
Package ‘gkwdist’
January 8, 2026

Title Generalized Kumaraswamy Distribution Family

Version 1.1.2

Description Implements the five-parameter Generalized Kumaraswamy ('gkw')
distribution proposed by 'Carrasco, Ferrari and Cordeiro (2010)'
<doi:10.48550/arXiv.1004.0911> and its seven nested sub-families for
modeling bounded continuous data on the unit interval (0,1). The 'gkw'
distribution extends the Kumaraswamy distribution described by Jones (2009)
<doi:10.1016/j.stamet.2008.04.001>. Provides density, distribution,
quantile, and random generation functions, along with analytical
log-likelihood, gradient, and Hessian functions implemented in 'C++' via
'RcppArmadillo' for maximum computational efficiency. Suitable for modeling
proportions, rates, percentages, and indices exhibiting complex features
such as asymmetry, or heavy tails and other shapes not adequately captured by
standard distributions like simple Beta or Kumaraswamy.

License MIT + file LICENSE

URL https://github.com/evandeilton/gkwdist,

https://evandeilton.github.io/gkwdist/

BugReports https://github.com/evandeilton/gkwdist/issues

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Imports Rcpp, RcppArmadillo, magrittr, numDeriv

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation yes

VignetteBuilder knitr

Author José Evandeilton Lopes [aut, cre] (ORCID:
<https://orcid.org/0009-0007-5887-4084>)

Maintainer José Evandeilton Lopes <evandeilton@gmail.com>

1

https://doi.org/10.48550/arXiv.1004.0911
https://doi.org/10.1016/j.stamet.2008.04.001
https://github.com/evandeilton/gkwdist
https://evandeilton.github.io/gkwdist/
https://github.com/evandeilton/gkwdist/issues
https://orcid.org/0009-0007-5887-4084

2 Contents

Repository CRAN

Date/Publication 2026-01-08 21:00:02 UTC

Contents
dbeta_ . 3
dbkw . 5
dekw . 7
dgkw . 9
dkkw . 11
dkw . 13
dmc . 15
gkwgetstartvalues . 17
grbeta . 19
grbkw . 24
grekw . 30
grgkw . 36
grkkw . 42
grkw . 48
grmc . 53
hsbeta . 61
hsbkw . 66
hsekw . 75
hsgkw . 82
hskkw . 90
hskw . 96
hsmc . 102
llbeta . 110
llbkw . 117
llekw . 125
llgkw . 134
llkkw . 145
llkw . 154
llmc . 162
pbeta_ . 170
pbkw . 172
pekw . 175
pgkw . 177
pkkw . 179
pkw . 182
pmc . 184
qbeta_ . 186
qbkw . 189
qekw . 191
qgkw . 193
qkkw . 196
qkw . 198

dbeta_ 3

qmc . 200
rbeta_ . 203
rbkw . 205
rekw . 207
rgkw . 209
rkkw . 211
rkw . 214
rmc . 216

Index 219

dbeta_ Density of the Beta Distribution (gamma, delta+1 Parameterization)

Description

Computes the probability density function (PDF) for the standard Beta distribution, using a parame-
terization common in generalized distribution families. The distribution is parameterized by gamma
(γ) and delta (δ), corresponding to the standard Beta distribution with shape parameters shape1 =
gamma and shape2 = delta + 1. The distribution is defined on the interval (0, 1).

Usage

dbeta_(x, gamma = 1, delta = 0, log = FALSE)

Arguments

x Vector of quantiles (values between 0 and 1).
gamma First shape parameter (shape1), γ > 0. Can be a scalar or a vector. Default:

1.0.
delta Second shape parameter is delta + 1 (shape2), requires δ ≥ 0 so that shape2

>= 1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 = 1).
log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:

FALSE.

Details

The probability density function (PDF) calculated by this function corresponds to a standard Beta
distribution Beta(γ, δ + 1):

f(x; γ, δ) =
xγ−1(1− x)(δ+1)−1

B(γ, δ + 1)
=
xγ−1(1− x)δ

B(γ, δ + 1)

for 0 < x < 1, where B(a, b) is the Beta function (beta).

This specific parameterization arises as a special case of the five-parameter Generalized Kumaraswamy
(GKw) distribution (dgkw) obtained by setting the parameters α = 1, β = 1, and λ = 1. It is there-
fore equivalent to the McDonald (Mc)/Beta Power distribution (dmc) with λ = 1.

Note the difference in the second parameter compared to dbeta, where dbeta(x, shape1, shape2)
uses shape2 directly. Here, shape1 = gamma and shape2 = delta + 1.

4 dbeta_

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, gamma, delta). Returns 0 (or -Inf
if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., gamma <= 0,
delta < 0).

Author(s)

Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

dbeta (standard R implementation), dgkw (parent distribution density), dmc (McDonald/Beta Power
density), pbeta_, qbeta_, rbeta_ (other functions for this parameterization, if they exist).

Examples

Example values
x_vals <- c(0.2, 0.5, 0.8)
gamma_par <- 2.0 # Corresponds to shape1
delta_par <- 3.0 # Corresponds to shape2 - 1
shape1 <- gamma_par
shape2 <- delta_par + 1

Calculate density using dbeta_
densities <- dbeta_(x_vals, gamma_par, delta_par)
print(densities)

Compare with stats::dbeta
densities_stats <- stats::dbeta(x_vals, shape1 = shape1, shape2 = shape2)
print(paste("Max difference vs stats::dbeta:", max(abs(densities - densities_stats))))

Compare with dgkw setting alpha=1, beta=1, lambda=1
densities_gkw <- dgkw(x_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print(paste("Max difference vs dgkw:", max(abs(densities - densities_gkw))))

Compare with dmc setting lambda=1
densities_mc <- dmc(x_vals, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print(paste("Max difference vs dmc:", max(abs(densities - densities_mc))))

Calculate log-density

dbkw 5

log_densities <- dbeta_(x_vals, gamma_par, delta_par, log = TRUE)
print(log_densities)
print(stats::dbeta(x_vals, shape1 = shape1, shape2 = shape2, log = TRUE))

Plot the density
curve_x <- seq(0.001, 0.999, length.out = 200)
curve_y <- dbeta_(curve_x, gamma = 2, delta = 3) # Beta(2, 4)
plot(curve_x, curve_y,

type = "l", main = "Beta(2, 4) Density via dbeta_",
xlab = "x", ylab = "f(x)", col = "blue"

)
curve(stats::dbeta(x, 2, 4), add = TRUE, col = "red", lty = 2)
legend("topright",

legend = c("dbeta_(gamma=2, delta=3)", "stats::dbeta(shape1=2, shape2=4)"),
col = c("blue", "red"), lty = c(1, 2), bty = "n"

)

dbkw Density of the Beta-Kumaraswamy (BKw) Distribution

Description

Computes the probability density function (PDF) for the Beta-Kumaraswamy (BKw) distribution
with parameters alpha (α), beta (β), gamma (γ), and delta (δ). This distribution is defined on the
interval (0, 1).

Usage

dbkw(x, alpha = 1, beta = 1, gamma = 1, delta = 0, log = FALSE)

Arguments

x Vector of quantiles (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.

6 dbkw

Details

The probability density function (PDF) of the Beta-Kumaraswamy (BKw) distribution is given by:

f(x;α, β, γ, δ) =
αβ

B(γ, δ + 1)
xα−1

(
1− xα

)β(δ+1)−1[
1−

(
1− xα

)β]γ−1

for 0 < x < 1, where B(a, b) is the Beta function (beta).

The BKw distribution is a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (dgkw) obtained by setting the parameter λ = 1. Numerical evaluation is performed
using algorithms similar to those for dgkw, ensuring stability.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, gamma, delta). Returns
0 (or -Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g.,
alpha <= 0, beta <= 0, gamma <= 0, delta < 0).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pbkw, qbkw, rbkw (other BKw functions),

Examples

Example values
x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 1.5
gamma_par <- 1.0 # Equivalent to Kw when gamma=1
delta_par <- 0.5

Calculate density
densities <- dbkw(x_vals, alpha_par, beta_par, gamma_par, delta_par)
print(densities)

Calculate log-density
log_densities <- dbkw(x_vals, alpha_par, beta_par, gamma_par, delta_par,

log = TRUE
)

dekw 7

print(log_densities)
Check: should match log(densities)
print(log(densities))

Compare with dgkw setting lambda = 1
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,

gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print(paste("Max difference:", max(abs(densities - densities_gkw)))) # Should be near zero

Plot the density for different gamma values
curve_x <- seq(0.01, 0.99, length.out = 200)
curve_y1 <- dbkw(curve_x, alpha = 2, beta = 3, gamma = 0.5, delta = 1)
curve_y2 <- dbkw(curve_x, alpha = 2, beta = 3, gamma = 1.0, delta = 1)
curve_y3 <- dbkw(curve_x, alpha = 2, beta = 3, gamma = 2.0, delta = 1)

plot(curve_x, curve_y1,
type = "l", main = "BKw Density Examples (alpha=2, beta=3, delta=1)",
xlab = "x", ylab = "f(x)", col = "blue", ylim = range(0, curve_y1, curve_y2, curve_y3)

)
lines(curve_x, curve_y2, col = "red")
lines(curve_x, curve_y3, col = "green")
legend("topright",

legend = c("gamma=0.5", "gamma=1.0", "gamma=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n"

)

dekw Density of the Exponentiated Kumaraswamy (EKw) Distribution

Description

Computes the probability density function (PDF) for the Exponentiated Kumaraswamy (EKw) dis-
tribution with parameters alpha (α), beta (β), and lambda (λ). This distribution is defined on the
interval (0, 1).

Usage

dekw(x, alpha = 1, beta = 1, lambda = 1, log = FALSE)

Arguments

x Vector of quantiles (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

8 dekw

lambda Shape parameter lambda > 0 (exponent parameter). Can be a scalar or a vector.
Default: 1.0.

log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.

Details

The probability density function (PDF) of the Exponentiated Kumaraswamy (EKw) distribution is
given by:

f(x;α, β, λ) = λαβxα−1(1− xα)β−1
[
1− (1− xα)β

]λ−1

for 0 < x < 1.

The EKw distribution is a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (dgkw) obtained by setting the parameters γ = 1 and δ = 0. When λ = 1, the EKw
distribution reduces to the standard Kumaraswamy distribution.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, lambda). Returns 0 (or
-Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., alpha <=
0, beta <= 0, lambda <= 0).

Author(s)

Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pekw, qekw, rekw (other EKw functions),

Examples

Example values
x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5 # Exponent parameter

Calculate density
densities <- dekw(x_vals, alpha_par, beta_par, lambda_par)

dgkw 9

print(densities)

Calculate log-density
log_densities <- dekw(x_vals, alpha_par, beta_par, lambda_par, log = TRUE)
print(log_densities)
Check: should match log(densities)
print(log(densities))

Compare with dgkw setting gamma = 1, delta = 0
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,

gamma = 1.0, delta = 0.0,
lambda = lambda_par

)
print(paste("Max difference:", max(abs(densities - densities_gkw)))) # Should be near zero

Plot the density for different lambda values
curve_x <- seq(0.01, 0.99, length.out = 200)
curve_y1 <- dekw(curve_x, alpha = 2, beta = 3, lambda = 0.5) # less peaked
curve_y2 <- dekw(curve_x, alpha = 2, beta = 3, lambda = 1.0) # standard Kw
curve_y3 <- dekw(curve_x, alpha = 2, beta = 3, lambda = 2.0) # more peaked

plot(curve_x, curve_y2,
type = "l", main = "EKw Density Examples (alpha=2, beta=3)",
xlab = "x", ylab = "f(x)", col = "red", ylim = range(0, curve_y1, curve_y2, curve_y3)

)
lines(curve_x, curve_y1, col = "blue")
lines(curve_x, curve_y3, col = "green")
legend("topright",

legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n"

)

dgkw Density of the Generalized Kumaraswamy Distribution

Description

Computes the probability density function (PDF) for the five-parameter Generalized Kumaraswamy
(GKw) distribution, defined on the interval (0, 1).

Usage

dgkw(x, alpha = 1, beta = 1, gamma = 1, delta = 0, lambda = 1, log = FALSE)

Arguments

x Vector of quantiles (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

10 dgkw

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

log Logical; if TRUE, the logarithm of the density is returned. Default: FALSE.

Details

The probability density function of the Generalized Kumaraswamy (GKw) distribution with param-
eters alpha (α), beta (β), gamma (γ), delta (δ), and lambda (λ) is given by:

f(x;α, β, γ, δ, λ) =
λαβxα−1(1− xα)β−1

B(γ, δ + 1)
[1− (1− xα)β]γλ−1[1− [1− (1− xα)β]λ]δ

for x ∈ (0, 1), where B(a, b) is the Beta function beta.

This distribution was proposed by Cordeiro & de Castro (2011) and includes several other distribu-
tions as special cases:

• Kumaraswamy (Kw): gamma = 1, delta = 0, lambda = 1

• Exponentiated Kumaraswamy (EKw): gamma = 1, delta = 0

• Beta-Kumaraswamy (BKw): lambda = 1

• Generalized Beta type 1 (GB1 - implies McDonald): alpha = 1, beta = 1

• Beta distribution: alpha = 1, beta = 1, lambda = 1

The function includes checks for valid parameters and input values x. It uses numerical stabilization
for x close to 0 or 1.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, gamma, delta, lambda).
Returns 0 (or -Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid.

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation, 81(7), 883-898.

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw, qgkw, rgkw (if these exist), dbeta, integrate

dkkw 11

Examples

Simple density evaluation at a point
dgkw(0.5, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1) # Kw case

Plot the PDF for various parameter sets
x_vals <- seq(0.01, 0.99, by = 0.01)

Standard Kumaraswamy (gamma=1, delta=0, lambda=1)
pdf_kw <- dgkw(x_vals, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)

Beta equivalent (alpha=1, beta=1, lambda=1) - Beta(gamma, delta+1)
pdf_beta <- dgkw(x_vals, alpha = 1, beta = 1, gamma = 2, delta = 3, lambda = 1)
Compare with stats::dbeta
pdf_beta_check <- stats::dbeta(x_vals, shape1 = 2, shape2 = 3 + 1)
max(abs(pdf_beta - pdf_beta_check)) # Should be close to zero

Exponentiated Kumaraswamy (gamma=1, delta=0)
pdf_ekw <- dgkw(x_vals, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 2)

plot(x_vals, pdf_kw,
type = "l", ylim = range(c(pdf_kw, pdf_beta, pdf_ekw)),
main = "GKw Densities Examples", ylab = "f(x)", xlab = "x", col = "blue"

)
lines(x_vals, pdf_beta, col = "red")
lines(x_vals, pdf_ekw, col = "green")
legend("topright",

legend = c("Kw(2,3)", "Beta(2,4) equivalent", "EKw(2,3, lambda=2)"),
col = c("blue", "red", "green"), lty = 1, bty = "n"

)

Log-density
log.pdf_val <- dgkw(0.5, 2, 3, 1, 0, 1, log = TRUE)
print(log.pdf_val)
print(log(dgkw(0.5, 2, 3, 1, 0, 1))) # Should match

dkkw Density of the Kumaraswamy-Kumaraswamy (kkw) Distribution

Description

Computes the probability density function (PDF) for the Kumaraswamy-Kumaraswamy (kkw) dis-
tribution with parameters alpha (α), beta (β), delta (δ), and lambda (λ). This distribution is
defined on the interval (0, 1).

Usage

dkkw(x, alpha = 1, beta = 1, delta = 0, lambda = 1, log = FALSE)

12 dkkw

Arguments

x Vector of quantiles (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.

Details

The Kumaraswamy-Kumaraswamy (kkw) distribution is a special case of the five-parameter Gen-
eralized Kumaraswamy distribution (dgkw) obtained by setting the parameter γ = 1.

The probability density function is given by:

f(x;α, β, δ, λ) = (δ + 1)λαβxα−1(1− xα)β−1
[
1− (1− xα)β

]λ−1{
1−

[
1− (1− xα)β

]λ}δ
for 0 < x < 1. Note that 1/(δ+1) corresponds to the Beta function term B(1, δ+1) when γ = 1.

Numerical evaluation follows similar stability considerations as dgkw.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, delta, lambda). Returns
0 (or -Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g.,
alpha <= 0, beta <= 0, delta < 0, lambda <= 0).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pkkw, qkkw, rkkw (if they exist), dbeta

dkw 13

Examples

Example values
x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5

Calculate density
densities <- dkkw(x_vals, alpha_par, beta_par, delta_par, lambda_par)
print(densities)

Calculate log-density
log_densities <- dkkw(x_vals, alpha_par, beta_par, delta_par, lambda_par,

log = TRUE
)
print(log_densities)
Check: should match log(densities)
print(log(densities))

Compare with dgkw setting gamma = 1
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,

gamma = 1.0,
delta_par, lambda_par

)
print(paste("Max difference:", max(abs(densities - densities_gkw)))) # Should be near zero

Plot the density
curve_x <- seq(0.01, 0.99, length.out = 200)
curve_y <- dkkw(curve_x, alpha_par, beta_par, delta_par, lambda_par)
plot(curve_x, curve_y,

type = "l", main = "kkw Density Example",
xlab = "x", ylab = "f(x)", col = "blue"

)

dkw Density of the Kumaraswamy (Kw) Distribution

Description

Computes the probability density function (PDF) for the two-parameter Kumaraswamy (Kw) dis-
tribution with shape parameters alpha (α) and beta (β). This distribution is defined on the interval
(0, 1).

Usage

dkw(x, alpha = 1, beta = 1, log = FALSE)

14 dkw

Arguments

x Vector of quantiles (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.

Details

The probability density function (PDF) of the Kumaraswamy (Kw) distribution is given by:

f(x;α, β) = αβxα−1(1− xα)β−1

for 0 < x < 1, α > 0, and β > 0.

The Kumaraswamy distribution is identical to the Generalized Kumaraswamy (GKw) distribution
(dgkw) with parameters γ = 1, δ = 0, and λ = 1. It is also a special case of the Exponentiated
Kumaraswamy (dekw) with λ = 1, and the Kumaraswamy-Kumaraswamy (dkkw) with δ = 0 and
λ = 1.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta). Returns 0 (or -Inf if
log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., alpha <= 0, beta
<= 0).

Author(s)

Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

See Also

dgkw (parent distribution density), dekw, dkkw, pkw, qkw, rkw (other Kw functions), dbeta

Examples

Example values
x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0

Calculate density using dkw

dmc 15

densities <- dkw(x_vals, alpha_par, beta_par)
print(densities)

Calculate log-density
log_densities <- dkw(x_vals, alpha_par, beta_par, log = TRUE)
print(log_densities)
Check: should match log(densities)
print(log(densities))

Compare with dgkw setting gamma = 1, delta = 0, lambda = 1
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,

gamma = 1.0, delta = 0.0,
lambda = 1.0

)
print(paste("Max difference:", max(abs(densities - densities_gkw)))) # Should be near zero

Plot the density for different shape parameter combinations
curve_x <- seq(0.001, 0.999, length.out = 200)
plot(curve_x, dkw(curve_x, alpha = 2, beta = 3),

type = "l",
main = "Kumaraswamy Density Examples", xlab = "x", ylab = "f(x)",
col = "blue", ylim = c(0, 4)

)
lines(curve_x, dkw(curve_x, alpha = 3, beta = 2), col = "red")
lines(curve_x, dkw(curve_x, alpha = 0.5, beta = 0.5), col = "green") # U-shaped
lines(curve_x, dkw(curve_x, alpha = 5, beta = 1), col = "purple") # J-shaped
lines(curve_x, dkw(curve_x, alpha = 1, beta = 3), col = "orange") # J-shaped (reversed)
legend("top",

legend = c("a=2, b=3", "a=3, b=2", "a=0.5, b=0.5", "a=5, b=1", "a=1, b=3"),
col = c("blue", "red", "green", "purple", "orange"), lty = 1, bty = "n", ncol = 2

)

dmc Density of the McDonald (Mc)/Beta Power Distribution Distribution

Description

Computes the probability density function (PDF) for the McDonald (Mc) distribution (also pre-
viously referred to as Beta Power) with parameters gamma (γ), delta (δ), and lambda (λ). This
distribution is defined on the interval (0, 1).

Usage

dmc(x, gamma = 1, delta = 0, lambda = 1, log = FALSE)

Arguments

x Vector of quantiles (values between 0 and 1).

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

16 dmc

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.

Details

The probability density function (PDF) of the McDonald (Mc) distribution is given by:

f(x; γ, δ, λ) =
λ

B(γ, δ + 1)
xγλ−1(1− xλ)δ

for 0 < x < 1, where B(a, b) is the Beta function (beta).

The Mc distribution is a special case of the five-parameter Generalized Kumaraswamy (GKw) distri-
bution (dgkw) obtained by setting the parameters α = 1 and β = 1. It was introduced by McDonald
(1984) and is related to the Generalized Beta distribution of the first kind (GB1). When λ = 1, it
simplifies to the standard Beta distribution with parameters γ and δ + 1.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, gamma, delta, lambda). Returns 0 (or
-Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., gamma <=
0, delta < 0, lambda <= 0).

Author(s)

Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pmc, qmc, rmc (other Mc functions), dbeta

Examples

Example values
x_vals <- c(0.2, 0.5, 0.8)
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)

gkwgetstartvalues 17

Calculate density using dmc
densities <- dmc(x_vals, gamma_par, delta_par, lambda_par)
print(densities)
Compare with Beta density
print(stats::dbeta(x_vals, shape1 = gamma_par, shape2 = delta_par + 1))

Calculate log-density
log_densities <- dmc(x_vals, gamma_par, delta_par, lambda_par, log = TRUE)
print(log_densities)

Compare with dgkw setting alpha = 1, beta = 1
densities_gkw <- dgkw(x_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par

)
print(paste("Max difference:", max(abs(densities - densities_gkw)))) # Should be near zero

Plot the density for different lambda values
curve_x <- seq(0.01, 0.99, length.out = 200)
curve_y1 <- dmc(curve_x, gamma = 2, delta = 3, lambda = 0.5)
curve_y2 <- dmc(curve_x, gamma = 2, delta = 3, lambda = 1.0) # Beta(2, 4)
curve_y3 <- dmc(curve_x, gamma = 2, delta = 3, lambda = 2.0)

plot(curve_x, curve_y2,
type = "l", main = "McDonald (Mc) Density (gamma=2, delta=3)",
xlab = "x", ylab = "f(x)", col = "red", ylim = range(0, curve_y1, curve_y2, curve_y3)

)
lines(curve_x, curve_y1, col = "blue")
lines(curve_x, curve_y3, col = "green")
legend("topright",

legend = c("lambda=0.5", "lambda=1.0 (Beta)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n"

)

gkwgetstartvalues Estimate Distribution Parameters Using Method of Moments

Description

Estimates parameters for various distribution families from the Generalized Kumaraswamy fam-
ily using the method of moments. The implementation is optimized for numerical stability and
computational efficiency through Nelder-Mead optimization and adaptive numerical integration.

Usage

gkwgetstartvalues(x, family = "gkw", n_starts = 5L)

18 gkwgetstartvalues

Arguments

x Numeric vector of observations. All values must be in the open interval (0,1).
Values outside this range will be automatically truncated to avoid numerical
issues.

family Character string specifying the distribution family. Valid options are: "gkw"
(Generalized Kumaraswamy - 5 parameters), "bkw" (Beta-Kumaraswamy - 4
parameters), "kkw" (Kumaraswamy-Kumaraswamy - 4 parameters), "ekw" (Ex-
ponentiated Kumaraswamy - 3 parameters), "mc" (McDonald - 3 parameters),
"kw" (Kumaraswamy - 2 parameters), "beta" (Beta - 2 parameters). The string
is case-insensitive. Default is "gkw".

n_starts Integer specifying the number of different initial parameter values to try during
optimization. More starting points increase the probability of finding the global
optimum at the cost of longer computation time. Default is 5.

Details

The function uses the method of moments to estimate distribution parameters by minimizing the
weighted sum of squared relative errors between theoretical and sample moments (orders 1 through
5). The optimization employs the Nelder-Mead simplex algorithm, which is derivative-free and
particularly robust for this problem.

Key implementation features: logarithmic calculations for numerical stability, adaptive numerical
integration using Simpson’s rule with fallback to trapezoidal rule, multiple random starting points
to avoid local minima, decreasing weights for higher-order moments (1.0, 0.8, 0.6, 0.4, 0.2), and
automatic parameter constraint enforcement.

Parameter Constraints: All parameters are constrained to positive values. Additionally, family-
specific constraints are enforced: alpha and beta in (0.1, 50.0), gamma in (0.1, 10.0) for GKw-
related families or (0.1, 50.0) for Beta, delta in (0.01, 10.0), and lambda in (0.1, 20.0).

The function will issue warnings for empty input vectors, sample sizes less than 10 (unreliable
estimation), or failure to find valid parameter estimates (returns defaults).

Value

Named numeric vector containing the estimated parameters for the specified distribution family.
Parameter names correspond to the distribution specification. If estimation fails, returns a vector of
NA values with appropriate parameter names.

References

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

Examples

Generate sample data from Beta distribution
set.seed(123)
x <- rbeta(100, shape1 = 2, shape2 = 3)

Estimate Beta parameters

grbeta 19

params_beta <- gkwgetstartvalues(x, family = "beta")
print(params_beta)

Estimate Kumaraswamy parameters
params_kw <- gkwgetstartvalues(x, family = "kw")
print(params_kw)

Estimate GKw parameters with more starting points
params_gkw <- gkwgetstartvalues(x, family = "gkw", n_starts = 10)
print(params_gkw)

grbeta Gradient of the Negative Log-Likelihood for the Beta Distribution
(gamma, delta+1 Parameterization)

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the standard Beta distribution, using a parameterization common in generalized distribu-
tion families. The distribution is parameterized by gamma (γ) and delta (δ), corresponding to the
standard Beta distribution with shape parameters shape1 = gamma and shape2 = delta + 1. The
gradient is useful for optimization algorithms.

Usage

grbeta(par, data)

Arguments

par A numeric vector of length 2 containing the distribution parameters in the order:
gamma (γ > 0), delta (δ ≥ 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the gradient of the negative log-likelihood for a Beta distribution with
parameters shape1 = gamma (γ) and shape2 = delta + 1 (δ + 1). The components of the gradient
vector (−∇ℓ(θ|x)) are:

− ∂ℓ

∂γ
= n[ψ(γ)− ψ(γ + δ + 1)]−

n∑
i=1

ln(xi)

−∂ℓ
∂δ

= n[ψ(δ + 1)− ψ(γ + δ + 1)]−
n∑

i=1

ln(1− xi)

20 grbeta

where ψ(·) is the digamma function (digamma). These formulas represent the derivatives of −ℓ(θ),
consistent with minimizing the negative log-likelihood. They correspond to the relevant compo-
nents of the general GKw gradient (grgkw) evaluated at α = 1, β = 1, λ = 1. Note the parameteri-
zation: the standard Beta shape parameters are γ and δ + 1.

Value

Returns a numeric vector of length 2 containing the partial derivatives of the negative log-likelihood
function −ℓ(θ|x) with respect to each parameter: (−∂ℓ/∂γ,−∂ℓ/∂δ). Returns a vector of NaN if
any parameter values are invalid according to their constraints, or if any value in data is not in the
interval (0, 1).

Author(s)

Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw, grmc (related gradients), llbeta (negative log-likelihood function), hsbeta (Hessian, if
available), dbeta_, pbeta_, qbeta_, rbeta_, optim, grad (for numerical gradient comparison),
digamma.

Examples

Example 1: Basic Gradient Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 3.0)
data <- rbeta_(n, gamma = true_params[1], delta = true_params[2])

Evaluate gradient at true parameters
grad_true <- grbeta(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)
cat("Norm:", sqrt(sum(grad_true^2)), "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),

grbeta 21

c(2.5, 3.5)
)

grad_norms <- apply(test_params, 1, function(p) {
g <- grbeta(p, data)
sqrt(sum(g^2))

})

results <- data.frame(
Gamma = test_params[, 1],
Delta = test_params[, 2],
Grad_Norm = grad_norms

)
print(results, digits = 4)

Example 2: Gradient in Optimization

Optimization with analytical gradient
fit_with_grad <- optim(

par = c(1.5, 2.5),
fn = llbeta,
gr = grbeta,
data = data,
method = "L-BFGS-B",
lower = c(0.01, 0.01),
upper = c(100, 100),
hessian = TRUE,
control = list(trace = 0)

)

Optimization without gradient
fit_no_grad <- optim(

par = c(1.5, 2.5),
fn = llbeta,
data = data,
method = "L-BFGS-B",
lower = c(0.01, 0.01),
upper = c(100, 100),
hessian = TRUE,
control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient", "Without Gradient"),
Gamma = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Delta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
NegLogLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])

)
print(comparison, digits = 4, row.names = FALSE)

22 grbeta

Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("gamma", "delta")

At MLE, gradient should be approximately zero
gradient_at_mle <- grbeta(par = mle, data = data)
cat("\nGradient at MLE:\n")
print(gradient_at_mle)
cat("Max absolute component:", max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle^2)), "\n")

Example 4: Numerical vs Analytical Gradient

Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {

grad <- numeric(length(x))
for (i in seq_along(x)) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)

}
return(grad)

}

Compare at MLE
grad_analytical <- grbeta(par = mle, data = data)
grad_numerical <- numerical_gradient(llbeta, mle, data)

comparison_grad <- data.frame(
Parameter = c("gamma", "delta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)
print(comparison_grad, digits = 8)

Example 5: Score Test Statistic

Score test for H0: theta = theta0
theta0 <- c(1.8, 2.8)
score_theta0 <- -grbeta(par = theta0, data = data)

Fisher information at theta0
fisher_info <- hsbeta(par = theta0, data = data)

Score test statistic
score_stat <- t(score_theta0) %*% solve(fisher_info) %*% score_theta0

grbeta 23

p_value <- pchisq(score_stat, df = 2, lower.tail = FALSE)

cat("\nScore Test:\n")
cat("H0: gamma=1.8, delta=2.8\n")
cat("Test statistic:", score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 6: Confidence Ellipse (Gamma vs Delta)

Observed information
obs_info <- hsbeta(par = mle, data = data)
vcov_full <- solve(obs_info)

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_full)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle + sqrt(chi2_val) *
(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)

}

Marginal confidence intervals
se_2d <- sqrt(diag(vcov_full))
ci_gamma <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_delta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot

plot(ellipse[, 1], ellipse[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "95% Confidence Region (Gamma vs Delta)", las = 1

)

Add marginal CIs
abline(v = ci_gamma, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

24 grbkw

)
grid(col = "gray90")

grbkw Gradient of the Negative Log-Likelihood for the BKw Distribution

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the Beta-Kumaraswamy (BKw) distribution with parameters alpha (α), beta (β), gamma
(γ), and delta (δ). This distribution is the special case of the Generalized Kumaraswamy (GKw)
distribution where λ = 1. The gradient is typically used in optimization algorithms for maximum
likelihood estimation.

Usage

grbkw(par, data)

Arguments

par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), gamma (γ > 0), delta (δ ≥ 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The components of the gradient vector of the negative log-likelihood (−∇ℓ(θ|x)) for the BKw
(λ = 1) model are:

− ∂ℓ

∂α
= −n

α
−

n∑
i=1

ln(xi) +

n∑
i=1

[
xαi ln(xi)

(
β(δ + 1)− 1

vi
− (γ − 1)βvβ−1

i

wi

)]

− ∂ℓ

∂β
= −n

β
− (δ + 1)

n∑
i=1

ln(vi) +

n∑
i=1

[
(γ − 1)vβi ln(vi)

wi

]

− ∂ℓ

∂γ
= n[ψ(γ)− ψ(γ + δ + 1)]−

n∑
i=1

ln(wi)

−∂ℓ
∂δ

= n[ψ(δ + 1)− ψ(γ + δ + 1)]− β

n∑
i=1

ln(vi)

where:

• vi = 1− xαi

grbkw 25

• wi = 1− vβi = 1− (1− xαi)
β

• ψ(·) is the digamma function (digamma).

These formulas represent the derivatives of −ℓ(θ), consistent with minimizing the negative log-
likelihood. They correspond to the general GKw gradient (grgkw) components for α, β, γ, δ evalu-
ated at λ = 1. Note that the component for λ is omitted. Numerical stability is maintained through
careful implementation.

Value

Returns a numeric vector of length 4 containing the partial derivatives of the negative log-likelihood
function −ℓ(θ|x) with respect to each parameter: (−∂ℓ/∂α,−∂ℓ/∂β,−∂ℓ/∂γ,−∂ℓ/∂δ). Returns
a vector of NaN if any parameter values are invalid according to their constraints, or if any value in
data is not in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), llbkw (negative log-likelihood for BKw), hsbkw (Hessian for
BKw, if available), dbkw (density for BKw), optim, grad (for numerical gradient comparison),
digamma.

Examples

Example 1: Basic Gradient Evaluation
Generate sample data
set.seed(2203)
n <- 1000
true_params <- c(alpha = 2.0, beta = 1.5, gamma = 1.5, delta = 0.5)
data <- rbkw(n,

alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4]

)

Evaluate gradient at true parameters
grad_true <- grbkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)
cat("Norm:", sqrt(sum(grad_true^2)), "\n")

26 grbkw

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 1.0, 1.0, 0.3),
c(2.0, 1.5, 1.5, 0.5),
c(2.5, 2.0, 2.0, 0.7)

)

grad_norms <- apply(test_params, 1, function(p) {
g <- grbkw(p, data)
sqrt(sum(g^2))

})

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Gamma = test_params[, 3],
Delta = test_params[, 4],
Grad_Norm = grad_norms

)
print(results, digits = 4)

Example 2: Gradient in Optimization

Optimization with analytical gradient
fit_with_grad <- optim(

par = c(1.8, 1.2, 1.1, 0.3),
fn = llbkw,
gr = grbkw,
data = data,
method = "Nelder-Mead",
hessian = TRUE,
control = list(trace = 0)

)

Optimization without gradient
fit_no_grad <- optim(

par = c(1.8, 1.2, 1.1, 0.3),
fn = llbkw,
data = data,
method = "Nelder-Mead",
hessian = TRUE,
control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient", "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Gamma = c(fit_with_grad$par[3], fit_no_grad$par[3]),
Delta = c(fit_with_grad$par[4], fit_no_grad$par[4]),
NegLogLik = c(fit_with_grad$value, fit_no_grad$value),

grbkw 27

Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])
)
print(comparison, digits = 4, row.names = FALSE)

Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha", "beta", "gamma", "delta")

At MLE, gradient should be approximately zero
gradient_at_mle <- grbkw(par = mle, data = data)
cat("\nGradient at MLE:\n")
print(gradient_at_mle)
cat("Max absolute component:", max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle^2)), "\n")

Example 4: Numerical vs Analytical Gradient

Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {

grad <- numeric(length(x))
for (i in seq_along(x)) {

x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)

}
return(grad)

}

Compare at MLE
grad_analytical <- grbkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llbkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha", "beta", "gamma", "delta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)
print(comparison_grad, digits = 8)

Example 5: Score Test Statistic

Score test for H0: theta = theta0
theta0 <- c(1.8, 1.3, 1.2, 0.4)
score_theta0 <- -grbkw(par = theta0, data = data)

28 grbkw

Fisher information at theta0
fisher_info <- hsbkw(par = theta0, data = data)

Score test statistic
score_stat <- t(score_theta0) %*% solve(fisher_info) %*% score_theta0
p_value <- pchisq(score_stat, df = 4, lower.tail = FALSE)

cat("\nScore Test:\n")
cat("H0: alpha=1.8, beta=1.3, gamma=1.2, delta=0.4\n")
cat("Test statistic:", score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 6: Confidence Ellipses (Selected pairs)

Observed information
obs_info <- hsbkw(par = mle, data = data)
vcov_full <- solve(obs_info)

Create confidence ellipses
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

Alpha vs Beta ellipse
vcov_ab <- vcov_full[1:2, 1:2]
eig_decomp_ab <- eigen(vcov_ab)
ellipse_ab <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_ab[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp_ab$vectors %*% diag(sqrt(eig_decomp_ab$values)) %*% v)

}

Alpha vs Gamma ellipse
vcov_ag <- vcov_full[c(1, 3), c(1, 3)]
eig_decomp_ag <- eigen(vcov_ag)
ellipse_ag <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_ag[i,] <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_ag$vectors %*% diag(sqrt(eig_decomp_ag$values)) %*% v)

}

Beta vs Delta ellipse
vcov_bd <- vcov_full[c(2, 4), c(2, 4)]
eig_decomp_bd <- eigen(vcov_bd)
ellipse_bd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_bd[i,] <- mle[c(2, 4)] + sqrt(chi2_val) *
(eig_decomp_bd$vectors %*% diag(sqrt(eig_decomp_bd$values)) %*% v)

}

grbkw 29

Marginal confidence intervals
se_ab <- sqrt(diag(vcov_ab))
ci_alpha_ab <- mle[1] + c(-1, 1) * 1.96 * se_ab[1]
ci_beta_ab <- mle[2] + c(-1, 1) * 1.96 * se_ab[2]

se_ag <- sqrt(diag(vcov_ag))
ci_alpha_ag <- mle[1] + c(-1, 1) * 1.96 * se_ag[1]
ci_gamma_ag <- mle[3] + c(-1, 1) * 1.96 * se_ag[2]

se_bd <- sqrt(diag(vcov_bd))
ci_beta_bd <- mle[2] + c(-1, 1) * 1.96 * se_bd[1]
ci_delta_bd <- mle[4] + c(-1, 1) * 1.96 * se_bd[2]

Plot selected ellipses

Alpha vs Beta
plot(ellipse_ab[, 1], ellipse_ab[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "Alpha vs Beta", las = 1, xlim = range(ellipse_ab[, 1], ci_alpha_ab),
ylim = range(ellipse_ab[, 2], ci_beta_ab)

)
abline(v = ci_alpha_ab, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta_ab, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Alpha vs Gamma
plot(ellipse_ag[, 1], ellipse_ag[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(gamma),
main = "Alpha vs Gamma", las = 1, xlim = range(ellipse_ag[, 1], ci_alpha_ag),
ylim = range(ellipse_ag[, 2], ci_gamma_ag)

)
abline(v = ci_alpha_ag, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_gamma_ag, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Beta vs Delta
plot(ellipse_bd[, 1], ellipse_bd[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = expression(delta),
main = "Beta vs Delta", las = 1, xlim = range(ellipse_bd[, 1], ci_beta_bd),
ylim = range(ellipse_bd[, 2], ci_delta_bd)

)
abline(v = ci_beta_bd, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta_bd, col = "#808080", lty = 3, lwd = 1.5)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

30 grekw

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n", cex = 0.8

)

grekw Gradient of the Negative Log-Likelihood for the EKw Distribution

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the Exponentiated Kumaraswamy (EKw) distribution with parameters alpha (α), beta (β),
and lambda (λ). This distribution is the special case of the Generalized Kumaraswamy (GKw)
distribution where γ = 1 and δ = 0. The gradient is useful for optimization.

Usage

grekw(par, data)

Arguments

par A numeric vector of length 3 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The components of the gradient vector of the negative log-likelihood (−∇ℓ(θ|x)) for the EKw
(γ = 1, δ = 0) model are:

− ∂ℓ

∂α
= −n

α
−

n∑
i=1

ln(xi) +

n∑
i=1

[
xαi ln(xi)

(
β − 1

vi
− (λ− 1)βvβ−1

i

wi

)]

− ∂ℓ

∂β
= −n

β
−

n∑
i=1

ln(vi) +

n∑
i=1

[
(λ− 1)vβi ln(vi)

wi

]

− ∂ℓ

∂λ
= −n

λ
−

n∑
i=1

ln(wi)

where:

grekw 31

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

These formulas represent the derivatives of −ℓ(θ), consistent with minimizing the negative log-
likelihood. They correspond to the relevant components of the general GKw gradient (grgkw)
evaluated at γ = 1, δ = 0.

Value

Returns a numeric vector of length 3 containing the partial derivatives of the negative log-likelihood
function −ℓ(θ|x) with respect to each parameter: (−∂ℓ/∂α,−∂ℓ/∂β,−∂ℓ/∂λ). Returns a vector
of NaN if any parameter values are invalid according to their constraints, or if any value in data is
not in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), llekw (negative log-likelihood for EKw), hsekw (Hessian for
EKw, if available), dekw (density for EKw), optim, grad (for numerical gradient comparison).

Examples

Example 1: Basic Gradient Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5, lambda = 2.0)
data <- rekw(n,

alpha = true_params[1], beta = true_params[2],
lambda = true_params[3]

)

Evaluate gradient at true parameters
grad_true <- grekw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)

32 grekw

cat("Norm:", sqrt(sum(grad_true^2)), "\n")

Evaluate at different parameter values
test_params <- rbind(

c(2.0, 3.0, 1.5),
c(2.5, 3.5, 2.0),
c(3.0, 4.0, 2.5)

)

grad_norms <- apply(test_params, 1, function(p) {
g <- grekw(p, data)
sqrt(sum(g^2))

})

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Lambda = test_params[, 3],
Grad_Norm = grad_norms

)
print(results, digits = 4)

Example 2: Gradient in Optimization

Optimization with analytical gradient
fit_with_grad <- optim(

par = c(2, 3, 1.5),
fn = llekw,
gr = grekw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

Optimization without gradient
fit_no_grad <- optim(

par = c(2, 3, 1.5),
fn = llekw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient", "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Lambda = c(fit_with_grad$par[3], fit_no_grad$par[3]),
NegLogLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])

grekw 33

)
print(comparison, digits = 4, row.names = FALSE)

Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha", "beta", "lambda")

At MLE, gradient should be approximately zero
gradient_at_mle <- grekw(par = mle, data = data)
cat("\nGradient at MLE:\n")
print(gradient_at_mle)
cat("Max absolute component:", max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle^2)), "\n")

Example 4: Numerical vs Analytical Gradient

Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {

grad <- numeric(length(x))
for (i in seq_along(x)) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)

}
return(grad)

}

Compare at MLE
grad_analytical <- grekw(par = mle, data = data)
grad_numerical <- numerical_gradient(llekw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha", "beta", "lambda"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)
print(comparison_grad, digits = 8)

Example 5: Score Test Statistic

Score test for H0: theta = theta0
theta0 <- c(2.2, 3.2, 1.8)
score_theta0 <- -grekw(par = theta0, data = data)

Fisher information at theta0

34 grekw

fisher_info <- hsekw(par = theta0, data = data)

Score test statistic
score_stat <- t(score_theta0) %*% solve(fisher_info) %*% score_theta0
p_value <- pchisq(score_stat, df = 3, lower.tail = FALSE)

cat("\nScore Test:\n")
cat("H0: alpha=2.2, beta=3.2, lambda=1.8\n")
cat("Test statistic:", score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 6: Confidence Ellipse (Alpha vs Beta)

Observed information
obs_info <- hsekw(par = mle, data = data)
vcov_full <- solve(obs_info)
vcov_2d <- vcov_full[1:2, 1:2]

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)

}

Marginal confidence intervals
se_2d <- sqrt(diag(vcov_2d))
ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot

plot(ellipse[, 1], ellipse[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Region (Alpha vs Beta)", las = 1

)

Add marginal CIs
abline(v = ci_alpha, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),

grekw 35

col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

Example 7: Confidence Ellipse (Alpha vs Lambda)

Extract 2x2 submatrix for alpha and lambda
vcov_2d_al <- vcov_full[c(1, 3), c(1, 3)]

Create confidence ellipse
eig_decomp_al <- eigen(vcov_2d_al)
ellipse_al <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_al[i,] <- mle[c(1, 3)] + sqrt(chi2_val) *

(eig_decomp_al$vectors %*% diag(sqrt(eig_decomp_al$values)) %*% v)
}

Marginal confidence intervals
se_2d_al <- sqrt(diag(vcov_2d_al))
ci_alpha_2 <- mle[1] + c(-1, 1) * 1.96 * se_2d_al[1]
ci_lambda <- mle[3] + c(-1, 1) * 1.96 * se_2d_al[2]

Plot

plot(ellipse_al[, 1], ellipse_al[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(lambda),
main = "95% Confidence Region (Alpha vs Lambda)", las = 1

)

Add marginal CIs
abline(v = ci_alpha_2, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

36 grgkw

Example 8: Confidence Ellipse (Beta vs Lambda)

Extract 2x2 submatrix for beta and lambda
vcov_2d_bl <- vcov_full[2:3, 2:3]

Create confidence ellipse
eig_decomp_bl <- eigen(vcov_2d_bl)
ellipse_bl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_bl[i,] <- mle[2:3] + sqrt(chi2_val) *
(eig_decomp_bl$vectors %*% diag(sqrt(eig_decomp_bl$values)) %*% v)

}

Marginal confidence intervals
se_2d_bl <- sqrt(diag(vcov_2d_bl))
ci_beta_2 <- mle[2] + c(-1, 1) * 1.96 * se_2d_bl[1]
ci_lambda_2 <- mle[3] + c(-1, 1) * 1.96 * se_2d_bl[2]

Plot

plot(ellipse_bl[, 1], ellipse_bl[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = expression(lambda),
main = "95% Confidence Region (Beta vs Lambda)", las = 1

)

Add marginal CIs
abline(v = ci_beta_2, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda_2, col = "#808080", lty = 3, lwd = 1.5)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

grgkw Gradient of the Negative Log-Likelihood for the GKw Distribution

grgkw 37

Description

Computes the gradient vector (vector of partial derivatives) of the negative log-likelihood function
for the five-parameter Generalized Kumaraswamy (GKw) distribution. This provides the analytical
gradient, often used for efficient optimization via maximum likelihood estimation.

Usage

grgkw(par, data)

Arguments

par A numeric vector of length 5 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), gamma (γ > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The components of the gradient vector of the negative log-likelihood (−∇ℓ(θ|x)) are:

− ∂ℓ

∂α
= −n

α
−

n∑
i=1

ln(xi) +

n∑
i=1

[
xαi ln(xi)

(
β − 1

vi
− (γλ− 1)βvβ−1

i

wi
+
δλβvβ−1

i wλ−1
i

zi

)]

− ∂ℓ

∂β
= −n

β
−

n∑
i=1

ln(vi) +

n∑
i=1

[
vβi ln(vi)

(
γλ− 1

wi
− δλwλ−1

i

zi

)]

− ∂ℓ

∂γ
= n[ψ(γ)− ψ(γ + δ + 1)]− λ

n∑
i=1

ln(wi)

−∂ℓ
∂δ

= n[ψ(δ + 1)− ψ(γ + δ + 1)]−
n∑

i=1

ln(zi)

− ∂ℓ

∂λ
= −n

λ
− γ

n∑
i=1

ln(wi) + δ

n∑
i=1

wλ
i ln(wi)

zi

where:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

• zi = 1− wλ
i = 1− [1− (1− xαi)

β]λ

• ψ(·) is the digamma function (digamma).

Numerical stability is ensured through careful implementation, including checks for valid inputs and
handling of intermediate calculations involving potentially small or large numbers, often leveraging
the Armadillo C++ library for efficiency.

38 grgkw

Value

Returns a numeric vector of length 5 containing the partial derivatives of the negative log-likelihood
function −ℓ(θ|x) with respect to each parameter: (−∂ℓ/∂α,−∂ℓ/∂β,−∂ℓ/∂γ,−∂ℓ/∂δ,−∂ℓ/∂λ).
Returns a vector of NaN if any parameter values are invalid according to their constraints, or if any
value in data is not in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

llgkw (negative log-likelihood), hsgkw (Hessian matrix), dgkw (density), optim, grad (for numeri-
cal gradient comparison), digamma

Examples

Example 1: Basic Gradient Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, gamma = 1.5, delta = 2.0, lambda = 1.8)
data <- rgkw(n,

alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4],
lambda = true_params[5]

)

Evaluate gradient at true parameters
grad_true <- grgkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)
cat("Norm:", sqrt(sum(grad_true^2)), "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.2, 1.5, 1.5),
c(2.0, 3.0, 1.5, 2.0, 1.8),
c(2.5, 3.5, 1.8, 2.5, 2.0)

)

grad_norms <- apply(test_params, 1, function(p) {

grgkw 39

g <- grgkw(p, data)
sqrt(sum(g^2))

})

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Gamma = test_params[, 3],
Delta = test_params[, 4],
Lambda = test_params[, 5],
Grad_Norm = grad_norms

)
print(results, digits = 4)

Example 2: Gradient in Optimization

Optimization with analytical gradient
fit_with_grad <- optim(

par = c(1.5, 2.5, 1.2, 1.5, 1.5),
fn = llgkw,
gr = grgkw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0, maxit = 1000)

)

Optimization without gradient
fit_no_grad <- optim(

par = c(1.5, 2.5, 1.2, 1.5, 1.5),
fn = llgkw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0, maxit = 1000)

)

comparison <- data.frame(
Method = c("With Gradient", "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Gamma = c(fit_with_grad$par[3], fit_no_grad$par[3]),
Delta = c(fit_with_grad$par[4], fit_no_grad$par[4]),
Lambda = c(fit_with_grad$par[5], fit_no_grad$par[5]),
NegLogLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])

)
print(comparison, digits = 4, row.names = FALSE)

Example 3: Verifying Gradient at MLE

40 grgkw

mle <- fit_with_grad$par
names(mle) <- c("alpha", "beta", "gamma", "delta", "lambda")

At MLE, gradient should be approximately zero
gradient_at_mle <- grgkw(par = mle, data = data)
cat("\nGradient at MLE:\n")
print(gradient_at_mle)
cat("Max absolute component:", max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle^2)), "\n")

Example 4: Numerical vs Analytical Gradient

Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {

grad <- numeric(length(x))
for (i in seq_along(x)) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)

}
return(grad)

}

Compare at MLE
grad_analytical <- grgkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llgkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha", "beta", "gamma", "delta", "lambda"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)
print(comparison_grad, digits = 8)

Example 5: Score Test Statistic

Score test for H0: theta = theta0
theta0 <- c(1.8, 2.8, 1.3, 1.8, 1.6)
score_theta0 <- grgkw(par = theta0, data = data)

Fisher information at theta0
fisher_info <- hsgkw(par = theta0, data = data)

Score test statistic
score_stat <- t(score_theta0) %*% solve(fisher_info) %*% score_theta0
p_value <- pchisq(score_stat, df = 5, lower.tail = FALSE)

grgkw 41

cat("\nScore Test:\n")
cat("H0: alpha=1.8, beta=2.8, gamma=1.3, delta=1.8, lambda=1.6\n")
cat("Test statistic:", score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 6: Confidence Ellipse (Alpha vs Beta)

Observed information
obs_info <- hsgkw(par = mle, data = data)
vcov_full <- solve(obs_info)
vcov_2d <- vcov_full[1:2, 1:2]

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = round(n / 4))
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in 1:round(n / 4)) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)

}

Marginal confidence intervals
se_2d <- sqrt(diag(vcov_2d))
ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot
plot(ellipse[, 1], ellipse[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Region (Alpha vs Beta)", las = 1

)

Add marginal CIs
abline(v = ci_alpha, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

42 grkkw

Example 7: Confidence Ellipse (Gamma vs Delta)

Extract 2x2 submatrix for gamma and delta
vcov_2d_gd <- vcov_full[3:4, 3:4]

Create confidence ellipse
eig_decomp_gd <- eigen(vcov_2d_gd)
ellipse_gd <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in 1:round(n / 4)) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_gd[i,] <- mle[3:4] + sqrt(chi2_val) *
(eig_decomp_gd$vectors %*% diag(sqrt(eig_decomp_gd$values)) %*% v)

}

Marginal confidence intervals
se_2d_gd <- sqrt(diag(vcov_2d_gd))
ci_gamma <- mle[3] + c(-1, 1) * 1.96 * se_2d_gd[1]
ci_delta <- mle[4] + c(-1, 1) * 1.96 * se_2d_gd[2]

Plot
plot(ellipse_gd[, 1], ellipse_gd[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "95% Confidence Region (Gamma vs Delta)", las = 1

)

Add marginal CIs
abline(v = ci_gamma, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

grkkw Gradient of the Negative Log-Likelihood for the kkw Distribution

grkkw 43

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the Kumaraswamy-Kumaraswamy (kkw) distribution with parameters alpha (α), beta (β),
delta (δ), and lambda (λ). This distribution is the special case of the Generalized Kumaraswamy
(GKw) distribution where γ = 1. The gradient is typically used in optimization algorithms for
maximum likelihood estimation.

Usage

grkkw(par, data)

Arguments

par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The components of the gradient vector of the negative log-likelihood (−∇ℓ(θ|x)) for the kkw (γ =
1) model are:

− ∂ℓ

∂α
= −n

α
−

n∑
i=1

ln(xi)+(β−1)

n∑
i=1

xαi ln(xi)

vi
−(λ−1)

n∑
i=1

βvβ−1
i xαi ln(xi)

wi
+δ

n∑
i=1

λwλ−1
i βvβ−1

i xαi ln(xi)

zi

− ∂ℓ

∂β
= −n

β
−

n∑
i=1

ln(vi) + (λ− 1)

n∑
i=1

vβi ln(vi)

wi
− δ

n∑
i=1

λwλ−1
i vβi ln(vi)

zi

−∂ℓ
∂δ

= − n

δ + 1
−

n∑
i=1

ln(zi)

− ∂ℓ

∂λ
= −n

λ
−

n∑
i=1

ln(wi) + δ

n∑
i=1

wλ
i ln(wi)

zi

where:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

• zi = 1− wλ
i = 1− [1− (1− xαi)

β]λ

These formulas represent the derivatives of −ℓ(θ), consistent with minimizing the negative log-
likelihood. They correspond to the general GKw gradient (grgkw) components for α, β, δ, λ evalu-
ated at γ = 1. Note that the component for γ is omitted. Numerical stability is maintained through
careful implementation.

44 grkkw

Value

Returns a numeric vector of length 4 containing the partial derivatives of the negative log-likelihood
function −ℓ(θ|x) with respect to each parameter: (−∂ℓ/∂α,−∂ℓ/∂β,−∂ℓ/∂δ,−∂ℓ/∂λ). Returns
a vector of NaN if any parameter values are invalid according to their constraints, or if any value in
data is not in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

grgkw (parent distribution gradient), llkkw (negative log-likelihood for kkw), hskkw (Hessian for
kkw), dkkw (density for kkw), optim, grad (for numerical gradient comparison).

Examples

Example 1: Basic Gradient Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, delta = 1.5, lambda = 2.0)
data <- rkkw(n,

alpha = true_params[1], beta = true_params[2],
delta = true_params[3], lambda = true_params[4]

)

Evaluate gradient at true parameters
grad_true <- grkkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)
cat("Norm:", sqrt(sum(grad_true^2)), "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.0, 1.5),
c(2.0, 3.0, 1.5, 2.0),
c(2.5, 3.5, 2.0, 2.5)

)

grad_norms <- apply(test_params, 1, function(p) {
g <- grkkw(p, data)
sqrt(sum(g^2))

grkkw 45

})

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Delta = test_params[, 3],
Lambda = test_params[, 4],
Grad_Norm = grad_norms

)
print(results, digits = 4)

Example 2: Gradient in Optimization

Optimization with analytical gradient
fit_with_grad <- optim(

par = c(1.5, 2.5, 1.0, 1.5),
fn = llkkw,
gr = grkkw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

Optimization without gradient
fit_no_grad <- optim(

par = c(1.5, 2.5, 1.0, 1.5),
fn = llkkw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient", "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Delta = c(fit_with_grad$par[3], fit_no_grad$par[3]),
Lambda = c(fit_with_grad$par[4], fit_no_grad$par[4]),
NegLogLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])

)
print(comparison, digits = 4, row.names = FALSE)

Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha", "beta", "delta", "lambda")

At MLE, gradient should be approximately zero

46 grkkw

gradient_at_mle <- grkkw(par = mle, data = data)
cat("\nGradient at MLE:\n")
print(gradient_at_mle)
cat("Max absolute component:", max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle^2)), "\n")

Example 4: Numerical vs Analytical Gradient

Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {

grad <- numeric(length(x))
for (i in seq_along(x)) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)

}
return(grad)

}

Compare at MLE
grad_analytical <- grkkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llkkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha", "beta", "delta", "lambda"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)
print(comparison_grad, digits = 8)

Example 5: Score Test Statistic

Score test for H0: theta = theta0
theta0 <- c(1.8, 2.8, 1.3, 1.8)
score_theta0 <- -grkkw(par = theta0, data = data)

Fisher information at theta0
fisher_info <- hskkw(par = theta0, data = data)

Score test statistic
score_stat <- t(score_theta0) %*% solve(fisher_info) %*% score_theta0
p_value <- pchisq(score_stat, df = 4, lower.tail = FALSE)

cat("\nScore Test:\n")
cat("H0: alpha=1.8, beta=2.8, delta=1.3, lambda=1.8\n")
cat("Test statistic:", score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

grkkw 47

Example 6: Confidence Ellipse with Gradient Information

For visualization, use first two parameters (alpha, beta)
Observed information
obs_info <- hskkw(par = mle, data = data)
vcov_full <- solve(obs_info)
vcov_2d <- vcov_full[1:2, 1:2]

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)

}

Marginal confidence intervals
se_2d <- sqrt(diag(vcov_2d))
ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot
plot(ellipse[, 1], ellipse[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Region (Alpha vs Beta)", las = 1

)

Add marginal CIs
abline(v = ci_alpha, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

48 grkw

grkw Gradient of the Negative Log-Likelihood for the Kumaraswamy (Kw)
Distribution

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the two-parameter Kumaraswamy (Kw) distribution with parameters alpha (α) and beta
(β). This provides the analytical gradient often used for efficient optimization via maximum likeli-
hood estimation.

Usage

grkw(par, data)

Arguments

par A numeric vector of length 2 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The components of the gradient vector of the negative log-likelihood (−∇ℓ(θ|x)) for the Kw model
are:

− ∂ℓ

∂α
= −n

α
−

n∑
i=1

ln(xi) + (β − 1)

n∑
i=1

xαi ln(xi)

vi

− ∂ℓ

∂β
= −n

β
−

n∑
i=1

ln(vi)

where vi = 1 − xαi . These formulas represent the derivatives of −ℓ(θ), consistent with minimiz-
ing the negative log-likelihood. They correspond to the relevant components of the general GKw
gradient (grgkw) evaluated at γ = 1, δ = 0, λ = 1.

Value

Returns a numeric vector of length 2 containing the partial derivatives of the negative log-likelihood
function −ℓ(θ|x) with respect to each parameter: (−∂ℓ/∂α,−∂ℓ/∂β). Returns a vector of NaN if
any parameter values are invalid according to their constraints, or if any value in data is not in the
interval (0, 1).

Author(s)

Lopes, J. E.

grkw 49

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), llkw (negative log-likelihood for Kw), hskw (Hessian for Kw,
if available), dkw (density for Kw), optim, grad (for numerical gradient comparison).

Examples

Example 1: Basic Gradient Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5)
data <- rkw(n, alpha = true_params[1], beta = true_params[2])

Evaluate gradient at true parameters
grad_true <- grkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)
cat("Norm:", sqrt(sum(grad_true^2)), "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
c(2.5, 3.5),
c(3.0, 4.0)

)

grad_norms <- apply(test_params, 1, function(p) {
g <- grkw(p, data)
sqrt(sum(g^2))

})

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Grad_Norm = grad_norms

)
print(results, digits = 4)

Example 2: Gradient in Optimization

50 grkw

Optimization with analytical gradient
fit_with_grad <- optim(

par = c(2, 2),
fn = llkw,
gr = grkw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

Optimization without gradient
fit_no_grad <- optim(

par = c(2, 2),
fn = llkw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient", "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
NegLogLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])

)
print(comparison, digits = 4, row.names = FALSE)

Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha", "beta")

At MLE, gradient should be approximately zero
gradient_at_mle <- grkw(par = mle, data = data)
cat("\nGradient at MLE:\n")
print(gradient_at_mle)
cat("Max absolute component:", max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle^2)), "\n")

Example 4: Numerical vs Analytical Gradient

Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {

grad <- numeric(length(x))
for (i in seq_along(x)) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h

grkw 51

grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}
return(grad)

}

Compare at several points
test_points <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
mle,
c(3.0, 4.0)

)

cat("\nNumerical vs Analytical Gradient Comparison:\n")
for (i in 1:nrow(test_points)) {

grad_analytical <- grkw(par = test_points[i,], data = data)
grad_numerical <- numerical_gradient(llkw, test_points[i,], data)

cat(
"\nPoint", i, ": alpha =", test_points[i, 1],
", beta =", test_points[i, 2], "\n"

)

comparison <- data.frame(
Parameter = c("alpha", "beta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)
print(comparison, digits = 8)

}

Example 5: Gradient Path Visualization

Create grid
alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = 20)
beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = 20)
alpha_grid <- alpha_grid[alpha_grid > 0]
beta_grid <- beta_grid[beta_grid > 0]

Compute gradient vectors
grad_alpha <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))
grad_beta <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))

for (i in seq_along(alpha_grid)) {
for (j in seq_along(beta_grid)) {

g <- grkw(c(alpha_grid[i], beta_grid[j]), data)
grad_alpha[i, j] <- -g[1] # Negative for gradient ascent
grad_beta[i, j] <- -g[2]

}

52 grkw

}

Plot gradient field

plot(mle[1], mle[2],
pch = 19, col = "#8B0000", cex = 1.5,
xlim = range(alpha_grid), ylim = range(beta_grid),
xlab = expression(alpha), ylab = expression(beta),
main = "Gradient Vector Field", las = 1

)

Subsample for clearer visualization
step <- 2
for (i in seq(1, length(alpha_grid), by = step)) {

for (j in seq(1, length(beta_grid), by = step)) {
arrows(alpha_grid[i], beta_grid[j],

alpha_grid[i] + 0.05 * grad_alpha[i, j],
beta_grid[j] + 0.05 * grad_beta[i, j],
length = 0.05, col = "#2E4057", lwd = 1

)
}

}

points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
legend("topright",

legend = c("MLE", "True"),
col = c("#8B0000", "#006400"),
pch = c(19, 17), bty = "n"

)
grid(col = "gray90")

Example 6: Score Test Statistic

Score test for H0: theta = theta0
theta0 <- c(2, 3)
score_theta0 <- -grkw(par = theta0, data = data) # Score is negative gradient

Fisher information at theta0 (using Hessian)
fisher_info <- hskw(par = theta0, data = data)

Score test statistic
score_stat <- t(score_theta0) %*% solve(fisher_info) %*% score_theta0
p_value <- pchisq(score_stat, df = 2, lower.tail = FALSE)

cat("\nScore Test:\n")
cat("H0: alpha = 2, beta = 3\n")
cat("Score vector:", score_theta0, "\n")
cat("Test statistic:", score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

grmc 53

grmc Gradient of the Negative Log-Likelihood for the McDonald (Mc)/Beta
Power Distribution

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the McDonald (Mc) distribution (also known as Beta Power) with parameters gamma (γ),
delta (δ), and lambda (λ). This distribution is the special case of the Generalized Kumaraswamy
(GKw) distribution where α = 1 and β = 1. The gradient is useful for optimization.

Usage

grmc(par, data)

Arguments

par A numeric vector of length 3 containing the distribution parameters in the order:
gamma (γ > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The components of the gradient vector of the negative log-likelihood (−∇ℓ(θ|x)) for the Mc (α =
1, β = 1) model are:

− ∂ℓ

∂γ
= n[ψ(γ + δ + 1)− ψ(γ)]− λ

n∑
i=1

ln(xi)

−∂ℓ
∂δ

= n[ψ(γ + δ + 1)− ψ(δ + 1)]−
n∑

i=1

ln(1− xλi)

− ∂ℓ

∂λ
= −n

λ
− γ

n∑
i=1

ln(xi) + δ

n∑
i=1

xλi ln(xi)

1− xλi

where ψ(·) is the digamma function (digamma). These formulas represent the derivatives of −ℓ(θ),
consistent with minimizing the negative log-likelihood. They correspond to the relevant compo-
nents of the general GKw gradient (grgkw) evaluated at α = 1, β = 1.

Value

Returns a numeric vector of length 3 containing the partial derivatives of the negative log-likelihood
function −ℓ(θ|x) with respect to each parameter: (−∂ℓ/∂γ,−∂ℓ/∂δ,−∂ℓ/∂λ). Returns a vector
of NaN if any parameter values are invalid according to their constraints, or if any value in data is
not in the interval (0, 1).

54 grmc

Author(s)

Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), llmc (negative log-likelihood for Mc), hsmc (Hessian for Mc,
if available), dmc (density for Mc), optim, grad (for numerical gradient comparison), digamma.

Examples

Example 1: Basic Examples

Generate sample data with more stable parameters
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 2.5, lambda = 1.5)
data <- rmc(n,

gamma = true_params[1], delta = true_params[2],
lambda = true_params[3]

)

Evaluate Hessian at true parameters
hess_true <- hsmc(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(1.5, 2.0, 1.0),
fn = llmc,
gr = grmc,
data = data,
method = "BFGS",
hessian = TRUE

grmc 55

)

mle <- fit$par
names(mle) <- c("gamma", "delta", "lambda")

Hessian at MLE
hessian_at_mle <- hsmc(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("gamma", "delta", "lambda")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("gamma", "delta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,

56 grmc

CI_Upper = mle + z_crit * se
)
print(results, digits = 4)

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(1.5, 2.0, 1.0),
c(2.0, 2.5, 1.5),
mle,
c(2.5, 3.0, 2.0)

)

hess_properties <- data.frame(
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hsmc(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Gamma = test_params[i, 1],
Delta = test_params[i, 2],
Lambda = test_params[i, 3],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

Example 5: Curvature Visualization (All pairs side by side)

Create grids around MLE with wider range (±1.5)
gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 25)
lambda_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 25)

grmc 57

gamma_grid <- gamma_grid[gamma_grid > 0]
delta_grid <- delta_grid[delta_grid > 0]
lambda_grid <- lambda_grid[lambda_grid > 0]

Compute curvature measures for all pairs
determinant_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))
trace_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))

determinant_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))
trace_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))

determinant_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))
trace_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))

Gamma vs Delta
for (i in seq_along(gamma_grid)) {

for (j in seq_along(delta_grid)) {
H <- hsmc(c(gamma_grid[i], delta_grid[j], mle[3]), data)
determinant_surface_gd[i, j] <- det(H)
trace_surface_gd[i, j] <- sum(diag(H))

}
}

Gamma vs Lambda
for (i in seq_along(gamma_grid)) {

for (j in seq_along(lambda_grid)) {
H <- hsmc(c(gamma_grid[i], mle[2], lambda_grid[j]), data)
determinant_surface_gl[i, j] <- det(H)
trace_surface_gl[i, j] <- sum(diag(H))

}
}

Delta vs Lambda
for (i in seq_along(delta_grid)) {

for (j in seq_along(lambda_grid)) {
H <- hsmc(c(mle[1], delta_grid[i], lambda_grid[j]), data)
determinant_surface_dl[i, j] <- det(H)
trace_surface_dl[i, j] <- sum(diag(H))

}
}

Plot

Determinant plots
contour(gamma_grid, delta_grid, determinant_surface_gd,

xlab = expression(gamma), ylab = expression(delta),
main = "Determinant: Gamma vs Delta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

58 grmc

contour(gamma_grid, lambda_grid, determinant_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Determinant: Gamma vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(delta_grid, lambda_grid, determinant_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Determinant: Delta vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Trace plots
contour(gamma_grid, delta_grid, trace_surface_gd,

xlab = expression(gamma), ylab = expression(delta),
main = "Trace: Gamma vs Delta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(gamma_grid, lambda_grid, trace_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Trace: Gamma vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(delta_grid, lambda_grid, trace_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Trace: Delta vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True"),
col = c("#8B0000", "#006400"),
pch = c(19, 17),
bty = "n", cex = 0.8

)

grmc 59

Example 6: Confidence Ellipses (All pairs side by side)

Extract all 2x2 submatrices
vcov_gd <- vcov_matrix[1:2, 1:2]
vcov_gl <- vcov_matrix[c(1, 3), c(1, 3)]
vcov_dl <- vcov_matrix[2:3, 2:3]

Create confidence ellipses
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

Gamma vs Delta ellipse
eig_decomp_gd <- eigen(vcov_gd)
ellipse_gd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_gd[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp_gd$vectors %*% diag(sqrt(eig_decomp_gd$values)) %*% v)

}

Gamma vs Lambda ellipse
eig_decomp_gl <- eigen(vcov_gl)
ellipse_gl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_gl[i,] <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_gl$vectors %*% diag(sqrt(eig_decomp_gl$values)) %*% v)

}

Delta vs Lambda ellipse
eig_decomp_dl <- eigen(vcov_dl)
ellipse_dl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_dl[i,] <- mle[2:3] + sqrt(chi2_val) *
(eig_decomp_dl$vectors %*% diag(sqrt(eig_decomp_dl$values)) %*% v)

}

Marginal confidence intervals
se_gd <- sqrt(diag(vcov_gd))
ci_gamma_gd <- mle[1] + c(-1, 1) * 1.96 * se_gd[1]
ci_delta_gd <- mle[2] + c(-1, 1) * 1.96 * se_gd[2]

se_gl <- sqrt(diag(vcov_gl))
ci_gamma_gl <- mle[1] + c(-1, 1) * 1.96 * se_gl[1]
ci_lambda_gl <- mle[3] + c(-1, 1) * 1.96 * se_gl[2]

se_dl <- sqrt(diag(vcov_dl))
ci_delta_dl <- mle[2] + c(-1, 1) * 1.96 * se_dl[1]
ci_lambda_dl <- mle[3] + c(-1, 1) * 1.96 * se_dl[2]

60 grmc

Plot

Gamma vs Delta
plot(ellipse_gd[, 1], ellipse_gd[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "Gamma vs Delta", las = 1, xlim = range(ellipse_gd[, 1], ci_gamma_gd),
ylim = range(ellipse_gd[, 2], ci_delta_gd)

)
abline(v = ci_gamma_gd, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta_gd, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Gamma vs Lambda
plot(ellipse_gl[, 1], ellipse_gl[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(lambda),
main = "Gamma vs Lambda", las = 1, xlim = range(ellipse_gl[, 1], ci_gamma_gl),
ylim = range(ellipse_gl[, 2], ci_lambda_gl)

)
abline(v = ci_gamma_gl, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda_gl, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Delta vs Lambda
plot(ellipse_dl[, 1], ellipse_dl[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = expression(lambda),
main = "Delta vs Lambda", las = 1, xlim = range(ellipse_dl[, 1], ci_delta_dl),
ylim = range(ellipse_dl[, 2], ci_lambda_dl)

)
abline(v = ci_delta_dl, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda_dl, col = "#808080", lty = 3, lwd = 1.5)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n", cex = 0.8

)

hsbeta 61

hsbeta Hessian Matrix of the Negative Log-Likelihood for the Beta Distribu-
tion (gamma, delta+1 Parameterization)

Description

Computes the analytic 2x2 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the standard Beta distribution, using a parameterization common in
generalized distribution families. The distribution is parameterized by gamma (γ) and delta (δ),
corresponding to the standard Beta distribution with shape parameters shape1 = gamma and shape2
= delta + 1. The Hessian is useful for estimating standard errors and in optimization algorithms.

Usage

hsbeta(par, data)

Arguments

par A numeric vector of length 2 containing the distribution parameters in the order:
gamma (γ > 0), delta (δ ≥ 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion (−ℓ(θ|x)) for a Beta distribution with parameters shape1 = gamma (γ) and shape2 = delta + 1
(δ + 1). The components of the Hessian matrix (−H(θ)) are:

− ∂2ℓ

∂γ2
= n[ψ′(γ)− ψ′(γ + δ + 1)]

− ∂2ℓ

∂γ∂δ
= −nψ′(γ + δ + 1)

−∂
2ℓ

∂δ2
= n[ψ′(δ + 1)− ψ′(γ + δ + 1)]

where ψ′(·) is the trigamma function (trigamma). These formulas represent the second derivatives
of −ℓ(θ), consistent with minimizing the negative log-likelihood. They correspond to the relevant
2x2 submatrix of the general GKw Hessian (hsgkw) evaluated at α = 1, β = 1, λ = 1. Note the
parameterization difference from the standard Beta distribution (shape2 = delta + 1).

The returned matrix is symmetric.

Value

Returns a 2x2 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, −∂2ℓ/(∂θi∂θj), where θ = (γ, δ). Returns a 2x2 matrix populated with NaN if any parameter
values are invalid according to their constraints, or if any value in data is not in the interval (0, 1).

62 hsbeta

Author(s)

Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw, hsmc (related Hessians), llbeta (negative log-likelihood function), grbeta (gradient, if
available), dbeta_, pbeta_, qbeta_, rbeta_, optim, hessian (for numerical Hessian comparison),
trigamma.

Examples

Example 1: Basic Hessian Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 3.0)
data <- rbeta_(n, gamma = true_params[1], delta = true_params[2])

Evaluate Hessian at true parameters
hess_true <- hsbeta(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(1.5, 2.5),
fn = llbeta,
gr = grbeta,
data = data,
method = "L-BFGS-B",
lower = c(0.01, 0.01),
upper = c(100, 100),
hessian = TRUE

hsbeta 63

)

mle <- fit$par
names(mle) <- c("gamma", "delta")

Hessian at MLE
hessian_at_mle <- hsbeta(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("gamma", "delta")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("gamma", "delta"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,

64 hsbeta

CI_Upper = mle + z_crit * se
)
print(results, digits = 4)

cat(sprintf(
"\nMLE corresponds approx to Beta(%.2f, %.2f)\n",
mle[1], mle[2] + 1

))
cat(

"True corresponds to Beta(%.2f, %.2f)\n",
true_params[1], true_params[2] + 1

)

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
mle,
c(2.5, 3.5)

)

hess_properties <- data.frame(
Gamma = numeric(),
Delta = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hsbeta(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Gamma = test_params[i, 1],
Delta = test_params[i, 2],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

hsbeta 65

Example 5: Curvature Visualization (Gamma vs Delta)

Create grid around MLE
gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 25)
gamma_grid <- gamma_grid[gamma_grid > 0]
delta_grid <- delta_grid[delta_grid > 0]

Compute curvature measures
determinant_surface <- matrix(NA,

nrow = length(gamma_grid),
ncol = length(delta_grid)

)
trace_surface <- matrix(NA,

nrow = length(gamma_grid),
ncol = length(delta_grid)

)

for (i in seq_along(gamma_grid)) {
for (j in seq_along(delta_grid)) {
H <- hsbeta(c(gamma_grid[i], delta_grid[j]), data)
determinant_surface[i, j] <- det(H)
trace_surface[i, j] <- sum(diag(H))

}
}

Plot

contour(gamma_grid, delta_grid, determinant_surface,
xlab = expression(gamma), ylab = expression(delta),
main = "Hessian Determinant", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(gamma_grid, delta_grid, trace_surface,
xlab = expression(gamma), ylab = expression(delta),
main = "Hessian Trace", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Example 6: Confidence Ellipse (Gamma vs Delta)

Extract 2x2 submatrix (full matrix in this case)
vcov_2d <- vcov_matrix

66 hsbkw

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle + sqrt(chi2_val) *
(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)

}

Marginal confidence intervals
se_2d <- sqrt(diag(vcov_2d))
ci_gamma <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_delta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot

plot(ellipse[, 1], ellipse[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "95% Confidence Ellipse (Gamma vs Delta)", las = 1

)

Add marginal CIs
abline(v = ci_gamma, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

hsbkw Hessian Matrix of the Negative Log-Likelihood for the BKw Distribu-
tion

Description

Computes the analytic 4x4 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the Beta-Kumaraswamy (BKw) distribution with parameters alpha (α),

hsbkw 67

beta (β), gamma (γ), and delta (δ). This distribution is the special case of the Generalized Ku-
maraswamy (GKw) distribution where λ = 1. The Hessian is useful for estimating standard errors
and in optimization algorithms.

Usage

hsbkw(par, data)

Arguments

par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), gamma (γ > 0), delta (δ ≥ 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the BKw log-likelihood (λ = 1 case of GKw, see llbkw):

ℓ(θ|x) = n[ln(α)+ln(β)−lnB(γ, δ+1)]+

n∑
i=1

[(α−1) ln(xi)+(β(δ+1)−1) ln(vi)+(γ−1) ln(wi)]

where θ = (α, β, γ, δ), B(a, b) is the Beta function (beta), and intermediate terms are:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

The Hessian matrix returned contains the elements −∂2ℓ(θ|x)
∂θi∂θj

for θi, θj ∈ {α, β, γ, δ}.

Key properties of the returned matrix:

• Dimensions: 4x4.

• Symmetry: The matrix is symmetric.

• Ordering: Rows and columns correspond to the parameters in the order α, β, γ, δ.

• Content: Analytic second derivatives of the negative log-likelihood.

This corresponds to the relevant 4x4 submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at λ = 1.
The exact analytical formulas are implemented directly.

Value

Returns a 4x4 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, −∂2ℓ/(∂θi∂θj), where θ = (α, β, γ, δ). Returns a 4x4 matrix populated with NaN if any
parameter values are invalid according to their constraints, or if any value in data is not in the
interval (0, 1).

Author(s)

Lopes, J. E.

68 hsbkw

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), llbkw (negative log-likelihood for BKw), grbkw (gradient for
BKw, if available), dbkw (density for BKw), optim, hessian (for numerical Hessian comparison).

Examples

Example 1: Basic Hessian Evaluation
Generate sample data
set.seed(2203)
n <- 1000
true_params <- c(alpha = 2.0, beta = 1.5, gamma = 1.5, delta = 0.5)
data <- rbkw(n,

alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4]

)

Evaluate Hessian at true parameters
hess_true <- hsbkw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(1.8, 1.2, 1.1, 0.3),
fn = llbkw,
gr = grbkw,
data = data,
method = "Nelder-Mead",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta", "gamma", "delta")

hsbkw 69

Hessian at MLE
hessian_at_mle <- hsbkw(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("alpha", "beta", "gamma", "delta")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("alpha", "beta", "gamma", "delta"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

70 hsbkw

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(1.5, 1.0, 1.0, 0.3),
c(2.0, 1.5, 1.5, 0.5),
mle,
c(2.5, 2.0, 2.0, 0.7)

)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hsbkw(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
Beta = test_params[i, 2],
Gamma = test_params[i, 3],
Delta = test_params[i, 4],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

Example 5: Curvature Visualization (Selected pairs)

Create grids around MLE with wider range (±1.5)
alpha_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)
beta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 25)
gamma_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 25)
delta_grid <- seq(mle[4] - 1.5, mle[4] + 1.5, length.out = 25)

alpha_grid <- alpha_grid[alpha_grid > 0]

hsbkw 71

beta_grid <- beta_grid[beta_grid > 0]
gamma_grid <- gamma_grid[gamma_grid > 0]
delta_grid <- delta_grid[delta_grid > 0]

Compute curvature measures for selected pairs
determinant_surface_ab <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))
trace_surface_ab <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))

determinant_surface_ag <- matrix(NA, nrow = length(alpha_grid), ncol = length(gamma_grid))
trace_surface_ag <- matrix(NA, nrow = length(alpha_grid), ncol = length(gamma_grid))

determinant_surface_bd <- matrix(NA, nrow = length(beta_grid), ncol = length(delta_grid))
trace_surface_bd <- matrix(NA, nrow = length(beta_grid), ncol = length(delta_grid))

Alpha vs Beta
for (i in seq_along(alpha_grid)) {

for (j in seq_along(beta_grid)) {
H <- hsbkw(c(alpha_grid[i], beta_grid[j], mle[3], mle[4]), data)
determinant_surface_ab[i, j] <- det(H)
trace_surface_ab[i, j] <- sum(diag(H))

}
}

Alpha vs Gamma
for (i in seq_along(alpha_grid)) {

for (j in seq_along(gamma_grid)) {
H <- hsbkw(c(alpha_grid[i], mle[2], gamma_grid[j], mle[4]), data)
determinant_surface_ag[i, j] <- det(H)
trace_surface_ag[i, j] <- sum(diag(H))

}
}

Beta vs Delta
for (i in seq_along(beta_grid)) {

for (j in seq_along(delta_grid)) {
H <- hsbkw(c(mle[1], beta_grid[i], mle[3], delta_grid[j]), data)
determinant_surface_bd[i, j] <- det(H)
trace_surface_bd[i, j] <- sum(diag(H))

}
}

Plot selected curvature surfaces

Determinant plots
contour(alpha_grid, beta_grid, determinant_surface_ab,

xlab = expression(alpha), ylab = expression(beta),
main = "Determinant: Alpha vs Beta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

72 hsbkw

contour(alpha_grid, gamma_grid, determinant_surface_ag,
xlab = expression(alpha), ylab = expression(gamma),
main = "Determinant: Alpha vs Gamma", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(beta_grid, delta_grid, determinant_surface_bd,
xlab = expression(beta), ylab = expression(delta),
main = "Determinant: Beta vs Delta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Trace plots
contour(alpha_grid, beta_grid, trace_surface_ab,

xlab = expression(alpha), ylab = expression(beta),
main = "Trace: Alpha vs Beta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(alpha_grid, gamma_grid, trace_surface_ag,
xlab = expression(alpha), ylab = expression(gamma),
main = "Trace: Alpha vs Gamma", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(beta_grid, delta_grid, trace_surface_bd,
xlab = expression(beta), ylab = expression(delta),
main = "Trace: Beta vs Delta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True"),
col = c("#8B0000", "#006400"),
pch = c(19, 17),
bty = "n", cex = 0.8

)

hsbkw 73

Example 6: Confidence Ellipses (Selected pairs)

Extract selected 2x2 submatrices
vcov_ab <- vcov_matrix[1:2, 1:2]
vcov_ag <- vcov_matrix[c(1, 3), c(1, 3)]
vcov_bd <- vcov_matrix[c(2, 4), c(2, 4)]

Create confidence ellipses
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

Alpha vs Beta ellipse
eig_decomp_ab <- eigen(vcov_ab)
ellipse_ab <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_ab[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp_ab$vectors %*% diag(sqrt(eig_decomp_ab$values)) %*% v)

}

Alpha vs Gamma ellipse
eig_decomp_ag <- eigen(vcov_ag)
ellipse_ag <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_ag[i,] <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_ag$vectors %*% diag(sqrt(eig_decomp_ag$values)) %*% v)

}

Beta vs Delta ellipse
eig_decomp_bd <- eigen(vcov_bd)
ellipse_bd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_bd[i,] <- mle[c(2, 4)] + sqrt(chi2_val) *
(eig_decomp_bd$vectors %*% diag(sqrt(eig_decomp_bd$values)) %*% v)

}

Marginal confidence intervals
se_ab <- sqrt(diag(vcov_ab))
ci_alpha_ab <- mle[1] + c(-1, 1) * 1.96 * se_ab[1]
ci_beta_ab <- mle[2] + c(-1, 1) * 1.96 * se_ab[2]

se_ag <- sqrt(diag(vcov_ag))
ci_alpha_ag <- mle[1] + c(-1, 1) * 1.96 * se_ag[1]
ci_gamma_ag <- mle[3] + c(-1, 1) * 1.96 * se_ag[2]

se_bd <- sqrt(diag(vcov_bd))
ci_beta_bd <- mle[2] + c(-1, 1) * 1.96 * se_bd[1]
ci_delta_bd <- mle[4] + c(-1, 1) * 1.96 * se_bd[2]

Plot selected ellipses side by side

74 hsbkw

Alpha vs Beta
plot(ellipse_ab[, 1], ellipse_ab[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "Alpha vs Beta", las = 1, xlim = range(ellipse_ab[, 1], ci_alpha_ab),
ylim = range(ellipse_ab[, 2], ci_beta_ab)

)
abline(v = ci_alpha_ab, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta_ab, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Alpha vs Gamma
plot(ellipse_ag[, 1], ellipse_ag[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(gamma),
main = "Alpha vs Gamma", las = 1, xlim = range(ellipse_ag[, 1], ci_alpha_ag),
ylim = range(ellipse_ag[, 2], ci_gamma_ag)

)
abline(v = ci_alpha_ag, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_gamma_ag, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Beta vs Delta
plot(ellipse_bd[, 1], ellipse_bd[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = expression(delta),
main = "Beta vs Delta", las = 1, xlim = range(ellipse_bd[, 1], ci_beta_bd),
ylim = range(ellipse_bd[, 2], ci_delta_bd)

)
abline(v = ci_beta_bd, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta_bd, col = "#808080", lty = 3, lwd = 1.5)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n", cex = 0.8

)

hsekw 75

hsekw Hessian Matrix of the Negative Log-Likelihood for the EKw Distribu-
tion

Description

Computes the analytic 3x3 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the Exponentiated Kumaraswamy (EKw) distribution with parameters
alpha (α), beta (β), and lambda (λ). This distribution is the special case of the Generalized
Kumaraswamy (GKw) distribution where γ = 1 and δ = 0. The Hessian is useful for estimating
standard errors and in optimization algorithms.

Usage

hsekw(par, data)

Arguments

par A numeric vector of length 3 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the EKw log-likelihood (γ = 1, δ = 0 case of GKw, see llekw):

ℓ(θ|x) = n[ln(λ) + ln(α) + ln(β)] +

n∑
i=1

[(α− 1) ln(xi) + (β − 1) ln(vi) + (λ− 1) ln(wi)]

where θ = (α, β, λ) and intermediate terms are:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

The Hessian matrix returned contains the elements −∂2ℓ(θ|x)
∂θi∂θj

for θi, θj ∈ {α, β, λ}.

Key properties of the returned matrix:

• Dimensions: 3x3.

• Symmetry: The matrix is symmetric.

• Ordering: Rows and columns correspond to the parameters in the order α, β, λ.

• Content: Analytic second derivatives of the negative log-likelihood.

This corresponds to the relevant 3x3 submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at γ =
1, δ = 0. The exact analytical formulas are implemented directly.

76 hsekw

Value

Returns a 3x3 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, −∂2ℓ/(∂θi∂θj), where θ = (α, β, λ). Returns a 3x3 matrix populated with NaN if any param-
eter values are invalid according to their constraints, or if any value in data is not in the interval (0,
1).

Author(s)

Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), llekw (negative log-likelihood for EKw), grekw (gradient for
EKw, if available), dekw (density for EKw), optim, hessian (for numerical Hessian comparison).

Examples

Example 1: Basic Hessian Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5, lambda = 2.0)
data <- rekw(n,

alpha = true_params[1], beta = true_params[2],
lambda = true_params[3]

)

Evaluate Hessian at true parameters
hess_true <- hsekw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

hsekw 77

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(2, 3, 1.5),
fn = llekw,
gr = grekw,
data = data,
method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta", "lambda")

Hessian at MLE
hessian_at_mle <- hsekw(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("alpha", "beta", "lambda")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")

78 hsekw

print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("alpha", "beta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(2.0, 3.0, 1.5),
c(2.5, 3.5, 2.0),
mle,
c(3.0, 4.0, 2.5)

)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hsekw(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
Beta = test_params[i, 2],
Lambda = test_params[i, 3],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

hsekw 79

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

Example 5: Curvature Visualization (Alpha vs Beta)

Create grid around MLE
alpha_grid <- seq(mle[1] - 0.5, mle[1] + 0.5, length.out = 25)
beta_grid <- seq(mle[2] - 0.5, mle[2] + 0.5, length.out = 25)
alpha_grid <- alpha_grid[alpha_grid > 0]
beta_grid <- beta_grid[beta_grid > 0]

Compute curvature measures
determinant_surface <- matrix(NA,

nrow = length(alpha_grid),
ncol = length(beta_grid)

)
trace_surface <- matrix(NA,

nrow = length(alpha_grid),
ncol = length(beta_grid)

)

for (i in seq_along(alpha_grid)) {
for (j in seq_along(beta_grid)) {
H <- hsekw(c(alpha_grid[i], beta_grid[j], mle[3]), data)
determinant_surface[i, j] <- det(H)
trace_surface[i, j] <- sum(diag(H))

}
}

Plot

contour(alpha_grid, beta_grid, determinant_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Determinant", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(alpha_grid, beta_grid, trace_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Trace", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Example 6: Confidence Ellipse (Alpha vs Beta)

Extract 2x2 submatrix for alpha and beta

80 hsekw

vcov_2d <- vcov_matrix[1:2, 1:2]

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)

}

Marginal confidence intervals
se_2d <- sqrt(diag(vcov_2d))
ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot

plot(ellipse[, 1], ellipse[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Ellipse (Alpha vs Beta)", las = 1

)

Add marginal CIs
abline(v = ci_alpha, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

Example 7: Confidence Ellipse (Alpha vs Lambda)

Extract 2x2 submatrix for alpha and lambda
vcov_2d_al <- vcov_matrix[c(1, 3), c(1, 3)]

Create confidence ellipse
eig_decomp_al <- eigen(vcov_2d_al)
ellipse_al <- matrix(NA, nrow = 100, ncol = 2)

hsekw 81

for (i in 1:100) {
v <- c(cos(theta[i]), sin(theta[i]))
ellipse_al[i,] <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_al$vectors %*% diag(sqrt(eig_decomp_al$values)) %*% v)

}

Marginal confidence intervals
se_2d_al <- sqrt(diag(vcov_2d_al))
ci_alpha_2 <- mle[1] + c(-1, 1) * 1.96 * se_2d_al[1]
ci_lambda <- mle[3] + c(-1, 1) * 1.96 * se_2d_al[2]

Plot

plot(ellipse_al[, 1], ellipse_al[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(lambda),
main = "95% Confidence Ellipse (Alpha vs Lambda)", las = 1

)

Add marginal CIs
abline(v = ci_alpha_2, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

Example 8: Confidence Ellipse (Beta vs Lambda)

Extract 2x2 submatrix for beta and lambda
vcov_2d_bl <- vcov_matrix[2:3, 2:3]

Create confidence ellipse
eig_decomp_bl <- eigen(vcov_2d_bl)
ellipse_bl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_bl[i,] <- mle[2:3] + sqrt(chi2_val) *
(eig_decomp_bl$vectors %*% diag(sqrt(eig_decomp_bl$values)) %*% v)

}

Marginal confidence intervals
se_2d_bl <- sqrt(diag(vcov_2d_bl))

82 hsgkw

ci_beta_2 <- mle[2] + c(-1, 1) * 1.96 * se_2d_bl[1]
ci_lambda_2 <- mle[3] + c(-1, 1) * 1.96 * se_2d_bl[2]

Plot

plot(ellipse_bl[, 1], ellipse_bl[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = expression(lambda),
main = "95% Confidence Ellipse (Beta vs Lambda)", las = 1

)

Add marginal CIs
abline(v = ci_beta_2, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda_2, col = "#808080", lty = 3, lwd = 1.5)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

hsgkw Hessian Matrix of the Negative Log-Likelihood for the GKw Distribu-
tion

Description

Computes the analytic Hessian matrix (matrix of second partial derivatives) of the negative log-
likelihood function for the five-parameter Generalized Kumaraswamy (GKw) distribution. This
is typically used to estimate standard errors of maximum likelihood estimates or in optimization
algorithms.

Usage

hsgkw(par, data)

Arguments

par A numeric vector of length 5 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), gamma (γ > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

hsgkw 83

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the GKw PDF (see dgkw). The log-likelihood function ℓ(θ|x) is given by:

ℓ(θ) = n ln(λαβ)−n lnB(γ, δ+1)+

n∑
i=1

[(α−1) ln(xi)+(β−1) ln(vi)+(γλ−1) ln(wi)+δ ln(zi)]

where θ = (α, β, γ, δ, λ), B(a, b) is the Beta function (beta), and intermediate terms are:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

• zi = 1− wλ
i = 1− [1− (1− xαi)

β]λ

The Hessian matrix returned contains the elements −∂2ℓ(θ|x)
∂θi∂θj

.

Key properties of the returned matrix:

• Dimensions: 5x5.

• Symmetry: The matrix is symmetric.

• Ordering: Rows and columns correspond to the parameters in the order α, β, γ, δ, λ.

• Content: Analytic second derivatives of the negative log-likelihood.

The exact analytical formulas for the second derivatives are implemented directly (often derived
using symbolic differentiation) for accuracy and efficiency, typically using C++.

Value

Returns a 5x5 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, i.e., the matrix of second partial derivatives −∂2ℓ/(∂θi∂θj). Returns a 5x5 matrix populated
with NaN if any parameter values are invalid according to their constraints, or if any value in data
is not in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

llgkw (negative log-likelihood function), grgkw (gradient vector), dgkw (density function), optim,
hessian (for numerical Hessian comparison).

84 hsgkw

Examples

Example 1: Basic Hessian Evaluation

Generate sample data
set.seed(2323)
n <- 1000
true_params <- c(alpha = 1.5, beta = 2.0, gamma = 0.8, delta = 1.2, lambda = 0.5)
data <- rgkw(n,

alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4],
lambda = true_params[5]

)

Evaluate Hessian at true parameters
hess_true <- hsgkw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(1.2, 2.0, 0.5, 1.5, 0.2),
fn = llgkw,
gr = grgkw,
data = data,
method = "Nelder-Mead",
hessian = TRUE,
control = list(
maxit = 2000,
factr = 1e-15,
pgtol = 1e-15,
trace = FALSE

)
)

mle <- fit$par
names(mle) <- c("alpha", "beta", "gamma", "delta", "lambda")

Hessian at MLE
hessian_at_mle <- hsgkw(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian

hsgkw 85

cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("alpha", "beta", "gamma", "delta", "lambda")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("alpha", "beta", "gamma", "delta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(1.5, 2.5, 1.2, 1.5, 1.5),
c(2.0, 3.0, 1.5, 2.0, 1.8),

86 hsgkw

mle,
c(2.5, 3.5, 1.8, 2.5, 2.0)

)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hsgkw(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
Beta = test_params[i, 2],
Gamma = test_params[i, 3],
Delta = test_params[i, 4],
Lambda = test_params[i, 5],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

Example 5: Curvature Visualization (Alpha vs Beta)

xd <- 2
Create grid around MLE
alpha_grid <- seq(mle[1] - xd, mle[1] + xd, length.out = round(n / 4))
beta_grid <- seq(mle[2] - xd, mle[2] + xd, length.out = round(n / 4))
alpha_grid <- alpha_grid[alpha_grid > 0]
beta_grid <- beta_grid[beta_grid > 0]

Compute curvature measures
determinant_surface <- matrix(NA,

nrow = length(alpha_grid),
ncol = length(beta_grid)

hsgkw 87

)
trace_surface <- matrix(NA,

nrow = length(alpha_grid),
ncol = length(beta_grid)

)

for (i in seq_along(alpha_grid)) {
for (j in seq_along(beta_grid)) {
H <- hsgkw(c(alpha_grid[i], beta_grid[j], mle[3], mle[4], mle[5]), data)
determinant_surface[i, j] <- det(H)
trace_surface[i, j] <- sum(diag(H))

}
}

Plot

contour(alpha_grid, beta_grid, determinant_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Determinant", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(alpha_grid, beta_grid, trace_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Trace", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Example 6: Confidence Ellipse (Alpha vs Beta)

Extract 2x2 submatrix for alpha and beta
vcov_2d <- vcov_matrix[1:2, 1:2]

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = round(n / 4))
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in 1:round(n / 4)) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle[1:2] + sqrt(chi2_val) *

(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)
}

Marginal confidence intervals

88 hsgkw

se_2d <- sqrt(diag(vcov_2d))
ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot
plot(ellipse[, 1], ellipse[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Ellipse (Alpha vs Beta)", las = 1

)

Add marginal CIs
abline(v = ci_alpha, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

Example 7: Confidence Ellipse (Gamma vs Delta)

Extract 2x2 submatrix for gamma and delta
vcov_2d_gd <- vcov_matrix[3:4, 3:4]

Create confidence ellipse
eig_decomp_gd <- eigen(vcov_2d_gd)
ellipse_gd <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in 1:round(n / 4)) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_gd[i,] <- mle[3:4] + sqrt(chi2_val) *
(eig_decomp_gd$vectors %*% diag(sqrt(eig_decomp_gd$values)) %*% v)

}

Marginal confidence intervals
se_2d_gd <- sqrt(diag(vcov_2d_gd))
ci_gamma <- mle[3] + c(-1, 1) * 1.96 * se_2d_gd[1]
ci_delta <- mle[4] + c(-1, 1) * 1.96 * se_2d_gd[2]

Plot
plot(ellipse_gd[, 1], ellipse_gd[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "95% Confidence Ellipse (Gamma vs Delta)", las = 1

hsgkw 89

)

Add marginal CIs
abline(v = ci_gamma, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

Example 8: Confidence Ellipse (Delta vs Lambda)

Extract 2x2 submatrix for delta and lambda
vcov_2d_dl <- vcov_matrix[4:5, 4:5]

Create confidence ellipse
eig_decomp_dl <- eigen(vcov_2d_dl)
ellipse_dl <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in 1:round(n / 4)) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_dl[i,] <- mle[4:5] + sqrt(chi2_val) *
(eig_decomp_dl$vectors %*% diag(sqrt(eig_decomp_dl$values)) %*% v)

}

Marginal confidence intervals
se_2d_dl <- sqrt(diag(vcov_2d_dl))
ci_delta_2 <- mle[4] + c(-1, 1) * 1.96 * se_2d_dl[1]
ci_lambda <- mle[5] + c(-1, 1) * 1.96 * se_2d_dl[2]

Plot
plot(ellipse_dl[, 1], ellipse_dl[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = expression(lambda),
main = "95% Confidence Ellipse (Delta vs Lambda)", las = 1

)

Add marginal CIs
abline(v = ci_delta_2, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda, col = "#808080", lty = 3, lwd = 1.5)

points(mle[4], mle[5], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[4], true_params[5], pch = 17, col = "#006400", cex = 1.5)

90 hskkw

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

hskkw Hessian Matrix of the Negative Log-Likelihood for the kkw Distribu-
tion

Description

Computes the analytic 4x4 Hessian matrix (matrix of second partial derivatives) of the negative log-
likelihood function for the Kumaraswamy-Kumaraswamy (kkw) distribution with parameters alpha
(α), beta (β), delta (δ), and lambda (λ). This distribution is the special case of the Generalized
Kumaraswamy (GKw) distribution where γ = 1. The Hessian is useful for estimating standard
errors and in optimization algorithms.

Usage

hskkw(par, data)

Arguments

par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the kkw log-likelihood (γ = 1 case of GKw, see llkkw):

ℓ(θ|x) = n[ln(δ+1)+ln(λ)+ln(α)+ln(β)]+

n∑
i=1

[(α−1) ln(xi)+(β−1) ln(vi)+(λ−1) ln(wi)+δ ln(zi)]

where θ = (α, β, δ, λ) and intermediate terms are:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

• zi = 1− wλ
i = 1− [1− (1− xαi)

β]λ

hskkw 91

The Hessian matrix returned contains the elements −∂2ℓ(θ|x)
∂θi∂θj

for θi, θj ∈ {α, β, δ, λ}.

Key properties of the returned matrix:

• Dimensions: 4x4.

• Symmetry: The matrix is symmetric.

• Ordering: Rows and columns correspond to the parameters in the order α, β, δ, λ.

• Content: Analytic second derivatives of the negative log-likelihood.

This corresponds to the relevant submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at γ = 1.
The exact analytical formulas are implemented directly.

Value

Returns a 4x4 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, −∂2ℓ/(∂θi∂θj), where θ = (α, β, δ, λ). Returns a 4x4 matrix populated with NaN if any
parameter values are invalid according to their constraints, or if any value in data is not in the
interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

hsgkw (parent distribution Hessian), llkkw (negative log-likelihood for kkw), grkkw (gradient for
kkw), dkkw (density for kkw), optim, hessian (for numerical Hessian comparison).

Examples

Example 1: Basic Hessian Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, delta = 1.5, lambda = 2.0)
data <- rkkw(n,

alpha = true_params[1], beta = true_params[2],
delta = true_params[3], lambda = true_params[4]

)

Evaluate Hessian at true parameters
hess_true <- hskkw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")

92 hskkw

print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(1.5, 2.5, 1.0, 1.5),
fn = llkkw,
gr = grkkw,
data = data,
method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta", "delta", "lambda")

Hessian at MLE
hessian_at_mle <- hskkw(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")

hskkw 93

print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("alpha", "beta", "delta", "lambda")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("alpha", "beta", "delta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(1.5, 2.5, 1.0, 1.5),
c(2.0, 3.0, 1.5, 2.0),
mle,
c(2.5, 3.5, 2.0, 2.5)

)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Delta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hskkw(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],

94 hskkw

Beta = test_params[i, 2],
Delta = test_params[i, 3],
Lambda = test_params[i, 4],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

Example 5: Curvature Visualization (Alpha vs Beta)

Create grid around MLE
alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = round(n / 4))
beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = round(n / 4))
alpha_grid <- alpha_grid[alpha_grid > 0]
beta_grid <- beta_grid[beta_grid > 0]

Compute curvature measures
determinant_surface <- matrix(NA,

nrow = length(alpha_grid),
ncol = length(beta_grid)

)
trace_surface <- matrix(NA,

nrow = length(alpha_grid),
ncol = length(beta_grid)

)

for (i in seq_along(alpha_grid)) {
for (j in seq_along(beta_grid)) {

H <- hskkw(c(alpha_grid[i], beta_grid[j], mle[3], mle[4]), data)
determinant_surface[i, j] <- det(H)
trace_surface[i, j] <- sum(diag(H))

}
}

Plot

contour(alpha_grid, beta_grid, determinant_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Determinant", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(alpha_grid, beta_grid, trace_surface,

hskkw 95

xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Trace", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Example 6: Confidence Ellipse (Alpha vs Beta)

Extract 2x2 submatrix for alpha and beta
vcov_2d <- vcov_matrix[1:2, 1:2]

Create confidence ellipse
theta <- seq(0, 2 * pi, length.out = round(n / 2))
chi2_val <- qchisq(0.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = round(n / 2), ncol = 2)
for (i in 1:round(n / 2)) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle[1:2] + sqrt(chi2_val) *

(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)
}

Marginal confidence intervals
se_2d <- sqrt(diag(vcov_2d))
ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

Plot
plot(ellipse[, 1], ellipse[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Ellipse (Alpha vs Beta)", las = 1

)

Add marginal CIs
abline(v = ci_alpha, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_beta, col = "#808080", lty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

96 hskw

Example 7: Confidence Ellipse (Delta vs Lambda)

Extract 2x2 submatrix for delta and lambda
vcov_2d_dl <- vcov_matrix[3:4, 3:4]

Create confidence ellipse
eig_decomp_dl <- eigen(vcov_2d_dl)
ellipse_dl <- matrix(NA, nrow = round(n / 2), ncol = 2)
for (i in 1:round(n / 2)) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_dl[i,] <- mle[3:4] + sqrt(chi2_val) *
(eig_decomp_dl$vectors %*% diag(sqrt(eig_decomp_dl$values)) %*% v)

}

Marginal confidence intervals
se_2d_dl <- sqrt(diag(vcov_2d_dl))
ci_delta <- mle[3] + c(-1, 1) * 1.96 * se_2d_dl[1]
ci_lambda <- mle[4] + c(-1, 1) * 1.96 * se_2d_dl[2]

Plot
plot(ellipse_dl[, 1], ellipse_dl[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = expression(lambda),
main = "95% Confidence Ellipse (Delta vs Lambda)", las = 1

)

Add marginal CIs
abline(v = ci_delta, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda, col = "#808080", lty = 3, lwd = 1.5)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)
grid(col = "gray90")

hskw Hessian Matrix of the Negative Log-Likelihood for the Kw Distribution

hskw 97

Description

Computes the analytic 2x2 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the two-parameter Kumaraswamy (Kw) distribution with parameters
alpha (α) and beta (β). The Hessian is useful for estimating standard errors and in optimization
algorithms.

Usage

hskw(par, data)

Arguments

par A numeric vector of length 2 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion (−ℓ(θ|x)). The components are the negative of the second derivatives of the log-likelihood ℓ
(derived from the PDF in dkw).

Let vi = 1− xαi . The second derivatives of the positive log-likelihood (ℓ) are:

∂2ℓ

∂α2
= − n

α2
− (β − 1)

n∑
i=1

xαi (ln(xi))
2

v2i

∂2ℓ

∂α∂β
= −

n∑
i=1

xαi ln(xi)

vi

∂2ℓ

∂β2
= − n

β2

The function returns the Hessian matrix containing the negative of these values.

Key properties of the returned matrix:

• Dimensions: 2x2.

• Symmetry: The matrix is symmetric.

• Ordering: Rows and columns correspond to the parameters in the order α, β.

• Content: Analytic second derivatives of the negative log-likelihood.

This corresponds to the relevant 2x2 submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at γ =
1, δ = 0, λ = 1.

Value

Returns a 2x2 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, −∂2ℓ/(∂θi∂θj), where θ = (α, β). Returns a 2x2 matrix populated with NaN if any parameter
values are invalid according to their constraints, or if any value in data is not in the interval (0, 1).

98 hskw

Author(s)

Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), llkw (negative log-likelihood for Kw), grkw (gradient for Kw,
if available), dkw (density for Kw), optim, hessian (for numerical Hessian comparison).

Examples

Example 1: Basic Hessian Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5)
data <- rkw(n, alpha = true_params[1], beta = true_params[2])

Evaluate Hessian at true parameters
hess_true <- hskw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(2, 2),
fn = llkw,
gr = grkw,
data = data,
method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta")

hskw 99

Hessian at MLE
hessian_at_mle <- hskw(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix (negative Hessian for neg-loglik)
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("alpha", "beta")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("alpha", "beta"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

100 hskw

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
mle,
c(3.0, 4.0)

)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hskw(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
Beta = test_params[i, 2],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

Example 5: Curvature Visualization

Create grid around MLE
alpha_grid <- seq(mle[1] - 0.5, mle[1] + 0.5, length.out = 30)
beta_grid <- seq(mle[2] - 0.5, mle[2] + 0.5, length.out = 30)
alpha_grid <- alpha_grid[alpha_grid > 0]
beta_grid <- beta_grid[beta_grid > 0]

Compute curvature measures
determinant_surface <- matrix(NA,

nrow = length(alpha_grid),
ncol = length(beta_grid)

)
trace_surface <- matrix(NA,

hskw 101

nrow = length(alpha_grid),
ncol = length(beta_grid)

)

for (i in seq_along(alpha_grid)) {
for (j in seq_along(beta_grid)) {

H <- hskw(c(alpha_grid[i], beta_grid[j]), data)
determinant_surface[i, j] <- det(H)
trace_surface[i, j] <- sum(diag(H))

}
}

Plot

contour(alpha_grid, beta_grid, determinant_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Determinant", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(alpha_grid, beta_grid, trace_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Trace", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Example 6: Fisher Information and Asymptotic Efficiency

Observed information (at MLE)
obs_fisher <- hessian_at_mle

Asymptotic covariance matrix
asymp_cov <- solve(obs_fisher)

cat("\nAsymptotic Standard Errors:\n")
cat("SE(alpha):", sqrt(asymp_cov[1, 1]), "\n")
cat("SE(beta):", sqrt(asymp_cov[2, 2]), "\n")

Cramér-Rao Lower Bound
cat("\nCramér-Rao Lower Bounds:\n")
cat("CRLB(alpha):", sqrt(asymp_cov[1, 1]), "\n")
cat("CRLB(beta):", sqrt(asymp_cov[2, 2]), "\n")

Efficiency ellipse (95% confidence region)
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

102 hsmc

Eigendecomposition
eig_decomp <- eigen(asymp_cov)

Ellipse points
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse[i,] <- mle + sqrt(chi2_val) *
(eig_decomp$vectors %*% diag(sqrt(eig_decomp$values)) %*% v)

}

Plot confidence ellipse

plot(ellipse[, 1], ellipse[, 2],
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Ellipse", las = 1

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CR"),
col = c("#8B0000", "#006400", "#2E4057"),
pch = c(19, 17, NA), lty = c(NA, NA, 1),
lwd = c(NA, NA, 2), bty = "n"

)
grid(col = "gray90")

hsmc Hessian Matrix of the Negative Log-Likelihood for the McDonald
(Mc)/Beta Power Distribution

Description

Computes the analytic 3x3 Hessian matrix (matrix of second partial derivatives) of the negative log-
likelihood function for the McDonald (Mc) distribution (also known as Beta Power) with parameters
gamma (γ), delta (δ), and lambda (λ). This distribution is the special case of the Generalized
Kumaraswamy (GKw) distribution where α = 1 and β = 1. The Hessian is useful for estimating
standard errors and in optimization algorithms.

Usage

hsmc(par, data)

Arguments

par A numeric vector of length 3 containing the distribution parameters in the order:
gamma (γ > 0), delta (δ ≥ 0), lambda (λ > 0).

hsmc 103

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion (−ℓ(θ|x)). The components are based on the second derivatives of the log-likelihood ℓ (derived
from the PDF in dmc).

Note: The formulas below represent the second derivatives of the positive log-likelihood (ℓ). The
function returns the negative of these values. Users should verify these formulas independently if
using for critical applications.

∂2ℓ

∂γ2
= −n[ψ′(γ)− ψ′(γ + δ + 1)]

∂2ℓ

∂γ∂δ
= −nψ′(γ + δ + 1)

∂2ℓ

∂γ∂λ
=

n∑
i=1

ln(xi)

∂2ℓ

∂δ2
= −n[ψ′(δ + 1)− ψ′(γ + δ + 1)]

∂2ℓ

∂δ∂λ
= −

n∑
i=1

xλi ln(xi)

1− xλi

∂2ℓ

∂λ2
= − n

λ2
− δ

n∑
i=1

xλi [ln(xi)]
2

(1− xλi)
2

where ψ′(·) is the trigamma function (trigamma). (Note: The formula for ∂2ℓ/∂λ2 provided in
the source comment was different and potentially related to the expected information matrix; the
formula shown here is derived from the gradient provided earlier. Verification is recommended.)

The returned matrix is symmetric, with rows/columns corresponding to γ, δ, λ.

Value

Returns a 3x3 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, −∂2ℓ/(∂θi∂θj), where θ = (γ, δ, λ). Returns a 3x3 matrix populated with NaN if any param-
eter values are invalid according to their constraints, or if any value in data is not in the interval (0,
1).

Author(s)

Lopes, J. E.

104 hsmc

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), llmc (negative log-likelihood for Mc), grmc (gradient for Mc,
if available), dmc (density for Mc), optim, hessian (for numerical Hessian comparison), trigamma.

Examples

Example 1: Basic Hessian Evaluation

Generate sample data with more stable parameters
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 2.5, lambda = 1.5)
data <- rmc(n,

gamma = true_params[1], delta = true_params[2],
lambda = true_params[3]

)

Evaluate Hessian at true parameters
hess_true <- hsmc(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

Check symmetry
cat(

"\nSymmetry check (max |H - H^T|):",
max(abs(hess_true - t(hess_true))), "\n"

)

Example 2: Hessian Properties at MLE

Fit model
fit <- optim(

par = c(1.5, 2.0, 1.0),
fn = llmc,
gr = grmc,
data = data,
method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("gamma", "delta", "lambda")

hsmc 105

Hessian at MLE
hessian_at_mle <- hsmc(par = mle, data = data)
cat("\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",
max(abs(hessian_at_mle - fit$hessian)), "\n"

)

Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")
print(eigenvals)

cat("\nPositive definite:", all(eigenvals > 0), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

Example 3: Standard Errors and Confidence Intervals

Observed information matrix
obs_info <- hessian_at_mle

Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("gamma", "delta", "lambda")

Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

Confidence intervals
z_crit <- qnorm(0.975)
results <- data.frame(

Parameter = c("gamma", "delta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

106 hsmc

Example 4: Determinant and Trace Analysis

Compute at different points
test_params <- rbind(

c(1.5, 2.0, 1.0),
c(2.0, 2.5, 1.5),
mle,
c(2.5, 3.0, 2.0)

)

hess_properties <- data.frame(
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hsmc(par = test_params[i,], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Gamma = test_params[i, 1],
Delta = test_params[i, 2],
Lambda = test_params[i, 3],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

))
}

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

Example 5: Curvature Visualization (All pairs side by side)

Create grids around MLE with wider range (±1.5)
gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 25)
lambda_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 25)

gamma_grid <- gamma_grid[gamma_grid > 0]
delta_grid <- delta_grid[delta_grid > 0]
lambda_grid <- lambda_grid[lambda_grid > 0]

hsmc 107

Compute curvature measures for all pairs
determinant_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))
trace_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))

determinant_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))
trace_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))

determinant_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))
trace_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))

Gamma vs Delta
for (i in seq_along(gamma_grid)) {

for (j in seq_along(delta_grid)) {
H <- hsmc(c(gamma_grid[i], delta_grid[j], mle[3]), data)
determinant_surface_gd[i, j] <- det(H)
trace_surface_gd[i, j] <- sum(diag(H))

}
}

Gamma vs Lambda
for (i in seq_along(gamma_grid)) {

for (j in seq_along(lambda_grid)) {
H <- hsmc(c(gamma_grid[i], mle[2], lambda_grid[j]), data)
determinant_surface_gl[i, j] <- det(H)
trace_surface_gl[i, j] <- sum(diag(H))

}
}

Delta vs Lambda
for (i in seq_along(delta_grid)) {

for (j in seq_along(lambda_grid)) {
H <- hsmc(c(mle[1], delta_grid[i], lambda_grid[j]), data)
determinant_surface_dl[i, j] <- det(H)
trace_surface_dl[i, j] <- sum(diag(H))

}
}

Plot

Determinant plots
contour(gamma_grid, delta_grid, determinant_surface_gd,

xlab = expression(gamma), ylab = expression(delta),
main = "Determinant: Gamma vs Delta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(gamma_grid, lambda_grid, determinant_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Determinant: Gamma vs Lambda", las = 1,

108 hsmc

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(delta_grid, lambda_grid, determinant_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Determinant: Delta vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Trace plots
contour(gamma_grid, delta_grid, trace_surface_gd,

xlab = expression(gamma), ylab = expression(delta),
main = "Trace: Gamma vs Delta", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(gamma_grid, lambda_grid, trace_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Trace: Gamma vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(delta_grid, lambda_grid, trace_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Trace: Delta vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True"),
col = c("#8B0000", "#006400"),
pch = c(19, 17),
bty = "n", cex = 0.8

)

Example 6: Confidence Ellipses (All pairs side by side)

Extract all 2x2 submatrices

hsmc 109

vcov_gd <- vcov_matrix[1:2, 1:2]
vcov_gl <- vcov_matrix[c(1, 3), c(1, 3)]
vcov_dl <- vcov_matrix[2:3, 2:3]

Create confidence ellipses
theta <- seq(0, 2 * pi, length.out = 100)
chi2_val <- qchisq(0.95, df = 2)

Gamma vs Delta ellipse
eig_decomp_gd <- eigen(vcov_gd)
ellipse_gd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_gd[i,] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp_gd$vectors %*% diag(sqrt(eig_decomp_gd$values)) %*% v)

}

Gamma vs Lambda ellipse
eig_decomp_gl <- eigen(vcov_gl)
ellipse_gl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_gl[i,] <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_gl$vectors %*% diag(sqrt(eig_decomp_gl$values)) %*% v)

}

Delta vs Lambda ellipse
eig_decomp_dl <- eigen(vcov_dl)
ellipse_dl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {

v <- c(cos(theta[i]), sin(theta[i]))
ellipse_dl[i,] <- mle[2:3] + sqrt(chi2_val) *
(eig_decomp_dl$vectors %*% diag(sqrt(eig_decomp_dl$values)) %*% v)

}

Marginal confidence intervals
se_gd <- sqrt(diag(vcov_gd))
ci_gamma_gd <- mle[1] + c(-1, 1) * 1.96 * se_gd[1]
ci_delta_gd <- mle[2] + c(-1, 1) * 1.96 * se_gd[2]

se_gl <- sqrt(diag(vcov_gl))
ci_gamma_gl <- mle[1] + c(-1, 1) * 1.96 * se_gl[1]
ci_lambda_gl <- mle[3] + c(-1, 1) * 1.96 * se_gl[2]

se_dl <- sqrt(diag(vcov_dl))
ci_delta_dl <- mle[2] + c(-1, 1) * 1.96 * se_dl[1]
ci_lambda_dl <- mle[3] + c(-1, 1) * 1.96 * se_dl[2]

Plot

Gamma vs Delta
plot(ellipse_gd[, 1], ellipse_gd[, 2],

type = "l", lwd = 2, col = "#2E4057",

110 llbeta

xlab = expression(gamma), ylab = expression(delta),
main = "Gamma vs Delta", las = 1, xlim = range(ellipse_gd[, 1], ci_gamma_gd),
ylim = range(ellipse_gd[, 2], ci_delta_gd)

)
abline(v = ci_gamma_gd, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_delta_gd, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Gamma vs Lambda
plot(ellipse_gl[, 1], ellipse_gl[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(lambda),
main = "Gamma vs Lambda", las = 1, xlim = range(ellipse_gl[, 1], ci_gamma_gl),
ylim = range(ellipse_gl[, 2], ci_lambda_gl)

)
abline(v = ci_gamma_gl, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda_gl, col = "#808080", lty = 3, lwd = 1.5)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Delta vs Lambda
plot(ellipse_dl[, 1], ellipse_dl[, 2],

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = expression(lambda),
main = "Delta vs Lambda", las = 1, xlim = range(ellipse_dl[, 1], ci_delta_dl),
ylim = range(ellipse_dl[, 2], ci_lambda_dl)

)
abline(v = ci_delta_dl, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda_dl, col = "#808080", lty = 3, lwd = 1.5)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True", "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
lty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n", cex = 0.8

)

llbeta Negative Log-Likelihood for the Beta Distribution (gamma, delta+1
Parameterization)

llbeta 111

Description

Computes the negative log-likelihood function for the standard Beta distribution, using a parame-
terization common in generalized distribution families. The distribution is parameterized by gamma
(γ) and delta (δ), corresponding to the standard Beta distribution with shape parameters shape1 =
gamma and shape2 = delta + 1. This function is suitable for maximum likelihood estimation.

Usage

llbeta(par, data)

Arguments

par A numeric vector of length 2 containing the distribution parameters in the order:
gamma (γ > 0), delta (δ ≥ 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the negative log-likelihood for a Beta distribution with parameters shape1
= gamma (γ) and shape2 = delta + 1 (δ + 1). The probability density function (PDF) is:

f(x|γ, δ) = xγ−1(1− x)δ

B(γ, δ + 1)

for 0 < x < 1, where B(a, b) is the Beta function (beta). The log-likelihood function ℓ(θ|x) for a
sample x = (x1, . . . , xn) is

∑n
i=1 ln f(xi|θ):

ℓ(θ|x) =
n∑

i=1

[(γ − 1) ln(xi) + δ ln(1− xi)]− n lnB(γ, δ + 1)

where θ = (γ, δ). This function computes and returns the negative log-likelihood, −ℓ(θ|x), suit-
able for minimization using optimization routines like optim. It is equivalent to the negative log-
likelihood of the GKw distribution (llgkw) evaluated at α = 1, β = 1, λ = 1, and also to the nega-
tive log-likelihood of the McDonald distribution (llmc) evaluated at λ = 1. The term lnB(γ, δ+1)
is typically computed using log-gamma functions (lgamma) for numerical stability.

Value

Returns a single double value representing the negative log-likelihood (−ℓ(θ|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.

112 llbeta

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

llgkw, llmc (related negative log-likelihoods), dbeta_, pbeta_, qbeta_, rbeta_, grbeta (gradi-
ent, if available), hsbeta (Hessian, if available), optim, lbeta.

Examples

Example 1: Basic Log-Likelihood Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 3.0)
data <- rbeta_(n, gamma = true_params[1], delta = true_params[2])

Evaluate negative log-likelihood at true parameters
nll_true <- llbeta(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
c(2.5, 3.5)

)

nll_values <- apply(test_params, 1, function(p) llbeta(p, data))
results <- data.frame(

Gamma = test_params[, 1],
Delta = test_params[, 2],
NegLogLik = nll_values

)
print(results, digits = 4)

Example 2: Maximum Likelihood Estimation

Optimization using L-BFGS-B with bounds
fit <- optim(

par = c(1.5, 2.5),
fn = llbeta,
gr = grbeta,
data = data,
method = "L-BFGS-B",
lower = c(0.01, 0.01),

llbeta 113

upper = c(100, 100),
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("gamma", "delta")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("gamma", "delta"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat(sprintf(
"\nMLE corresponds approx to Beta(%.2f, %.2f)\n",
mle[1], mle[2] + 1

))
cat(

"True corresponds to Beta(%.2f, %.2f)\n",
true_params[1], true_params[2] + 1

)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")

Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(1.5, 2.5)

comparison <- data.frame(
Method = character(),
Gamma = numeric(),
Delta = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {

fit_temp <- optim(
par = start_params,
fn = llbeta,
gr = grbeta,
data = data,

114 llbeta

method = method
)

} else if (method == "L-BFGS-B") {
fit_temp <- optim(

par = start_params,
fn = llbeta,
gr = grbeta,
data = data,
method = method,
lower = c(0.01, 0.01),
upper = c(100, 100)

)
} else {

fit_temp <- optim(
par = start_params,
fn = llbeta,
data = data,
method = method

)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Gamma = fit_temp$par[1],
Delta = fit_temp$par[2],
NegLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

))
}

print(comparison, digits = 4, row.names = FALSE)

Example 4: Likelihood Ratio Test

Test H0: delta = 3 vs H1: delta free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, delta_fixed) {
llbeta(par = c(params_restricted[1], delta_fixed), data = data)

}

fit_restricted <- optim(
par = mle[1],
fn = restricted_ll,
data = data,
delta_fixed = 3,
method = "BFGS"

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)

llbeta 115

p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 5: Univariate Profile Likelihoods

Profile for gamma
gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)
gamma_grid <- gamma_grid[gamma_grid > 0]
profile_ll_gamma <- numeric(length(gamma_grid))

for (i in seq_along(gamma_grid)) {
profile_fit <- optim(
par = mle[2],
fn = function(p) llbeta(c(gamma_grid[i], p), data),
method = "BFGS"

)
profile_ll_gamma[i] <- -profile_fit$value

}

Profile for delta
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
delta_grid <- delta_grid[delta_grid > 0]
profile_ll_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
profile_fit <- optim(

par = mle[1],
fn = function(p) llbeta(c(p, delta_grid[i]), data),
method = "BFGS"

)
profile_ll_delta[i] <- -profile_fit$value

}

95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_gamma) - chi_crit / 2

Plot

plot(gamma_grid, profile_ll_gamma,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", gamma)), las = 1

)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),

116 llbeta

lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray90")

plot(delta_grid, profile_ll_delta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", delta)), las = 1

)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 6: 2D Log-Likelihood Surface (Gamma vs Delta)

Create 2D grid with wider range (±1.5)
gamma_2d <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = round(n / 25))
delta_2d <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = round(n / 25))
gamma_2d <- gamma_2d[gamma_2d > 0]
delta_2d <- delta_2d[delta_2d > 0]

Compute log-likelihood surface
ll_surface_gd <- matrix(NA, nrow = length(gamma_2d), ncol = length(delta_2d))

for (i in seq_along(gamma_2d)) {
for (j in seq_along(delta_2d)) {
ll_surface_gd[i, j] <- -llbeta(c(gamma_2d[i], delta_2d[j]), data)

}
}

Confidence region levels
max_ll_gd <- max(ll_surface_gd, na.rm = TRUE)
levels_90_gd <- max_ll_gd - qchisq(0.90, df = 2) / 2
levels_95_gd <- max_ll_gd - qchisq(0.95, df = 2) / 2
levels_99_gd <- max_ll_gd - qchisq(0.99, df = 2) / 2

Plot contour

contour(gamma_2d, delta_2d, ll_surface_gd,
xlab = expression(gamma), ylab = expression(delta),
main = "2D Log-Likelihood: Gamma vs Delta",
levels = seq(min(ll_surface_gd, na.rm = TRUE), max_ll_gd, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(gamma_2d, delta_2d, ll_surface_gd,

llbkw 117

levels = c(levels_90_gd, levels_95_gd, levels_99_gd),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

llbkw Negative Log-Likelihood for Beta-Kumaraswamy (BKw) Distribution

Description

Computes the negative log-likelihood function for the Beta-Kumaraswamy (BKw) distribution with
parameters alpha (α), beta (β), gamma (γ), and delta (δ), given a vector of observations. This
distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where λ = 1.
This function is typically used for maximum likelihood estimation via numerical optimization.

Usage

llbkw(par, data)

Arguments

par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), gamma (γ > 0), delta (δ ≥ 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The Beta-Kumaraswamy (BKw) distribution is the GKw distribution (dgkw) with λ = 1. Its proba-
bility density function (PDF) is:

f(x|θ) = αβ

B(γ, δ + 1)
xα−1

(
1− xα

)β(δ+1)−1[
1−

(
1− xα

)β]γ−1

118 llbkw

for 0 < x < 1, θ = (α, β, γ, δ), and B(a, b) is the Beta function (beta). The log-likelihood
function ℓ(θ|x) for a sample x = (x1, . . . , xn) is

∑n
i=1 ln f(xi|θ):

ℓ(θ|x) = n[ln(α)+ln(β)−lnB(γ, δ+1)]+

n∑
i=1

[(α−1) ln(xi)+(β(δ+1)−1) ln(vi)+(γ−1) ln(wi)]

where:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

This function computes and returns the negative log-likelihood, −ℓ(θ|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained similarly to llgkw.

Value

Returns a single double value representing the negative log-likelihood (−ℓ(θ|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

llgkw (parent distribution negative log-likelihood), dbkw, pbkw, qbkw, rbkw, grbkw (gradient, if
available), hsbkw (Hessian, if available), optim, lbeta

Examples

Example 1: Basic Log-Likelihood Evaluation
Generate sample data
set.seed(2203)
n <- 1000
true_params <- c(alpha = 2.0, beta = 1.5, gamma = 1.5, delta = 0.5)
data <- rbkw(n,

alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4]

)

Evaluate negative log-likelihood at true parameters
nll_true <- llbkw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

llbkw 119

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 1.0, 1.0, 0.3),
c(2.0, 1.5, 1.5, 0.5),
c(2.5, 2.0, 2.0, 0.7)

)

nll_values <- apply(test_params, 1, function(p) llbkw(p, data))
results <- data.frame(

Alpha = test_params[, 1],
Beta = test_params[, 2],
Gamma = test_params[, 3],
Delta = test_params[, 4],
NegLogLik = nll_values

)
print(results, digits = 4)

Example 2: Maximum Likelihood Estimation

Optimization using BFGS with no analytical gradient
fit <- optim(

par = c(0.5, 1, 1.1, 0.3),
fn = llbkw,
gr = grbkw,
data = data,
method = "BFGS",
control = list(maxit = 2000),
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta", "gamma", "delta")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("alpha", "beta", "gamma", "delta"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")

Example 3: Comparing Optimization Methods

120 llbkw

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(1.8, 1.2, 1.1, 0.3)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(

par = start_params,
fn = llbkw,
gr = grbkw,
data = data,
method = method

)
} else if (method == "L-BFGS-B") {

fit_temp <- optim(
par = start_params,
fn = llbkw,
gr = grbkw,
data = data,
method = method,
lower = c(0.01, 0.01, 0.01, 0.01),
upper = c(100, 100, 100, 100)

)
} else {

fit_temp <- optim(
par = start_params,
fn = llbkw,
data = data,
method = method

)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Alpha = fit_temp$par[1],
Beta = fit_temp$par[2],
Gamma = fit_temp$par[3],
Delta = fit_temp$par[4],
NegLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

))
}

llbkw 121

print(comparison, digits = 4, row.names = FALSE)

Example 4: Likelihood Ratio Test

Test H0: delta = 0.5 vs H1: delta free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, delta_fixed) {
llbkw(par = c(
params_restricted[1], params_restricted[2],
params_restricted[3], delta_fixed

), data = data)
}

fit_restricted <- optim(
par = mle[1:3],
fn = restricted_ll,
data = data,
delta_fixed = 0.5,
method = "Nelder-Mead"

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 5: Univariate Profile Likelihoods

Profile for alpha
alpha_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)
alpha_grid <- alpha_grid[alpha_grid > 0]
profile_ll_alpha <- numeric(length(alpha_grid))

for (i in seq_along(alpha_grid)) {
profile_fit <- optim(

par = mle[-1],
fn = function(p) llbkw(c(alpha_grid[i], p), data),
method = "Nelder-Mead"

)
profile_ll_alpha[i] <- -profile_fit$value

}

Profile for beta
beta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
beta_grid <- beta_grid[beta_grid > 0]
profile_ll_beta <- numeric(length(beta_grid))

122 llbkw

for (i in seq_along(beta_grid)) {
profile_fit <- optim(
par = c(mle[1], mle[3], mle[4]),
fn = function(p) llbkw(c(mle[1], beta_grid[i], p[1], p[2]), data),
method = "Nelder-Mead"

)
profile_ll_beta[i] <- -profile_fit$value

}

Profile for gamma
gamma_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 50)
gamma_grid <- gamma_grid[gamma_grid > 0]
profile_ll_gamma <- numeric(length(gamma_grid))

for (i in seq_along(gamma_grid)) {
profile_fit <- optim(

par = c(mle[1], mle[2], mle[4]),
fn = function(p) llbkw(c(p[1], mle[2], gamma_grid[i], p[2]), data),
method = "Nelder-Mead"

)
profile_ll_gamma[i] <- -profile_fit$value

}

Profile for delta
delta_grid <- seq(mle[4] - 1.5, mle[4] + 1.5, length.out = 50)
delta_grid <- delta_grid[delta_grid > 0]
profile_ll_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
profile_fit <- optim(

par = mle[-4],
fn = function(p) llbkw(c(p[1], p[2], p[3], delta_grid[i]), data),
method = "Nelder-Mead"

)
profile_ll_delta[i] <- -profile_fit$value

}

95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_alpha) - chi_crit / 2

Plot all profiles

plot(alpha_grid, profile_ll_alpha,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", alpha)), las = 1

)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),

llbkw 123

col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

plot(beta_grid, profile_ll_beta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", beta)), las = 1

)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

plot(gamma_grid, profile_ll_gamma,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", gamma)), las = 1

)
abline(v = mle[3], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

plot(delta_grid, profile_ll_delta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", delta)), las = 1

)
abline(v = mle[4], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[4], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 6: 2D Log-Likelihood Surfaces (Selected pairs)

124 llbkw

Create 2D grids with wider range (±1.5)
alpha_2d <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = round(n / 25))
beta_2d <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = round(n / 25))
gamma_2d <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = round(n / 25))
delta_2d <- seq(mle[4] - 1.5, mle[4] + 1.5, length.out = round(n / 25))

alpha_2d <- alpha_2d[alpha_2d > 0]
beta_2d <- beta_2d[beta_2d > 0]
gamma_2d <- gamma_2d[gamma_2d > 0]
delta_2d <- delta_2d[delta_2d > 0]

Compute selected log-likelihood surfaces
ll_surface_ab <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))
ll_surface_ag <- matrix(NA, nrow = length(alpha_2d), ncol = length(gamma_2d))
ll_surface_bd <- matrix(NA, nrow = length(beta_2d), ncol = length(delta_2d))

Alpha vs Beta
for (i in seq_along(alpha_2d)) {

for (j in seq_along(beta_2d)) {
ll_surface_ab[i, j] <- -llbkw(c(alpha_2d[i], beta_2d[j], mle[3], mle[4]), data)

}
}

Alpha vs Gamma
for (i in seq_along(alpha_2d)) {

for (j in seq_along(gamma_2d)) {
ll_surface_ag[i, j] <- -llbkw(c(alpha_2d[i], mle[2], gamma_2d[j], mle[4]), data)

}
}

Beta vs Delta
for (i in seq_along(beta_2d)) {

for (j in seq_along(delta_2d)) {
ll_surface_bd[i, j] <- -llbkw(c(mle[1], beta_2d[i], mle[3], delta_2d[j]), data)

}
}

Confidence region levels
max_ll_ab <- max(ll_surface_ab, na.rm = TRUE)
max_ll_ag <- max(ll_surface_ag, na.rm = TRUE)
max_ll_bd <- max(ll_surface_bd, na.rm = TRUE)

levels_95_ab <- max_ll_ab - qchisq(0.95, df = 2) / 2
levels_95_ag <- max_ll_ag - qchisq(0.95, df = 2) / 2
levels_95_bd <- max_ll_bd - qchisq(0.95, df = 2) / 2

Plot selected surfaces

Alpha vs Beta
contour(alpha_2d, beta_2d, ll_surface_ab,

xlab = expression(alpha), ylab = expression(beta),
main = "Alpha vs Beta", las = 1,
levels = seq(min(ll_surface_ab, na.rm = TRUE), max_ll_ab, length.out = 20),

llekw 125

col = "#2E4057", lwd = 1
)
contour(alpha_2d, beta_2d, ll_surface_ab,

levels = levels_95_ab, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Alpha vs Gamma
contour(alpha_2d, gamma_2d, ll_surface_ag,

xlab = expression(alpha), ylab = expression(gamma),
main = "Alpha vs Gamma", las = 1,
levels = seq(min(ll_surface_ag, na.rm = TRUE), max_ll_ag, length.out = 20),
col = "#2E4057", lwd = 1

)
contour(alpha_2d, gamma_2d, ll_surface_ag,

levels = levels_95_ag, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE
)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Beta vs Delta
contour(beta_2d, delta_2d, ll_surface_bd,

xlab = expression(beta), ylab = expression(delta),
main = "Beta vs Delta", las = 1,
levels = seq(min(ll_surface_bd, na.rm = TRUE), max_ll_bd, length.out = 20),
col = "#2E4057", lwd = 1

)
contour(beta_2d, delta_2d, ll_surface_bd,

levels = levels_95_bd, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE
)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True", "95% CR"),
col = c("#8B0000", "#006400", "#FF6347"),
pch = c(19, 17, NA),
lty = c(NA, NA, 1),
lwd = c(NA, NA, 2.5),
bty = "n", cex = 0.8

)

llekw Negative Log-Likelihood for the Exponentiated Kumaraswamy (EKw)
Distribution

126 llekw

Description

Computes the negative log-likelihood function for the Exponentiated Kumaraswamy (EKw) distri-
bution with parameters alpha (α), beta (β), and lambda (λ), given a vector of observations. This
distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where γ = 1
and δ = 0. This function is suitable for maximum likelihood estimation.

Usage

llekw(par, data)

Arguments

par A numeric vector of length 3 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The Exponentiated Kumaraswamy (EKw) distribution is the GKw distribution (dekw) with γ = 1
and δ = 0. Its probability density function (PDF) is:

f(x|θ) = λαβxα−1(1− xα)β−1
[
1− (1− xα)β

]λ−1

for 0 < x < 1 and θ = (α, β, λ). The log-likelihood function ℓ(θ|x) for a sample x = (x1, . . . , xn)
is
∑n

i=1 ln f(xi|θ):

ℓ(θ|x) = n[ln(λ) + ln(α) + ln(β)] +

n∑
i=1

[(α− 1) ln(xi) + (β − 1) ln(vi) + (λ− 1) ln(wi)]

where:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

This function computes and returns the negative log-likelihood, −ℓ(θ|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained similarly to llgkw.

Value

Returns a single double value representing the negative log-likelihood (−ℓ(θ|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.

llekw 127

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

llgkw (parent distribution negative log-likelihood), dekw, pekw, qekw, rekw, grekw (gradient, if
available), hsekw (Hessian, if available), optim

Examples

Example 1: Basic Log-Likelihood Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5, lambda = 2.0)
data <- rekw(n,

alpha = true_params[1], beta = true_params[2],
lambda = true_params[3]

)

Evaluate negative log-likelihood at true parameters
nll_true <- llekw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

Evaluate at different parameter values
test_params <- rbind(

c(2.0, 3.0, 1.5),
c(2.5, 3.5, 2.0),
c(3.0, 4.0, 2.5)

)

nll_values <- apply(test_params, 1, function(p) llekw(p, data))
results <- data.frame(

Alpha = test_params[, 1],
Beta = test_params[, 2],
Lambda = test_params[, 3],
NegLogLik = nll_values

)
print(results, digits = 4)

Example 2: Maximum Likelihood Estimation

Optimization using BFGS with analytical gradient
fit <- optim(

128 llekw

par = c(2, 3, 1.5),
fn = llekw,
gr = grekw,
data = data,
method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta", "lambda")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("alpha", "beta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")

Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(2, 3, 1.5)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Lambda = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {

fit_temp <- optim(
par = start_params,
fn = llekw,
gr = grekw,
data = data,
method = method

)
} else if (method == "L-BFGS-B") {

fit_temp <- optim(

llekw 129

par = start_params,
fn = llekw,
gr = grekw,
data = data,
method = method,
lower = c(0.01, 0.01, 0.01),
upper = c(100, 100, 100)

)
} else {

fit_temp <- optim(
par = start_params,
fn = llekw,
data = data,
method = method

)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Alpha = fit_temp$par[1],
Beta = fit_temp$par[2],
Lambda = fit_temp$par[3],
NegLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

))
}

print(comparison, digits = 4, row.names = FALSE)

Example 4: Likelihood Ratio Test

Test H0: lambda = 2 vs H1: lambda free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, lambda_fixed) {
llekw(par = c(

params_restricted[1], params_restricted[2],
lambda_fixed

), data = data)
}

fit_restricted <- optim(
par = c(mle[1], mle[2]),
fn = restricted_ll,
data = data,
lambda_fixed = 2,
method = "BFGS"

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)

130 llekw

p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 5: Univariate Profile Likelihoods

Profile for alpha
alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = 50)
alpha_grid <- alpha_grid[alpha_grid > 0]
profile_ll_alpha <- numeric(length(alpha_grid))

for (i in seq_along(alpha_grid)) {
profile_fit <- optim(
par = mle[-1],
fn = function(p) llekw(c(alpha_grid[i], p), data),
method = "BFGS"

)
profile_ll_alpha[i] <- -profile_fit$value

}

Profile for beta
beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = 50)
beta_grid <- beta_grid[beta_grid > 0]
profile_ll_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optim(

par = mle[-2],
fn = function(p) llekw(c(p[1], beta_grid[i], p[2]), data),
method = "BFGS"

)
profile_ll_beta[i] <- -profile_fit$value

}

Profile for lambda
lambda_grid <- seq(mle[3] - 1, mle[3] + 1, length.out = 50)
lambda_grid <- lambda_grid[lambda_grid > 0]
profile_ll_lambda <- numeric(length(lambda_grid))

for (i in seq_along(lambda_grid)) {
profile_fit <- optim(

par = mle[-3],
fn = function(p) llekw(c(p[1], p[2], lambda_grid[i]), data),
method = "BFGS"

)
profile_ll_lambda[i] <- -profile_fit$value

}

95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_alpha) - chi_crit / 2

llekw 131

Plot all profiles

plot(alpha_grid, profile_ll_alpha,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", alpha)), las = 1

)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

plot(beta_grid, profile_ll_beta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", beta)), las = 1

)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

plot(lambda_grid, profile_ll_lambda,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", lambda)), las = 1

)
abline(v = mle[3], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 6: 2D Log-Likelihood Surface (Alpha vs Beta)

Create 2D grid
alpha_2d <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n / 25))

132 llekw

beta_2d <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n / 25))
alpha_2d <- alpha_2d[alpha_2d > 0]
beta_2d <- beta_2d[beta_2d > 0]

Compute log-likelihood surface
ll_surface_ab <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seq_along(alpha_2d)) {
for (j in seq_along(beta_2d)) {
ll_surface_ab[i, j] <- -llekw(c(alpha_2d[i], beta_2d[j], mle[3]), data)

}
}

Confidence region levels
max_ll_ab <- max(ll_surface_ab, na.rm = TRUE)
levels_90_ab <- max_ll_ab - qchisq(0.90, df = 2) / 2
levels_95_ab <- max_ll_ab - qchisq(0.95, df = 2) / 2
levels_99_ab <- max_ll_ab - qchisq(0.99, df = 2) / 2

Plot contour
contour(alpha_2d, beta_2d, ll_surface_ab,

xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood: Alpha vs Beta",
levels = seq(min(ll_surface_ab, na.rm = TRUE), max_ll_ab, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(alpha_2d, beta_2d, ll_surface_ab,
levels = c(levels_90_ab, levels_95_ab, levels_99_ab),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 7: 2D Log-Likelihood Surface (Alpha vs Lambda)

Create 2D grid
alpha_2d_2 <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n / 25))
lambda_2d <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = round(n / 25))

llekw 133

alpha_2d_2 <- alpha_2d_2[alpha_2d_2 > 0]
lambda_2d <- lambda_2d[lambda_2d > 0]

Compute log-likelihood surface
ll_surface_al <- matrix(NA, nrow = length(alpha_2d_2), ncol = length(lambda_2d))

for (i in seq_along(alpha_2d_2)) {
for (j in seq_along(lambda_2d)) {
ll_surface_al[i, j] <- -llekw(c(alpha_2d_2[i], mle[2], lambda_2d[j]), data)

}
}

Confidence region levels
max_ll_al <- max(ll_surface_al, na.rm = TRUE)
levels_90_al <- max_ll_al - qchisq(0.90, df = 2) / 2
levels_95_al <- max_ll_al - qchisq(0.95, df = 2) / 2
levels_99_al <- max_ll_al - qchisq(0.99, df = 2) / 2

Plot contour
contour(alpha_2d_2, lambda_2d, ll_surface_al,

xlab = expression(alpha), ylab = expression(lambda),
main = "2D Log-Likelihood: Alpha vs Lambda",
levels = seq(min(ll_surface_al, na.rm = TRUE), max_ll_al, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(alpha_2d_2, lambda_2d, ll_surface_al,
levels = c(levels_90_al, levels_95_al, levels_99_al),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 8: 2D Log-Likelihood Surface (Beta vs Lambda)

Create 2D grid
beta_2d_2 <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n / 25))
lambda_2d_2 <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = round(n / 25))
beta_2d_2 <- beta_2d_2[beta_2d_2 > 0]

134 llgkw

lambda_2d_2 <- lambda_2d_2[lambda_2d_2 > 0]

Compute log-likelihood surface
ll_surface_bl <- matrix(NA, nrow = length(beta_2d_2), ncol = length(lambda_2d_2))

for (i in seq_along(beta_2d_2)) {
for (j in seq_along(lambda_2d_2)) {
ll_surface_bl[i, j] <- -llekw(c(mle[1], beta_2d_2[i], lambda_2d_2[j]), data)

}
}

Confidence region levels
max_ll_bl <- max(ll_surface_bl, na.rm = TRUE)
levels_90_bl <- max_ll_bl - qchisq(0.90, df = 2) / 2
levels_95_bl <- max_ll_bl - qchisq(0.95, df = 2) / 2
levels_99_bl <- max_ll_bl - qchisq(0.99, df = 2) / 2

Plot contour
contour(beta_2d_2, lambda_2d_2, ll_surface_bl,

xlab = expression(beta), ylab = expression(lambda),
main = "2D Log-Likelihood: Beta vs Lambda",
levels = seq(min(ll_surface_bl, na.rm = TRUE), max_ll_bl, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(beta_2d_2, lambda_2d_2, ll_surface_bl,
levels = c(levels_90_bl, levels_95_bl, levels_99_bl),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

llgkw Negative Log-Likelihood for the Generalized Kumaraswamy Distribu-
tion

llgkw 135

Description

Computes the negative log-likelihood function for the five-parameter Generalized Kumaraswamy
(GKw) distribution given a vector of observations. This function is designed for use in optimization
routines (e.g., maximum likelihood estimation).

Usage

llgkw(par, data)

Arguments

par A numeric vector of length 5 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), gamma (γ > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The probability density function (PDF) of the GKw distribution is given in dgkw. The log-likelihood
function ℓ(θ) for a sample x = (x1, . . . , xn) is:

ℓ(θ|x) = n ln(λαβ)−n lnB(γ, δ+1)+

n∑
i=1

[(α−1) ln(xi)+(β−1) ln(vi)+(γλ−1) ln(wi)+δ ln(zi)]

where θ = (α, β, γ, δ, λ), B(a, b) is the Beta function (beta), and:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

• zi = 1− wλ
i = 1− [1− (1− xαi)

β]λ

This function computes −ℓ(θ|x).
Numerical stability is prioritized using:

• lbeta function for the log-Beta term.

• Log-transformations of intermediate terms (vi, wi, zi) and use of log1p where appropriate to
handle values close to 0 or 1 accurately.

• Checks for invalid parameters and data.

Value

Returns a single double value representing the negative log-likelihood (−ℓ(θ|x)). Returns a large
positive value (e.g., Inf) if any parameter values in par are invalid according to their constraints,
or if any value in data is not in the interval (0, 1).

Author(s)

Lopes, J. E.

136 llgkw

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw, pgkw, qgkw, rgkw, grgkw, hsgkw (gradient and Hessian functions, if available), optim, lbeta,
log1p

Examples

Example 1: Basic Log-Likelihood Evaluation

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, gamma = 1.5, delta = 2.0, lambda = 1.8)
data <- rgkw(n,

alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4],
lambda = true_params[5]

)

Evaluate negative log-likelihood at true parameters
nll_true <- llgkw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.2, 1.5, 1.5),
c(2.0, 3.0, 1.5, 2.0, 1.8),
c(2.5, 3.5, 1.8, 2.5, 2.0)

)

nll_values <- apply(test_params, 1, function(p) llgkw(p, data))
results <- data.frame(

Alpha = test_params[, 1],
Beta = test_params[, 2],
Gamma = test_params[, 3],
Delta = test_params[, 4],
Lambda = test_params[, 5],
NegLogLik = nll_values

)
print(results, digits = 4)

Example 2: Maximum Likelihood Estimation

Optimization using BFGS with analytical gradient

llgkw 137

fit <- optim(
par = c(1.5, 2.5, 1.2, 1.5, 1.5),
fn = llgkw,
gr = grgkw,
data = data,
method = "BFGS",
hessian = TRUE,
control = list(maxit = 1000)

)

mle <- fit$par
names(mle) <- c("alpha", "beta", "gamma", "delta", "lambda")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("alpha", "beta", "gamma", "delta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")

Example 3: Comparing Optimization Methods

methods <- c("BFGS", "Nelder-Mead")
start_params <- c(1.5, 2.5, 1.2, 1.5, 1.5)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method == "BFGS") {
fit_temp <- optim(

par = start_params,
fn = llgkw,
gr = grgkw,
data = data,

138 llgkw

method = method,
control = list(maxit = 1000)

)
} else if (method == "L-BFGS-B") {

fit_temp <- optim(
par = start_params,
fn = llgkw,
gr = grgkw,
data = data,
method = method,
lower = rep(0.001, 5),
upper = rep(20, 5),
control = list(maxit = 1000)

)
} else {

fit_temp <- optim(
par = start_params,
fn = llgkw,
data = data,
method = method,
control = list(maxit = 1000)

)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Alpha = fit_temp$par[1],
Beta = fit_temp$par[2],
Gamma = fit_temp$par[3],
Delta = fit_temp$par[4],
Lambda = fit_temp$par[5],
NegLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

))
}

print(comparison, digits = 4, row.names = FALSE)

Example 4: Likelihood Ratio Test

Test H0: gamma = 1.5 vs H1: gamma free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, gamma_fixed) {
llgkw(

par = c(
params_restricted[1], params_restricted[2],
gamma_fixed, params_restricted[3], params_restricted[4]

),
data = data

)

llgkw 139

}

fit_restricted <- optim(
par = c(mle[1], mle[2], mle[4], mle[5]),
fn = restricted_ll,
data = data,
gamma_fixed = 1.5,
method = "Nelder-Mead",
control = list(maxit = 1000)

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 5: Univariate Profile Likelihoods

Profile for alpha
xd <- 1
alpha_grid <- seq(mle[1] - xd, mle[1] + xd, length.out = 35)
alpha_grid <- alpha_grid[alpha_grid > 0]
profile_ll_alpha <- numeric(length(alpha_grid))

for (i in seq_along(alpha_grid)) {
profile_fit <- optim(
par = mle[-1],
fn = function(p) llgkw(c(alpha_grid[i], p), data),
method = "Nelder-Mead",
control = list(maxit = 500)

)
profile_ll_alpha[i] <- -profile_fit$value

}

Profile for beta
beta_grid <- seq(mle[2] - xd, mle[2] + xd, length.out = 35)
beta_grid <- beta_grid[beta_grid > 0]
profile_ll_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optim(

par = mle[-2],
fn = function(p) llgkw(c(p[1], beta_grid[i], p[2], p[3], p[4]), data),
method = "Nelder-Mead",
control = list(maxit = 500)

)
profile_ll_beta[i] <- -profile_fit$value

}

Profile for gamma

140 llgkw

gamma_grid <- seq(mle[3] - xd, mle[3] + xd, length.out = 35)
gamma_grid <- gamma_grid[gamma_grid > 0]
profile_ll_gamma <- numeric(length(gamma_grid))

for (i in seq_along(gamma_grid)) {
profile_fit <- optim(
par = mle[-3],
fn = function(p) llgkw(c(p[1], p[2], gamma_grid[i], p[3], p[4]), data),
method = "Nelder-Mead",
control = list(maxit = 500)

)
profile_ll_gamma[i] <- -profile_fit$value

}

Profile for delta
delta_grid <- seq(mle[4] - xd, mle[4] + xd, length.out = 35)
delta_grid <- delta_grid[delta_grid > 0]
profile_ll_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
profile_fit <- optim(

par = mle[-4],
fn = function(p) llgkw(c(p[1], p[2], p[3], delta_grid[i], p[4]), data),
method = "Nelder-Mead",
control = list(maxit = 500)

)
profile_ll_delta[i] <- -profile_fit$value

}

Profile for lambda
lambda_grid <- seq(mle[5] - xd, mle[5] + xd, length.out = 35)
lambda_grid <- lambda_grid[lambda_grid > 0]
profile_ll_lambda <- numeric(length(lambda_grid))

for (i in seq_along(lambda_grid)) {
profile_fit <- optim(

par = mle[-5],
fn = function(p) llgkw(c(p[1], p[2], p[3], p[4], lambda_grid[i]), data),
method = "Nelder-Mead",
control = list(maxit = 500)

)
profile_ll_lambda[i] <- -profile_fit$value

}

95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_alpha) - chi_crit / 2

Plot all profiles

plot(alpha_grid, profile_ll_alpha,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood",

llgkw 141

main = expression(paste("Profile: ", alpha)), las = 1
)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.6

)
grid(col = "gray90")

plot(beta_grid, profile_ll_beta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", beta)), las = 1

)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.6

)
grid(col = "gray90")

plot(gamma_grid, profile_ll_gamma,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", gamma)), las = 1

)
abline(v = mle[3], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.6

)
grid(col = "gray90")

plot(delta_grid, profile_ll_delta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", delta)), las = 1

)
abline(v = mle[4], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[4], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),

142 llgkw

lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.6
)
grid(col = "gray90")

plot(lambda_grid, profile_ll_lambda,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", lambda)), las = 1

)
abline(v = mle[5], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[5], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.6

)
grid(col = "gray90")

Example 6: 2D Log-Likelihood Surface (Alpha vs Beta)
Plot all profiles

Create 2D grid
alpha_2d <- seq(mle[1] - xd, mle[1] + xd, length.out = round(n / 4))
beta_2d <- seq(mle[2] - xd, mle[2] + xd, length.out = round(n / 4))
alpha_2d <- alpha_2d[alpha_2d > 0]
beta_2d <- beta_2d[beta_2d > 0]

Compute log-likelihood surface
ll_surface_ab <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seq_along(alpha_2d)) {
for (j in seq_along(beta_2d)) {

ll_surface_ab[i, j] <- llgkw(c(
alpha_2d[i], beta_2d[j],
mle[3], mle[4], mle[5]

), data)
}

}

Confidence region levels
max_ll_ab <- max(ll_surface_ab, na.rm = TRUE)
levels_90_ab <- max_ll_ab - qchisq(0.90, df = 2) / 2
levels_95_ab <- max_ll_ab - qchisq(0.95, df = 2) / 2
levels_99_ab <- max_ll_ab - qchisq(0.99, df = 2) / 2

Plot contour
contour(alpha_2d, beta_2d, ll_surface_ab,

xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood: Alpha vs Beta",
levels = seq(min(ll_surface_ab, na.rm = TRUE), max_ll_ab, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

llgkw 143

)

contour(alpha_2d, beta_2d, ll_surface_ab,
levels = c(levels_90_ab, levels_95_ab, levels_99_ab),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 7: 2D Log-Likelihood Surface (Gamma vs Delta)

Create 2D grid
gamma_2d <- seq(mle[3] - xd, mle[3] + xd, length.out = round(n / 4))
delta_2d <- seq(mle[4] - xd, mle[4] + xd, length.out = round(n / 4))
gamma_2d <- gamma_2d[gamma_2d > 0]
delta_2d <- delta_2d[delta_2d > 0]

Compute log-likelihood surface
ll_surface_gd <- matrix(NA, nrow = length(gamma_2d), ncol = length(delta_2d))

for (i in seq_along(gamma_2d)) {
for (j in seq_along(delta_2d)) {
ll_surface_gd[i, j] <- -llgkw(c(

mle[1], mle[2], gamma_2d[i],
delta_2d[j], mle[5]

), data)
}

}

Confidence region levels
max_ll_gd <- max(ll_surface_gd, na.rm = TRUE)
levels_90_gd <- max_ll_gd - qchisq(0.90, df = 2) / 2
levels_95_gd <- max_ll_gd - qchisq(0.95, df = 2) / 2
levels_99_gd <- max_ll_gd - qchisq(0.99, df = 2) / 2

Plot contour
contour(gamma_2d, delta_2d, ll_surface_gd,

xlab = expression(gamma), ylab = expression(delta),
main = "2D Log-Likelihood: Gamma vs Delta",

144 llgkw

levels = seq(min(ll_surface_gd, na.rm = TRUE), max_ll_gd, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(gamma_2d, delta_2d, ll_surface_gd,
levels = c(levels_90_gd, levels_95_gd, levels_99_gd),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 8: 2D Log-Likelihood Surface (Delta vs Lambda)

Create 2D grid
delta_2d_2 <- seq(mle[4] - xd, mle[4] + xd, length.out = round(n / 30))
lambda_2d <- seq(mle[5] - xd, mle[5] + xd, length.out = round(n / 30))
delta_2d_2 <- delta_2d_2[delta_2d_2 > 0]
lambda_2d <- lambda_2d[lambda_2d > 0]

Compute log-likelihood surface
ll_surface_dl <- matrix(NA, nrow = length(delta_2d_2), ncol = length(lambda_2d))

for (i in seq_along(delta_2d_2)) {
for (j in seq_along(lambda_2d)) {

ll_surface_dl[i, j] <- -llgkw(c(
mle[1], mle[2], mle[3],
delta_2d_2[i], lambda_2d[j]

), data)
}

}

Confidence region levels
max_ll_dl <- max(ll_surface_dl, na.rm = TRUE)
levels_90_dl <- max_ll_dl - qchisq(0.90, df = 2) / 2
levels_95_dl <- max_ll_dl - qchisq(0.95, df = 2) / 2
levels_99_dl <- max_ll_dl - qchisq(0.99, df = 2) / 2

Plot contour
contour(delta_2d_2, lambda_2d, ll_surface_dl,

llkkw 145

xlab = expression(delta), ylab = expression(lambda),
main = "2D Log-Likelihood: Delta vs Lambda",
levels = seq(min(ll_surface_dl, na.rm = TRUE), max_ll_dl, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(delta_2d_2, lambda_2d, ll_surface_dl,
levels = c(levels_90_dl, levels_95_dl, levels_99_dl),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[4], mle[5], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[4], true_params[5], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

llkkw Negative Log-Likelihood for the kkw Distribution

Description

Computes the negative log-likelihood function for the Kumaraswamy-Kumaraswamy (kkw) distri-
bution with parameters alpha (α), beta (β), delta (δ), and lambda (λ), given a vector of obser-
vations. This distribution is a special case of the Generalized Kumaraswamy (GKw) distribution
where γ = 1.

Usage

llkkw(par, data)

Arguments

par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

146 llkkw

Details

The kkw distribution is the GKw distribution (dgkw) with γ = 1. Its probability density function
(PDF) is:

f(x|θ) = (δ + 1)λαβxα−1(1− xα)β−1
[
1− (1− xα)β

]λ−1{
1−

[
1− (1− xα)β

]λ}δ
for 0 < x < 1 and θ = (α, β, δ, λ). The log-likelihood function ℓ(θ|x) for a sample x =
(x1, . . . , xn) is

∑n
i=1 ln f(xi|θ):

ℓ(θ|x) = n[ln(δ+1)+ln(λ)+ln(α)+ln(β)]+

n∑
i=1

[(α−1) ln(xi)+(β−1) ln(vi)+(λ−1) ln(wi)+δ ln(zi)]

where:

• vi = 1− xαi

• wi = 1− vβi = 1− (1− xαi)
β

• zi = 1− wλ
i = 1− [1− (1− xαi)

β]λ

This function computes and returns the negative log-likelihood, −ℓ(θ|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained similarly to llgkw.

Value

Returns a single double value representing the negative log-likelihood (−ℓ(θ|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

llgkw (parent distribution negative log-likelihood), dkkw, pkkw, qkkw, rkkw, grkkw (gradient, if
available), hskkw (Hessian, if available), optim

Examples

Example 1: Basic Log-Likelihood Evaluation

Generate sample data
set.seed(123)

llkkw 147

n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, delta = 1.5, lambda = 2.0)
data <- rkkw(n,

alpha = true_params[1], beta = true_params[2],
delta = true_params[3], lambda = true_params[4]

)

Evaluate negative log-likelihood at true parameters
nll_true <- llkkw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.0, 1.5),
c(2.0, 3.0, 1.5, 2.0),
c(2.5, 3.5, 2.0, 2.5)

)

nll_values <- apply(test_params, 1, function(p) llkkw(p, data))
results <- data.frame(

Alpha = test_params[, 1],
Beta = test_params[, 2],
Delta = test_params[, 3],
Lambda = test_params[, 4],
NegLogLik = nll_values

)
print(results, digits = 4)

Example 2: Maximum Likelihood Estimation

Optimization using BFGS with analytical gradient
fit <- optim(

par = c(1.5, 2.5, 1.0, 1.5),
fn = llkkw,
gr = grkkw,
data = data,
method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta", "delta", "lambda")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("alpha", "beta", "delta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)

148 llkkw

print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")

Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(1.5, 2.5, 1.0, 1.5)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Delta = numeric(),
Lambda = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(

par = start_params,
fn = llkkw,
gr = grkkw,
data = data,
method = method

)
} else if (method == "L-BFGS-B") {

fit_temp <- optim(
par = start_params,
fn = llkkw,
gr = grkkw,
data = data,
method = method,
lower = c(0.01, 0.01, 0.01, 0.01),
upper = c(100, 100, 100, 100)

)
} else {

fit_temp <- optim(
par = start_params,
fn = llkkw,
data = data,
method = method

)
}

comparison <- rbind(comparison, data.frame(
Method = method,

llkkw 149

Alpha = fit_temp$par[1],
Beta = fit_temp$par[2],
Delta = fit_temp$par[3],
Lambda = fit_temp$par[4],
NegLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

))
}

print(comparison, digits = 4, row.names = FALSE)

Example 4: Likelihood Ratio Test

Test H0: delta = 1.5 vs H1: delta free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, delta_fixed) {
llkkw(par = c(

params_restricted[1], params_restricted[2],
delta_fixed, params_restricted[3]

), data = data)
}

fit_restricted <- optim(
par = c(mle[1], mle[2], mle[4]),
fn = restricted_ll,
data = data,
delta_fixed = 1.5,
method = "BFGS"

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 5: Univariate Profile Likelihoods

Profile for alpha
alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = 40)
alpha_grid <- alpha_grid[alpha_grid > 0]
profile_ll_alpha <- numeric(length(alpha_grid))

for (i in seq_along(alpha_grid)) {
profile_fit <- optim(

par = mle[-1],
fn = function(p) llkkw(c(alpha_grid[i], p), data),
method = "Nelder-Mead"

150 llkkw

)
profile_ll_alpha[i] <- -profile_fit$value

}

Profile for beta
beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = 40)
beta_grid <- beta_grid[beta_grid > 0]
profile_ll_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optim(

par = mle[-2],
fn = function(p) llkkw(c(p[1], beta_grid[i], p[2], p[3]), data),
method = "Nelder-Mead"

)
profile_ll_beta[i] <- -profile_fit$value

}

Profile for delta
delta_grid <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = 40)
delta_grid <- delta_grid[delta_grid > 0]
profile_ll_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
profile_fit <- optim(

par = mle[-3],
fn = function(p) llkkw(c(p[1], p[2], delta_grid[i], p[3]), data),
method = "Nelder-Mead"

)
profile_ll_delta[i] <- -profile_fit$value

}

Profile for lambda
lambda_grid <- seq(mle[4] - 1, mle[4] + 1, length.out = 40)
lambda_grid <- lambda_grid[lambda_grid > 0]
profile_ll_lambda <- numeric(length(lambda_grid))

for (i in seq_along(lambda_grid)) {
profile_fit <- optim(

par = mle[-4],
fn = function(p) llkkw(c(p[1], p[2], p[3], lambda_grid[i]), data),
method = "Nelder-Mead"

)
profile_ll_lambda[i] <- -profile_fit$value

}

95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_alpha) - chi_crit / 2

Plot all profiles

plot(alpha_grid, profile_ll_alpha,

llkkw 151

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", alpha)), las = 1

)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.7

)
grid(col = "gray90")

plot(beta_grid, profile_ll_beta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", beta)), las = 1

)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.7

)
grid(col = "gray90")

plot(delta_grid, profile_ll_delta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", delta)), las = 1

)
abline(v = mle[3], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.7

)
grid(col = "gray90")

plot(lambda_grid, profile_ll_lambda,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", lambda)), las = 1

)
abline(v = mle[4], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[4], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

152 llkkw

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.7

)
grid(col = "gray90")

Example 6: 2D Log-Likelihood Surface (Alpha vs Beta)

Create 2D grid
alpha_2d <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n / 25))
beta_2d <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n / 25))
alpha_2d <- alpha_2d[alpha_2d > 0]
beta_2d <- beta_2d[beta_2d > 0]

Compute log-likelihood surface
ll_surface <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seq_along(alpha_2d)) {
for (j in seq_along(beta_2d)) {

ll_surface[i, j] <- -llkkw(c(alpha_2d[i], beta_2d[j], mle[3], mle[4]), data)
}

}

Confidence region levels
max_ll <- max(ll_surface, na.rm = TRUE)
levels_90 <- max_ll - qchisq(0.90, df = 2) / 2
levels_95 <- max_ll - qchisq(0.95, df = 2) / 2
levels_99 <- max_ll - qchisq(0.99, df = 2) / 2

Plot contour
contour(alpha_2d, beta_2d, ll_surface,

xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood: Alpha vs Beta",
levels = seq(min(ll_surface, na.rm = TRUE), max_ll, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(alpha_2d, beta_2d, ll_surface,
levels = c(levels_90, levels_95, levels_99),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),

llkkw 153

bty = "n", cex = 0.8
)
grid(col = "gray90")

Example 7: 2D Log-Likelihood Surface (Delta vs Lambda)

Create 2D grid
delta_2d <- seq(mle[3] - 0.6, mle[3] + 0.6, length.out = round(n / 25))
lambda_2d <- seq(mle[4] - 0.8, mle[4] + 0.8, length.out = round(n / 25))
delta_2d <- delta_2d[delta_2d > 0]
lambda_2d <- lambda_2d[lambda_2d > 0]

Compute log-likelihood surface
ll_surface2 <- matrix(NA, nrow = length(delta_2d), ncol = length(lambda_2d))

for (i in seq_along(delta_2d)) {
for (j in seq_along(lambda_2d)) {

ll_surface2[i, j] <- -llkkw(c(mle[1], mle[2], delta_2d[i], lambda_2d[j]), data)
}

}

Confidence region levels
max_ll2 <- max(ll_surface2, na.rm = TRUE)
levels2_90 <- max_ll2 - qchisq(0.90, df = 2) / 2
levels2_95 <- max_ll2 - qchisq(0.95, df = 2) / 2
levels2_99 <- max_ll2 - qchisq(0.99, df = 2) / 2

Plot contour
contour(delta_2d, lambda_2d, ll_surface2,

xlab = expression(delta), ylab = expression(lambda),
main = "2D Log-Likelihood: Delta vs Lambda",
levels = seq(min(ll_surface2, na.rm = TRUE), max_ll2, length.out = 20),
col = "#2E4057", las = 1, lwd = 1

)

contour(delta_2d, lambda_2d, ll_surface2,
levels = c(levels2_90, levels2_95, levels2_99),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

154 llkw

)
grid(col = "gray90")

llkw Negative Log-Likelihood of the Kumaraswamy (Kw) Distribution

Description

Computes the negative log-likelihood function for the two-parameter Kumaraswamy (Kw) distri-
bution with parameters alpha (α) and beta (β), given a vector of observations. This function is
suitable for maximum likelihood estimation.

Usage

llkw(par, data)

Arguments

par A numeric vector of length 2 containing the distribution parameters in the order:
alpha (α > 0), beta (β > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

The Kumaraswamy (Kw) distribution’s probability density function (PDF) is (see dkw):

f(x|θ) = αβxα−1(1− xα)β−1

for 0 < x < 1 and θ = (α, β). The log-likelihood function ℓ(θ|x) for a sample x = (x1, . . . , xn)
is
∑n

i=1 ln f(xi|θ):

ℓ(θ|x) = n[ln(α) + ln(β)] +

n∑
i=1

[(α− 1) ln(xi) + (β − 1) ln(vi)]

where vi = 1 − xαi . This function computes and returns the negative log-likelihood, −ℓ(θ|x),
suitable for minimization using optimization routines like optim. It is equivalent to the negative
log-likelihood of the GKw distribution (llgkw) evaluated at γ = 1, δ = 0, λ = 1.

Value

Returns a single double value representing the negative log-likelihood (−ℓ(θ|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

llkw 155

Author(s)

Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

See Also

llgkw (parent distribution negative log-likelihood), dkw, pkw, qkw, rkw, grkw (gradient, if available),
hskw (Hessian, if available), optim

Examples

Example 1: Maximum Likelihood Estimation with Analytical Gradient

Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5)
data <- rkw(n, alpha = true_params[1], beta = true_params[2])

Optimization using BFGS with analytical gradient
fit <- optim(

par = c(2, 2),
fn = llkw,
gr = grkw,
data = data,
method = "BFGS",
hessian = TRUE

)

Extract results
mle <- fit$par
names(mle) <- c("alpha", "beta")
se <- sqrt(diag(solve(fit$hessian)))
ci_lower <- mle - 1.96 * se
ci_upper <- mle + 1.96 * se

Summary table
results <- data.frame(

Parameter = c("alpha", "beta"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = ci_lower,
CI_Upper = ci_upper

)

156 llkw

print(results, digits = 4)

Example 2: Verifying Gradient at MLE

At MLE, gradient should be approximately zero
gradient_at_mle <- grkw(par = mle, data = data)
print(gradient_at_mle)
cat("Max absolute score:", max(abs(gradient_at_mle)), "\n")

Example 3: Checking Hessian Properties

Hessian at MLE
hessian_at_mle <- hskw(par = mle, data = data)
print(hessian_at_mle, digits = 4)

Check positive definiteness via eigenvalues
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
print(eigenvals)
all(eigenvals > 0)

Condition number
cond_number <- max(eigenvals) / min(eigenvals)
cat("Condition number:", format(cond_number, scientific = TRUE), "\n")

Example 4: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(2, 2)

comparison <- data.frame(
Method = character(),
Alpha_Est = numeric(),
Beta_Est = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(

par = start_params,
fn = llkw,
gr = grkw,
data = data,
method = method

)
} else if (method == "L-BFGS-B") {

fit_temp <- optim(
par = start_params,
fn = llkw,
gr = grkw,
data = data,

llkw 157

method = method,
lower = c(0.01, 0.01),
upper = c(100, 100)

)
} else {

fit_temp <- optim(
par = start_params,
fn = llkw,
data = data,
method = method

)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Alpha_Est = fit_temp$par[1],
Beta_Est = fit_temp$par[2],
NegLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

))
}

print(comparison, digits = 4, row.names = FALSE)

Example 5: Likelihood Ratio Test

Test H0: beta = 3 vs H1: beta free
loglik_full <- -fit$value

Restricted model: fix beta = 3
restricted_ll <- function(alpha, data, beta_fixed) {

llkw(par = c(alpha, beta_fixed), data = data)
}

fit_restricted <- optimize(
f = restricted_ll,
interval = c(0.1, 10),
data = data,
beta_fixed = 3,
maximum = FALSE

)

loglik_restricted <- -fit_restricted$objective
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 6: Univariate Profile Likelihoods

Grid for alpha

158 llkw

alpha_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)
alpha_grid <- alpha_grid[alpha_grid > 0]
profile_ll_alpha <- numeric(length(alpha_grid))

for (i in seq_along(alpha_grid)) {
profile_fit <- optimize(
f = function(beta) llkw(c(alpha_grid[i], beta), data),
interval = c(0.1, 10),
maximum = FALSE

)
profile_ll_alpha[i] <- -profile_fit$objective

}

Grid for beta
beta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
beta_grid <- beta_grid[beta_grid > 0]
profile_ll_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optimize(

f = function(alpha) llkw(c(alpha, beta_grid[i]), data),
interval = c(0.1, 10),
maximum = FALSE

)
profile_ll_beta[i] <- -profile_fit$objective

}

95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_alpha) - chi_crit / 2

Plot

Profile for alpha
plot(alpha_grid, profile_ll_alpha,

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile Likelihood: ", alpha)), las = 1

)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

Profile for beta
plot(beta_grid, profile_ll_beta,

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",

llkw 159

main = expression(paste("Profile Likelihood: ", beta)), las = 1
)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 7: 2D Profile Likelihood Surface

Create 2D grid
alpha_2d <- seq(mle[1] - 1, mle[1] + 1, length.out = round(n / 4))
beta_2d <- seq(mle[2] - 1, mle[2] + 1, length.out = round(n / 4))
alpha_2d <- alpha_2d[alpha_2d > 0]
beta_2d <- beta_2d[beta_2d > 0]

Compute log-likelihood surface
ll_surface <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seq_along(alpha_2d)) {
for (j in seq_along(beta_2d)) {

ll_surface[i, j] <- -llkw(c(alpha_2d[i], beta_2d[j]), data)
}

}

Confidence region levels
max_ll <- max(ll_surface, na.rm = TRUE)
levels_90 <- max_ll - qchisq(0.90, df = 2) / 2
levels_95 <- max_ll - qchisq(0.95, df = 2) / 2
levels_99 <- max_ll - qchisq(0.99, df = 2) / 2

Plot contour
contour(alpha_2d, beta_2d, ll_surface,

xlab = expression(alpha), ylab = expression(beta),
main = "2D Profile Log-Likelihood",
levels = seq(min(ll_surface, na.rm = TRUE), max_ll, length.out = round(n / 4)),
col = "#2E4057", las = 1, lwd = 1

)

Add confidence region contours
contour(alpha_2d, beta_2d, ll_surface,

levels = c(levels_90, levels_95, levels_99),
col = c("#FFA07A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

Mark points
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)

160 llkw

points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
lty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 8: Combined View - Profiles with 2D Surface

Top left: Profile for alpha
plot(alpha_grid, profile_ll_alpha,

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", alpha)), las = 1

)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3)
grid(col = "gray90")

Top right: Profile for beta
plot(beta_grid, profile_ll_beta,

type = "l", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", beta)), las = 1

)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3)
grid(col = "gray90")

Bottom left: 2D contour
contour(alpha_2d, beta_2d, ll_surface,

xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood Surface",
levels = seq(min(ll_surface, na.rm = TRUE), max_ll, length.out = 15),
col = "#2E4057", las = 1, lwd = 1

)
contour(alpha_2d, beta_2d, ll_surface,

levels = c(levels_95),
col = "#8B0000", lwd = 2.5, add = TRUE

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Example 9: Numerical Gradient Verification

llkw 161

Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {

grad <- numeric(length(x))
for (i in seq_along(x)) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)

}
return(grad)

}

Compare
grad_analytical <- grkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha", "beta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Difference = abs(grad_analytical - grad_numerical)

)
print(comparison_grad, digits = 8)

Example 10: Bootstrap Confidence Intervals

n_boot <- round(n / 4)
boot_estimates <- matrix(NA, nrow = n_boot, ncol = 2)

set.seed(456)
for (b in 1:n_boot) {

boot_data <- rkw(n, alpha = mle[1], beta = mle[2])
boot_fit <- optim(

par = mle,
fn = llkw,
gr = grkw,
data = boot_data,
method = "BFGS",
control = list(maxit = 500)

)
if (boot_fit$convergence == 0) {

boot_estimates[b,] <- boot_fit$par
}

}

boot_estimates <- boot_estimates[complete.cases(boot_estimates),]
boot_ci <- apply(boot_estimates, 2, quantile, probs = c(0.025, 0.975))
colnames(boot_ci) <- c("alpha", "beta")

print(t(boot_ci), digits = 4)

Plot bootstrap distributions

162 llmc

hist(boot_estimates[, 1],
breaks = 20, col = "#87CEEB", border = "white",
main = expression(paste("Bootstrap: ", hat(alpha))),
xlab = expression(hat(alpha)), las = 1

)
abline(v = mle[1], col = "#8B0000", lwd = 2)
abline(v = true_params[1], col = "#006400", lwd = 2, lty = 2)
abline(v = boot_ci[, 1], col = "#2E4057", lwd = 2, lty = 3)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#2E4057"),
lwd = 2, lty = c(1, 2, 3), bty = "n"

)

hist(boot_estimates[, 2],
breaks = 20, col = "#FFA07A", border = "white",
main = expression(paste("Bootstrap: ", hat(beta))),
xlab = expression(hat(beta)), las = 1

)
abline(v = mle[2], col = "#8B0000", lwd = 2)
abline(v = true_params[2], col = "#006400", lwd = 2, lty = 2)
abline(v = boot_ci[, 2], col = "#2E4057", lwd = 2, lty = 3)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#2E4057"),
lwd = 2, lty = c(1, 2, 3), bty = "n"

)

llmc Negative Log-Likelihood for the McDonald (Mc)/Beta Power Distri-
bution

Description

Computes the negative log-likelihood function for the McDonald (Mc) distribution (also known as
Beta Power) with parameters gamma (γ), delta (δ), and lambda (λ), given a vector of observations.
This distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where
α = 1 and β = 1. This function is suitable for maximum likelihood estimation.

Usage

llmc(par, data)

Arguments

par A numeric vector of length 3 containing the distribution parameters in the order:
gamma (γ > 0), delta (δ ≥ 0), lambda (λ > 0).

data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

llmc 163

Details

The McDonald (Mc) distribution is the GKw distribution (dmc) with α = 1 and β = 1. Its proba-
bility density function (PDF) is:

f(x|θ) = λ

B(γ, δ + 1)
xγλ−1(1− xλ)δ

for 0 < x < 1, θ = (γ, δ, λ), and B(a, b) is the Beta function (beta). The log-likelihood function
ℓ(θ|x) for a sample x = (x1, . . . , xn) is

∑n
i=1 ln f(xi|θ):

ℓ(θ|x) = n[ln(λ)− lnB(γ, δ + 1)] +

n∑
i=1

[(γλ− 1) ln(xi) + δ ln(1− xλi)]

This function computes and returns the negative log-likelihood, −ℓ(θ|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained, including using the log-
gamma function (lgamma) for the Beta function term.

Value

Returns a single double value representing the negative log-likelihood (−ℓ(θ|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

llgkw (parent distribution negative log-likelihood), dmc, pmc, qmc, rmc, grmc (gradient, if available),
hsmc (Hessian, if available), optim, lbeta

Examples

Example 1: Basic Log-Likelihood Evaluation

Generate sample data with more stable parameters
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 2.5, lambda = 1.5)

164 llmc

data <- rmc(n,
gamma = true_params[1], delta = true_params[2],
lambda = true_params[3]

)

Evaluate negative log-likelihood at true parameters
nll_true <- llmc(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.0, 1.0),
c(2.0, 2.5, 1.5),
c(2.5, 3.0, 2.0)

)

nll_values <- apply(test_params, 1, function(p) llmc(p, data))
results <- data.frame(

Gamma = test_params[, 1],
Delta = test_params[, 2],
Lambda = test_params[, 3],
NegLogLik = nll_values

)
print(results, digits = 4)

Example 2: Maximum Likelihood Estimation

Optimization using BFGS with analytical gradient
fit <- optim(

par = c(1.5, 2.0, 1.0),
fn = llmc,
gr = grmc,
data = data,
method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("gamma", "delta", "lambda")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("gamma", "delta", "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")

llmc 165

cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")

Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(1.5, 2.0, 1.0)

comparison <- data.frame(
Method = character(),
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(

par = start_params,
fn = llmc,
gr = grmc,
data = data,
method = method

)
} else if (method == "L-BFGS-B") {

fit_temp <- optim(
par = start_params,
fn = llmc,
gr = grmc,
data = data,
method = method,
lower = c(0.01, 0.01, 0.01),
upper = c(100, 100, 100)

)
} else {

fit_temp <- optim(
par = start_params,
fn = llmc,
data = data,
method = method

)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Gamma = fit_temp$par[1],
Delta = fit_temp$par[2],
Lambda = fit_temp$par[3],
NegLogLik = fit_temp$value,

166 llmc

Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

))
}

print(comparison, digits = 4, row.names = FALSE)

Example 4: Likelihood Ratio Test

Test H0: lambda = 1.5 vs H1: lambda free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, lambda_fixed) {
llmc(par = c(

params_restricted[1], params_restricted[2],
lambda_fixed

), data = data)
}

fit_restricted <- optim(
par = c(mle[1], mle[2]),
fn = restricted_ll,
data = data,
lambda_fixed = 1.5,
method = "BFGS"

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

Example 5: Univariate Profile Likelihoods

Profile for gamma
gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)
gamma_grid <- gamma_grid[gamma_grid > 0]
profile_ll_gamma <- numeric(length(gamma_grid))

for (i in seq_along(gamma_grid)) {
profile_fit <- optim(

par = mle[-1],
fn = function(p) llmc(c(gamma_grid[i], p), data),
method = "BFGS"

)
profile_ll_gamma[i] <- -profile_fit$value

}

Profile for delta

llmc 167

delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
delta_grid <- delta_grid[delta_grid > 0]
profile_ll_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
profile_fit <- optim(
par = mle[-2],
fn = function(p) llmc(c(p[1], delta_grid[i], p[2]), data),
method = "BFGS"

)
profile_ll_delta[i] <- -profile_fit$value

}

Profile for lambda
lambda_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 50)
lambda_grid <- lambda_grid[lambda_grid > 0]
profile_ll_lambda <- numeric(length(lambda_grid))

for (i in seq_along(lambda_grid)) {
profile_fit <- optim(

par = mle[-3],
fn = function(p) llmc(c(p[1], p[2], lambda_grid[i]), data),
method = "BFGS"

)
profile_ll_lambda[i] <- -profile_fit$value

}

95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_gamma) - chi_crit / 2

Plot all profiles

plot(gamma_grid, profile_ll_gamma,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", gamma)), las = 1

)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

plot(delta_grid, profile_ll_delta,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", delta)), las = 1

)

168 llmc

abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

plot(lambda_grid, profile_ll_lambda,
type = "l", lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", lambda)), las = 1

)
abline(v = mle[3], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright",

legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

)
grid(col = "gray90")

Example 6: 2D Log-Likelihood Surfaces (All pairs side by side)

Create 2D grids with wider range (±1.5)
gamma_2d <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = round(n / 25))
delta_2d <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = round(n / 25))
lambda_2d <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = round(n / 25))

gamma_2d <- gamma_2d[gamma_2d > 0]
delta_2d <- delta_2d[delta_2d > 0]
lambda_2d <- lambda_2d[lambda_2d > 0]

Compute all log-likelihood surfaces
ll_surface_gd <- matrix(NA, nrow = length(gamma_2d), ncol = length(delta_2d))
ll_surface_gl <- matrix(NA, nrow = length(gamma_2d), ncol = length(lambda_2d))
ll_surface_dl <- matrix(NA, nrow = length(delta_2d), ncol = length(lambda_2d))

Gamma vs Delta
for (i in seq_along(gamma_2d)) {

for (j in seq_along(delta_2d)) {
ll_surface_gd[i, j] <- -llmc(c(gamma_2d[i], delta_2d[j], mle[3]), data)

}
}

Gamma vs Lambda
for (i in seq_along(gamma_2d)) {

for (j in seq_along(lambda_2d)) {
ll_surface_gl[i, j] <- -llmc(c(gamma_2d[i], mle[2], lambda_2d[j]), data)

}

llmc 169

}

Delta vs Lambda
for (i in seq_along(delta_2d)) {

for (j in seq_along(lambda_2d)) {
ll_surface_dl[i, j] <- -llmc(c(mle[1], delta_2d[i], lambda_2d[j]), data)

}
}

Confidence region levels
max_ll_gd <- max(ll_surface_gd, na.rm = TRUE)
max_ll_gl <- max(ll_surface_gl, na.rm = TRUE)
max_ll_dl <- max(ll_surface_dl, na.rm = TRUE)

levels_95_gd <- max_ll_gd - qchisq(0.95, df = 2) / 2
levels_95_gl <- max_ll_gl - qchisq(0.95, df = 2) / 2
levels_95_dl <- max_ll_dl - qchisq(0.95, df = 2) / 2

Plot

Gamma vs Delta
contour(gamma_2d, delta_2d, ll_surface_gd,

xlab = expression(gamma), ylab = expression(delta),
main = "Gamma vs Delta", las = 1,
levels = seq(min(ll_surface_gd, na.rm = TRUE), max_ll_gd, length.out = 20),
col = "#2E4057", lwd = 1

)
contour(gamma_2d, delta_2d, ll_surface_gd,

levels = levels_95_gd, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Gamma vs Lambda
contour(gamma_2d, lambda_2d, ll_surface_gl,

xlab = expression(gamma), ylab = expression(lambda),
main = "Gamma vs Lambda", las = 1,
levels = seq(min(ll_surface_gl, na.rm = TRUE), max_ll_gl, length.out = 20),
col = "#2E4057", lwd = 1

)
contour(gamma_2d, lambda_2d, ll_surface_gl,

levels = levels_95_gl, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE
)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

Delta vs Lambda
contour(delta_2d, lambda_2d, ll_surface_dl,

xlab = expression(delta), ylab = expression(lambda),
main = "Delta vs Lambda", las = 1,
levels = seq(min(ll_surface_dl, na.rm = TRUE), max_ll_dl, length.out = 20),

170 pbeta_

col = "#2E4057", lwd = 1
)
contour(delta_2d, lambda_2d, ll_surface_dl,

levels = levels_95_dl, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE
)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
legend = c("MLE", "True", "95% CR"),
col = c("#8B0000", "#006400", "#FF6347"),
pch = c(19, 17, NA),
lty = c(NA, NA, 1),
lwd = c(NA, NA, 2.5),
bty = "n", cex = 0.8

)

pbeta_ CDF of the Beta Distribution (gamma, delta+1 Parameterization)

Description

Computes the cumulative distribution function (CDF), F (q) = P (X ≤ q), for the standard Beta
distribution, using a parameterization common in generalized distribution families. The distribution
is parameterized by gamma (γ) and delta (δ), corresponding to the standard Beta distribution with
shape parameters shape1 = gamma and shape2 = delta + 1.

Usage

pbeta_(q, gamma = 1, delta = 0, lower.tail = TRUE, log.p = FALSE)

Arguments

q Vector of quantiles (values generally between 0 and 1).

gamma First shape parameter (shape1), γ > 0. Can be a scalar or a vector. Default:
1.0.

delta Second shape parameter is delta + 1 (shape2), requires δ ≥ 0 so that shape2
>= 1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 = 1).

lower.tail Logical; if TRUE (default), probabilities are P (X ≤ q), otherwise, P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

pbeta_ 171

Details

This function computes the CDF of a Beta distribution with parameters shape1 = gamma and shape2
= delta + 1. It is equivalent to calling stats::pbeta(q, shape1 = gamma, shape2 = delta + 1,lower.tail
= lower.tail, log.p = log.p).

This distribution arises as a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (pgkw) obtained by setting α = 1, β = 1, and λ = 1. It is therefore also equivalent to
the McDonald (Mc)/Beta Power distribution (pmc) with λ = 1.

The function likely calls R’s underlying pbeta function but ensures consistent parameter recycling
and handling within the C++ environment, matching the style of other functions in the related
families.

Value

A vector of probabilities, F (q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
gamma, delta). Returns 0 (or -Inf if log.p = TRUE) for q <= 0 and 1 (or 0 if log.p = TRUE) for q
>= 1. Returns NaN for invalid parameters.

Author(s)

Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

pbeta (standard R implementation), pgkw (parent distribution CDF), pmc (McDonald/Beta Power
CDF), dbeta_, qbeta_, rbeta_ (other functions for this parameterization, if they exist).

Examples

Example values
q_vals <- c(0.2, 0.5, 0.8)
gamma_par <- 2.0 # Corresponds to shape1
delta_par <- 3.0 # Corresponds to shape2 - 1
shape1 <- gamma_par
shape2 <- delta_par + 1

Calculate CDF using pbeta_
probs <- pbeta_(q_vals, gamma_par, delta_par)
print(probs)

Compare with stats::pbeta
probs_stats <- stats::pbeta(q_vals, shape1 = shape1, shape2 = shape2)

172 pbkw

print(paste("Max difference vs stats::pbeta:", max(abs(probs - probs_stats))))

Compare with pgkw setting alpha=1, beta=1, lambda=1
probs_gkw <- pgkw(q_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print(paste("Max difference vs pgkw:", max(abs(probs - probs_gkw))))

Compare with pmc setting lambda=1
probs_mc <- pmc(q_vals, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print(paste("Max difference vs pmc:", max(abs(probs - probs_mc))))

Calculate upper tail P(X > q)
probs_upper <- pbeta_(q_vals, gamma_par, delta_par, lower.tail = FALSE)
print(probs_upper)
print(stats::pbeta(q_vals, shape1, shape2, lower.tail = FALSE))

Calculate log CDF
log.probs <- pbeta_(q_vals, gamma_par, delta_par, log.p = TRUE)
print(log.probs)
print(stats::pbeta(q_vals, shape1, shape2, log.p = TRUE))

Plot the CDF
curve_q <- seq(0.001, 0.999, length.out = 200)
curve_p <- pbeta_(curve_q, gamma = 2, delta = 3) # Beta(2, 4)
plot(curve_q, curve_p,

type = "l", main = "Beta(2, 4) CDF via pbeta_",
xlab = "q", ylab = "F(q)", col = "blue"

)
curve(stats::pbeta(x, 2, 4), add = TRUE, col = "red", lty = 2)
legend("bottomright",

legend = c("pbeta_(gamma=2, delta=3)", "stats::pbeta(shape1=2, shape2=4)"),
col = c("blue", "red"), lty = c(1, 2), bty = "n"

)

pbkw Cumulative Distribution Function (CDF) of the Beta-Kumaraswamy
(BKw) Distribution

Description

Computes the cumulative distribution function (CDF), P (X ≤ q), for the Beta-Kumaraswamy
(BKw) distribution with parameters alpha (α), beta (β), gamma (γ), and delta (δ). This distribu-
tion is defined on the interval (0, 1) and is a special case of the Generalized Kumaraswamy (GKw)
distribution where λ = 1.

pbkw 173

Usage

pbkw(
q,
alpha = 1,
beta = 1,
gamma = 1,
delta = 0,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

q Vector of quantiles (values generally between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lower.tail Logical; if TRUE (default), probabilities are P (X ≤ q), otherwise, P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The Beta-Kumaraswamy (BKw) distribution is a special case of the five-parameter Generalized
Kumaraswamy distribution (pgkw) obtained by setting the shape parameter λ = 1.

The CDF of the GKw distribution is FGKw(q) = Iy(q)(γ, δ + 1), where y(q) = [1 − (1 − qα)β]λ

and Ix(a, b) is the regularized incomplete beta function (pbeta). Setting λ = 1 simplifies y(q) to
1− (1− qα)β , yielding the BKw CDF:

F (q;α, β, γ, δ) = I1−(1−qα)β (γ, δ + 1)

This is evaluated using the pbeta function.

Value

A vector of probabilities, F (q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta, gamma, delta). Returns 0 (or -Inf if log.p = TRUE) for q <= 0 and 1 (or 0 if log.p =
TRUE) for q >= 1. Returns NaN for invalid parameters.

Author(s)

Lopes, J. E.

174 pbkw

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw (parent distribution CDF), dbkw, qbkw, rbkw (other BKw functions), pbeta

Examples

Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 1.5
gamma_par <- 1.0
delta_par <- 0.5

Calculate CDF P(X <= q)
probs <- pbkw(q_vals, alpha_par, beta_par, gamma_par, delta_par)
print(probs)

Calculate upper tail P(X > q)
probs_upper <- pbkw(q_vals, alpha_par, beta_par, gamma_par, delta_par,

lower.tail = FALSE
)
print(probs_upper)
Check: probs + probs_upper should be 1
print(probs + probs_upper)

Calculate log CDF
logs <- pbkw(q_vals, alpha_par, beta_par, gamma_par, delta_par,

log.p = TRUE
)
print(logs)
Check: should match log(probs)
print(log(probs))

Compare with pgkw setting lambda = 1
probs_gkw <- pgkw(q_vals, alpha_par, beta_par,

gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero

Plot the CDF
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p <- pbkw(curve_q, alpha = 2, beta = 3, gamma = 0.5, delta = 1)
plot(curve_q, curve_p,

type = "l", main = "BKw CDF Example",

pekw 175

xlab = "q", ylab = "F(q)", col = "blue", ylim = c(0, 1)
)

pekw Cumulative Distribution Function (CDF) of the EKw Distribution

Description

Computes the cumulative distribution function (CDF), P (X ≤ q), for the Exponentiated Ku-
maraswamy (EKw) distribution with parameters alpha (α), beta (β), and lambda (λ). This dis-
tribution is defined on the interval (0, 1) and is a special case of the Generalized Kumaraswamy
(GKw) distribution where γ = 1 and δ = 0.

Usage

pekw(q, alpha = 1, beta = 1, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q Vector of quantiles (values generally between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
lambda Shape parameter lambda > 0 (exponent parameter). Can be a scalar or a vector.

Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P (X ≤ q), otherwise, P (X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The Exponentiated Kumaraswamy (EKw) distribution is a special case of the five-parameter Gen-
eralized Kumaraswamy distribution (pgkw) obtained by setting parameters γ = 1 and δ = 0.

The CDF of the GKw distribution is FGKw(q) = Iy(q)(γ, δ + 1), where y(q) = [1 − (1 − qα)β]λ

and Ix(a, b) is the regularized incomplete beta function (pbeta). Setting γ = 1 and δ = 0 gives
Iy(q)(1, 1). Since Ix(1, 1) = x, the CDF simplifies to y(q):

F (q;α, β, λ) =
[
1− (1− qα)β

]λ
for 0 < q < 1. The implementation uses this closed-form expression for efficiency and handles
lower.tail and log.p arguments appropriately.

Value

A vector of probabilities, F (q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta, lambda). Returns 0 (or -Inf if log.p = TRUE) for q <= 0 and 1 (or 0 if log.p = TRUE)
for q >= 1. Returns NaN for invalid parameters.

176 pekw

Author(s)

Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw (parent distribution CDF), dekw, qekw, rekw (other EKw functions),

Examples

Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5

Calculate CDF P(X <= q)
probs <- pekw(q_vals, alpha_par, beta_par, lambda_par)
print(probs)

Calculate upper tail P(X > q)
probs_upper <- pekw(q_vals, alpha_par, beta_par, lambda_par,

lower.tail = FALSE
)
print(probs_upper)
Check: probs + probs_upper should be 1
print(probs + probs_upper)

Calculate log CDF
logs <- pekw(q_vals, alpha_par, beta_par, lambda_par, log.p = TRUE)
print(logs)
Check: should match log(probs)
print(log(probs))

Compare with pgkw setting gamma = 1, delta = 0
probs_gkw <- pgkw(q_vals, alpha_par, beta_par,

gamma = 1.0, delta = 0.0,
lambda = lambda_par

)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero

Plot the CDF for different lambda values
curve_q <- seq(0.01, 0.99, length.out = 200)

pgkw 177

curve_p1 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 0.5)
curve_p2 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 1.0) # standard Kw
curve_p3 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 2.0)

plot(curve_q, curve_p2,
type = "l", main = "EKw CDF Examples (alpha=2, beta=3)",
xlab = "q", ylab = "F(q)", col = "red", ylim = c(0, 1)

)
lines(curve_q, curve_p1, col = "blue")
lines(curve_q, curve_p3, col = "green")
legend("bottomright",

legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n"

)

pgkw Generalized Kumaraswamy Distribution CDF

Description

Computes the cumulative distribution function (CDF) for the five-parameter Generalized Kumaraswamy
(GKw) distribution, defined on the interval (0, 1). Calculates P (X ≤ q).

Usage

pgkw(
q,
alpha = 1,
beta = 1,
gamma = 1,
delta = 0,
lambda = 1,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

q Vector of quantiles (values generally between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P (X ≤ q), otherwise, P (X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

178 pgkw

Details

The cumulative distribution function (CDF) of the Generalized Kumaraswamy (GKw) distribution
with parameters alpha (α), beta (β), gamma (γ), delta (δ), and lambda (λ) is given by:

F (q;α, β, γ, δ, λ) = Ix(q)(γ, δ + 1)

where x(q) = [1− (1− qα)β]λ and Ix(a, b) is the regularized incomplete beta function, defined as:

Ix(a, b) =
Bx(a, b)

B(a, b)
=

∫ x

0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

This corresponds to the pbeta function in R, such that F (q;α, β, γ, δ, λ) = pbeta(x(q), shape1 =
γ, shape2 = δ + 1).

The GKw distribution includes several special cases, such as the Kumaraswamy, Beta, and Ex-
ponentiated Kumaraswamy distributions (see dgkw for details). The function utilizes numerical
algorithms for computing the regularized incomplete beta function accurately, especially near the
boundaries.

Value

A vector of probabilities, F (q), or their logarithms if log.p = TRUE. The length of the result is
determined by the recycling rule applied to the arguments (q, alpha, beta, gamma, delta, lambda).
Returns 0 (or -Inf if log.p = TRUE) for q <= 0 and 1 (or 0 if log.p = TRUE) for q >= 1. Returns NaN
for invalid parameters.

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw, qgkw, rgkw, pbeta

Examples

Simple CDF evaluation
prob <- pgkw(0.5, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1) # Kw case
print(prob)

Upper tail probability P(X > q)
prob_upper <- pgkw(0.5,

alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1,

pkkw 179

lower.tail = FALSE
)
print(prob_upper)
Check: prob + prob_upper should be 1
print(prob + prob_upper)

Log probability
log <- pgkw(0.5,

alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1,
log.p = TRUE

)
print(log)
Check: exp(log) should be prob
print(exp(log))

Use of vectorized parameters
q_vals <- c(0.2, 0.5, 0.8)
alphas_vec <- c(0.5, 1.0, 2.0)
betas_vec <- c(1.0, 2.0, 3.0)
Vectorizes over q, alpha, beta
pgkw(q_vals, alpha = alphas_vec, beta = betas_vec, gamma = 1, delta = 0.5, lambda = 0.5)

Plotting the CDF for special cases
x_seq <- seq(0.01, 0.99, by = 0.01)
Standard Kumaraswamy CDF
cdf_kw <- pgkw(x_seq, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
Beta distribution CDF equivalent (Beta(gamma, delta+1))
cdf_beta_equiv <- pgkw(x_seq, alpha = 1, beta = 1, gamma = 2, delta = 3, lambda = 1)
Compare with stats::pbeta
cdf_beta_check <- stats::pbeta(x_seq, shape1 = 2, shape2 = 3 + 1)
max(abs(cdf_beta_equiv - cdf_beta_check)) # Should be close to zero

plot(x_seq, cdf_kw,
type = "l", ylim = c(0, 1),
main = "GKw CDF Examples", ylab = "F(x)", xlab = "x", col = "blue"

)
lines(x_seq, cdf_beta_equiv, col = "red", lty = 2)
legend("bottomright",

legend = c("Kw(2,3)", "Beta(2,4) equivalent"),
col = c("blue", "red"), lty = c(1, 2), bty = "n"

)

pkkw Cumulative Distribution Function (CDF) of the kkw Distribution

Description

Computes the cumulative distribution function (CDF),P (X ≤ q), for the Kumaraswamy-Kumaraswamy
(kkw) distribution with parameters alpha (α), beta (β), delta (δ), and lambda (λ). This distribu-
tion is defined on the interval (0, 1).

180 pkkw

Usage

pkkw(
q,
alpha = 1,
beta = 1,
delta = 0,
lambda = 1,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

q Vector of quantiles (values generally between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

lower.tail Logical; if TRUE (default), probabilities are P (X ≤ q), otherwise, P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The Kumaraswamy-Kumaraswamy (kkw) distribution is a special case of the five-parameter Gen-
eralized Kumaraswamy distribution (pgkw) obtained by setting the shape parameter γ = 1.

The CDF of the GKw distribution is FGKw(q) = Iy(q)(γ, δ + 1), where y(q) = [1 − (1 − qα)β]λ

and Ix(a, b) is the regularized incomplete beta function (pbeta). Setting γ = 1 utilizes the property
Ix(1, b) = 1− (1− x)b, yielding the kkw CDF:

F (q;α, β, δ, λ) = 1−
{
1−

[
1− (1− qα)β

]λ}δ+1

for 0 < q < 1.

The implementation uses this closed-form expression for efficiency and handles lower.tail and
log.p arguments appropriately.

Value

A vector of probabilities, F (q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta, delta, lambda). Returns 0 (or -Inf if log.p = TRUE) for q <= 0 and 1 (or 0 if log.p
= TRUE) for q >= 1. Returns NaN for invalid parameters.

Author(s)

Lopes, J. E.

pkkw 181

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw (parent distribution CDF), dkkw, qkkw, rkkw, pbeta

Examples

Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5

Calculate CDF P(X <= q)
probs <- pkkw(q_vals, alpha_par, beta_par, delta_par, lambda_par)
print(probs)

Calculate upper tail P(X > q)
probs_upper <- pkkw(q_vals, alpha_par, beta_par, delta_par, lambda_par,

lower.tail = FALSE
)
print(probs_upper)
Check: probs + probs_upper should be 1
print(probs + probs_upper)

Calculate log CDF
logs <- pkkw(q_vals, alpha_par, beta_par, delta_par, lambda_par,

log.p = TRUE
)
print(logs)
Check: should match log(probs)
print(log(probs))

Compare with pgkw setting gamma = 1
probs_gkw <- pgkw(q_vals, alpha_par, beta_par,

gamma = 1.0,
delta_par, lambda_par

)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero

Plot the CDF
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p <- pkkw(curve_q, alpha_par, beta_par, delta_par, lambda_par)
plot(curve_q, curve_p,

type = "l", main = "kkw CDF Example",

182 pkw

xlab = "q", ylab = "F(q)", col = "blue", ylim = c(0, 1)
)

pkw Cumulative Distribution Function (CDF) of the Kumaraswamy (Kw)
Distribution

Description

Computes the cumulative distribution function (CDF), P (X ≤ q), for the two-parameter Ku-
maraswamy (Kw) distribution with shape parameters alpha (α) and beta (β). This distribution
is defined on the interval (0, 1).

Usage

pkw(q, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q Vector of quantiles (values generally between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

lower.tail Logical; if TRUE (default), probabilities are P (X ≤ q), otherwise, P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The cumulative distribution function (CDF) of the Kumaraswamy (Kw) distribution is given by:

F (x;α, β) = 1− (1− xα)β

for 0 < x < 1, α > 0, and β > 0.

The Kw distribution is a special case of several generalized distributions:

• Generalized Kumaraswamy (pgkw) with γ = 1, δ = 0, λ = 1.

• Exponentiated Kumaraswamy (pekw) with λ = 1.

• Kumaraswamy-Kumaraswamy (pkkw) with δ = 0, λ = 1.

The implementation uses the closed-form expression for efficiency.

Value

A vector of probabilities, F (q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta). Returns 0 (or -Inf if log.p = TRUE) for q <= 0 and 1 (or 0 if log.p = TRUE) for q >=
1. Returns NaN for invalid parameters.

pkw 183

Author(s)

Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

See Also

pgkw, pekw, pkkw (related generalized CDFs), dkw, qkw, rkw (other Kw functions), pbeta

Examples

Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0

Calculate CDF P(X <= q) using pkw
probs <- pkw(q_vals, alpha_par, beta_par)
print(probs)

Calculate upper tail P(X > q)
probs_upper <- pkw(q_vals, alpha_par, beta_par, lower.tail = FALSE)
print(probs_upper)
Check: probs + probs_upper should be 1
print(probs + probs_upper)

Calculate log CDF
logs <- pkw(q_vals, alpha_par, beta_par, log.p = TRUE)
print(logs)
Check: should match log(probs)
print(log(probs))

Compare with pgkw setting gamma = 1, delta = 0, lambda = 1
probs_gkw <- pgkw(q_vals, alpha_par, beta_par,

gamma = 1.0, delta = 0.0,
lambda = 1.0

)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero

Plot the CDF for different shape parameter combinations
curve_q <- seq(0.001, 0.999, length.out = 200)
plot(curve_q, pkw(curve_q, alpha = 2, beta = 3),

type = "l",
main = "Kumaraswamy CDF Examples", xlab = "q", ylab = "F(q)",
col = "blue", ylim = c(0, 1)

)

184 pmc

lines(curve_q, pkw(curve_q, alpha = 3, beta = 2), col = "red")
lines(curve_q, pkw(curve_q, alpha = 0.5, beta = 0.5), col = "green")
lines(curve_q, pkw(curve_q, alpha = 5, beta = 1), col = "purple")
lines(curve_q, pkw(curve_q, alpha = 1, beta = 3), col = "orange")
legend("bottomright",

legend = c("a=2, b=3", "a=3, b=2", "a=0.5, b=0.5", "a=5, b=1", "a=1, b=3"),
col = c("blue", "red", "green", "purple", "orange"), lty = 1, bty = "n", ncol = 2

)

pmc CDF of the McDonald (Mc)/Beta Power Distribution

Description

Computes the cumulative distribution function (CDF), F (q) = P (X ≤ q), for the McDonald (Mc)
distribution (also known as Beta Power) with parameters gamma (γ), delta (δ), and lambda (λ). This
distribution is defined on the interval (0, 1) and is a special case of the Generalized Kumaraswamy
(GKw) distribution where α = 1 and β = 1.

Usage

pmc(q, gamma = 1, delta = 0, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q Vector of quantiles (values generally between 0 and 1).

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

lower.tail Logical; if TRUE (default), probabilities are P (X ≤ q), otherwise, P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The McDonald (Mc) distribution is a special case of the five-parameter Generalized Kumaraswamy
(GKw) distribution (pgkw) obtained by setting parameters α = 1 and β = 1.

The CDF of the GKw distribution is FGKw(q) = Iy(q)(γ, δ+1), where y(q) = [1−(1−qα)β]λ and
Ix(a, b) is the regularized incomplete beta function (pbeta). Setting α = 1 and β = 1 simplifies
y(q) to qλ, yielding the Mc CDF:

F (q; γ, δ, λ) = Iqλ(γ, δ + 1)

This is evaluated using the pbeta function as pbeta(q^lambda, shape1 = gamma, shape2 = delta
+ 1).

pmc 185

Value

A vector of probabilities, F (q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
gamma, delta, lambda). Returns 0 (or -Inf if log.p = TRUE) for q <= 0 and 1 (or 0 if log.p =
TRUE) for q >= 1. Returns NaN for invalid parameters.

Author(s)

Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw (parent distribution CDF), dmc, qmc, rmc (other Mc functions), pbeta

Examples

Example values
q_vals <- c(0.2, 0.5, 0.8)
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)

Calculate CDF P(X <= q) using pmc
probs <- pmc(q_vals, gamma_par, delta_par, lambda_par)
print(probs)
Compare with Beta CDF
print(stats::pbeta(q_vals, shape1 = gamma_par, shape2 = delta_par + 1))

Calculate upper tail P(X > q)
probs_upper <- pmc(q_vals, gamma_par, delta_par, lambda_par,

lower.tail = FALSE
)
print(probs_upper)
Check: probs + probs_upper should be 1
print(probs + probs_upper)

Calculate log CDF
logs <- pmc(q_vals, gamma_par, delta_par, lambda_par, log.p = TRUE)
print(logs)
Check: should match log(probs)
print(log(probs))

186 qbeta_

Compare with pgkw setting alpha = 1, beta = 1
probs_gkw <- pgkw(q_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par

)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero

Plot the CDF for different lambda values
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p1 <- pmc(curve_q, gamma = 2, delta = 3, lambda = 0.5)
curve_p2 <- pmc(curve_q, gamma = 2, delta = 3, lambda = 1.0) # Beta(2, 4)
curve_p3 <- pmc(curve_q, gamma = 2, delta = 3, lambda = 2.0)

plot(curve_q, curve_p2,
type = "l", main = "Mc/Beta Power CDF (gamma=2, delta=3)",
xlab = "q", ylab = "F(q)", col = "red", ylim = c(0, 1)

)
lines(curve_q, curve_p1, col = "blue")
lines(curve_q, curve_p3, col = "green")
legend("bottomright",

legend = c("lambda=0.5", "lambda=1.0 (Beta)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n"

)

qbeta_ Quantile Function of the Beta Distribution (gamma, delta+1 Parame-
terization)

Description

Computes the quantile function (inverse CDF) for the standard Beta distribution, using a parameter-
ization common in generalized distribution families. It finds the value q such that P (X ≤ q) = p.
The distribution is parameterized by gamma (γ) and delta (δ), corresponding to the standard Beta
distribution with shape parameters shape1 = gamma and shape2 = delta + 1.

Usage

qbeta_(p, gamma = 1, delta = 0, lower.tail = TRUE, log.p = FALSE)

Arguments

p Vector of probabilities (values between 0 and 1).

gamma First shape parameter (shape1), γ > 0. Can be a scalar or a vector. Default:
1.0.

delta Second shape parameter is delta + 1 (shape2), requires δ ≥ 0 so that shape2
>= 1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 = 1).

qbeta_ 187

lower.tail Logical; if TRUE (default), probabilities are p = P (X ≤ q), otherwise, proba-
bilities are p = P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

This function computes the quantiles of a Beta distribution with parameters shape1 = gamma and
shape2 = delta + 1. It is equivalent to calling stats::qbeta(p, shape1 = gamma, shape2 = delta
+ 1,lower.tail = lower.tail, log.p = log.p).

This distribution arises as a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (qgkw) obtained by setting α = 1, β = 1, and λ = 1. It is therefore also equivalent to
the McDonald (Mc)/Beta Power distribution (qmc) with λ = 1.

The function likely calls R’s underlying qbeta function but ensures consistent parameter recycling
and handling within the C++ environment, matching the style of other functions in the related
families. Boundary conditions (p=0, p=1) are handled explicitly.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, gamma, delta). Returns:

• 0 for p = 0 (or p = -Inf if log.p = TRUE, when lower.tail = TRUE).

• 1 for p = 1 (or p = 0 if log.p = TRUE, when lower.tail = TRUE).

• NaN for p < 0 or p > 1 (or corresponding log scale).

• NaN for invalid parameters (e.g., gamma <= 0, delta < 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

qbeta (standard R implementation), qgkw (parent distribution quantile function), qmc (McDon-
ald/Beta Power quantile function), dbeta_, pbeta_, rbeta_ (other functions for this parameteriza-
tion, if they exist).

188 qbeta_

Examples

Example values
p_vals <- c(0.1, 0.5, 0.9)
gamma_par <- 2.0 # Corresponds to shape1
delta_par <- 3.0 # Corresponds to shape2 - 1
shape1 <- gamma_par
shape2 <- delta_par + 1

Calculate quantiles using qbeta_
quantiles <- qbeta_(p_vals, gamma_par, delta_par)
print(quantiles)

Compare with stats::qbeta
quantiles_stats <- stats::qbeta(p_vals, shape1 = shape1, shape2 = shape2)
print(paste("Max difference vs stats::qbeta:", max(abs(quantiles - quantiles_stats))))

Compare with qgkw setting alpha=1, beta=1, lambda=1
quantiles_gkw <- qgkw(p_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print(paste("Max difference vs qgkw:", max(abs(quantiles - quantiles_gkw))))

Compare with qmc setting lambda=1
quantiles_mc <- qmc(p_vals, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print(paste("Max difference vs qmc:", max(abs(quantiles - quantiles_mc))))

Calculate quantiles for upper tail
quantiles_upper <- qbeta_(p_vals, gamma_par, delta_par, lower.tail = FALSE)
print(quantiles_upper)
print(stats::qbeta(p_vals, shape1, shape2, lower.tail = FALSE))

Calculate quantiles from log probabilities
log.p_vals <- log(p_vals)
quantiles_logp <- qbeta_(log.p_vals, gamma_par, delta_par, log.p = TRUE)
print(quantiles_logp)
print(stats::qbeta(log.p_vals, shape1, shape2, log.p = TRUE))

Verify inverse relationship with pbeta_
p_check <- 0.75
q_calc <- qbeta_(p_check, gamma_par, delta_par)
p_recalc <- pbeta_(q_calc, gamma_par, delta_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
abs(p_check - p_recalc) < 1e-9 # Should be TRUE

Boundary conditions
print(qbeta_(c(0, 1), gamma_par, delta_par)) # Should be 0, 1
print(qbeta_(c(-Inf, 0), gamma_par, delta_par, log.p = TRUE)) # Should be 0, 1

qbkw 189

qbkw Quantile Function of the Beta-Kumaraswamy (BKw) Distribution

Description

Computes the quantile function (inverse CDF) for the Beta-Kumaraswamy (BKw) distribution with
parameters alpha (α), beta (β), gamma (γ), and delta (δ). It finds the value q such that P (X ≤
q) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw) distribution
where the parameter λ = 1.

Usage

qbkw(
p,
alpha = 1,
beta = 1,
gamma = 1,
delta = 0,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lower.tail Logical; if TRUE (default), probabilities are p = P (X ≤ q), otherwise, proba-

bilities are p = P (X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The quantile function Q(p) is the inverse of the CDF F (q). The CDF for the BKw (λ = 1)
distribution is F (q) = Iy(q)(γ, δ + 1), where y(q) = 1− (1− qα)β and Iz(a, b) is the regularized
incomplete beta function (see pbkw).

To find the quantile q, we first invert the outer Beta part: let y = I−1
p (γ, δ + 1), where I−1

p (a, b) is
the inverse of the regularized incomplete beta function, computed via qbeta. Then, we invert the
inner Kumaraswamy part: y = 1−(1−qα)β , which leads to q = {1−(1−y)1/β}1/α. Substituting
y gives the quantile function:

Q(p) =
{
1−

[
1− I−1

p (γ, δ + 1)
]1/β}1/α

The function uses this formula, calculating I−1
p (γ, δ + 1) via qbeta(p, gamma, delta + 1, ...)

while respecting the lower.tail and log.p arguments.

190 qbkw

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta, gamma, delta). Returns:

• 0 for p = 0 (or p = -Inf if log.p = TRUE, when lower.tail = TRUE).

• 1 for p = 1 (or p = 0 if log.p = TRUE, when lower.tail = TRUE).

• NaN for p < 0 or p > 1 (or corresponding log scale).

• NaN for invalid parameters (e.g., alpha <= 0, beta <= 0, gamma <= 0, delta < 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

qgkw (parent distribution quantile function), dbkw, pbkw, rbkw (other BKw functions), qbeta

Examples

Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 1.5
gamma_par <- 1.0
delta_par <- 0.5

Calculate quantiles
quantiles <- qbkw(p_vals, alpha_par, beta_par, gamma_par, delta_par)
print(quantiles)

Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qbkw(p_vals, alpha_par, beta_par, gamma_par, delta_par,

lower.tail = FALSE
)
print(quantiles_upper)
Check: qbkw(p, ..., lt=F) == qbkw(1-p, ..., lt=T)
print(qbkw(1 - p_vals, alpha_par, beta_par, gamma_par, delta_par))

Calculate quantiles from log probabilities
log.p_vals <- log(p_vals)
quantiles_logp <- qbkw(log.p_vals, alpha_par, beta_par, gamma_par, delta_par,

qekw 191

log.p = TRUE
)
print(quantiles_logp)
Check: should match original quantiles
print(quantiles)

Compare with qgkw setting lambda = 1
quantiles_gkw <- qgkw(p_vals, alpha_par, beta_par,

gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero

Verify inverse relationship with pbkw
p_check <- 0.75
q_calc <- qbkw(p_check, alpha_par, beta_par, gamma_par, delta_par)
p_recalc <- pbkw(q_calc, alpha_par, beta_par, gamma_par, delta_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
abs(p_check - p_recalc) < 1e-9 # Should be TRUE

Boundary conditions
print(qbkw(c(0, 1), alpha_par, beta_par, gamma_par, delta_par)) # Should be 0, 1
print(qbkw(c(-Inf, 0), alpha_par, beta_par, gamma_par, delta_par, log.p = TRUE)) # Should be 0, 1

qekw Quantile Function of the Exponentiated Kumaraswamy (EKw) Distri-
bution

Description

Computes the quantile function (inverse CDF) for the Exponentiated Kumaraswamy (EKw) dis-
tribution with parameters alpha (α), beta (β), and lambda (λ). It finds the value q such that
P (X ≤ q) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw)
distribution where γ = 1 and δ = 0.

Usage

qekw(p, alpha = 1, beta = 1, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

p Vector of probabilities (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

lambda Shape parameter lambda > 0 (exponent parameter). Can be a scalar or a vector.
Default: 1.0.

192 qekw

lower.tail Logical; if TRUE (default), probabilities are p = P (X ≤ q), otherwise, proba-
bilities are p = P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The quantile function Q(p) is the inverse of the CDF F (q). The CDF for the EKw (γ = 1, δ = 0)
distribution is F (q) = [1− (1− qα)β]λ (see pekw). Inverting this equation for q yields the quantile
function:

Q(p) =

{
1−

[
1− p1/λ

]1/β}1/α

The function uses this closed-form expression and correctly handles the lower.tail and log.p
arguments by transforming p appropriately before applying the formula. This is equivalent to the
general GKw quantile function (qgkw) evaluated with γ = 1, δ = 0.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta, lambda). Returns:

• 0 for p = 0 (or p = -Inf if log.p = TRUE, when lower.tail = TRUE).

• 1 for p = 1 (or p = 0 if log.p = TRUE, when lower.tail = TRUE).

• NaN for p < 0 or p > 1 (or corresponding log scale).

• NaN for invalid parameters (e.g., alpha <= 0, beta <= 0, lambda <= 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

qgkw (parent distribution quantile function), dekw, pekw, rekw (other EKw functions), qunif

qgkw 193

Examples

Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5

Calculate quantiles
quantiles <- qekw(p_vals, alpha_par, beta_par, lambda_par)
print(quantiles)

Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qekw(p_vals, alpha_par, beta_par, lambda_par,

lower.tail = FALSE
)
print(quantiles_upper)
Check: qekw(p, ..., lt=F) == qekw(1-p, ..., lt=T)
print(qekw(1 - p_vals, alpha_par, beta_par, lambda_par))

Calculate quantiles from log probabilities
log.p_vals <- log(p_vals)
quantiles_logp <- qekw(log.p_vals, alpha_par, beta_par, lambda_par,

log.p = TRUE
)
print(quantiles_logp)
Check: should match original quantiles
print(quantiles)

Compare with qgkw setting gamma = 1, delta = 0
quantiles_gkw <- qgkw(p_vals,

alpha = alpha_par, beta = beta_par,
gamma = 1.0, delta = 0.0, lambda = lambda_par

)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero

Verify inverse relationship with pekw
p_check <- 0.75
q_calc <- qekw(p_check, alpha_par, beta_par, lambda_par)
p_recalc <- pekw(q_calc, alpha_par, beta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
abs(p_check - p_recalc) < 1e-9 # Should be TRUE

Boundary conditions
print(qekw(c(0, 1), alpha_par, beta_par, lambda_par)) # Should be 0, 1
print(qekw(c(-Inf, 0), alpha_par, beta_par, lambda_par, log.p = TRUE)) # Should be 0, 1

qgkw Generalized Kumaraswamy Distribution Quantile Function

194 qgkw

Description

Computes the quantile function (inverse CDF) for the five-parameter Generalized Kumaraswamy
(GKw) distribution. Finds the value x such that P (X ≤ x) = p, where X follows the GKw
distribution.

Usage

qgkw(
p,
alpha = 1,
beta = 1,
gamma = 1,
delta = 0,
lambda = 1,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P (X ≤ x), otherwise, P (X > x).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The quantile function Q(p) is the inverse of the CDF F (x). Given F (x) = Iy(x)(γ, δ + 1) where
y(x) = [1− (1− xα)β]λ, the quantile function is:

Q(p) = x =

{
1−

[
1−

(
I−1
p (γ, δ + 1)

)1/λ]1/β}1/α

where I−1
p (a, b) is the inverse of the regularized incomplete beta function, which corresponds to the

quantile function of the Beta distribution, qbeta.
The computation proceeds as follows:

1. Calculate y = stats::qbeta(p, shape1 = gamma, shape2 = delta + 1, lower.tail = lower.tail,
log.p = log.p).

2. Calculate v = y1/λ.
3. Calculate w = (1− v)1/β . Note: Requires v ≤ 1.
4. Calculate q = (1− w)1/α. Note: Requires w ≤ 1.

Numerical stability is maintained by handling boundary cases (p = 0, p = 1) directly and checking
intermediate results (e.g., ensuring arguments to powers are non-negative).

qgkw 195

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is de-
termined by the recycling rule applied to the arguments (p, alpha, beta, gamma, delta, lambda).
Returns:

• 0 for p = 0 (or p = -Inf if log.p = TRUE).

• 1 for p = 1 (or p = 0 if log.p = TRUE).

• NaN for p < 0 or p > 1 (or corresponding log scale).

• NaN for invalid parameters (e.g., alpha <= 0, beta <= 0, gamma <= 0, delta < 0, lambda <= 0).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw, pgkw, rgkw, qbeta

Examples

Basic quantile calculation (median)
median_val <- qgkw(0.5, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
print(median_val)

Computing multiple quantiles
probs <- c(0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99)
quantiles <- qgkw(probs, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
print(quantiles)

Upper tail quantile (e.g., find x such that P(X > x) = 0.1, which is 90th percentile)
q90 <- qgkw(0.1,

alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1,
lower.tail = FALSE

)
print(q90)
Check: should match quantile for p = 0.9 with lower.tail = TRUE
print(qgkw(0.9, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1))

Log probabilities
median_logp <- qgkw(log(0.5),

alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1,
log.p = TRUE

)

196 qkkw

print(median_logp) # Should match median_val

Vectorized parameters
alphas_vec <- c(0.5, 1.0, 2.0)
betas_vec <- c(1.0, 2.0, 3.0)
Get median for 3 different GKw distributions
medians_vec <- qgkw(0.5, alpha = alphas_vec, beta = betas_vec, gamma = 1, delta = 0, lambda = 1)
print(medians_vec)

Verify inverse relationship with pgkw
p_val <- 0.75
x_val <- qgkw(p_val, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
p_check <- pgkw(x_val, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
print(paste("Calculated p:", p_check, " (Expected:", p_val, ")"))

qkkw Quantile Function of the Kumaraswamy-Kumaraswamy (kkw) Distri-
bution

Description

Computes the quantile function (inverse CDF) for the Kumaraswamy-Kumaraswamy (kkw) distri-
bution with parameters alpha (α), beta (β), delta (δ), and lambda (λ). It finds the value q such
that P (X ≤ q) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw)
distribution where the parameter γ = 1.

Usage

qkkw(
p,
alpha = 1,
beta = 1,
delta = 0,
lambda = 1,
lower.tail = TRUE,
log.p = FALSE

)

Arguments

p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are p = P (X ≤ q), otherwise, proba-

bilities are p = P (X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

qkkw 197

Details

The quantile function Q(p) is the inverse of the CDF F (q). The CDF for the kkw (γ = 1) distribu-
tion is (see pkkw):

F (q) = 1−
{
1−

[
1− (1− qα)β

]λ}δ+1

Inverting this equation for q yields the quantile function:

Q(p) =

[
1−

{
1−

[
1− (1− p)1/(δ+1)

]1/λ}1/β
]1/α

The function uses this closed-form expression and correctly handles the lower.tail and log.p
arguments by transforming p appropriately before applying the formula.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta, delta, lambda). Returns:

• 0 for p = 0 (or p = -Inf if log.p = TRUE, when lower.tail = TRUE).

• 1 for p = 1 (or p = 0 if log.p = TRUE, when lower.tail = TRUE).

• NaN for p < 0 or p > 1 (or corresponding log scale).

• NaN for invalid parameters (e.g., alpha <= 0, beta <= 0, delta < 0, lambda <= 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

qgkw (parent distribution quantile function), dkkw, pkkw, rkkw, qbeta

Examples

Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5

198 qkw

Calculate quantiles
quantiles <- qkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par)
print(quantiles)

Calculate quantiles for upper tail probabilities P(X > q) = p
e.g., for p=0.1, find q such that P(X > q) = 0.1 (90th percentile)
quantiles_upper <- qkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par,

lower.tail = FALSE
)
print(quantiles_upper)
Check: qkkw(p, ..., lt=F) == qkkw(1-p, ..., lt=T)
print(qkkw(1 - p_vals, alpha_par, beta_par, delta_par, lambda_par))

Calculate quantiles from log probabilities
log.p_vals <- log(p_vals)
quantiles_logp <- qkkw(log.p_vals, alpha_par, beta_par, delta_par, lambda_par,

log.p = TRUE
)
print(quantiles_logp)
Check: should match original quantiles
print(quantiles)

Compare with qgkw setting gamma = 1
quantiles_gkw <- qgkw(p_vals, alpha_par, beta_par,

gamma = 1.0,
delta_par, lambda_par

)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero

Verify inverse relationship with pkkw
p_check <- 0.75
q_calc <- qkkw(p_check, alpha_par, beta_par, delta_par, lambda_par)
p_recalc <- pkkw(q_calc, alpha_par, beta_par, delta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
abs(p_check - p_recalc) < 1e-9 # Should be TRUE

Boundary conditions
print(qkkw(c(0, 1), alpha_par, beta_par, delta_par, lambda_par)) # Should be 0, 1
print(qkkw(c(-Inf, 0), alpha_par, beta_par, delta_par, lambda_par, log.p = TRUE)) # Should be 0, 1

qkw Quantile Function of the Kumaraswamy (Kw) Distribution

Description

Computes the quantile function (inverse CDF) for the two-parameter Kumaraswamy (Kw) distribu-
tion with shape parameters alpha (α) and beta (β). It finds the value q such that P (X ≤ q) = p.

qkw 199

Usage

qkw(p, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

p Vector of probabilities (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

lower.tail Logical; if TRUE (default), probabilities are p = P (X ≤ q), otherwise, proba-
bilities are p = P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The quantile function Q(p) is the inverse of the CDF F (q). The CDF for the Kumaraswamy dis-
tribution is F (q) = 1 − (1 − qα)β (see pkw). Inverting this equation for q yields the quantile
function:

Q(p) =
{
1− (1− p)1/β

}1/α

The function uses this closed-form expression and correctly handles the lower.tail and log.p
arguments by transforming p appropriately before applying the formula. This is equivalent to the
general GKw quantile function (qgkw) evaluated with γ = 1, δ = 0, λ = 1.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta). Returns:

• 0 for p = 0 (or p = -Inf if log.p = TRUE, when lower.tail = TRUE).

• 1 for p = 1 (or p = 0 if log.p = TRUE, when lower.tail = TRUE).

• NaN for p < 0 or p > 1 (or corresponding log scale).

• NaN for invalid parameters (e.g., alpha <= 0, beta <= 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

200 qmc

See Also

qgkw (parent distribution quantile function), dkw, pkw, rkw (other Kw functions), qbeta, qunif

Examples

Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 3.0

Calculate quantiles using qkw
quantiles <- qkw(p_vals, alpha_par, beta_par)
print(quantiles)

Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qkw(p_vals, alpha_par, beta_par, lower.tail = FALSE)
print(quantiles_upper)

Calculate quantiles from log probabilities
log.p_vals <- log(p_vals)
quantiles_logp <- qkw(log.p_vals, alpha_par, beta_par, log.p = TRUE)
print(quantiles_logp)
Check: should match original quantiles
print(quantiles)

Compare with qgkw setting gamma = 1, delta = 0, lambda = 1
quantiles_gkw <- qgkw(p_vals,

alpha = alpha_par, beta = beta_par,
gamma = 1.0, delta = 0.0, lambda = 1.0

)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero

Verify inverse relationship with pkw
p_check <- 0.75
q_calc <- qkw(p_check, alpha_par, beta_par)
p_recalc <- pkw(q_calc, alpha_par, beta_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
abs(p_check - p_recalc) < 1e-9 # Should be TRUE

Boundary conditions
print(qkw(c(0, 1), alpha_par, beta_par)) # Should be 0, 1
print(qkw(c(-Inf, 0), alpha_par, beta_par, log.p = TRUE)) # Should be 0, 1

qmc Quantile Function of the McDonald (Mc)/Beta Power Distribution

qmc 201

Description

Computes the quantile function (inverse CDF) for the McDonald (Mc) distribution (also known
as Beta Power) with parameters gamma (γ), delta (δ), and lambda (λ). It finds the value q such
that P (X ≤ q) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw)
distribution where α = 1 and β = 1.

Usage

qmc(p, gamma = 1, delta = 0, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

p Vector of probabilities (values between 0 and 1).

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

lower.tail Logical; if TRUE (default), probabilities are p = P (X ≤ q), otherwise, proba-
bilities are p = P (X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The quantile function Q(p) is the inverse of the CDF F (q). The CDF for the Mc (α = 1, β = 1)
distribution is F (q) = Iqλ(γ, δ+1), where Iz(a, b) is the regularized incomplete beta function (see
pmc).

To find the quantile q, we first invert the Beta function part: let y = I−1
p (γ, δ+1), where I−1

p (a, b)

is the inverse computed via qbeta. We then solve qλ = y for q, yielding the quantile function:

Q(p) =
[
I−1
p (γ, δ + 1)

]1/λ
The function uses this formula, calculating I−1

p (γ, δ + 1) via qbeta(p, gamma, delta + 1, ...)
while respecting the lower.tail and log.p arguments. This is equivalent to the general GKw
quantile function (qgkw) evaluated with α = 1, β = 1.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, gamma, delta, lambda). Returns:

• 0 for p = 0 (or p = -Inf if log.p = TRUE, when lower.tail = TRUE).

• 1 for p = 1 (or p = 0 if log.p = TRUE, when lower.tail = TRUE).

• NaN for p < 0 or p > 1 (or corresponding log scale).

• NaN for invalid parameters (e.g., gamma <= 0, delta < 0, lambda <= 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

202 qmc

Author(s)

Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

qgkw (parent distribution quantile function), dmc, pmc, rmc (other Mc functions), qbeta

Examples

Example values
p_vals <- c(0.1, 0.5, 0.9)
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)

Calculate quantiles using qmc
quantiles <- qmc(p_vals, gamma_par, delta_par, lambda_par)
print(quantiles)
Compare with Beta quantiles
print(stats::qbeta(p_vals, shape1 = gamma_par, shape2 = delta_par + 1))

Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qmc(p_vals, gamma_par, delta_par, lambda_par,

lower.tail = FALSE
)
print(quantiles_upper)
Check: qmc(p, ..., lt=F) == qmc(1-p, ..., lt=T)
print(qmc(1 - p_vals, gamma_par, delta_par, lambda_par))

Calculate quantiles from log probabilities
log.p_vals <- log(p_vals)
quantiles_logp <- qmc(log.p_vals, gamma_par, delta_par, lambda_par, log.p = TRUE)
print(quantiles_logp)
Check: should match original quantiles
print(quantiles)

Compare with qgkw setting alpha = 1, beta = 1
quantiles_gkw <- qgkw(p_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par

)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero

rbeta_ 203

Verify inverse relationship with pmc
p_check <- 0.75
q_calc <- qmc(p_check, gamma_par, delta_par, lambda_par) # Use lambda != 1
p_recalc <- pmc(q_calc, gamma_par, delta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
abs(p_check - p_recalc) < 1e-9 # Should be TRUE

Boundary conditions
print(qmc(c(0, 1), gamma_par, delta_par, lambda_par)) # Should be 0, 1
print(qmc(c(-Inf, 0), gamma_par, delta_par, lambda_par, log.p = TRUE)) # Should be 0, 1

rbeta_ Random Generation for the Beta Distribution (gamma, delta+1 Pa-
rameterization)

Description

Generates random deviates from the standard Beta distribution, using a parameterization common
in generalized distribution families. The distribution is parameterized by gamma (γ) and delta (δ),
corresponding to the standard Beta distribution with shape parameters shape1 = gamma and shape2
= delta + 1. This is a special case of the Generalized Kumaraswamy (GKw) distribution where
α = 1, β = 1, and λ = 1.

Usage

rbeta_(n, gamma = 1, delta = 0)

Arguments

n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

gamma First shape parameter (shape1), γ > 0. Can be a scalar or a vector. Default:
1.0.

delta Second shape parameter is delta + 1 (shape2), requires δ ≥ 0 so that shape2
>= 1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 = 1, i.e.,
Uniform).

Details

This function generates samples from a Beta distribution with parameters shape1 = gamma and
shape2 = delta + 1. It is equivalent to calling stats::rbeta(n, shape1 = gamma, shape2 = delta
+ 1).

This distribution arises as a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (rgkw) obtained by setting α = 1, β = 1, and λ = 1. It is therefore also equivalent to
the McDonald (Mc)/Beta Power distribution (rmc) with λ = 1.

204 rbeta_

The function likely calls R’s underlying rbeta function but ensures consistent parameter recycling
and handling within the C++ environment, matching the style of other functions in the related
families.

Value

A numeric vector of length n containing random deviates from the Beta(γ, δ + 1) distribution, with
values in (0, 1). The length of the result is determined by n and the recycling rule applied to the
parameters (gamma, delta). Returns NaN if parameters are invalid (e.g., gamma <= 0, delta < 0).

Author(s)

Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag.

See Also

rbeta (standard R implementation), rgkw (parent distribution random generation), rmc (McDon-
ald/Beta Power random generation), dbeta_, pbeta_, qbeta_ (other functions for this parameteri-
zation, if they exist).

Examples

set.seed(2030) # for reproducibility

Generate 1000 samples using rbeta_
gamma_par <- 2.0 # Corresponds to shape1
delta_par <- 3.0 # Corresponds to shape2 - 1
shape1 <- gamma_par
shape2 <- delta_par + 1

x_sample <- rbeta_(1000, gamma = gamma_par, delta = delta_par)
summary(x_sample)

Compare with stats::rbeta
x_sample_stats <- stats::rbeta(1000, shape1 = shape1, shape2 = shape2)
Visually compare histograms or QQ-plots
hist(x_sample, main = "rbeta_ Sample", freq = FALSE, breaks = 30)
curve(dbeta_(x, gamma_par, delta_par), add = TRUE, col = "red", lwd = 2)
hist(x_sample_stats, main = "stats::rbeta Sample", freq = FALSE, breaks = 30)
curve(stats::dbeta(x, shape1, shape2), add = TRUE, col = "blue", lwd = 2)
Compare summary stats (should be similar due to randomness)
print(summary(x_sample))
print(summary(x_sample_stats))

rbkw 205

Compare summary stats with rgkw(alpha=1, beta=1, lambda=1)
x_sample_gkw <- rgkw(1000,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print("Summary stats for rgkw(a=1,b=1,l=1) sample:")
print(summary(x_sample_gkw))

Compare summary stats with rmc(lambda=1)
x_sample_mc <- rmc(1000, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print("Summary stats for rmc(l=1) sample:")
print(summary(x_sample_mc))

rbkw Random Number Generation for the Beta-Kumaraswamy (BKw) Dis-
tribution

Description

Generates random deviates from the Beta-Kumaraswamy (BKw) distribution with parameters alpha
(α), beta (β), gamma (γ), and delta (δ). This distribution is a special case of the Generalized Ku-
maraswamy (GKw) distribution where the parameter λ = 1.

Usage

rbkw(n, alpha = 1, beta = 1, gamma = 1, delta = 0)

Arguments

n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

Details

The generation method uses the relationship between the GKw distribution and the Beta distribu-
tion. The general procedure for GKw (rgkw) is: If W ∼ Beta(γ, δ + 1), then X = {1 − [1 −
W 1/λ]1/β}1/α follows the GKw(α, β, γ, δ, λ) distribution.

For the BKw distribution, λ = 1. Therefore, the algorithm simplifies to:

1. Generate V ∼ Beta(γ, δ + 1) using rbeta.
2. Compute the BKw variate X = {1− (1− V)1/β}1/α.

This procedure is implemented efficiently, handling parameter recycling as needed.

206 rbkw

Value

A vector of length n containing random deviates from the BKw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, gamma, delta).
Returns NaN if parameters are invalid (e.g., alpha <= 0, beta <= 0, gamma <= 0, delta < 0).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

See Also

rgkw (parent distribution random generation), dbkw, pbkw, qbkw (other BKw functions), rbeta

Examples

set.seed(2026) # for reproducibility

Generate 1000 random values from a specific BKw distribution
alpha_par <- 2.0
beta_par <- 1.5
gamma_par <- 1.0
delta_par <- 0.5

x_sample_bkw <- rbkw(1000,
alpha = alpha_par, beta = beta_par,
gamma = gamma_par, delta = delta_par

)
summary(x_sample_bkw)

Histogram of generated values compared to theoretical density
hist(x_sample_bkw,

breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of BKw Sample", xlab = "x", ylim = c(0, 2.5)

)
curve(

dbkw(x,
alpha = alpha_par, beta = beta_par, gamma = gamma_par,
delta = delta_par

),
add = TRUE, col = "red", lwd = 2, n = 201

)

rekw 207

legend("topright", legend = "Theoretical PDF", col = "red", lwd = 2, bty = "n")

Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qbkw(prob_points,

alpha = alpha_par, beta = beta_par,
gamma = gamma_par, delta = delta_par

)
emp_quantiles <- quantile(x_sample_bkw, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for BKw Distribution",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", lty = 2)

Compare summary stats with rgkw(..., lambda=1, ...)
Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = alpha_par, beta = beta_par, gamma = gamma_par,
delta = delta_par, lambda = 1.0

)
print("Summary stats for rbkw sample:")
print(summary(x_sample_bkw))
print("Summary stats for rgkw(lambda=1) sample:")
print(summary(x_sample_gkw)) # Should be similar

rekw Random Number Generation for the Exponentiated Kumaraswamy
(EKw) Distribution

Description

Generates random deviates from the Exponentiated Kumaraswamy (EKw) distribution with param-
eters alpha (α), beta (β), and lambda (λ). This distribution is a special case of the Generalized
Kumaraswamy (GKw) distribution where γ = 1 and δ = 0.

Usage

rekw(n, alpha = 1, beta = 1, lambda = 1)

Arguments

n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

208 rekw

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

lambda Shape parameter lambda > 0 (exponent parameter). Can be a scalar or a vector.
Default: 1.0.

Details

The generation method uses the inverse transform (quantile) method. That is, if U is a random
variable following a standard Uniform distribution on (0, 1), then X = Q(U) follows the EKw
distribution, where Q(u) is the EKw quantile function (qekw):

Q(u) =

{
1−

[
1− u1/λ

]1/β}1/α

This is computationally equivalent to the general GKw generation method (rgkw) when specialized
for γ = 1, δ = 0, as the required Beta(1, 1) random variate is equivalent to a standard Uniform(0,
1) variate. The implementation generates U using runif and applies the transformation above.

Value

A vector of length n containing random deviates from the EKw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, lambda). Returns
NaN if parameters are invalid (e.g., alpha <= 0, beta <= 0, lambda <= 0).

Author(s)

Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

See Also

rgkw (parent distribution random generation), dekw, pekw, qekw (other EKw functions), runif

Examples

set.seed(2027) # for reproducibility

Generate 1000 random values from a specific EKw distribution
alpha_par <- 2.0
beta_par <- 3.0

rgkw 209

lambda_par <- 1.5

x_sample_ekw <- rekw(1000, alpha = alpha_par, beta = beta_par, lambda = lambda_par)
summary(x_sample_ekw)

Histogram of generated values compared to theoretical density
hist(x_sample_ekw,

breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of EKw Sample", xlab = "x", ylim = c(0, 3.0)

)
curve(dekw(x, alpha = alpha_par, beta = beta_par, lambda = lambda_par),

add = TRUE, col = "red", lwd = 2, n = 201
)
legend("topright", legend = "Theoretical PDF", col = "red", lwd = 2, bty = "n")

Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qekw(prob_points,

alpha = alpha_par, beta = beta_par,
lambda = lambda_par

)
emp_quantiles <- quantile(x_sample_ekw, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for EKw Distribution",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", lty = 2)

Compare summary stats with rgkw(..., gamma=1, delta=0, ...)
Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = alpha_par, beta = beta_par, gamma = 1.0,
delta = 0.0, lambda = lambda_par

)
print("Summary stats for rekw sample:")
print(summary(x_sample_ekw))
print("Summary stats for rgkw(gamma=1, delta=0) sample:")
print(summary(x_sample_gkw)) # Should be similar

rgkw Generalized Kumaraswamy Distribution Random Generation

Description

Generates random deviates from the five-parameter Generalized Kumaraswamy (GKw) distribution
defined on the interval (0, 1).

210 rgkw

Usage

rgkw(n, alpha = 1, beta = 1, gamma = 1, delta = 0, lambda = 1)

Arguments

n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

Details

The generation method relies on the transformation property: if V ∼ Beta(γ, δ + 1), then the
random variable X defined as

X =

{
1−

[
1− V 1/λ

]1/β}1/α

follows the GKw(α, β, γ, δ, λ) distribution.

The algorithm proceeds as follows:

1. Generate V from stats::rbeta(n, shape1 = gamma, shape2 = delta + 1).
2. Calculate v = V 1/λ.
3. Calculate w = (1− v)1/β .
4. Calculate x = (1− w)1/α.

Parameters (alpha, beta, gamma, delta, lambda) are recycled to match the length required by n.
Numerical stability is maintained by handling potential edge cases during the transformations.

Value

A vector of length n containing random deviates from the GKw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, gamma, delta,
lambda). Returns NaN if parameters are invalid (e.g., alpha <= 0, beta <= 0, gamma <= 0, delta <
0, lambda <= 0).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

rkkw 211

See Also

dgkw, pgkw, qgkw, rbeta, set.seed

Examples

set.seed(1234) # for reproducibility

Generate 1000 random values from a specific GKw distribution (Kw case)
x_sample <- rgkw(1000, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
summary(x_sample)

Histogram of generated values compared to theoretical density
hist(x_sample,

breaks = 30, freq = FALSE, # freq=FALSE for density scale
main = "Histogram of GKw(2,3,1,0,1) Sample", xlab = "x", ylim = c(0, 2.5)

)
curve(dgkw(x, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1),

add = TRUE, col = "red", lwd = 2, n = 201
)
legend("topright", legend = "Theoretical PDF", col = "red", lwd = 2, bty = "n")

Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qgkw(prob_points, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
emp_quantiles <- quantile(x_sample, prob_points)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for GKw(2,3,1,0,1)",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", lty = 2)

Using vectorized parameters: generate 1 value for each alpha
alphas_vec <- c(0.5, 1.0, 2.0)
n_param <- length(alphas_vec)
samples_vec <- rgkw(n_param, alpha = alphas_vec, beta = 2, gamma = 1, delta = 0, lambda = 1)
print(samples_vec) # One sample for each alpha value
Result length matches n=3, parameters alpha recycled accordingly

rkkw Random Number Generation for the kkw Distribution

Description

Generates random deviates from the Kumaraswamy-Kumaraswamy (kkw) distribution with param-
eters alpha (α), beta (β), delta (δ), and lambda (λ). This distribution is a special case of the
Generalized Kumaraswamy (GKw) distribution where the parameter γ = 1.

212 rkkw

Usage

rkkw(n, alpha = 1, beta = 1, delta = 0, lambda = 1)

Arguments

n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

Details

The generation method uses the inverse transform method based on the quantile function (qkkw).
The kkw quantile function is:

Q(p) =

[
1−

{
1−

[
1− (1− p)1/(δ+1)

]1/λ}1/β
]1/α

Random deviates are generated by evaluating Q(p) where p is a random variable following the
standard Uniform distribution on (0, 1) (runif).

This is equivalent to the general method for the GKw distribution (rgkw) specialized for γ = 1.
The GKw method generates W ∼ Beta(γ, δ + 1) and then applies transformations. When γ = 1,
W ∼ Beta(1, δ + 1), which can be generated via W = 1 − V 1/(δ+1) where V ∼ Unif(0, 1).
Substituting this W into the GKw transformation yields the same result as evaluating Q(1 − V)
above (noting p = 1− V is also Uniform).

Value

A vector of length n containing random deviates from the kkw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, delta, lambda).
Returns NaN if parameters are invalid (e.g., alpha <= 0, beta <= 0, delta < 0, lambda <= 0).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

rkkw 213

See Also

rgkw (parent distribution random generation), dkkw, pkkw, qkkw, runif, rbeta

Examples

set.seed(2025) # for reproducibility

Generate 1000 random values from a specific kkw distribution
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5

x_sample_kkw <- rkkw(1000,
alpha = alpha_par, beta = beta_par,
delta = delta_par, lambda = lambda_par

)
summary(x_sample_kkw)

Histogram of generated values compared to theoretical density
hist(x_sample_kkw,

breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of kkw Sample", xlab = "x", ylim = c(0, 3.5)

)
curve(

dkkw(x,
alpha = alpha_par, beta = beta_par, delta = delta_par,
lambda = lambda_par

),
add = TRUE, col = "red", lwd = 2, n = 201

)
legend("topright", legend = "Theoretical PDF", col = "red", lwd = 2, bty = "n")

Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qkkw(prob_points,

alpha = alpha_par, beta = beta_par,
delta = delta_par, lambda = lambda_par

)
emp_quantiles <- quantile(x_sample_kkw, prob_points, type = 7) # type 7 is default

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for kkw Distribution",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", lty = 2)

Compare summary stats with rgkw(..., gamma=1, ...)
Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = alpha_par, beta = beta_par, gamma = 1.0,

214 rkw

delta = delta_par, lambda = lambda_par
)
print("Summary stats for rkkw sample:")
print(summary(x_sample_kkw))
print("Summary stats for rgkw(gamma=1) sample:")
print(summary(x_sample_gkw)) # Should be similar

rkw Random Number Generation for the Kumaraswamy (Kw) Distribution

Description

Generates random deviates from the two-parameter Kumaraswamy (Kw) distribution with shape
parameters alpha (α) and beta (β).

Usage

rkw(n, alpha = 1, beta = 1)

Arguments

n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

Details

The generation method uses the inverse transform (quantile) method. That is, if U is a random
variable following a standard Uniform distribution on (0, 1), then X = Q(U) follows the Kw
distribution, where Q(p) is the Kw quantile function (qkw):

Q(p) =
{
1− (1− p)1/β

}1/α

The implementation generates U using runif and applies this transformation. This is equivalent to
the general GKw generation method (rgkw) evaluated at γ = 1, δ = 0, λ = 1.

Value

A vector of length n containing random deviates from the Kw distribution, with values in (0, 1).
The length of the result is determined by n and the recycling rule applied to the parameters (alpha,
beta). Returns NaN if parameters are invalid (e.g., alpha <= 0, beta <= 0).

Author(s)

Lopes, J. E.

rkw 215

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

See Also

rgkw (parent distribution random generation), dkw, pkw, qkw (other Kw functions), runif

Examples

set.seed(2029) # for reproducibility

Generate 1000 random values from a specific Kw distribution
alpha_par <- 2.0
beta_par <- 3.0

x_sample_kw <- rkw(1000, alpha = alpha_par, beta = beta_par)
summary(x_sample_kw)

Histogram of generated values compared to theoretical density
hist(x_sample_kw,

breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of Kw Sample", xlab = "x", ylim = c(0, 2.5)

)
curve(dkw(x, alpha = alpha_par, beta = beta_par),

add = TRUE, col = "red", lwd = 2, n = 201
)
legend("top", legend = "Theoretical PDF", col = "red", lwd = 2, bty = "n")

Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qkw(prob_points, alpha = alpha_par, beta = beta_par)
emp_quantiles <- quantile(x_sample_kw, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for Kw Distribution",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", lty = 2)

Compare summary stats with rgkw(..., gamma=1, delta=0, lambda=1)
Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = alpha_par, beta = beta_par, gamma = 1.0,
delta = 0.0, lambda = 1.0

)

216 rmc

print("Summary stats for rkw sample:")
print(summary(x_sample_kw))
print("Summary stats for rgkw(gamma=1, delta=0, lambda=1) sample:")
print(summary(x_sample_gkw)) # Should be similar

rmc Random Number Generation for the McDonald (Mc)/Beta Power Dis-
tribution

Description

Generates random deviates from the McDonald (Mc) distribution (also known as Beta Power) with
parameters gamma (γ), delta (δ), and lambda (λ). This distribution is a special case of the Gener-
alized Kumaraswamy (GKw) distribution where α = 1 and β = 1.

Usage

rmc(n, gamma = 1, delta = 0, lambda = 1)

Arguments

n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.

Details

The generation method uses the relationship between the GKw distribution and the Beta distribu-
tion. The general procedure for GKw (rgkw) is: If W ∼ Beta(γ, δ + 1), then X = {1 − [1 −
W 1/λ]1/β}1/α follows the GKw(α, β, γ, δ, λ) distribution.

For the Mc distribution, α = 1 and β = 1. Therefore, the algorithm simplifies significantly:

1. Generate U ∼ Beta(γ, δ + 1) using rbeta.

2. Compute the Mc variate X = U1/λ.

This procedure is implemented efficiently, handling parameter recycling as needed.

Value

A vector of length n containing random deviates from the Mc distribution, with values in (0, 1).
The length of the result is determined by n and the recycling rule applied to the parameters (gamma,
delta, lambda). Returns NaN if parameters are invalid (e.g., gamma <= 0, delta < 0, lambda <= 0).

rmc 217

Author(s)

Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

See Also

rgkw (parent distribution random generation), dmc, pmc, qmc (other Mc functions), rbeta

Examples

set.seed(2028) # for reproducibility

Generate 1000 random values from a specific Mc distribution
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)

x_sample_mc <- rmc(1000,
gamma = gamma_par, delta = delta_par,
lambda = lambda_par

)
summary(x_sample_mc)

Histogram of generated values compared to theoretical density
hist(x_sample_mc,

breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of Mc Sample (Beta Case)", xlab = "x"

)
curve(dmc(x, gamma = gamma_par, delta = delta_par, lambda = lambda_par),

add = TRUE, col = "red", lwd = 2, n = 201
)
curve(stats::dbeta(x, gamma_par, delta_par + 1), add = TRUE, col = "blue", lty = 2)
legend("topright",

legend = c("Theoretical Mc PDF", "Theoretical Beta PDF"),
col = c("red", "blue"), lwd = c(2, 1), lty = c(1, 2), bty = "n"

)

Comparing empirical and theoretical quantiles (Q-Q plot)
lambda_par_qq <- 0.7 # Use lambda != 1 for non-Beta case
x_sample_mc_qq <- rmc(1000,

218 rmc

gamma = gamma_par, delta = delta_par,
lambda = lambda_par_qq

)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qmc(prob_points,

gamma = gamma_par, delta = delta_par,
lambda = lambda_par_qq

)
emp_quantiles <- quantile(x_sample_mc_qq, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for Mc Distribution",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", lty = 2)

Compare summary stats with rgkw(..., alpha=1, beta=1, ...)
Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par_qq

)
print("Summary stats for rmc sample:")
print(summary(x_sample_mc_qq))
print("Summary stats for rgkw(alpha=1, beta=1) sample:")
print(summary(x_sample_gkw)) # Should be similar

Index

∗ beta
dbeta_, 3
grbeta, 19
hsbeta, 61
llbeta, 110
pbeta_, 170
qbeta_, 186
rbeta_, 203

∗ cumulative
pbeta_, 170
pbkw, 172
pekw, 175
pgkw, 177
pkkw, 179
pkw, 182
pmc, 184

∗ density
dbeta_, 3
dbkw, 5
dekw, 7
dgkw, 9
dkkw, 11
dkw, 13
dmc, 15

∗ distribution
dbeta_, 3
dbkw, 5
dekw, 7
dgkw, 9
dkkw, 11
dkw, 13
dmc, 15
grbeta, 19
grbkw, 24
grekw, 30
grgkw, 36
grkkw, 42
grkw, 48
grmc, 53

hsbeta, 61
hsbkw, 66
hsekw, 75
hsgkw, 82
hskkw, 90
hskw, 96
hsmc, 102
llbeta, 110
llbkw, 117
llekw, 125
llgkw, 134
llkkw, 145
llkw, 154
llmc, 162
pbeta_, 170
pbkw, 172
pekw, 175
pgkw, 177
pkkw, 179
pkw, 182
pmc, 184
qbeta_, 186
qbkw, 189
qekw, 191
qgkw, 193
qkkw, 196
qkw, 198
qmc, 200
rbeta_, 203
rbkw, 205
rekw, 207
rgkw, 209
rkkw, 211
rkw, 214
rmc, 216

∗ gradient
grbeta, 19
grbkw, 24
grekw, 30

219

220 INDEX

grgkw, 36
grkkw, 42
grkw, 48
grmc, 53

∗ hessian
hsbeta, 61
hsbkw, 66
hsekw, 75
hsgkw, 82
hskkw, 90
hskw, 96
hsmc, 102

∗ kumaraswamy
dkw, 13
grkw, 48
hskw, 96
llkw, 154
pkw, 182
qkw, 198
rkw, 214

∗ likelihood
grbeta, 19
grbkw, 24
grekw, 30
grgkw, 36
grkkw, 42
grkw, 48
grmc, 53
hsbeta, 61
hsbkw, 66
hsekw, 75
hsgkw, 82
hskkw, 90
hskw, 96
hsmc, 102
llbeta, 110
llbkw, 117
llekw, 125
llgkw, 134
llkkw, 145
llkw, 154
llmc, 162

∗ mcdonald
dmc, 15
grmc, 53
hsmc, 102
llmc, 162
pmc, 184

qmc, 200
rmc, 216

∗ optimize
grbeta, 19
grbkw, 24
grekw, 30
grgkw, 36
grkkw, 42
grkw, 48
grmc, 53
hsbeta, 61
hsbkw, 66
hsekw, 75
hsgkw, 82
hskkw, 90
hskw, 96
hsmc, 102
llbeta, 110
llbkw, 117
llekw, 125
llgkw, 134
llkkw, 145
llkw, 154
llmc, 162

∗ quantile
qbeta_, 186
qbkw, 189
qekw, 191
qgkw, 193
qkkw, 196
qkw, 198
qmc, 200

∗ random
rbeta_, 203
rbkw, 205
rekw, 207
rgkw, 209
rkkw, 211
rkw, 214
rmc, 216

beta, 3, 6, 10, 16, 67, 83, 111, 118, 135, 163

dbeta, 3, 4, 10, 12, 14, 16
dbeta_, 3
dbkw, 5, 25, 68, 118, 174, 190, 206
dekw, 7, 14, 31, 76, 126, 127, 176, 192, 208
dgkw, 3, 4, 6, 8, 9, 12, 14, 16, 38, 83, 117, 135,

136, 146, 178, 195, 211

INDEX 221

digamma, 20, 25, 37, 38, 53, 54
dkkw, 11, 14, 44, 91, 146, 181, 197, 213
dkw, 13, 49, 97, 98, 154, 155, 183, 200, 215
dmc, 3, 4, 15, 54, 103, 104, 163, 185, 202, 217

gkwgetstartvalues, 17
grad, 20, 25, 31, 38, 44, 49, 54
grbeta, 19
grbkw, 24, 68
grekw, 30
grgkw, 20, 25, 31, 36, 43, 44, 48, 49, 53, 54,

83, 136
grkkw, 42, 91, 146
grkw, 48
grmc, 20, 53, 104

hessian, 62, 68, 76, 83, 91, 98, 104
hsbeta, 61
hsbkw, 25, 66
hsekw, 75
hsgkw, 38, 61, 62, 67, 68, 75, 76, 82, 91, 97,

98, 104, 136
hskkw, 44, 90, 146
hskw, 96
hsmc, 62, 102

integrate, 10

lbeta, 112, 118, 135, 136, 163
lgamma, 111, 163
llbeta, 20, 62, 110
llbkw, 25, 67, 68, 117
llekw, 31, 75, 76, 125
llgkw, 38, 83, 111, 112, 118, 126, 127, 134,

146, 154, 155, 163
llkkw, 44, 90, 91, 145
llkw, 49, 98, 154
llmc, 54, 104, 111, 112, 162
log1p, 135, 136

optim, 20, 25, 31, 38, 44, 49, 54, 62, 68, 76,
83, 91, 98, 104, 111, 112, 118, 126,
127, 136, 146, 154, 155, 163

pbeta, 171, 173–175, 178, 180, 181, 183–185
pbeta_, 170
pbkw, 6, 118, 172, 189, 190, 206
pekw, 8, 127, 175, 182, 183, 192, 208
pgkw, 10, 136, 171, 173–176, 177, 180–185,

195, 211

pkkw, 12, 146, 179, 182, 183, 197, 213
pkw, 14, 155, 182, 199, 200, 215
pmc, 16, 163, 171, 184, 201, 202, 217

qbeta, 187, 189, 190, 194, 195, 197, 200–202
qbeta_, 186
qbkw, 6, 118, 174, 189, 206
qekw, 8, 127, 176, 191, 208
qgkw, 10, 136, 178, 187, 190, 192, 193, 197,

199–202, 211
qkkw, 12, 146, 181, 196, 212, 213
qkw, 14, 155, 183, 198, 214, 215
qmc, 16, 163, 185, 187, 200, 217
qunif, 192, 200

rbeta, 204–206, 211, 213, 216, 217
rbeta_, 203
rbkw, 6, 118, 174, 190, 205
rekw, 8, 127, 176, 192, 207
rgkw, 10, 136, 178, 195, 203–206, 208, 209,

212–217
rkkw, 12, 146, 181, 197, 211
rkw, 14, 155, 183, 200, 214
rmc, 16, 163, 185, 202–204, 216
runif, 208, 212–215

set.seed, 211

trigamma, 61, 62, 103, 104

	dbeta_
	dbkw
	dekw
	dgkw
	dkkw
	dkw
	dmc
	gkwgetstartvalues
	grbeta
	grbkw
	grekw
	grgkw
	grkkw
	grkw
	grmc
	hsbeta
	hsbkw
	hsekw
	hsgkw
	hskkw
	hskw
	hsmc
	llbeta
	llbkw
	llekw
	llgkw
	llkkw
	llkw
	llmc
	pbeta_
	pbkw
	pekw
	pgkw
	pkkw
	pkw
	pmc
	qbeta_
	qbkw
	qekw
	qgkw
	qkkw
	qkw
	qmc
	rbeta_
	rbkw
	rekw
	rgkw
	rkkw
	rkw
	rmc
	Index

