Package ‘gaselect’

January 8, 2026
Type Package

Title Genetic Algorithm (GA) for Variable Selection from
High-Dimensional Data

Version 1.0.25
Date 2026-01-07

Description Provides a genetic algorithm for finding variable
subsets in high dimensional data with high prediction performance. The
genetic algorithm can use ordinary least squares (OLS) regression models or
partial least squares (PLS) regression models to evaluate the prediction
power of variable subsets. By supporting different cross-validation
schemes, the user can fine-tune the tradeoff between speed and quality of
the solution.

URL https://github.com/dakep/gaselect

BugReports https://github.com/dakep/gaselect/issues
License GPL (>=2)

NeedsCompilation yes

Encoding UTF-8

Biarch true

Depends R (>= 3.0.2), methods (>= 2.10.0)

Imports Rcpp (>=0.10.5)

LinkingTo Rcpp (>=0.10.5), ReppArmadillo (>=0.9.800.4)

Collate 'Evaluator.R' 'GenAlgControl.R' 'formatSegmentation.R'
‘evaluate.R' 'fitness.R' 'genAlg.R' 'getEvalFun.R' 'subsets.R’
'toCControlList.R' 'validData.R'

Suggests chemometrics

RoxygenNote 7.3.3

Author David Kepplinger [aut, cre]

Maintainer David Kepplinger <david.kepplinger@gmail.com>
Repository CRAN

Date/Publication 2026-01-08 01:30:02 UTC

https://github.com/dakep/gaselect
https://github.com/dakep/gaselect/issues

2 evaluate

Contents
evaluate 2
evaluatorFit 3
evaluatorLM 4
evaluatorPLS 5
evaluatorUserFunction L 7
fitness 8
fitnessEvolution 9
formatSegmentation L. 10
genAlg . . . e 11
GenAlg-class e 12
genAlgControl L 13
GenAlgControl-class L 15
GenAlgEvaluator-class 16
GenAlgFitEvaluator-class 16
GenAlgLMEvaluator-class 16
GenAlgPLSEvaluator-class L 17
GenAlgUserEvaluator-class 17
getBvalFun oL 18
SUDSELS . . v v o v e e e e e e e e e 18
toCControllist e 19
trueFitnessVal oL 20
validData e 21

Index 22

evaluate Evaluate the fitness of variable subsets
Description
Evaluate the given variable subsets with the given Evaluator
Usage

evaluate(object, X, y, subsets, seed, verbosity)

S4 method for signature

'GenAlgEvaluator,matrix,numeric,matrix,integer,integer

evaluate(object, X, y, subsets, seed, verbosity)

S4 method for signature
'GenAlgEvaluator,matrix,numeric,logical,integer,integer’
evaluate(object, X, y, subsets, seed, verbosity)

S4 method for signature 'GenAlgEvaluator,matrix,numeric,ANY,missing,integer’
evaluate(object, X, y, subsets, seed, verbosity)

evaluatorFit 3

S4 method for signature 'GenAlgEvaluator,matrix,numeric,ANY,integer,missing’
evaluate(object, X, y, subsets, seed, verbosity)

S4 method for signature 'GenAlgEvaluator,matrix,numeric,ANY,missing,missing’
evaluate(object, X, y, subsets, seed, verbosity)

Arguments
object The GenAlgEvaluator object that is used to evaluate the variables
X The data matrix used to for fitting the model
y The response vector
subsets The logical matrix where a column stands for one subset to evaluate
seed The value to seed the random number generator before evaluating
verbosity A value between 0 (no output at all) and 5 (maximum verbosity)

evaluatorFit Fit Evaluator
Description

Creates the object that controls the evaluation step in the genetic algorithm

Usage

evaluatorFit(
numSegments = 7L,
statistic = c("BIC", "AIC", "adjusted.r.squared”, "r.squared”),
numThreads = NULL,
maxNComp = NULL,

sdfact = 1
)
Arguments

numSegments The number of CV segments used to estimate the optimal number of PLS com-
ponents (between 2 and 2°16).

statistic The statistic used to evaluate the fitness (BIC, AIC, adjusted R*2, or R*2).

numThreads The maximum number of threads the algorithm is allowed to spawn (a value less
than 1 or NULL means no threads).

maxNComp The maximum number of components the PLS models should consider (if not
specified, the number of components is not constrained)

sdfact The factor to scale the stand. dev. of the MSEP values when selecting the

optimal number of components. For the "one standard error rule", sdfact is 1.

4 evaluator LM

Details
The fitness of a variable subset is assessed by how well a PLS model fits the data. To estimate the
optimal number of components for the PLS model, cross-validation is used.

Value

Returns an S4 object of type GenAlgFitEvaluator to be used as argument to a call of genAlg.

See Also

Other GenAlg Evaluators: evaluatorLM(), evaluatorPLS(), evaluatorUserFunction()

Examples

ctrl <- genAlgControl(populationSize = 200, numGenerations = 30, minVariables = 5,
maxVariables = 12, verbosity = 1)
evaluator <- evaluatorFit(statistic = "BIC"”, numThreads = 1)

Generate demo-data

set.seed(12345)

X <= matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <= drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)]) + rnorm(nrow(X), 1.5));

result <- genAlg(y, X, control = ctrl, evaluator = evaluator, seed = 123)

subsets(result, 1:5)

evaluatorlLM LM Evaluator

Description

Create an evaluator that uses a linear model to evaluate the fitness.

Usage

evaluatorLM(
statistic = c("BIC", "AIC", "adjusted.r.squared”, "r.squared”),
numThreads = NULL

)
Arguments
statistic The statistic used to evaluate the fitness
numThreads The maximum number of threads the algorithm is allowed to spawn (a value less

than 1 or NULL means no threads)

evaluatorPLS 5

Details

Different statistics to evaluate the fitness of the variable subset can be given. If a maximum absolute
correlation is given the algorithm will be very slow (as the C++ implementation can not be used
anymore) and multithreading is not available.

Value

Returns an S4 object of type GenAlgLMEvaluator

See Also

Other GenAlg Evaluators: evaluatorFit(), evaluatorPLS(), evaluatorUserFunction()

Examples

ctrl <- genAlgControl(populationSize = 200, numGenerations = 30, minVariables = 5,
maxVariables = 12, verbosity = 1)
evaluator <- evaluatorLM(statistic = "BIC"”, numThreads = 1)

Generate demo-data

set.seed(12345)

X <= matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <= drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)]) + rnorm(nrow(X), 1.5));

result <- genAlg(y, X, control = ctrl, evaluator = evaluator, seed = 123)

subsets(result, 1:5)

evaluatorPLS PLS Evaluator

Description

Creates the object that controls the evaluation step in the genetic algorithm

Usage

evaluatorPLS(
numReplications = 30L,
innerSegments = 7L,
outerSegments = 1L,
testSetSize = NULL,
numThreads = NULL,
maxNComp = NULL,
method = c("simpls"),
sdfact = 1

6 evaluatorPLS

Arguments

numReplications

The number of replications used to evaluate a variable subset (must be between
1 and 2716)

innerSegments The number of CV segments used in one replication (must be between 2 and
2716)

outerSegments The number of outer CV segments used in one replication (between 0 and 2°16).
If this is greater than 1, repeated double cross-validation strategy (rdCV) will be
used instead of simple repeated cross-validation (srCV) (see details)

testSetSize The relative size of the test set used for simple repeated CV (between 0 and 1).
This parameter is ignored if outerSegments > 1 and a warning will be issued.

numThreads The maximum number of threads the algorithm is allowed to spawn (a value less
than 1 or NULL means no threads)

maxNComp The maximum number of components the PLS models should consider (if not
specified, the number of components is not constrained)

method The PLS method used to fit the PLS model (currently only SIMPLS is imple-
mented)
sdfact The factor to scale the stand. dev. of the MSEP values when selecting the

optimal number of components. For the "one standard error rule", sdfact is 1.

Details

With this method the genetic algorithm uses PLS regression models to assess the prediction power
of variable subsets. By default, simple repeated cross-validation (srCV) is used. The optimal num-
ber of PLS components is estimated using cross-validation (with innerSegments segments) on a
training set. The prediction power is then evaluated by fitting a PLS regression model with this
optimal number of components to the training set and predicting the values of a test set (of either
testSetSize size or 1 / innerSegments, if testSetSize is not specified).

If the parameter outerSegments is given, repeated double cross-validation is used instead. There,
the data set is first split into outerSegments segments and one segment is used as prediction set
and the other segments as test set. This is repeated for each outer segment.

The whole procedure is repeated numReplications times to get a more reliable estimate of the
prediction power.

Value

Returns an S4 object of type GenAlgPLSEvaluator to be used as argument to a call of genAlg.

See Also

Other GenAlg Evaluators: evaluatorFit(), evaluatorLM(), evaluatorUserFunction()

evaluatorUserFunction 7

Examples

ctrl <- genAlgControl(populationSize = 100, numGenerations = 15, minVariables = 5,
maxVariables = 12, verbosity = 1)

evaluatorSRCV <- evaluatorPLS(numReplications = 2, innerSegments = 7, testSetSize = 0.4,
numThreads = 1)

evaluatorRDCV <- evaluatorPLS(numReplications = 2, innerSegments = 5, outerSegments = 3,
numThreads = 1)

Generate demo-data

set.seed(12345)

X <= matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <- drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)]) + rnorm(nrow(X), 1.5));

resultSRCV <- genAlg(y, X, control = ctrl, evaluator = evaluatorSRCV, seed
resultRDCV <- genAlg(y, X, control = ctrl, evaluator = evaluatorRDCV, seed

123)
123)

subsets(resultSRCV, 1:5)
subsets(resultRDCV, 1:5)

evaluatorUserFunction User Defined Evaluator

Description

Create an evaluator that uses a user defined function to evaluate the fitness

Usage
evaluatorUserFunction(FUN, sepFUN = NULL, ...)
Arguments
FUN Function used to evaluate the fitness
sepFUN Function to calculate the SEP of the variable subsets
Additional arguments passed to FUN and sepFUN
Details

The user specified function must take a the response vector as first and the covariates matrix as
second argument. The function must return a number representing the fitness of the variable subset
(the higher the value the fitter the subset) Additionally the user can specify a function that takes a
GenAlg object and returns the standard error of prediction of the found variable subsets.

Value

Returns an S4 object of type GenAlgUserEvaluator

8 fitness

See Also

Other GenAlg Evaluators: evaluatorFit(), evaluatorLM(), evaluatorPLS()

Examples

ctrl <- genAlgControl(populationSize = 100, numGenerations = 10, minVariables = 5,
maxVariables = 12, verbosity = 1)

Use the BIC of a linear model to evaluate the fitness of a variable subset
evalFUN <- function(y, X) {

return(BIC(Im(y ~ X)));

3

Dummy function that returns the residuals standard deviation and not the SEP
sepFUN <- function(genAlg) {

return(apply(genAlg@subsets, 2, function(subset) {
m <- lm(genAlg@response ~ genAlg@covariates[, subset]);
return(sd(m$residuals));
N
3

evaluator <- evaluatorUserFunction(FUN = evalFUN, sepFUN = sepFUN)

Generate demo-data

set.seed(12345)

X <= matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <= drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)1) + rnorm(nrow(X), 1.5));

result <- genAlg(y, X, control = ctrl, evaluator = evaluator, seed = 123)

subsets(result, 1:5)

fitness Get the fitness of a variable subset

Description

Get the internal fitness for all variable subsets

Usage

fitness(object)

Arguments

object The GenAlg object returned by genAlg

Details

This method is used to get the fitness of all variable subsets found by the genetic algorithm.

fitnessEvolution

Value

A vector with the estimated fitness for each solution

Examples

ctrl <- genAlgControl(populationSize = 100, numGenerations = 15, minVariables
maxVariables = 12, verbosity = 1)

1
[&,]

evaluator <- evaluatorPLS(numReplications = 2, innerSegments = 7, testSetSize = 0.4,

numThreads = 1)

Generate demo-data

set.seed(12345)

X <= matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <= drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)]) + rnorm(nrow(X), 1.5));

result <- genAlg(y, X, control = ctrl, evaluator = evaluator, seed = 123)
fitness(result) # Get fitness of the found subsets

h <- fitnessEvolution(result) # Get average fitness as well as the fitness of the
best chromosome for each generation (at raw scale!)

plot(h[, "mean"], type = "1", col =1, ylim = c(-7, -1))

lines(h[, "mean”] - h[, "std.dev"], type = "1", col = "gray30", lty
lines(h[, "mean”] + h[, "std.dev"], type = "1", col = "gray30", lty
lines(h[, "best"], type = "1", col = 2)

2)
2)

fitnessEvolution Get the evolution of the fitness

Description

Get the fitness of the best / average chromosomes after each generation

Usage
fitnessEvolution(
object,
what = c("mean”, "best”, "std.dev"),
type = c("true”, "raw")
)
Arguments

object The GenAlg object returned by genAlg

10 formatSegmentation

what can be one ore more of "best"” (to return the fitness of the best chromosome
for each generation), "mean” (to return the arithmetic mean fitness during each
generation), and "std.dev" (for the standard deviation of the fitness values in
each generation).

type one of "true” or "raw”. raw means the raw fitness value used within the GA,
while true tries to convert it to the standard error of prediction (like fitness).
If the standard deviation (what = "std.dev") is requested, the type will always
be raw.

Details

Returns the progress of the fitness of the best or average chromosome.

Value

A vector with the best or average fitness value after each generation

Examples

ctrl <- genAlgControl(populationSize = 100, numGenerations = 15, minVariables = 5,
maxVariables = 12, verbosity = 1)

evaluator <- evaluatorPLS(numReplications = 2, innerSegments = 7, testSetSize
numThreads = 1)

0.4,

Generate demo-data

set.seed(12345)

X <= matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <= drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)]) + rnorm(nrow(X), 1.5));
result <- genAlg(y, X, control = ctrl, evaluator = evaluator, seed = 123)

fitness(result) # Get fitness of the found subsets

h <- fitnessEvolution(result) # Get average fitness as well as the fitness of the
best chromosome for each generation (at raw scale!)

plot(h[, "mean"], type = "1", col =1, ylim = c(-7, -1))

lines(h[, "mean”] - h[, "std.dev"], type = "1", col = "gray30"”, lty = 2)
lines(h[, "mean”] + h[, "std.dev"], type = "1", col = "gray30", lty = 2)
lines(h[, "best"], type = "1", col = 2)
formatSegmentation Format the raw segmentation list returned from the C++ code into a

usable list

Description

Format the raw segmentation list returned from the C++ code into a usable list

genAlg 11
Usage
formatSegmentation(object, segments)

S4 method for signature 'GenAlgPLSEvaluator,list'
formatSegmentation(object, segments)

S4 method for signature 'GenAlgUserEvaluator,list'
formatSegmentation(object, segments)

S4 method for signature 'GenAlglMEvaluator,list'
formatSegmentation(object, segments)

S4 method for signature 'GenAlgFitEvaluator,list'
formatSegmentation(object, segments)

Arguments
object The Evaluator object.
segments The raw segmentation list.
Value

A list of the form replication -> outerSegment -> (calibration, validation, inner -> (test, train))

genAlg Genetic algorithm for variable subset selection

Description
A genetic algorithm to find "good" variable subsets based on internal PLS evaluation or a user
specified evaluation function

Usage

genAlg(y, X, control, evaluator = evaluatorPLS(), seed)

Arguments
y The numeric response vector of length n
X A n X p numeric matrix with all p covariates
control Options for controlling the genetic algorithm. See genAlgControl for details.
evaluator The evaluator used to evaluate the fitness of a variable subset. See evaluatorPLS,
evaluatorLM or evaluatorUserFunction for details.
seed Integer with the seed for the random number generator or NULL to automati-

cally seed the RNG

12 GenAlg-class

Details

The GA generates an initial "population” of populationSize chromosomes where each initial
chromosome has a random number of randomly selected variables. The fitness of every chromo-
some is evaluated by the specified evaluator. The default built-in PLS evaluator (see evaluatorPLS)
is the preferred evaluator. Chromosomes with higher fitness have higher probability of mating with
another chromosome. populationSize / 2 couples each create 2 children. The children are cre-
ated by randomly mixing the parents’ variables. These children make up the new generation and are
again selected for mating based on their fitness. A total of numGenerations generations are built
this way. The algorithm returns the last generation as well as the best elitism chromosomes from
all generations.

Value

An object of type GenAlg

Examples

ctrl <- genAlgControl(populationSize = 100, numGenerations = 15, minVariables = 5,
maxVariables = 12, verbosity = 1)

evaluatorSRCV <- evaluatorPLS(numReplications = 2, innerSegments = 7, testSetSize = 0.4,
numThreads = 1)

evaluatorRDCV <- evaluatorPLS(numReplications = 2, innerSegments = 5, outerSegments = 3,
numThreads = 1)

Generate demo-data

set.seed(12345)

X <- matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <- drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)1) + rnorm(nrow(X), 1.5));

resultSRCV <- genAlg(y, X, control = ctrl, evaluator = evaluatorSRCV, seed = 123)
resultRDCV <- genAlg(y, X, control = ctrl, evaluator = evaluatorRDCV, seed = 123)

subsets(resultSRCV, 1:5)
subsets(resultRDCV, 1:5)

GenAlg-class Result of a genetic algorithm run

Description

Return object of a run of the genetic algorithm genAlg

Slots

subsets Logical matrix with one variable subset per column. The columns are ordered according
to their fitness (first column contains the fittest variable-subset).

genAlgControl 13

rawFitness Numeric vector with the raw fitness of the corresponding variable subset returned by
the evaluator.

response The original response vector.

covariates The original covariates matrix.

evaluator The evaluator used in the genetic algorithm.
control The control object.

segmentation The segments used by the evaluator. Empty list if the evaluator doesn’t use seg-
mentation.

seed The seed the algorithm is started with.

genAlgControl Set control arguments for the genetic algorithm

Description

The population must be large enough to allow the algorithm to explore the whole solution space.
If the initial population is not diverse enough, the chance to find the global optimum is very small.
Thus the more variables to choose from, the larger the population has to be.

Usage

genAlgControl(
populationSize,
numGenerations,
minVariables,
maxVariables,
elitism = 10L,
mutationProbability = 0.01,
crossover = c("single"”, "random"),
maxDuplicateEliminationTries = OL,
verbosity = oL,
badSolutionThreshold = 2,
fitnessScaling = c("none”, "exp")

Arguments

populationSize The number of "chromosomes" in the population (between 1 and 2"16)
numGenerations The number of generations to produce (between 1 and 2*16)

minVariables The minimum number of variables in the variable subset (between O and p - 1
where p is the total number of variables)

maxVariables The maximum number of variables in the variable subset (between 1 and p, and
greater than minVariables)

14 genAlgControl

elitism The number of absolute best chromosomes to keep across all generations (be-
tween 1 and min(populationSize * numGenerations, 2*16))

mutationProbability
The probability of mutation (between 0 and 1)

crossover The crossover type to use during mating (see details). Partial matching is per-
formed

maxDuplicateEliminationTries
The maximum number of tries to eliminate duplicates (a value of @ or NULL
means that no checks for duplicates are done.

verbosity The level of verbosity. 0 means no output at all, 2 is very verbose.
badSolutionThreshold
The worst child must not be more than badSolutionThreshold times worse
than the worse parent. If less than O, the child must be even better than the worst
parent. If the algorithm can’t find a better child in a long time it issues a warning
and uses the last found child to continue.

fitnessScaling How the fitness values are internally scaled before the selection probabilities
are assigned to the chromosomes. See the details for possible values and their
meaning.

Details

The initial population is generated randomly. Every chromosome uses between minVariables and
maxVariables (uniformly distributed).

If the mutation probability (mutationProbability is greater than 0, a random number of variables
is added/removed according to a truncated geometric distribution to each offspring-chromosome.
The resulting distribution of the total number of variables in the subset is not uniform anymore, but
almost (the smaller the mutation probability, the more "uniform" the distribution). This should not
be a problem for most applications.

The user can choose between single and random crossover for the mating process. If single
crossover is used, a single position is randomly chosen that marks the position to split both par-
ent chromosomes. The child chromosomes are than the concatenated chromosomes from the 1st
part of the 1st parent and the 2nd part of the 2nd parent resp. the 2nd part of the 1st parent and
the 1st part of the 2nd parent. Random crossover is that a random number of random positions
are drawn and these positions are transferred from one parent to the other in order to generate the
children.

Elitism is a method of enhancing the GA by keeping track of very good solutions. The parameter
elitism specifies how many "very good" solutions should be kept.

Before the selection probabilities are determined, the fitness values f of the chromosomes are stan-
dardized to the z-scores (z = (f —mu)/sd). Scaling the fitness values afterwards with the exponen-
tial function can help the algorithm to faster find good solutions. When setting fitnessScaling to
"exp", the (standardized) fitness z will be scaled by exp(z). This promotes good solutions to get an
even higher selection probability, while bad solutions will get an even lower selection probability.

Value

An object of type GenAlgControl

GenAlgControl-class 15

Examples

ctrl <- genAlgControl(populationSize = 100, numGenerations = 15, minVariables = 5,
maxVariables = 12, verbosity = 1)

evaluatorSRCV <- evaluatorPLS(numReplications = 2, innerSegments = 7, testSetSize = 0.4,
numThreads = 1)

2, innerSegments

evaluatorRDCV <- evaluatorPLS(numReplications
numThreads = 1)

5, outerSegments = 3,

Generate demo-data

set.seed(12345)

X <= matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <- drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)]) + rnorm(nrow(X), 1.5));

resultSRCV <- genAlg(y, X, control = ctrl, evaluator = evaluatorSRCV, seed
resultRDCV <- genAlg(y, X, control = ctrl, evaluator = evaluatorRDCV, seed

123)
123)

subsets(resultSRCV, 1:5)
subsets(resultRDCV, 1:5)

GenAlgControl-class Control class for the genetic algorithm

Description

This class controls the general setup of the genetic algorithm

Slots

populationSize The number of "chromosomes" in the population (between 1 and 2/16).
numGenerations The number of generations to produce (between 1 and 2/16).

minVariables The minimum number of variables in the variable subset (between 0 and p - 1 where
p is the total number of variables).

maxVariables The maximum number of variables in the variable subset (between 1 and p, and
greater than minVariables).

elitism The number of absolute best chromosomes to keep across all generations (between 1 and
min(populationSize * numGenerations, 2°16)).

mutationProbability The probability of mutation (between O and 1).

badSolutionThreshold The child must not be more than badSolutionThreshold percent worse
than the worse parent. If less than 0, the child must be even better than the worst parent.

crossover The crossover method to use
crossoverId The numeric ID of the crossover method to use
maxDuplicateEliminationTries The maximum number of tries to eliminate duplicates

verbosity The level of verbosity. 0 means no output at all, 2 is very verbose.

16 GenAlgLMEVvaluator-class

GenAlgEvaluator-class Evaluator Base Class

Description

Virtual base class of all available evaluators

GenAlgFitEvaluator-class
Fit Evaluator

Description

Fit Evaluator

Slots

numSegments The number of CV segments used in one replication.

numThreads The maximum number of threads the algorithm is allowed to spawn (a value less than
1 or NULL means no threads).

maxNComp The maximum number of components to consider in the PLS model.

sdfact The factor to scale the stand. dev. of the MSEP values when selecting the optimal number
of components. For the "one standard error rule", sdfact is 1.

statistic The statistic used to evaluate the fitness.

statisticId The (internal) numeric ID of the statistic.

GenAlglLMEvaluator-class
LM Evaluator

Description

LM Evaluator

Slots

statistic The statistic used to evaluate the fitness.
statisticId The (internal) numeric ID of the statistic.

numThreads The maximum number of threads the algorithm is allowed to spawn (a value less than
1 or NULL means no threads).

GenAlgPLSEvaluator-class 17

GenAlgPLSEvaluator-class
PLS Evaluator

Description

PLS Evaluator

Slots

numReplications The number of replications used to evaluate a variable subset.
innerSegments The number of inner RDCV segments used in one replication.
outerSegments The number of outer RDCV segments used in one replication.
testSetSize The relative size of the test set (between O and 1).

sdfact The factor to scale the stand. dev. of the MSEP values when selecting the optimal number
of components. For the "one standard error rule", sdfact is 1.

numThreads The maximum number of threads the algorithm is allowed to spawn (a value less than
1 or NULL means no threads).

maxNComp The maximum number of components to consider in the PLS model.
method The PLS method used to fit the PLS model (currently only SIMPLS is implemented).
methodId The ID of the PLS method used to fit the PLS model (see C++ code for allowed values).

GenAlgUserEvaluator-class
User Function Evaluator

Description

User Function Evaluator

Slots

evalFunction The function that is called to evaluate the variable subset.

sepFunction The function that calculates the standard error of prediction for the found subsets.

18 subsets

getEvalFun Get the evaluation function from a GenAlgUserEvaluator

Description
This method returns the correct evaluation function from a GenAlgUserEvaluator that can be used
by the C++-code as callback or NULL for any other evaluator

Usage

getEvalFun(object, genAlg)

S4 method for signature 'GenAlgUserEvaluator,GenAlg'
getEvalFun(object, genAlg)

S4 method for signature 'GenAlgUserEvaluator,matrix’
getEvalFun(object, genAlg)

S4 method for signature 'GenAlgEvaluator,GenAlg'
getEvalFun(object, genAlg)

S4 method for signature 'GenAlgEvaluator,matrix’
getEvalFun(object, genAlg)

Arguments
object The evaluator (an object of type GenAlgEvaluator)
genAlg The GenAlg object
subsets Get the found variable subset(s)
Description

Get a list of variable indices/names of the found variable subsets.

Usage

subsets(object, indices, names = TRUE)

Arguments
object The GenAlg object returned by genAlg.
indices The indices of the subsets or empty if all subsets should be returned.

names Should the names or the column numbers of the variables be returned.

toCControlList 19

Details

This method is used to get the names or indices of the variables used in specified variable subsets.

Value

A logical matrix where each column represents a variable subset

Examples

ctrl <- genAlgControl(populationSize = 200, numGenerations = 15, minVariables
maxVariables = 12, verbosity = 1)

1
(&,

evaluator <- evaluatorPLS(numReplications = 2, innerSegments = 7, testSetSize = 0.4,
numThreads = 1)

Generate demo-data

set.seed(12345)

X <- matrix(rnorm(10000, sd = 1:5), ncol = 50, byrow = TRUE)

y <= drop(-1.2 + rowSums(X[, seq(1, 43, length = 8)1) + rnorm(nrow(X), 1.5));

result <- genAlg(y, X, control = ctrl, evaluator = evaluator, seed = 123)

subsets(result, names = TRUE, indices = 1:5) # best 5 variable subsets as a list of names
result@subsets[, 1:5] # best 5 variable subsets as a logical matrix with the subsets in the columns

toCControllList Transform the object to a list

Description

Get the control list for the C++ procedure genAlgPLS from the object

Usage
toCControlList(object)

S4 method for signature 'GenAlgPLSEvaluator'
toCControllList(object)

S4 method for signature 'GenAlgFitEvaluator'
toCControlList(object)
S4 method for signature 'GenAlgUserEvaluator'
toCControlList(object)

S4 method for signature 'GenAlglLMEvaluator'
toCControllList(object)

20 trueFitnessVal

S4 method for signature 'GenAlgControl'
toCControlList(object)

Arguments

object The object

Value

A list with all items expected by the C++ code

trueFitnessVal Get the transformed fitness values

Description

Transform the given fitness values according tho the GenAlgEvaluator class

Usage
trueFitnessVal(object, fitness)

S4 method for signature 'GenAlgPLSEvaluator,numeric'
trueFitnessVal(object, fitness)

S4 method for signature 'GenAlgUserEvaluator,numeric
trueFitnessVal(object, fitness)

S4 method for signature 'GenAlgLMEvaluator,numeric'’
trueFitnessVal(object, fitness)

S4 method for signature 'GenAlgFitEvaluator,numeric'
trueFitnessVal(object, fitness)

Arguments
object The used evaluator, an object with type or with a subtype of GenAlgEvaluator
fitness A numeric vector of fitnesses

Details

This method is used to calculate the true fitness given the GenAlgEvaluator class (as they use
different internal fitness measures)

Value

A vector with the true fitness values

validData 21

validData Check if the data is valid for the evaluator

Description

This method checks if the covariates matrix is valid for the evaluator

Usage
validData(object, genAlg)

S4 method for signature 'GenAlgPLSEvaluator,GenAlg'
validData(object, genAlg)

S4 method for signature 'GenAlgFitEvaluator,GenAlg'
validData(object, genAlg)

S4 method for signature 'GenAlgLMEvaluator,GenAlg'
validData(object, genAlg)

S4 method for signature 'GenAlgEvaluator,GenAlg'
validData(object, genAlg)
Arguments

object The evaluator

genAlg The GenAlg object the evaluator is used in

Index

*x GenAlg Evaluators genAlgControl, 71,13
evaluatorFit, 3 GenAlgControl-class, 15
evaluatorlLM, 4 GenAlgEvaluator, 18, 20
evaluatorPLS, 5 GenAlgEvaluator
evaluatorUserFunction, 7 (GenAlgEvaluator-class), 16
GenAlgEvaluator-class, 16
evaluate, 2 GenAlgFitEvaluator, 4
evaluate,GenAlgEvaluator,matrix,numeric, ANY, indggBgF Miseangatskhod
(evaluate), 2 (GenAlgFitEvaluator-class), 16
evaluate,GenAlgEvaluator,matrix,numeric,ANY,m@§§gpg5iﬂg@gfggmgﬁh@ﬂass’16
(evaluate),2 GenAlgLMEvaluator, 5
evaluate,GenAlgEvaluator,matrix,numeric,ANY,m@§§gp§hﬁg§§j@gf@§thod
(evaluate),2 (GenAlglLMEvaluator-class), 16
evaluate,GenAlgEvaluator,matrix,numeric,logicgéngpéggggajg;gggrgpg§g9¢6
(evaluate), 2 GenAlgPLSEvaluator, 6
evaluate,GenAlgEvaluator,matrix,numeric,matriéeggfggggEggfgg@EFmethod
(eyaluate),Z (GenAlgPLSEvaluator-class), 17
evaluatorFit, 3,5, 6,8 GenAlgPLSEvaluator-class, 17

evaluatorliM, 4,4,6, 8, 11
evaluatorPLS, 4, 5,5,8, 11, 12
evaluatorUserFunction, 4-6, 7, 11

GenAlgUserEvaluator, 7

GenAlgUserEvaluator
(GenAlgUserEvaluator-class), 17

GenAlgUserEvaluator-class, 17

fitness, 8, 10 getEvalFun, 18

:;:::z;g;giﬁtzizgi 10 getEvalFun,GenAlgEvaluator,GenAlg-method
’ etEvalFun), 18
FormatSegmentation,GenAlgFitEvaluator,list—methgg (getEvalfun) .
(formatSegmentation), 10 getEvalFun,GenAlgEvaluator,matrix-method
& ’ (getEvalFun), 18

FOrmatSe?:i:;;;;:Tﬁ;f;:gi;ﬁf?iﬁuator’llSt_metgggEvalFun,GenAlgUserEvaluator,GenAlg—method
g ’ (getEvalFun), 18

formatsegmentatlon’GenAlgPLSEvaluator’115t_me§g€€valFun,GenAlgUserEvaluator,matrix—method
(formatSegmentation), 10

formatSegmentation,GenAlgUserEvaluator,list-method (getEvalFun), 18
(formatSegmentation), 10

subsets, 18
GenAlg, 7-9, 12, 18
GenAlg (GenAlg-class), 12 toCControllList, 19
genAlg, 4,6,8, 9,11, 18 toCControllList,GenAlgControl-method
GenAlg-class, 12 (toCControllist), 19
GenAlgControl, 14 toCControllList,GenAlgFitEvaluator-method
GenAlgControl (GenAlgControl-class), 15 (toCControllist), 19

22

INDEX 23

toCControllList,GenAlglLMEvaluator-method
(toCControllList), 19
toCControllList,GenAlgPLSEvaluator-method
(toCControllList), 19
toCControllList,GenAlgUserEvaluator-method
(toCControllList), 19
trueFitnessVal, 20
trueFitnessVal,GenAlgFitEvaluator,numeric-method
(trueFitnessVal), 20
trueFitnessVal,GenAlglLMEvaluator, numeric-method
(trueFitnessVal), 20
trueFitnessVal,GenAlgPLSEvaluator,numeric-method
(trueFitnessVal), 20
trueFitnessVal,GenAlgUserEvaluator,numeric-method
(trueFitnessVal), 20

validData, 21

validData,GenAlgEvaluator,GenAlg-method
(validData), 21

validData,GenAlgFitEvaluator,GenAlg-method
(validData), 21

validData,GenAlglLMEvaluator,GenAlg-method
(validData), 21

validData,GenAlgPLSEvaluator,GenAlg-method
(validData), 21

	evaluate
	evaluatorFit
	evaluatorLM
	evaluatorPLS
	evaluatorUserFunction
	fitness
	fitnessEvolution
	formatSegmentation
	genAlg
	GenAlg-class
	genAlgControl
	GenAlgControl-class
	GenAlgEvaluator-class
	GenAlgFitEvaluator-class
	GenAlgLMEvaluator-class
	GenAlgPLSEvaluator-class
	GenAlgUserEvaluator-class
	getEvalFun
	subsets
	toCControlList
	trueFitnessVal
	validData
	Index

