
Package ‘ggstats’
December 22, 2025

Type Package

Title Extension to 'ggplot2' for Plotting Stats

Version 0.12.0

Description Provides new statistics, new geometries and new positions for
'ggplot2' and a suite of functions to facilitate the creation of
statistical plots.

License GPL (>= 3)

URL https://larmarange.github.io/ggstats/,

https://github.com/larmarange/ggstats

BugReports https://github.com/larmarange/ggstats/issues

Depends R (>= 4.2)

Imports cli, dplyr, forcats, ggplot2 (>= 4.0.0), lifecycle, patchwork,
purrr, rlang, scales, stats, stringr, utils, tidyr

Suggests betareg, broom, broom.helpers (>= 1.20.0), emmeans, glue,
gtsummary, knitr, labelled (>= 2.11.0), reshape, rmarkdown,
nnet, parameters, pscl, testthat (>= 3.0.0), spelling, survey,
survival, vdiffr

Encoding UTF-8

RoxygenNote 7.3.3

Config/testthat/edition 3

Language en-US

VignetteBuilder knitr

NeedsCompilation no

Author Joseph Larmarange [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7097-700X>)

Maintainer Joseph Larmarange <joseph@larmarange.net>

Repository CRAN

Date/Publication 2025-12-22 06:20:24 UTC

1

https://larmarange.github.io/ggstats/
https://github.com/larmarange/ggstats
https://github.com/larmarange/ggstats/issues
https://orcid.org/0000-0001-7097-700X

2 augment_chisq_add_phi

Contents

augment_chisq_add_phi . 2
geom_connector . 3
geom_diverging . 7
geom_prop_bar . 9
geom_stripped_rows . 12
ggcascade . 15
ggcoef_model . 17
ggcoef_multicomponents . 27
gglikert . 30
ggsurvey . 36
hex_bw . 37
label_number_abs . 38
pal_extender . 39
position_likert . 40
round_any . 43
scale_fill_likert . 44
signif_stars . 45
stat_cross . 46
stat_prop . 49
stat_weighted_mean . 52
symmetric_limits . 55
weighted.median . 56
weighted.sum . 58

Index 59

augment_chisq_add_phi Augment a chi-squared test and compute phi coefficients

Description

Augment a chi-squared test and compute phi coefficients

Usage

augment_chisq_add_phi(x)

Arguments

x a chi-squared test as returned by stats::chisq.test()

geom_connector 3

Details

Phi coefficients are a measurement of the degree of association between two binary variables.

• A value between -1.0 to -0.7 indicates a strong negative association.

• A value between -0.7 to -0.3 indicates a weak negative association.

• A value between -0.3 to +0.3 indicates a little or no association.

• A value between +0.3 to +0.7 indicates a weak positive association.

• A value between +0.7 to +1.0 indicates a strong positive association.

Value

A tibble.

See Also

stat_cross(), GDAtools::phi.table() or psych::phi()

Examples

tab <- xtabs(Freq ~ Sex + Class, data = as.data.frame(Titanic))
augment_chisq_add_phi(chisq.test(tab))

geom_connector Connect bars / points

Description

geom_connector() is a variation of ggplot2::geom_step(). Its variant geom_bar_connector()
is particularly adapted to connect bars.

Usage

geom_connector(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
width = 0.1,
continuous = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

4 geom_connector

geom_bar_connector(
mapping = NULL,
data = NULL,
stat = "prop",
position = "stack",
width = 0.9,
continuous = FALSE,
add_baseline = TRUE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

geom_connector 5

• For more information and other ways to specify the position, see the layer
position documentation.

width Bar width (see examples).

continuous Should connect segments be continuous?

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

add_baseline Add connectors at baseline?

Examples

library(ggplot2)

6 geom_connector

geom_bar_connector() -----------

ggplot(diamonds) +
aes(x = clarity, fill = cut) +
geom_bar(width = .5) +
geom_bar_connector(width = .5, linewidth = .25) +
theme_minimal() +
theme(legend.position = "bottom")

ggplot(diamonds) +
aes(x = clarity, fill = cut) +
geom_bar(width = .5) +
geom_bar_connector(
width = .5,
continuous = TRUE,
colour = "red",
linetype = "dotted",
add_baseline = FALSE,
) +
theme(legend.position = "bottom")

ggplot(diamonds) +
aes(x = clarity, fill = cut) +
geom_bar(width = .5, position = "fill") +
geom_bar_connector(width = .5, position = "fill") +
theme(legend.position = "bottom")

ggplot(diamonds) +
aes(x = clarity, fill = cut) +
geom_bar(width = .5, position = "diverging") +
geom_bar_connector(width = .5, position = "diverging", linewidth = .25) +
theme(legend.position = "bottom")

geom_connector() -----------

ggplot(mtcars) +
aes(x = wt, y = mpg, colour = factor(cyl)) +

geom_connector() +
geom_point()

ggplot(mtcars) +
aes(x = wt, y = mpg, colour = factor(cyl)) +
geom_connector(continuous = TRUE) +
geom_point()

ggplot(mtcars) +
aes(x = wt, y = mpg, colour = factor(cyl)) +
geom_connector(continuous = TRUE, width = .3) +
geom_point()

ggplot(mtcars) +
aes(x = wt, y = mpg, colour = factor(cyl)) +

geom_diverging 7

geom_connector(width = 0) +
geom_point()

ggplot(mtcars) +
aes(x = wt, y = mpg, colour = factor(cyl)) +
geom_connector(width = Inf) +
geom_point()

ggplot(mtcars) +
aes(x = wt, y = mpg, colour = factor(cyl)) +
geom_connector(width = Inf, continuous = TRUE) +
geom_point()

geom_diverging Geometries for diverging bar plots

Description

These geometries are variations of ggplot2::geom_bar() and ggplot2::geom_text() but pro-
vides different set of default values.

Usage

geom_diverging(
mapping = NULL,
data = NULL,
position = "diverging",
...,
complete = "fill",
default_by = "total"

)

geom_likert(
mapping = NULL,
data = NULL,
position = "likert",
...,
complete = "fill",
default_by = "x"

)

geom_pyramid(
mapping = NULL,
data = NULL,
position = "diverging",
...,
complete = NULL,

8 geom_diverging

default_by = "total"
)

geom_diverging_text(
mapping = ggplot2::aes(!!!auto_contrast),
data = NULL,
position = position_diverging(0.5),
...,
complete = "fill",
default_by = "total"

)

geom_likert_text(
mapping = ggplot2::aes(!!!auto_contrast),
data = NULL,
position = position_likert(0.5),
...,
complete = "fill",
default_by = "x"

)

geom_pyramid_text(
mapping = ggplot2::aes(!!!auto_contrast),
data = NULL,
position = position_diverging(0.5),
...,
complete = NULL,
default_by = "total"

)

Arguments

mapping Optional set of aesthetic mappings.

data The data to be displayed in this layers.

position A position adjustment to use on the data for this layer.

... Other arguments passed on to ggplot2::geom_bar()

complete An aesthetic for those unobserved values should be completed, see stat_prop().

default_by Name of an aesthetic determining denominators by default, see stat_prop().

Details

• geom_diverging() is designed for stacked diverging bar plots, using position_diverging().

• geom_likert() is designed for Likert-type items. Using position_likert() (each bar sums
to 100%).

• geom_pyramid() is similar to geom_diverging() but uses proportions of the total instead of
counts.

geom_prop_bar 9

To add labels on the bar plots, simply use geom_diverging_text(), geom_likert_text(), or
geom_pyramid_text().

All these geometries relies on stat_prop().

Examples

library(ggplot2)
ggplot(diamonds) +

aes(x = clarity, fill = cut) +
geom_diverging()

ggplot(diamonds) +
aes(x = clarity, fill = cut) +
geom_diverging(position = position_diverging(cutoff = 4))

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_likert() +
geom_likert_text()

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_likert() +
geom_likert_text(
aes(

label = label_percent_abs(accuracy = 1, hide_below = .10)(
after_stat(prop)

),
colour = after_scale(hex_bw(.data$fill))

)
)

d <- Titanic |> as.data.frame()

ggplot(d) +
aes(y = Class, fill = Sex, weight = Freq) +
geom_diverging() +
geom_diverging_text()

ggplot(d) +
aes(y = Class, fill = Sex, weight = Freq) +
geom_pyramid() +
geom_pyramid_text()

geom_prop_bar Convenient geometries for proportion bar plots

10 geom_prop_bar

Description

geom_prop_bar(), geom_prop_text() and geom_prop_connector() are variations of ggplot2::geom_bar(),
ggplot2::geom_text() and geom_bar_connector() using stat_prop(), with custom default
aesthetics: after_stat(prop) for x or y, and scales::percent(after_stat(prop)) for label.

Usage

geom_prop_bar(
mapping = NULL,
data = NULL,
position = "stack",
...,
width = 0.9,
complete = NULL,
default_by = "x"

)

geom_prop_text(
mapping = ggplot2::aes(!!!auto_contrast),
data = NULL,
position = ggplot2::position_stack(0.5),
...,
complete = NULL,
default_by = "x"

)

geom_prop_connector(
mapping = NULL,
data = NULL,
position = "stack",
...,
width = 0.9,
complete = "fill",
default_by = "x"

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

geom_prop_bar 11

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Additional parameters passed to ggplot2::geom_bar(), ggplot2::geom_text()
or geom_bar_connector().

width Bar width (0.9 by default).

complete Name (character) of an aesthetic for those statistics should be completed for
unobserved values (see example).

default_by If the by aesthetic is not available, name of another aesthetic that will be used
to determine the denominators (e.g. "fill"), or NULL or "total" to compute
proportions of the total. To be noted, default_by = "x" works both for vertical
and horizontal bars.

See Also

geom_bar_connector()

Examples

library(ggplot2)
d <- as.data.frame(Titanic)
ggplot(d) +

aes(x = Class, fill = Survived, weight = Freq) +
geom_prop_bar() +
geom_prop_text() +
geom_prop_connector()

ggplot(d) +
aes(y = Class, fill = Survived, weight = Freq) +
geom_prop_bar(width = .5) +
geom_prop_text() +
geom_prop_connector(width = .5, linetype = "dotted")

ggplot(d) +
aes(

x = Class,
fill = Survived,
weight = Freq,

12 geom_stripped_rows

y = after_stat(count),
label = after_stat(count)

) +
geom_prop_bar() +
geom_prop_text() +
geom_prop_connector()

geom_stripped_rows Alternating Background Color

Description

Add alternating background color along the y-axis. The geom takes default aesthetics odd and even
that receive color codes.

Usage

geom_stripped_rows(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
show.legend = NA,
inherit.aes = TRUE,
xfrom = -Inf,
xto = Inf,
width = 1,
nudge_y = 0

)

geom_stripped_cols(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
show.legend = NA,
inherit.aes = TRUE,
yfrom = -Inf,
yto = Inf,
width = 1,
nudge_x = 0

)

geom_stripped_rows 13

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

14 geom_stripped_rows

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

xfrom, xto limitation of the strips along the x-axis

width width of the strips

yfrom, yto limitation of the strips along the y-axis
nudge_x, nudge_y

horizontal or vertical adjustment to nudge strips by

Value

A ggplot2 plot with the added geometry.

Examples

data(tips, package = "reshape")

library(ggplot2)
p <- ggplot(tips) +

aes(x = time, y = day) +
geom_count() +
theme_light()

p
p + geom_stripped_rows()
p + geom_stripped_cols()
p + geom_stripped_rows() + geom_stripped_cols()

p <- ggplot(tips) +
aes(x = total_bill, y = day) +
geom_count() +

ggcascade 15

theme_light()
p
p + geom_stripped_rows()
p + geom_stripped_rows() + scale_y_discrete(expand = expansion(0, 0.5))
p + geom_stripped_rows(xfrom = 10, xto = 35)
p + geom_stripped_rows(odd = "blue", even = "yellow")
p + geom_stripped_rows(odd = "blue", even = "yellow", alpha = .1)
p + geom_stripped_rows(odd = "#00FF0022", even = "#FF000022")

p + geom_stripped_cols()
p + geom_stripped_cols(width = 10)
p + geom_stripped_cols(width = 10, nudge_x = 5)

ggcascade Cascade plot

Description

[Experimental]

Usage

ggcascade(
.data,
...,
.weights = NULL,
.by = NULL,
.nrow = NULL,
.ncol = NULL,
.add_n = TRUE,
.text_size = 4,
.arrows = TRUE

)

compute_cascade(.data, ..., .weights = NULL, .by = NULL)

plot_cascade(
.data,
.by = NULL,
.nrow = NULL,
.ncol = NULL,
.add_n = TRUE,
.text_size = 4,
.arrows = TRUE

)

16 ggcascade

Arguments

.data A data frame, or data frame extension (e.g. a tibble). For plot_cascade(), the
variable displayed on the x-axis should be named "x" and the number of obser-
vations should be named "n", like the tibble returned by compute_cascade().

... <data-masking> Name-value pairs of conditions defining the different statuses
to be plotted (see examples).

.weights <tidy-select> Optional weights. Should select only one variable.

.by <tidy-select> A variable or a set of variables to group by the computation of
the cascade, and to generate facets. To select several variables, use dplyr::pick()
(see examples).

.nrow, .ncol Number of rows and columns, for faceted plots.

.add_n Display the number of observations?

.text_size Size of the labels, passed to ggplot2::geom_text().

.arrows Display arrows between statuses?

Details

ggcascade() calls compute_cascade() to generate a data set passed to plot_cascade(). Use
compute_cascade() and plot_cascade() for more controls.

Value

A ggplot2 plot or a tibble.

Examples

ggplot2::diamonds |>
ggcascade(
all = TRUE,
big = carat > .5,
"big & ideal" = carat > .5 & cut == "Ideal"

)

ggplot2::mpg |>
ggcascade(

all = TRUE,
recent = year > 2000,
"recent & economic" = year > 2000 & displ < 3,
.by = cyl,
.ncol = 3,
.arrows = FALSE,
.text_size = 3

)

ggplot2::mpg |>
ggcascade(

all = TRUE,
recent = year > 2000,

ggcoef_model 17

"recent & economic" = year > 2000 & displ < 3,
.by = pick(cyl, drv),
.add_n = FALSE,
.text_size = 2

)

ggcoef_model Plot model coefficients

Description

ggcoef_model(), ggcoef_table(), ggcoef_dodged(), ggcoef_faceted() and ggcoef_compare()
use broom.helpers::tidy_plus_plus() to obtain a tibble of the model coefficients, apply ad-
ditional data transformation and then pass the produced tibble to ggcoef_plot() to generate the
plot.

Usage

ggcoef_model(
model,
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
tidy_args = NULL,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
group_by = broom.helpers::auto_group_by(),
group_labels = NULL,
add_pairwise_contrasts = FALSE,
pairwise_variables = broom.helpers::all_categorical(),
keep_model_terms = FALSE,
pairwise_reverse = TRUE,
emmeans_args = list(),
significance = 1 - conf.level,
significance_labels = NULL,
show_p_values = TRUE,
signif_stars = TRUE,
return_data = FALSE,
...

)

18 ggcoef_model

ggcoef_table(
model,
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
tidy_args = NULL,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
group_by = broom.helpers::auto_group_by(),
group_labels = NULL,
add_pairwise_contrasts = FALSE,
pairwise_variables = broom.helpers::all_categorical(),
keep_model_terms = FALSE,
pairwise_reverse = TRUE,
emmeans_args = list(),
significance = 1 - conf.level,
significance_labels = NULL,
show_p_values = FALSE,
signif_stars = FALSE,
table_stat = c("estimate", "ci", "p.value"),
table_header = NULL,
table_text_size = 3,
table_stat_label = NULL,
ci_pattern = "{conf.low}, {conf.high}",
table_widths = c(3, 2),
table_witdhs = deprecated(),
...

)

ggcoef_dodged(
model,
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
tidy_args = NULL,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",

ggcoef_model 19

add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
group_by = broom.helpers::auto_group_by(),
group_labels = NULL,
significance = 1 - conf.level,
significance_labels = NULL,
return_data = FALSE,
...

)

ggcoef_faceted(
model,
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
tidy_args = NULL,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
group_by = broom.helpers::auto_group_by(),
group_labels = NULL,
significance = 1 - conf.level,
significance_labels = NULL,
return_data = FALSE,
...

)

ggcoef_compare(
models,
type = c("dodged", "faceted", "table"),
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
tidy_args = NULL,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,

20 ggcoef_model

no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
add_pairwise_contrasts = FALSE,
pairwise_variables = broom.helpers::all_categorical(),
keep_model_terms = FALSE,
pairwise_reverse = TRUE,
emmeans_args = list(),
significance = 1 - conf.level,
significance_labels = NULL,
table_stat = c("estimate", "ci", "p.value"),
table_header = NULL,
table_text_size = 3,
table_stat_label = NULL,
ci_pattern = "{conf.low}, {conf.high}",
table_widths = c(3, 2),
return_data = FALSE,
...

)

ggcoef_plot(
data,
x = "estimate",
y = "label",
exponentiate = FALSE,
y_labeller = NULL,
point_size = 2,
point_stroke = 2,
point_fill = "white",
colour = NULL,
colour_guide = TRUE,
colour_lab = "",
colour_labels = ggplot2::waiver(),
shape = "significance",
shape_values = c(16, 21),
shape_guide = TRUE,
shape_lab = "",
errorbar = TRUE,
errorbar_height = 0.1,
errorbar_coloured = FALSE,
stripped_rows = TRUE,
strips_odd = "#11111111",
strips_even = "#00000000",
vline = TRUE,
vline_colour = "grey50",
dodged = FALSE,
dodged_width = 0.8,
facet_row = "var_label",

ggcoef_model 21

facet_col = NULL,
facet_labeller = "label_value",
plot_title = NULL,
x_limits = NULL

)

Arguments

model a regression model object

tidy_fun (function)
Option to specify a custom tidier function.

tidy_args Additional arguments passed to broom.helpers::tidy_plus_plus() and to
tidy_fun

conf.int (logical)
Should confidence intervals be computed? (see broom::tidy())

conf.level the confidence level to use for the confidence interval if conf.int = TRUE; must
be strictly greater than 0 and less than 1; defaults to 0.95, which corresponds to
a 95 percent confidence interval

exponentiate if TRUE a logarithmic scale will be used for x-axis
variable_labels

(formula-list-selector)
A named list or a named vector of custom variable labels.

term_labels (list or vector)
A named list or a named vector of custom term labels.

interaction_sep

(string)
Separator for interaction terms.

categorical_terms_pattern

(glue pattern)
A glue pattern for labels of categorical terms with treatment or sum contrasts
(see model_list_terms_levels()).

add_reference_rows

(logical)
Should reference rows be added?

no_reference_row

(tidy-select)
Variables for those no reference row should be added, when add_reference_rows
= TRUE.

intercept (logical)
Should the intercept(s) be included?

include (tidy-select)
Variables to include. Default is everything(). See also all_continuous(),
all_categorical(), all_dichotomous() and all_interaction().

group_by (tidy-select)
One or several variables to group by. Default is auto_group_by(). Use NULL
to force ungrouping.

22 ggcoef_model

group_labels (string)
An optional named vector of custom term labels.

add_pairwise_contrasts

(logical)
Apply tidy_add_pairwise_contrasts()?

pairwise_variables

(tidy-select)
Variables to add pairwise contrasts.

keep_model_terms

(logical)
Keep original model terms for variables where pairwise contrasts are added?
(default is FALSE)

pairwise_reverse

(logical)
Determines whether to use "pairwise" (if TRUE) or "revpairwise" (if FALSE),
see emmeans::contrast().

emmeans_args (list)
List of additional parameter to pass to emmeans::emmeans() when computing
pairwise contrasts.

significance level (between 0 and 1) below which a coefficient is consider to be significantly
different from 0 (or 1 if exponentiate = TRUE), NULL for not highlighting such
coefficients

significance_labels

optional vector with custom labels for significance variable

show_p_values if TRUE, add p-value to labels

signif_stars if TRUE, add significant stars to labels

return_data if TRUE, will return the data.frame used for plotting instead of the plot

... parameters passed to ggcoef_plot()

table_stat statistics to display in the table, use any column name returned by the tidier or
"ci" for confidence intervals formatted according to ci_pattern

table_header optional custom headers for the table
table_text_size

text size for the table
table_stat_label

optional named list of labeller functions for the displayed statistic (see examples)

ci_pattern glue pattern for confidence intervals in the table

table_widths relative widths of the forest plot and the coefficients table

table_witdhs [Deprecated]
use table_widths instead

models named list of models

type a dodged plot, a faceted plot or multiple table plots?

data a data frame containing data to be plotted, typically the output of ggcoef_model(),
ggcoef_compare() or ggcoef_multinom() with the option return_data = TRUE

ggcoef_model 23

x, y variables mapped to x and y axis

y_labeller optional function to be applied on y labels (see examples)

point_size size of the points

point_stroke thickness of the points

point_fill fill colour for the points

colour optional variable name to be mapped to colour aesthetic

colour_guide should colour guide be displayed in the legend?

colour_lab label of the colour aesthetic in the legend

colour_labels labels argument passed to ggplot2::scale_colour_discrete() and ggplot2::discrete_scale()

shape optional variable name to be mapped to the shape aesthetic

shape_values values of the different shapes to use in ggplot2::scale_shape_manual()

shape_guide should shape guide be displayed in the legend?

shape_lab label of the shape aesthetic in the legend

errorbar should error bars be plotted?
errorbar_height

height of error bars
errorbar_coloured

should error bars be colored as the points?

stripped_rows should stripped rows be displayed in the background?

strips_odd color of the odd rows

strips_even color of the even rows

vline should a vertical line be drawn at 0 (or 1 if exponentiate = TRUE)?

vline_colour colour of vertical line

dodged should points be dodged (according to the colour aesthetic)?

dodged_width width value for ggplot2::position_dodge()

facet_row variable name to be used for row facets

facet_col optional variable name to be used for column facets

facet_labeller labeller function to be used for labeling facets; if labels are too long, you can use
ggplot2::label_wrap_gen() (see examples), more information in the docu-
mentation of ggplot2::facet_grid()

plot_title an optional plot title

x_limits optional limits for the x axis

Details

For more control, you can use the argument return_data = TRUE to get the produced tibble, apply
any transformation of your own and then pass your customized tibble to ggcoef_plot().

Value

A ggplot2 plot or a tibble if return_data = TRUE.

24 ggcoef_model

Functions

• ggcoef_table(): a variation of ggcoef_model() adding a table with estimates, confidence
intervals and p-values

• ggcoef_dodged(): a dodged variation of ggcoef_model() for multi groups models

• ggcoef_faceted(): a faceted variation of ggcoef_model() for multi groups models

• ggcoef_compare(): designed for displaying several models on the same plot.

• ggcoef_plot(): plot a tidy tibble of coefficients

Note

ggcoef_compare(type = "table") is not compatible with multi-components models.

See Also

vignette("ggcoef_model")

Examples

mod <- lm(Sepal.Length ~ Sepal.Width + Species, data = iris)
ggcoef_model(mod)

ggcoef_table(mod)

ggcoef_table(mod, table_stat = c("estimate", "ci"))

ggcoef_table(
mod,
table_stat_label = list(
estimate = scales::label_number(.001)

)
)

ggcoef_table(mod, table_text_size = 5, table_widths = c(1, 1))

a logistic regression example
d_titanic <- as.data.frame(Titanic)
d_titanic$Survived <- factor(d_titanic$Survived, c("No", "Yes"))
mod_titanic <- glm(

Survived ~ Sex * Age + Class,
weights = Freq,
data = d_titanic,
family = binomial

)

use 'exponentiate = TRUE' to get the Odds Ratio
ggcoef_model(mod_titanic, exponentiate = TRUE)

ggcoef_table(mod_titanic, exponentiate = TRUE)

ggcoef_model 25

display intercepts
ggcoef_model(mod_titanic, exponentiate = TRUE, intercept = TRUE)

customize terms labels
ggcoef_model(

mod_titanic,
exponentiate = TRUE,
show_p_values = FALSE,
signif_stars = FALSE,
add_reference_rows = FALSE,
categorical_terms_pattern = "{level} (ref: {reference_level})",
interaction_sep = " x ",
y_labeller = scales::label_wrap(15)

)

display only a subset of terms
ggcoef_model(mod_titanic, exponentiate = TRUE, include = c("Age", "Class"))

do not change points' shape based on significance
ggcoef_model(mod_titanic, exponentiate = TRUE, significance = NULL)

a black and white version
ggcoef_model(

mod_titanic,
exponentiate = TRUE,
colour = NULL, stripped_rows = FALSE

)

show dichotomous terms on one row
ggcoef_model(

mod_titanic,
exponentiate = TRUE,
no_reference_row = broom.helpers::all_dichotomous(),
categorical_terms_pattern =
"{ifelse(dichotomous, paste0(level, ' / ', reference_level), level)}",

show_p_values = FALSE
)

data(tips, package = "reshape")
mod_simple <- lm(tip ~ day + time + total_bill, data = tips)
ggcoef_model(mod_simple)

custom variable labels
you can use the labelled package to define variable labels
before computing model
if (requireNamespace("labelled")) {

tips_labelled <- tips |>
labelled::set_variable_labels(

day = "Day of the week",

26 ggcoef_model

time = "Lunch or Dinner",
total_bill = "Bill's total"

)
mod_labelled <- lm(tip ~ day + time + total_bill, data = tips_labelled)
ggcoef_model(mod_labelled)

}

you can provide custom variable labels with 'variable_labels'
ggcoef_model(

mod_simple,
variable_labels = c(
day = "Week day",
time = "Time (lunch or dinner ?)",
total_bill = "Total of the bill"

)
)
if labels are too long, you can use 'facet_labeller' to wrap them
ggcoef_model(

mod_simple,
variable_labels = c(
day = "Week day",
time = "Time (lunch or dinner ?)",
total_bill = "Total of the bill"

),
facet_labeller = ggplot2::label_wrap_gen(10)

)

do not display variable facets but add colour guide
ggcoef_model(mod_simple, facet_row = NULL, colour_guide = TRUE)

works also with with polynomial terms
mod_poly <- lm(

tip ~ poly(total_bill, 3) + day,
data = tips,

)
ggcoef_model(mod_poly)

or with different type of contrasts
for sum contrasts, the value of the reference term is computed
if (requireNamespace("emmeans")) {

mod2 <- lm(
tip ~ day + time + sex,
data = tips,
contrasts = list(time = contr.sum, day = contr.treatment(4, base = 3))

)
ggcoef_model(mod2)

}

multinomial model

ggcoef_multicomponents 27

mod <- nnet::multinom(grade ~ stage + trt + age, data = gtsummary::trial)
ggcoef_model(mod, exponentiate = TRUE)
ggcoef_table(mod, group_labels = c(II = "Stage 2 vs. 1"))
ggcoef_dodged(mod, exponentiate = TRUE)
ggcoef_faceted(mod, exponentiate = TRUE)

library(pscl)
data("bioChemists", package = "pscl")
mod <- zeroinfl(art ~ fem * mar | fem + mar, data = bioChemists)
ggcoef_model(mod)
ggcoef_table(mod)
ggcoef_dodged(mod)
ggcoef_faceted(

mod,
group_labels = c(conditional = "Count", zero_inflated = "Zero-inflated")

)

mod2 <- zeroinfl(art ~ fem + mar | 1, data = bioChemists)
ggcoef_table(mod2)
ggcoef_table(mod2, intercept = TRUE)

Use ggcoef_compare() for comparing several models on the same plot
mod1 <- lm(Fertility ~ ., data = swiss)
mod2 <- step(mod1, trace = 0)
mod3 <- lm(Fertility ~ Agriculture + Education * Catholic, data = swiss)
models <- list(

"Full model" = mod1,
"Simplified model" = mod2,
"With interaction" = mod3

)

ggcoef_compare(models)
ggcoef_compare(models, type = "faceted")
ggcoef_compare(models, type = "table")

you can reverse the vertical position of the point by using a negative
value for dodged_width (but it will produce some warnings)
ggcoef_compare(models, dodged_width = -.9)

ggcoef_multicomponents

Deprecated functions

28 ggcoef_multicomponents

Description

[Deprecated]

Usage

ggcoef_multicomponents(
model,
type = c("dodged", "faceted", "table"),
component_col = "component",
component_label = NULL,
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
tidy_args = NULL,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
significance = 1 - conf.level,
significance_labels = NULL,
return_data = FALSE,
table_stat = c("estimate", "ci", "p.value"),
table_header = NULL,
table_text_size = 3,
table_stat_label = NULL,
ci_pattern = "{conf.low}, {conf.high}",
table_witdhs = c(3, 2),
...

)

ggcoef_multinom(
model,
type = c("dodged", "faceted", "table"),
y.level_label = NULL,
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
tidy_args = NULL,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",

ggcoef_multicomponents 29

add_reference_rows = TRUE,
no_reference_row = NULL,
intercept = FALSE,
include = dplyr::everything(),
significance = 1 - conf.level,
significance_labels = NULL,
return_data = FALSE,
table_stat = c("estimate", "ci", "p.value"),
table_header = NULL,
table_text_size = 3,
table_stat_label = NULL,
ci_pattern = "{conf.low}, {conf.high}",
table_witdhs = c(3, 2),
...

)

Arguments

model a regression model object

type a dodged plot, a faceted plot or multiple table plots?

component_col name of the component column
component_label

an optional named vector for labeling components

tidy_fun (function)
Option to specify a custom tidier function.

tidy_args Additional arguments passed to broom.helpers::tidy_plus_plus() and to
tidy_fun

conf.int (logical)
Should confidence intervals be computed? (see broom::tidy())

conf.level the confidence level to use for the confidence interval if conf.int = TRUE; must
be strictly greater than 0 and less than 1; defaults to 0.95, which corresponds to
a 95 percent confidence interval

exponentiate if TRUE a logarithmic scale will be used for x-axis
variable_labels

(formula-list-selector)
A named list or a named vector of custom variable labels.

term_labels (list or vector)
A named list or a named vector of custom term labels.

interaction_sep

(string)
Separator for interaction terms.

categorical_terms_pattern

(glue pattern)
A glue pattern for labels of categorical terms with treatment or sum contrasts
(see model_list_terms_levels()).

30 gglikert

add_reference_rows

(logical)
Should reference rows be added?

no_reference_row

(tidy-select)
Variables for those no reference row should be added, when add_reference_rows
= TRUE.

intercept (logical)
Should the intercept(s) be included?

include (tidy-select)
Variables to include. Default is everything(). See also all_continuous(),
all_categorical(), all_dichotomous() and all_interaction().

significance level (between 0 and 1) below which a coefficient is consider to be significantly
different from 0 (or 1 if exponentiate = TRUE), NULL for not highlighting such
coefficients

significance_labels

optional vector with custom labels for significance variable

return_data if TRUE, will return the data.frame used for plotting instead of the plot

table_stat statistics to display in the table, use any column name returned by the tidier or
"ci" for confidence intervals formatted according to ci_pattern

table_header optional custom headers for the table

table_text_size

text size for the table
table_stat_label

optional named list of labeller functions for the displayed statistic (see examples)

ci_pattern glue pattern for confidence intervals in the table

table_witdhs [Deprecated]
use table_widths instead

... parameters passed to ggcoef_plot()

y.level_label an optional named vector for labeling y.level (see examples)

gglikert Plotting Likert-type items

Description

Combines several factor variables using the same list of ordered levels (e.g. Likert-type scales) into
a unique data frame and generates a centered bar plot.

gglikert 31

Usage

gglikert(
data,
include = dplyr::everything(),
weights = NULL,
y = ".question",
variable_labels = NULL,
sort = c("none", "ascending", "descending"),
sort_method = c("prop", "prop_lower", "mean", "median"),
sort_prop_include_center = totals_include_center,
factor_to_sort = ".question",
exclude_fill_values = NULL,
cutoff = NULL,
data_fun = NULL,
add_labels = TRUE,
labels_size = 3.5,
labels_color = "auto",
labels_accuracy = 1,
labels_hide_below = 0.05,
add_totals = TRUE,
totals_size = labels_size,
totals_color = "black",
totals_accuracy = labels_accuracy,
totals_fontface = "bold",
totals_include_center = FALSE,
totals_hjust = 0.1,
y_reverse = TRUE,
y_label_wrap = 50,
reverse_likert = FALSE,
width = 0.9,
facet_rows = NULL,
facet_cols = NULL,
facet_label_wrap = 50,
symmetric = FALSE

)

gglikert_data(
data,
include = dplyr::everything(),
weights = NULL,
variable_labels = NULL,
sort = c("none", "ascending", "descending"),
sort_method = c("prop", "prop_lower", "mean", "median"),
sort_prop_include_center = TRUE,
factor_to_sort = ".question",
exclude_fill_values = NULL,
cutoff = NULL,
data_fun = NULL

32 gglikert

)

gglikert_stacked(
data,
include = dplyr::everything(),
weights = NULL,
y = ".question",
variable_labels = NULL,
sort = c("none", "ascending", "descending"),
sort_method = c("prop", "prop_lower", "mean", "median"),
sort_prop_include_center = FALSE,
factor_to_sort = ".question",
data_fun = NULL,
add_labels = TRUE,
labels_size = 3.5,
labels_color = "auto",
labels_accuracy = 1,
labels_hide_below = 0.05,
add_median_line = FALSE,
y_reverse = TRUE,
y_label_wrap = 50,
reverse_fill = TRUE,
width = 0.9

)

Arguments

data a data frame, a data frame extension (e.g. a tibble), or a survey design object
include variables to include, accepts tidy-select syntax
weights optional variable name of a weighting variable, accepts tidy-select syntax
y name of the variable to be plotted on y axis (relevant when .question is mapped

to "facets, see examples), accepts tidy-select syntax
variable_labels

a named list or a named vector of custom variable labels
sort should the factor defined by factor_to_sort be sorted according to the an-

swers (see sort_method)? One of "none" (default), "ascending" or "descend-
ing"

sort_method method used to sort the variables: "prop" sort according to the proportion of
answers higher than the centered level, "prop_lower" according to the propor-
tion lower than the centered level, "mean" considers answer as a score and sort
according to the mean score, "median" used the median and the majority judg-
ment rule for tie-breaking.

sort_prop_include_center

when sorting with "prop" and if the number of levels is uneven, should half of
the central level be taken into account to compute the proportion?

factor_to_sort name of the factor column to sort if sort is not equal to "none"; by default the
list of questions passed to include; should be one factor column of the tibble
returned by gglikert_data(); accepts tidy-select syntax

gglikert 33

exclude_fill_values

Vector of values that should not be displayed (but still taken into account for
computing proportions), see position_likert()

cutoff number of categories to be displayed negatively (i.e. on the left of the x axis or
the bottom of the y axis), could be a decimal value: 2 to display negatively the
two first categories, 2.5 to display negatively the two first categories and half of
the third, 2.2 to display negatively the two first categories and a fifth of the third
(see examples). By default (NULL), it will be equal to the number of categories
divided by 2, i.e. it will be centered.

data_fun for advanced usage, custom function to be applied to the generated dataset at the
end of gglikert_data()

add_labels should percentage labels be added to the plot?
labels_size size of the percentage labels
labels_color color of the percentage labels ("auto" to use hex_bw() to determine a font color

based on background color)
labels_accuracy

accuracy of the percentages, see scales::label_percent()

labels_hide_below

if provided, values below will be masked, see label_percent_abs()

add_totals should the total proportions of negative and positive answers be added to plot?
This option is not compatible with facets!

totals_size size of the total proportions
totals_color color of the total proportions
totals_accuracy

accuracy of the total proportions, see scales::label_percent()

totals_fontface

font face of the total proportions
totals_include_center

if the number of levels is uneven, should half of the center level be added to the
total proportions?

totals_hjust horizontal adjustment of totals labels on the x axis
y_reverse should the y axis be reversed?
y_label_wrap number of characters per line for y axis labels, see scales::label_wrap()

reverse_likert if TRUE, will reverse the default stacking order, see position_likert()

width bar width, see ggplot2::geom_bar()
facet_rows, facet_cols

A set of variables or expressions quoted by ggplot2::vars() and defining
faceting groups on the rows or columns dimension (see examples)

facet_label_wrap

number of characters per line for facet labels, see ggplot2::label_wrap_gen()
symmetric should the x-axis be symmetric?
add_median_line

add a vertical line at 50%?
reverse_fill if TRUE, will reverse the default stacking order, see ggplot2::position_fill()

34 gglikert

Details

You could use gglikert_data() to just produce the dataset to be plotted.

If variable labels have been defined (see labelled::var_label()), they will be considered. You
can also pass custom variables labels with the variable_labels argument.

Value

A ggplot2 plot or a tibble.

See Also

vignette("gglikert"), position_likert(), stat_prop()

Examples

library(ggplot2)
library(dplyr)

likert_levels <- c(
"Strongly disagree",
"Disagree",
"Neither agree nor disagree",
"Agree",
"Strongly agree"

)
set.seed(42)
df <-

tibble(
q1 = sample(likert_levels, 150, replace = TRUE),
q2 = sample(likert_levels, 150, replace = TRUE, prob = 5:1),
q3 = sample(likert_levels, 150, replace = TRUE, prob = 1:5),
q4 = sample(likert_levels, 150, replace = TRUE, prob = 1:5),
q5 = sample(c(likert_levels, NA), 150, replace = TRUE),
q6 = sample(likert_levels, 150, replace = TRUE, prob = c(1, 0, 1, 1, 0))

) |>
mutate(across(everything(), ~ factor(.x, levels = likert_levels)))

gglikert(df)

gglikert(df, include = q1:3) +
scale_fill_likert(pal = scales::brewer_pal(palette = "PRGn"))

gglikert(df, sort = "ascending")

gglikert(df, sort = "ascending", sort_prop_include_center = TRUE)

gglikert(df, sort = "ascending", sort_method = "mean")

gglikert(df, reverse_likert = TRUE)

gglikert 35

gglikert(df, add_totals = FALSE, add_labels = FALSE)

gglikert(
df,
totals_include_center = TRUE,
totals_hjust = .25,
totals_size = 4.5,
totals_fontface = "italic",
totals_accuracy = .01,
labels_accuracy = 1,
labels_size = 2.5,
labels_hide_below = .25

)

gglikert(df, exclude_fill_values = "Neither agree nor disagree")

if (require("labelled")) {
df |>
set_variable_labels(

q1 = "First question",
q2 = "Second question"

) |>
gglikert(

variable_labels = c(
q4 = "a custom label",
q6 = "a very very very very very very very very very very long label"

),
y_label_wrap = 25

)
}

Facets
df_group <- df
df_group$group <- sample(c("A", "B"), 150, replace = TRUE)

gglikert(df_group, q1:q6, facet_rows = vars(group))

gglikert(df_group, q1:q6, facet_cols = vars(group))

gglikert(df_group, q1:q6, y = "group", facet_rows = vars(.question))

Custom function to be applied on data
f <- function(d) {

d$.question <- forcats::fct_relevel(d$.question, "q5", "q2")
d

}
gglikert(df, include = q1:q6, data_fun = f)

Custom center
gglikert(df, cutoff = 2)

gglikert(df, cutoff = 1)

36 ggsurvey

gglikert(df, cutoff = 1, symmetric = TRUE)

gglikert_stacked(df, q1:q6)

gglikert_stacked(df, q1:q6, add_median_line = TRUE, sort = "asc")

gglikert_stacked(df_group, q1:q6, y = "group", add_median_line = TRUE) +
facet_grid(rows = vars(.question))

ggsurvey Easy ggplot2 with survey objects

Description

A function to facilitate ggplot2 graphs using a survey object. It will initiate a ggplot and map
survey weights to the corresponding aesthetic.

Usage

ggsurvey(design = NULL, mapping = NULL, ...)

Arguments

design A survey design object, usually created with survey::svydesign()

mapping Default list of aesthetic mappings to use for plot, to be created with ggplot2::aes().

... Other arguments passed on to methods. Not currently used.

Details

Graphs will be correct as long as only weights are required to compute the graph. However, statis-
tic or geometry requiring correct variance computation (like ggplot2::geom_smooth()) will be
statistically incorrect.

Value

A ggplot2 plot.

Examples

data(api, package = "survey")
dstrat <- survey::svydesign(

id = ~1, strata = ~stype,
weights = ~pw, data = apistrat,
fpc = ~fpc

)
ggsurvey(dstrat) +

hex_bw 37

ggplot2::aes(x = cnum, y = dnum) +
ggplot2::geom_count()

d <- as.data.frame(Titanic)
dw <- survey::svydesign(ids = ~1, weights = ~Freq, data = d)
ggsurvey(dw) +

ggplot2::aes(x = Class, fill = Survived) +
ggplot2::geom_bar(position = "fill")

hex_bw Identify a suitable font color (black or white) given a background HEX
color

Description

You could use auto_contrast as a shortcut of aes(colour = after_scale(hex_bw(.data$fill))).
You should use !!! to inject it within ggplot2::aes() (see examples).

hex_bw_threshold() is a variation of hex_bw(). For values below threshold, black ("#000000")
will always be returned, regardless of hex_code.

Usage

hex_bw(hex_code)

hex_bw_threshold(hex_code, values, threshold)

auto_contrast

Arguments

hex_code Background color in hex-format.

values Values to be compared.

threshold Threshold.

Format

An object of class ggplot2::mapping (inherits from uneval, gg, S7_object) of length 1.

Value

Either black or white, in hex-format

Source

Adapted from saros for hex_code() and from https://github.com/teunbrand/ggplot_tricks?
tab=readme-ov-file#text-contrast for auto_contrast.

https://github.com/teunbrand/ggplot_tricks?tab=readme-ov-file#text-contrast
https://github.com/teunbrand/ggplot_tricks?tab=readme-ov-file#text-contrast

38 label_number_abs

Examples

hex_bw("#0dadfd")

library(ggplot2)
ggplot(diamonds) +

aes(x = cut, fill = color, label = after_stat(count)) +
geom_bar() +
geom_text(
mapping = aes(color = after_scale(hex_bw(.data$fill))),
position = position_stack(.5),
stat = "count",
size = 2

)

ggplot(diamonds) +
aes(x = cut, fill = color, label = after_stat(count)) +
geom_bar() +
geom_text(

mapping = auto_contrast,
position = position_stack(.5),
stat = "count",
size = 2

)

ggplot(diamonds) +
aes(x = cut, fill = color, label = after_stat(count), !!!auto_contrast) +
geom_bar() +
geom_text(

mapping = auto_contrast,
position = position_stack(.5),
stat = "count",
size = 2

)

label_number_abs Label absolute values

Description

Label absolute values

Usage

label_number_abs(..., hide_below = NULL)

label_percent_abs(..., hide_below = NULL)

pal_extender 39

Arguments

... arguments passed to scales::label_number() or scales::label_percent()

hide_below if provided, values below hide_below will be masked (i.e. an empty string ""
will be returned)

Value

A "labelling" function, , i.e. a function that takes a vector and returns a character vector of same
length giving a label for each input value.

See Also

scales::label_number(), scales::label_percent()

Examples

x <- c(-0.2, -.05, 0, .07, .25, .66)

scales::label_number()(x)
label_number_abs()(x)

scales::label_percent()(x)
label_percent_abs()(x)
label_percent_abs(hide_below = .1)(x)

pal_extender Extend a discrete colour palette

Description

If the palette returns less colours than requested, the list of colours will be expanded using scales::pal_gradient_n().
To be used with a sequential or diverging palette. Not relevant for qualitative palettes.

Usage

pal_extender(pal = scales::brewer_pal(palette = "BrBG"))

scale_fill_extended(
name = waiver(),
...,
pal = scales::brewer_pal(palette = "BrBG"),
aesthetics = "fill"

)

scale_colour_extended(
name = waiver(),
...,

40 position_likert

pal = scales::brewer_pal(palette = "BrBG"),
aesthetics = "colour"

)

Arguments

pal A palette function, such as returned by scales::brewer_pal, taking a number of
colours as entry and returning a list of colours.

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Other arguments passed on to discrete_scale() to control name, limits, breaks,
labels and so forth.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics
= c("colour", "fill").

Value

A palette function.

Examples

pal <- scales::pal_brewer(palette = "PiYG")
scales::show_col(pal(16))
scales::show_col(pal_extender(pal)(16))

position_likert Stack objects on top of each another and center them around 0

Description

position_diverging() stacks bars on top of each other and center them around zero (the same
number of categories are displayed on each side). position_likert() uses proportions instead of
counts. This type of presentation is commonly used to display Likert-type scales.

Usage

position_likert(
vjust = 1,
reverse = FALSE,
exclude_fill_values = NULL,
cutoff = NULL

)

position_diverging(

position_likert 41

vjust = 1,
reverse = FALSE,
exclude_fill_values = NULL,
cutoff = NULL

)

Arguments

vjust Vertical adjustment for geoms that have a position (like points or lines), not a
dimension (like bars or areas). Set to 0 to align with the bottom, 0.5 for the
middle, and 1 (the default) for the top.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

exclude_fill_values

Vector of values from the variable associated with the fill aesthetic that should
not be displayed (but still taken into account for computing proportions)

cutoff number of categories to be displayed negatively (i.e. on the left of the x axis or
the bottom of the y axis), could be a decimal value: 2 to display negatively the
two first categories, 2.5 to display negatively the two first categories and half of
the third, 2.2 to display negatively the two first categories and a fifth of the third
(see examples). By default (NULL), it will be equal to the number of categories
divided by 2, i.e. it will be centered.

Details

It is recommended to use position_likert() with stat_prop() and its complete argument (see
examples).

See Also

See ggplot2::position_stack() and ggplot2::position_fill()

Examples

library(ggplot2)

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = "fill") +
scale_x_continuous(label = scales::label_percent()) +
xlab("proportion")

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = "likert") +
scale_x_continuous(label = label_percent_abs()) +
scale_fill_likert() +
xlab("proportion")

ggplot(diamonds) +

42 position_likert

aes(y = clarity, fill = cut) +
geom_bar(position = "stack") +
scale_fill_likert(pal = scales::brewer_pal(palette = "PiYG"))

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = "diverging") +
scale_x_continuous(label = label_number_abs()) +
scale_fill_likert()

Reverse order ---

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = position_likert(reverse = TRUE)) +
scale_x_continuous(label = label_percent_abs()) +
scale_fill_likert() +
xlab("proportion")

Custom center ---

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = position_likert(cutoff = 1)) +
scale_x_continuous(label = label_percent_abs()) +
scale_fill_likert(cutoff = 1) +
xlab("proportion")

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = position_likert(cutoff = 3.75)) +
scale_x_continuous(label = label_percent_abs()) +
scale_fill_likert(cutoff = 3.75) +
xlab("proportion")

Missing items ---
example with a level not being observed for a specific value of y
d <- diamonds
d <- d[!(d$cut == "Premium" & d$clarity == "I1"),]
d <- d[!(d$cut %in% c("Fair", "Good") & d$clarity == "SI2"),]

by default, the two lowest bar are not properly centered
ggplot(d) +

aes(y = clarity, fill = cut) +
geom_bar(position = "likert") +
scale_fill_likert()

use stat_prop() with `complete = "fill"` to fix it
ggplot(d) +

aes(y = clarity, fill = cut) +
geom_bar(position = "likert", stat = "prop", complete = "fill") +
scale_fill_likert()

round_any 43

Add labels --

custom_label <- function(x) {
p <- scales::percent(x, accuracy = 1)
p[x < .075] <- ""
p

}

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = "likert") +
geom_text(
aes(by = clarity, label = custom_label(after_stat(prop))),
stat = "prop",
position = position_likert(vjust = .5)

) +
scale_x_continuous(label = label_percent_abs()) +
scale_fill_likert() +
xlab("proportion")

Do not display specific fill values ---------------------------------------
(but taken into account to compute proportions)

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = position_likert(exclude_fill_values = "Very Good")) +
scale_x_continuous(label = label_percent_abs()) +
scale_fill_likert() +
xlab("proportion")

round_any Round to multiple of any number.

Description

Round to multiple of any number.

Usage

round_any(x, accuracy, f = round)

Arguments

x numeric or date-time (POSIXct) vector to round

accuracy number to round to; for POSIXct objects, a number of seconds

f rounding function: floor, ceiling or round

44 scale_fill_likert

Source

adapted from plyr

Examples

round_any(1.865, accuracy = .25)

scale_fill_likert Colour scale for Likert-type plots

Description

This scale is similar to other diverging discrete colour scales, but allows to change the "center" of
the scale using cutoff argument, as used by position_likert().

Usage

scale_fill_likert(
name = waiver(),
...,
pal = scales::brewer_pal(palette = "BrBG"),
cutoff = NULL,
aesthetics = "fill"

)

likert_pal(pal = scales::brewer_pal(palette = "BrBG"), cutoff = NULL)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Other arguments passed on to discrete_scale() to control name, limits, breaks,
labels and so forth.

pal A palette function taking a number of colours as entry and returning a list of
colours (see examples), ideally a diverging palette

cutoff Number of categories displayed negatively (see position_likert()) and there-
fore changing the center of the colour scale (see examples).

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics
= c("colour", "fill").

signif_stars 45

Examples

library(ggplot2)
ggplot(diamonds) +

aes(y = clarity, fill = cut) +
geom_bar(position = "likert") +
scale_x_continuous(label = label_percent_abs()) +
xlab("proportion")

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = "likert") +
scale_x_continuous(label = label_percent_abs()) +
xlab("proportion") +
scale_fill_likert()

ggplot(diamonds) +
aes(y = clarity, fill = cut) +
geom_bar(position = position_likert(cutoff = 1)) +
scale_x_continuous(label = label_percent_abs()) +
xlab("proportion") +
scale_fill_likert(cutoff = 1)

signif_stars Significance Stars

Description

Calculate significance stars

Usage

signif_stars(x, three = 0.001, two = 0.01, one = 0.05, point = 0.1)

Arguments

x numeric values that will be compared to the point, one, two, and three values

three threshold below which to display three stars

two threshold below which to display two stars

one threshold below which to display one star

point threshold below which to display one point (NULL to deactivate)

Value

Character vector containing the appropriate number of stars for each x value.

Author(s)

Joseph Larmarange

46 stat_cross

Examples

x <- c(0.5, 0.1, 0.05, 0.01, 0.001)
signif_stars(x)
signif_stars(x, one = .15, point = NULL)

stat_cross Compute cross-tabulation statistics

Description

Computes statistics of a 2-dimensional matrix using broom::augment.htest.

Usage

stat_cross(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
keep.zero.cells = FALSE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Override the default connection with ggplot2::geom_point().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

stat_cross 47

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If TRUE, the default, missing values are removed with a warning. If TRUE, miss-
ing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

keep.zero.cells

If TRUE, cells with no observations are kept.

Value

A ggplot2 plot with the added statistic.

Aesthetics

stat_cross() requires the x and the y aesthetics.

48 stat_cross

Computed variables

observed number of observations in x,y

prop proportion of total

row.prop row proportion

col.prop column proportion

expected expected count under the null hypothesis

resid Pearson’s residual

std.resid standardized residual

row.observed total number of observations within row

col.observed total number of observations within column

total.observed total number of observations within the table

phi phi coefficients, see augment_chisq_add_phi()

See Also

vignette("stat_cross")

Examples

library(ggplot2)
d <- as.data.frame(Titanic)

plot number of observations
ggplot(d) +

aes(x = Class, y = Survived, weight = Freq, size = after_stat(observed)) +
stat_cross() +
scale_size_area(max_size = 20)

custom shape and fill colour based on chi-squared residuals
ggplot(d) +

aes(
x = Class, y = Survived, weight = Freq,
size = after_stat(observed), fill = after_stat(std.resid)

) +
stat_cross(shape = 22) +
scale_fill_steps2(breaks = c(-3, -2, 2, 3), show.limits = TRUE) +
scale_size_area(max_size = 20)

custom shape and fill colour based on phi coeffients
ggplot(d) +

aes(
x = Class, y = Survived, weight = Freq,
size = after_stat(observed), fill = after_stat(phi)

) +
stat_cross(shape = 22) +
scale_fill_steps2(show.limits = TRUE) +
scale_size_area(max_size = 20)

stat_prop 49

plotting the number of observations as a table
ggplot(d) +

aes(
x = Class, y = Survived, weight = Freq, label = after_stat(observed)

) +
geom_text(stat = "cross")

Row proportions with standardized residuals
ggplot(d) +

aes(
x = Class, y = Survived, weight = Freq,
label = scales::percent(after_stat(row.prop)),
size = NULL, fill = after_stat(std.resid)

) +
stat_cross(shape = 22, size = 30) +
geom_text(stat = "cross") +
scale_fill_steps2(breaks = c(-3, -2, 2, 3), show.limits = TRUE) +
facet_grid(Sex ~ .) +
labs(fill = "Standardized residuals") +
theme_minimal()

stat_prop Compute proportions according to custom denominator

Description

stat_prop() is a variation of ggplot2::stat_count() allowing to compute custom proportions
according to the by aesthetic defining the denominator (i.e. all proportions for a same value of by
will sum to 1). If the by aesthetic is not specified, denominators will be determined according to
the default_by argument.

Usage

stat_prop(
mapping = NULL,
data = NULL,
geom = "bar",
position = "fill",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
complete = NULL,
default_by = "total"

)

50 stat_prop

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Override the default connection with ggplot2::geom_bar().
position A position adjustment to use on the data for this layer. This can be used in

various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stat_prop 51

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

complete Name (character) of an aesthetic for those statistics should be completed for
unobserved values (see example).

default_by If the by aesthetic is not available, name of another aesthetic that will be used
to determine the denominators (e.g. "fill"), or NULL or "total" to compute
proportions of the total. To be noted, default_by = "x" works both for vertical
and horizontal bars.

Value

A ggplot2 plot with the added statistic.

Aesthetics

stat_prop() understands the following aesthetics (required aesthetics are in bold):

• x or y

• by

• weight

Computed variables

after_stat(count) number of points in bin

after_stat(denominator) denominator for the proportions

after_stat(prop) computed proportion, i.e. after_stat(count)/after_stat(denominator)

See Also

vignette("stat_prop"), ggplot2::stat_count(). For an alternative approach, see https://
github.com/tidyverse/ggplot2/issues/5505#issuecomment-1791324008.

https://github.com/tidyverse/ggplot2/issues/5505#issuecomment-1791324008
https://github.com/tidyverse/ggplot2/issues/5505#issuecomment-1791324008

52 stat_weighted_mean

Examples

library(ggplot2)
d <- as.data.frame(Titanic)

p <- ggplot(d) +
aes(x = Class, fill = Survived, weight = Freq, by = Class) +
geom_bar(position = "fill") +
geom_text(stat = "prop", position = position_fill(.5))

p
p + facet_grid(~Sex)

ggplot(d) +
aes(x = Class, fill = Survived, weight = Freq) +
geom_bar(position = "dodge") +
geom_text(
aes(by = Survived),
stat = "prop",
position = position_dodge(0.9), vjust = "bottom"

)

if (requireNamespace("scales")) {
ggplot(d) +

aes(x = Class, fill = Survived, weight = Freq, by = 1) +
geom_bar() +
geom_text(

aes(label = scales::percent(after_stat(prop), accuracy = 1)),
stat = "prop",
position = position_stack(.5)

)
}

displaying unobserved levels with complete
d <- diamonds |>

dplyr::filter(!(cut == "Ideal" & clarity == "I1")) |>
dplyr::filter(!(cut == "Very Good" & clarity == "VS2")) |>
dplyr::filter(!(cut == "Premium" & clarity == "IF"))

p <- ggplot(d) +
aes(x = clarity, fill = cut, by = clarity) +
geom_bar(position = "fill")

p + geom_text(stat = "prop", position = position_fill(.5))
p + geom_text(stat = "prop", position = position_fill(.5), complete = "fill")

stat_weighted_mean Compute weighted y mean

Description

This statistic will compute the mean of y aesthetic for each unique value of x, taking into account
weight aesthetic if provided.

stat_weighted_mean 53

Usage

stat_weighted_mean(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Override the default connection with ggplot2::geom_point().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the

54 stat_weighted_mean

params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

Value

A ggplot2 plot with the added statistic.

Computed variables

y weighted y (numerator / denominator)

numerator numerator

denominator denominator

See Also

vignette("stat_weighted_mean")

Examples

library(ggplot2)

symmetric_limits 55

data(tips, package = "reshape")

ggplot(tips) +
aes(x = day, y = total_bill) +
geom_point()

ggplot(tips) +
aes(x = day, y = total_bill) +
stat_weighted_mean()

ggplot(tips) +
aes(x = day, y = total_bill, group = 1) +
stat_weighted_mean(geom = "line")

ggplot(tips) +
aes(x = day, y = total_bill, colour = sex, group = sex) +
stat_weighted_mean(geom = "line")

ggplot(tips) +
aes(x = day, y = total_bill, fill = sex) +
stat_weighted_mean(geom = "bar", position = "dodge")

computing a proportion on the fly
if (requireNamespace("scales")) {

ggplot(tips) +
aes(x = day, y = as.integer(smoker == "Yes"), fill = sex) +
stat_weighted_mean(geom = "bar", position = "dodge") +
scale_y_continuous(labels = scales::percent)

}

library(ggplot2)

taking into account some weights
d <- as.data.frame(Titanic)
ggplot(d) +

aes(
x = Class, y = as.integer(Survived == "Yes"),
weight = Freq, fill = Sex

) +
geom_bar(stat = "weighted_mean", position = "dodge") +
scale_y_continuous(labels = scales::percent) +
labs(y = "Survived")

symmetric_limits Symmetric limits

56 weighted.median

Description

Expand scale limits to make them symmetric around zero. Can be passed as argument to parameter
limits of continuous scales from packages {ggplot2} or {scales}. Can be also used to obtain an
enclosing symmetric range for numeric vectors.

Usage

symmetric_limits(x)

Arguments

x a vector of numeric values, possibly a range, from which to compute enclosing
range

Value

A numeric vector of length two with the new limits, which are always such that the absolute value
of upper and lower limits is the same.

Source

Adapted from the homonym function in {ggpmisc}

Examples

library(ggplot2)

ggplot(iris) +
aes(x = Sepal.Length - 5, y = Sepal.Width - 3, colour = Species) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
geom_point()

last_plot() +
scale_x_continuous(limits = symmetric_limits) +
scale_y_continuous(limits = symmetric_limits)

weighted.median Weighted Median and Quantiles

Description

Compute the median or quantiles a set of numbers which have weights associated with them.

Usage

weighted.median(x, w, na.rm = TRUE, type = 2)

weighted.quantile(x, w, probs = seq(0, 1, 0.25), na.rm = TRUE, type = 4)

weighted.median 57

Arguments

x a numeric vector of values

w a numeric vector of weights

na.rm a logical indicating whether to ignore NA values

type Integer specifying the rule for calculating the median or quantile, corresponding
to the rules available for stats:quantile(). The only valid choices are type=1,
2 or 4. See Details.

probs probabilities for which the quantiles should be computed, a numeric vector of
values between 0 and 1

Details

The ith observation x[i] is treated as having a weight proportional to w[i].

The weighted median is a value m such that the total weight of data less than or equal to m is equal
to half the total weight. More generally, the weighted quantile with probability p is a value q such
that the total weight of data less than or equal to q is equal to p times the total weight.

If there is no such value, then

• if type = 1, the next largest value is returned (this is the right-continuous inverse of the left-
continuous cumulative distribution function);

• if type = 2, the average of the two surrounding values is returned (the average of the right-
continuous and left-continuous inverses);

• if type = 4, linear interpolation is performed.

Note that the default rule for weighted.median() is type = 2, consistent with the traditional defi-
nition of the median, while the default for weighted.quantile() is type = 4.

Value

A numeric vector.

Source

These functions are adapted from their homonyms developed by Adrian Baddeley in the spatstat
package.

Examples

x <- 1:20
w <- runif(20)
weighted.median(x, w)
weighted.quantile(x, w)

58 weighted.sum

weighted.sum Weighted Sum

Description

Weighted Sum

Usage

weighted.sum(x, w, na.rm = TRUE)

Arguments

x a numeric vector of values

w a numeric vector of weights

na.rm a logical indicating whether to ignore NA values

Value

A numeric vector.

Examples

x <- 1:20
w <- runif(20)
weighted.sum(x, w)

Index

∗ datasets
geom_connector, 3
hex_bw, 37
position_likert, 40
stat_cross, 46
stat_prop, 49
stat_weighted_mean, 52

aes(), 4, 10, 13, 46, 50, 53
all_categorical(), 21, 30
all_continuous(), 21, 30
all_dichotomous(), 21, 30
all_interaction(), 21, 30
annotation_borders(), 5, 14, 47, 51, 54
augment_chisq_add_phi, 2
augment_chisq_add_phi(), 48
auto_contrast (hex_bw), 37

broom.helpers::tidy_plus_plus(), 17, 21,
29

broom::augment.htest, 46
broom::tidy(), 21, 29

ceiling, 43
compute_cascade (ggcascade), 15

dplyr::pick(), 16

emmeans::contrast(), 22
emmeans::emmeans(), 22

floor, 43
fortify(), 4, 10, 13, 46, 50, 53

geom_bar_connector (geom_connector), 3
geom_bar_connector(), 10, 11
geom_connector, 3
geom_diverging, 7
geom_diverging_text (geom_diverging), 7
geom_likert (geom_diverging), 7
geom_likert_text (geom_diverging), 7

geom_prop_bar, 9
geom_prop_connector (geom_prop_bar), 9
geom_prop_text (geom_prop_bar), 9
geom_pyramid (geom_diverging), 7
geom_pyramid_text (geom_diverging), 7
geom_stripped_cols

(geom_stripped_rows), 12
geom_stripped_rows, 12
GeomConnector (geom_connector), 3
ggcascade, 15
ggcoef_compare (ggcoef_model), 17
ggcoef_dodged (ggcoef_model), 17
ggcoef_faceted (ggcoef_model), 17
ggcoef_model, 17
ggcoef_model(), 24
ggcoef_multicomponents, 27
ggcoef_multinom

(ggcoef_multicomponents), 27
ggcoef_plot (ggcoef_model), 17
ggcoef_plot(), 22, 30
ggcoef_table (ggcoef_model), 17
gglikert, 30
gglikert_data (gglikert), 30
gglikert_stacked (gglikert), 30
ggplot(), 4, 10, 13, 46, 50, 53
ggplot2::aes(), 36, 37
ggplot2::discrete_scale(), 23
ggplot2::facet_grid(), 23
ggplot2::geom_bar(), 7, 8, 10, 11, 33, 50
ggplot2::geom_point(), 46, 53
ggplot2::geom_smooth(), 36
ggplot2::geom_step(), 3
ggplot2::geom_text(), 7, 10, 11, 16
ggplot2::label_wrap_gen(), 23, 33
ggplot2::position_dodge(), 23
ggplot2::position_fill(), 33, 41
ggplot2::position_stack(), 41
ggplot2::scale_colour_discrete(), 23
ggplot2::scale_shape_manual(), 23

59

60 INDEX

ggplot2::stat_count(), 49, 51
ggplot2::vars(), 33
ggsurvey, 36
glue pattern, 21, 29

hex_bw, 37
hex_bw_threshold (hex_bw), 37

key glyphs, 5, 14, 47, 50, 54

label_number_abs, 38
label_percent_abs (label_number_abs), 38
label_percent_abs(), 33
labelled::var_label(), 34
layer position, 5, 11, 13, 47, 50, 53
layer stat, 4, 13
layer(), 5, 13, 14, 47, 50, 53, 54
likert_pal (scale_fill_likert), 44

model_list_terms_levels(), 21, 29

pal_extender, 39
plot_cascade (ggcascade), 15
position_diverging (position_likert), 40
position_diverging(), 8
position_likert, 40
position_likert(), 8, 33, 34, 44
PositionDiverging (position_likert), 40
PositionLikert (position_likert), 40

round, 43
round_any, 43

scale_colour_extended (pal_extender), 39
scale_fill_extended (pal_extender), 39
scale_fill_likert, 44
scales::brewer_pal, 40
scales::label_number(), 39
scales::label_percent(), 33, 39
scales::label_wrap(), 33
scales::pal_gradient_n(), 39
signif_stars, 45
stat_cross, 46
stat_cross(), 3
stat_prop, 49
stat_prop(), 8–10, 34
stat_weighted_mean, 52
StatCross (stat_cross), 46
StatProp (stat_prop), 49
stats::chisq.test(), 2

StatWeightedMean (stat_weighted_mean),
52

survey::svydesign(), 36
symmetric_limits, 55

tidy-select, 32
tidy_add_pairwise_contrasts(), 22

weighted.median, 56
weighted.quantile (weighted.median), 56
weighted.sum, 58

	augment_chisq_add_phi
	geom_connector
	geom_diverging
	geom_prop_bar
	geom_stripped_rows
	ggcascade
	ggcoef_model
	ggcoef_multicomponents
	gglikert
	ggsurvey
	hex_bw
	label_number_abs
	pal_extender
	position_likert
	round_any
	scale_fill_likert
	signif_stars
	stat_cross
	stat_prop
	stat_weighted_mean
	symmetric_limits
	weighted.median
	weighted.sum
	Index

