ERROR)
flog.info("Won't print")
flog.threshold(INFO)
flog.info("Will print")

ftry 13

ftry Wrap a try block in futile.logger

Description

This function integrates futile.logger with the error and warning system so problems can be caught
both in the standard R warning system, while also being emitted via futile.logger.

Usage

ftry(expr, error = stop, finally = NULL, silent = FALSE, details = "")

Arguments

expr The expression to evaluate in a try block

error An error handler

finally Pass-through to tryCatch finally

silent Boolean - should errors be rethrown? The same as the silent option on ‘try‘. If a
custom error handler is being used that takes control over this option. Note you
should test the return value if you are dependent on it.

details An extra string to print when there’s a warning message

Author(s)

Brian Lee Yung Rowe

Examples

Not run:
ftry(log("a")) # Logs the warning (but the warning still bubbles)

x <- 'a'
y <- 2 # Some ID associated with x value
ftry(log("a"), details=sprintf("y = %s",y))

ftry(log(-1)) # Logs the error and rethrows it

End(Not run)
ftry(log(-1),silent=TRUE) # logs the error and silently continues

14 prepare_arg

logger.options Constants for ’futile.logger’

Description

Log level constants and the logger options.

Usage

logger.options(..., simplify = FALSE, update = list())

Arguments

... TODO

simplify TODO

update TODO

Details

The logging configuration is managed by ’logger.options’, a function generated by OptionsManager
within ’futile.options’.

Author(s)

Brian Lee Yung Rowe

See Also

futile.options

prepare_arg Provide basic parsing for layout string

Description

Return name of argument if arg is empty. Otherwise return the value.

Usage

prepare_arg(x)

Arguments

x The argument to prepare

scat 15

scat Print formatted messages

Description

A replacement for cat that has built-in sprintf formatting

Usage

scat(format, ..., use.newline = TRUE)

Arguments

format A format string passed to sprintf

... Arguments to pass to sprintf for dereferencing

use.newline Whether to append a new line at the end

Details

Like cat but you can use format strings.

Value

A formatted string printed to the console

Author(s)

Brian Lee Yung Rowe

Examples

apply(array(2:5),1, function(x) scat('This has happened %s times', x))

Index

∗ attribute
futile.logger-package, 2

∗ data
flog.appender, 4
flog.carp, 6
flog.layout, 7
flog.logger, 9
flog.remove, 11
flog.threshold, 12
ftry, 13
logger.options, 14
scat, 15

∗ logic
futile.logger-package, 2

∗ package
futile.logger-package, 2

appender.console (flog.appender), 4
appender.file (flog.appender), 4
appender.file2 (flog.appender), 4
appender.graylog (flog.appender), 4
appender.modulo (flog.appender), 4
appender.syslog (flog.appender), 4
appender.tee (flog.appender), 4

DEBUG (logger.options), 14

ERROR (logger.options), 14

FATAL (logger.options), 14
flog.appender, 3, 4, 8, 10
flog.carp, 6, 10
flog.debug (flog.logger), 9
flog.error (flog.logger), 9
flog.fatal (flog.logger), 9
flog.info (flog.logger), 9
flog.layout, 3, 5, 7, 10
flog.logger, 3, 5, 8, 9
flog.namespace (futile.logger-package),

2

flog.remove, 10, 11
flog.threshold, 3, 10, 12
flog.trace (flog.logger), 9
flog.warn (flog.logger), 9
ftry, 13
futile.logger (futile.logger-package), 2
futile.logger-package, 2

INFO (logger.options), 14

layout.colored (flog.layout), 7
layout.format (flog.layout), 7
layout.glue (flog.layout), 7
layout.graylog (flog.layout), 7
layout.json (flog.layout), 7
layout.simple (flog.layout), 7
layout.tracearg (flog.layout), 7
logger.options, 14

open_syslog, 4

prepare_arg, 14

scat, 15

TRACE (logger.options), 14

WARN (logger.options), 14

16

	futile.logger-package
	flog.appender
	flog.carp
	flog.layout
	flog.logger
	flog.remove
	flog.threshold
	ftry
	logger.options
	prepare_arg
	scat
	Index

