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dbeta_ Density of the Beta Distribution (gamma, delta+1 Parameterization)
Description

Computes the probability density function (PDF) for the standard Beta distribution, using a parame-
terization common in generalized distribution families. The distribution is parameterized by gamma
() and delta (9), corresponding to the standard Beta distribution with shape parameters shapel =
gamma and shape?2 = delta + 1. The distribution is defined on the interval (0, 1).

Usage

dbeta_(x, gamma = 1, delta = @, log = FALSE)

Arguments
X Vector of quantiles (values between 0 and 1).
gamma First shape parameter (shapel), v > 0. Can be a scalar or a vector. Default:
1.0.
delta Second shape parameter is delta + 1 (shape2), requires ¢ > 0 so that shape2
>=1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 = 1).
log Logical; if TRUE, the logarithm of the density is returned (log(f(z))). Default:
FALSE.
Details

The probability density function (PDF) calculated by this function corresponds to a standard Beta
distribution Beta(y,d + 1):

x'y—l 1—z (6+1)—1 x'y—l 1—z )
f(x;7,0) = ( ) = ( )
B(v,6+1) B(v,6+1)

for 0 < z < 1, where B(a, b) is the Beta function (beta).

This specific parameterization arises as a special case of the five-parameter Generalized Kumaraswamy
(GKw) distribution (dgkw) obtained by setting the parameters & = 1, 5 = 1, and A = 1. It is there-
fore equivalent to the McDonald (Mc)/Beta Power distribution (dmc) with A = 1.

Note the difference in the second parameter compared to dbeta, where dbeta(x, shapel, shape2)
uses shape? directly. Here, shape1 = gamma and shape2 = delta + 1.
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Value

A vector of density values (f(z)) or log-density values (log(f(z))). The length of the result is
determined by the recycling rule applied to the arguments (x, gamma, delta). Returns @ (or -Inf
if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., gamma <= 9,
delta<0).

Author(s)
Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

dbeta (standard R implementation), dgkw (parent distribution density), dmc (McDonald/Beta Power
density), pbeta_, gbeta_, rbeta_ (other functions for this parameterization, if they exist).

Examples

# Example values

x_vals <- c(0.2, 0.5, 0.8)

gamma_par <- 2.0 # Corresponds to shapel
delta_par <- 3.0 # Corresponds to shape2 - 1
shapel <- gamma_par

shape2 <- delta_par + 1

# Calculate density using dbeta_
densities <- dbeta_(x_vals, gamma_par, delta_par)
print(densities)

# Compare with stats::dbeta
densities_stats <- stats::dbeta(x_vals, shapel = shapel, shape2 = shape2)
print(paste("Max difference vs stats::dbeta:”, max(abs(densities - densities_stats))))

# Compare with dgkw setting alpha=1, beta=1, lambda=1
densities_gkw <- dgkw(x_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,

delta = delta_par, lambda = 1.0
)

print(paste(”Max difference vs dgkw:", max(abs(densities - densities_gkw))))
# Compare with dmc setting lambda=1
densities_mc <- dmc(x_vals, gamma = gamma_par, delta = delta_par, lambda = 1.0)

print(paste("Max difference vs dmc:"”, max(abs(densities - densities_mc))))

# Calculate log-density
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log_densities <- dbeta_(x_vals, gamma_par, delta_par, log = TRUE)
print(log_densities)
print(stats::dbeta(x_vals, shapel = shapel, shape2 = shape2, log = TRUE))

# Plot the density
curve_x <- seq(0.001, 0.999, length.out = 200)
curve_y <- dbeta_(curve_x, gamma = 2, delta = 3) # Beta(2, 4)
plot(curve_x, curve_y,
type = "1", main = "Beta(2, 4) Density via dbeta_ ",
xlab = "x", ylab = "f(x)", col = "blue”
)
curve(stats::dbeta(x, 2, 4), add = TRUE, col = "red”, 1ty = 2)
legend("topright”,
legend = c("dbeta_(gamma=2, delta=3)", "stats::dbeta(shapel=2, shape2=4)"),
col = c("blue”, "red"), lty = c(1, 2), bty = "n"
)

dbkw Density of the Beta-Kumaraswamy (BKw) Distribution

Description

Computes the probability density function (PDF) for the Beta-Kumaraswamy (BKw) distribution
with parameters alpha («), beta (3), gamma (), and delta (9). This distribution is defined on the
interval (O, 1).

Usage

dbkw(x, alpha = 1, beta = 1, gamma = 1, delta = @, log = FALSE)

Arguments
X Vector of quantiles (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
log Logical; if TRUE, the logarithm of the density is returned (log(f(z))). Default:

FALSE.
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Details

The probability density function (PDF) of the Beta-Kumaraswamy (BKw) distribution is given by:

f(x;a,ﬁ,7,5)==13«;g3+l)xa_l(l—-$a)6w*4)_l[1——(1——$a>6]7_1

for 0 < z < 1, where B(a, b) is the Beta function (beta).

The BKw distribution is a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (dgkw) obtained by setting the parameter A = 1. Numerical evaluation is performed
using algorithms similar to those for dgkw, ensuring stability.

Value

A vector of density values (f(z)) or log-density values (log(f(z))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, gamma, delta). Returns
@ (or -Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g.,
alpha <=0, beta <=0, gamma <= 0, delta < 0).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pbkw, gbkw, rbkw (other BKw functions),

Examples

# Example values

x_vals <- c(0.2, 0.5, 0.8)

alpha_par <- 2.0

beta_par <- 1.5

gamma_par <- 1.0 # Equivalent to Kw when gamma=1
delta_par <- 0.5

# Calculate density
densities <- dbkw(x_vals, alpha_par, beta_par, gamma_par, delta_par)
print(densities)

# Calculate log-density

log_densities <- dbkw(x_vals, alpha_par, beta_par, gamma_par, delta_par,
log = TRUE

)
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print(log_densities)

# Check: should match log(densities)

print(log(densities))

# Compare with dgkw setting lambda = 1
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,

gamma = gamma_par,
delta = delta_par, lambda = 1.0
)

print(paste("Max difference:"”, max(abs(densities - densities_gkw)))) # Should be near zero

# Plot the density for different gamma values

curve_x <- seq(0.01, 0.99, length
curve_y1l <- dbkw(curve_x, alpha =
curve_y2 <- dbkw(curve_x, alpha
curve_y3 <- dbkw(curve_x, alpha =

plot(curve_x, curve_yT,

.out = 200)
2, beta =
2, beta =
2, beta =

3, gamma
3, gamma
3, gamma

0.5, delta
1.0, delta
2.0, delta

D
»
»

type = "1", main = "BKw Density Examples (alpha=2, beta=3, delta=1)",
xlab = "x", ylab = "f(x)", col = "blue”, ylim = range(@, curve_yl, curve_y2, curve_y3)

lines(curve_x, curve_y2, col = "red")
lines(curve_x, curve_y3, col = "green")

legend("topright”,

legend = c("gamma=0.5", "gamma=1.0", "gamma=2.0"),
col = c("blue”, "red”, "green"), lty =1, bty = "n

)

dekw Density of the Exponentiated Kumaraswamy (EKw) Distribution

Description

Computes the probability density function (PDF) for the Exponentiated Kumaraswamy (EKw) dis-
tribution with parameters alpha («), beta (5), and lambda (). This distribution is defined on the

interval (0, 1).

Usage

dekw(x, alpha = 1, beta = 1, lambda =

1, log = FALSE)

Arguments
X Vector of quantiles (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
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lambda Shape parameter 1ambda > 0 (exponent parameter). Can be a scalar or a vector.
Default: 1.0.
log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.
Details

The probability density function (PDF) of the Exponentiated Kumaraswamy (EKw) distribution is
given by:

flasa, B,0) = AaBz (1 — )P 1 — (1 —2)f P!
forO<x < 1.

The EKw distribution is a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (dgkw) obtained by setting the parameters v = 1 and § = 0. When A = 1, the EKw
distribution reduces to the standard Kumaraswamy distribution.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, 1lambda). Returns @ (or
-Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., alpha <=
0, beta <=0, lambda <= 0).

Author(s)
Lopes, J. E.

References
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pekw, qekw, rekw (other EKw functions),

Examples

# Example values

x_vals <- c(0.2, 0.5, 0.8)

alpha_par <- 2.0

beta_par <- 3.0

lambda_par <- 1.5 # Exponent parameter

# Calculate density
densities <- dekw(x_vals, alpha_par, beta_par, lambda_par)
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print(densities)

# Calculate log-density

log_densities <- dekw(x_vals, alpha_par, beta_par, lambda_par, log = TRUE)
print(log_densities)

# Check: should match log(densities)

print(log(densities))

# Compare with dgkw setting gamma = 1, delta = @
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,
gamma = 1.0, delta = 0.0,
lambda = lambda_par
)

print(paste(”Max difference:"”, max(abs(densities - densities_gkw)))) # Should be near zero

# Plot the density for different lambda values
curve_x <- seq(0.01, 0.99, length.out = 200)

curve_yl <- dekw(curve_x, alpha = 2, beta = 3, lambda
curve_y2 <- dekw(curve_x, alpha = 2, beta = 3, lambda
curve_y3 <- dekw(curve_x, alpha = 2, beta = 3, lambda

0.5) # less peaked
1.0) # standard Kw
2.0) # more peaked

plot(curve_x, curve_y2,
type = "1", main = "EKw Density Examples (alpha=2, beta=3)",

xlab = "x", ylab = "f(x)", col = "red"”, ylim = range(@, curve_yl, curve_y2, curve_y3)
)
lines(curve_x, curve_yl, col = "blue")
lines(curve_x, curve_y3, col = "green")

legend("topright”,
legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue”, "red”, "green"), lty =1, bty = "n”

)

dgkw Density of the Generalized Kumaraswamy Distribution

Description
Computes the probability density function (PDF) for the five-parameter Generalized Kumaraswamy
(GKw) distribution, defined on the interval (0, 1).

Usage
dgkw(x, alpha = 1, beta = 1, gamma = 1, delta = @, lambda = 1, log = FALSE)

Arguments

X Vector of quantiles (values between 0 and 1).

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.



10 dgkw

beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

lambda Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.

log Logical; if TRUE, the logarithm of the density is returned. Default: FALSE.
Details

The probability density function of the Generalized Kumaraswamy (GKw) distribution with param-
eters alpha («), beta (3), gamma (), delta (§), and lambda () is given by:

Aafze (1 — z@)P-L

RS R S M Sl e e i

f(x;a7ﬁ7fy)67)\) =

for x € (0, 1), where B(a, b) is the Beta function beta.
This distribution was proposed by Cordeiro & de Castro (2011) and includes several other distribu-
tions as special cases:

e Kumaraswamy (Kw): gamma = 1, delta = 0, lambda =1

* Exponentiated Kumaraswamy (EKw): gamma = 1, delta =0

* Beta-Kumaraswamy (BKw): lambda =1

* Generalized Beta type 1 (GB1 - implies McDonald): alpha =1, beta =1

¢ Beta distribution: alpha =1, beta =1, lambda =1

The function includes checks for valid parameters and input values x. It uses numerical stabilization
for x close to O or 1.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, gamma, delta, lambda).
Returns @ (or -Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid.

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation, 81(7), 883-898.

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw, ggkw, rgkw (if these exist), dbeta, integrate
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Examples

# Simple density evaluation at a point
dgkw (0.5, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1) # Kw case

# Plot the PDF for various parameter sets
x_vals <- seq(@.01, ©.99, by = 0.01)

# Standard Kumaraswamy (gamma=1, delta=@, lambda=1)
pdf_kw <- dgkw(x_vals, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1)

# Beta equivalent (alpha=1, beta=1, lambda=1) - Beta(gamma, delta+1)

pdf_beta <- dgkw(x_vals, alpha = 1, beta = 1, gamma = 2, delta = 3, lambda = 1)
# Compare with stats::dbeta

pdf_beta_check <- stats::dbeta(x_vals, shapel = 2, shape2 = 3 + 1)

# max(abs(pdf_beta - pdf_beta_check)) # Should be close to zero

# Exponentiated Kumaraswamy (gamma=1, delta=0)
pdf_ekw <- dgkw(x_vals, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 2)

plot(x_vals, pdf_kw,
type = "1", ylim = range(c(pdf_kw, pdf_beta, pdf_ekw)),

main = "GKw Densities Examples”, ylab = "f(x)", xlab = "x", col = "blue”
)
lines(x_vals, pdf_beta, col = "red")
lines(x_vals, pdf_ekw, col = "green")

legend("topright”,
legend = c("Kw(2,3)", "Beta(2,4) equivalent”, "EKw(2,3, lambda=2)"),
col = c("blue”, "red”, "green"), lty =1, bty = "n"

)

# Log-density

log.pdf_val <- dgkw(@.5, 2, 3, 1, @, 1, log = TRUE)
print(log.pdf_val)

print(log(dgkw(@.5, 2, 3, 1, @, 1))) # Should match

dkkw Density of the Kumaraswamy-Kumaraswamy (kkw) Distribution

Description

Computes the probability density function (PDF) for the Kumaraswamy-Kumaraswamy (kkw) dis-
tribution with parameters alpha (a), beta (6), delta (6), and lambda (A\). This distribution is
defined on the interval (0, 1).

Usage
dkkw(x, alpha = 1, beta = 1, delta = @, lambda = 1, log = FALSE)
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Arguments
X Vector of quantiles (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.
log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.
Details

The Kumaraswamy-Kumaraswamy (kkw) distribution is a special case of the five-parameter Gen-
eralized Kumaraswamy distribution (dgkw) obtained by setting the parameter v = 1.

The probability density function is given by:
Faion8.6.0) = (5 Drafa M (1 —2)? 1= (1 =27 {1 - 1= =2

for 0 < 2 < 1. Note that 1/(§ + 1) corresponds to the Beta function term B(1, + 1) when v = 1.

Numerical evaluation follows similar stability considerations as dgkw.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta, delta, lambda). Returns
0 (or -Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g.,
alpha <=0, beta <=0, delta <0, lambda <= 0).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pkkw, gkkw, rkkw (if they exist), dbeta
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Examples

# Example values

x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0

beta_par <- 3.0

delta_par <- 0.5
lambda_par <- 1.5

# Calculate density
densities <- dkkw(x_vals, alpha_par, beta_par, delta_par, lambda_par)
print(densities)

# Calculate log-density

log_densities <- dkkw(x_vals, alpha_par, beta_par, delta_par, lambda_par,
log = TRUE

)

print(log_densities)

# Check: should match log(densities)

print(log(densities))

# Compare with dgkw setting gamma = 1
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,
gamma = 1.0,
delta_par, lambda_par
)

print(paste("Max difference:"”, max(abs(densities - densities_gkw)))) # Should be near zero

# Plot the density
curve_x <- seq(0.01, 0.99, length.out = 200)
curve_y <- dkkw(curve_x, alpha_par, beta_par, delta_par, lambda_par)
plot(curve_x, curve_y,
type = "1", main = "kkw Density Example”,
xlab = "x", ylab = "f(x)", col = "blue”

dkw Density of the Kumaraswamy (Kw) Distribution

Description

Computes the probability density function (PDF) for the two-parameter Kumaraswamy (Kw) dis-
tribution with shape parameters alpha («) and beta (/). This distribution is defined on the interval
O, 1.

Usage
dkw(x, alpha = 1, beta = 1, log = FALSE)
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Arguments
X Vector of quantiles (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.
Details

The probability density function (PDF) of the Kumaraswamy (Kw) distribution is given by:
flaa,B) = aBa~t (1 - a)7!

forO<z <1,a>0,and 8 > 0.

The Kumaraswamy distribution is identical to the Generalized Kumaraswamy (GKw) distribution
(dgkw) with parameters v = 1, § = 0, and A = 1. It is also a special case of the Exponentiated
Kumaraswamy (dekw) with A = 1, and the Kumaraswamy-Kumaraswamy (dkkw) with § = 0 and
A=1.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, alpha, beta). Returns @ (or -Inf if
log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., alpha <= 0, beta
<=0).

Author(s)

Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.
See Also

dgkw (parent distribution density), dekw, dkkw, pkw, gkw, rkw (other Kw functions), dbeta

Examples

# Example values
x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0

# Calculate density using dkw
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densities <- dkw(x_vals, alpha_par, beta_par)
print(densities)

# Calculate log-density

log_densities <- dkw(x_vals, alpha_par, beta_par, log = TRUE)
print(log_densities)

# Check: should match log(densities)

print(log(densities))

# Compare with dgkw setting gamma = 1, delta = @, lambda = 1
densities_gkw <- dgkw(x_vals, alpha_par, beta_par,

gamma = 1.0, delta = 0.0,

lambda = 1.0
)

print(paste(”Max difference:"”, max(abs(densities - densities_gkw)))) # Should be near zero

# Plot the density for different shape parameter combinations
curve_x <- seq(0.001, 0.999, length.out = 200)
plot(curve_x, dkw(curve_x, alpha = 2, beta = 3),

type = "1",
main = "Kumaraswamy Density Examples”, xlab = "x", ylab = "f(x)",
col = "blue”, ylim = c(0@, 4)

)

lines(curve_x, dkw(curve_x, alpha = 3, beta = 2), col = "red")

lines(curve_x, dkw(curve_x, alpha = 0.5, beta = 0.5), col = "green") # U-shaped
lines(curve_x, dkw(curve_x, alpha = 5, beta = 1), col = "purple”) # J-shaped
lines(curve_x, dkw(curve_x, alpha = 1, beta = 3), col = "orange"”) # J-shaped (reversed)
legend("top”,

legend = c("a=2, b=3", "a=3, b=2", "a=0.5, b=0.5", "a=5, b=1", "a=1, b=3"),

col = c("blue”, "red”, "green”, "purple”, "orange"), lty =1, bty = "n", ncol = 2
)

dmc Density of the McDonald (Mc)/Beta Power Distribution Distribution

Description

Computes the probability density function (PDF) for the McDonald (Mc) distribution (also pre-
viously referred to as Beta Power) with parameters gamma (), delta (4), and lambda (\). This
distribution is defined on the interval (0, 1).

Usage
dmc(x, gamma = 1, delta = @, lambda = 1, log = FALSE)

Arguments

X Vector of quantiles (values between 0 and 1).

gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
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delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.
log Logical; if TRUE, the logarithm of the density is returned (log(f(x))). Default:
FALSE.
Details

The probability density function (PDF) of the McDonald (Mc) distribution is given by:

Flay,00) = & 21 =2

(v,64+1)

for 0 < x < 1, where B(a,b) is the Beta function (beta).

The Mc distribution is a special case of the five-parameter Generalized Kumaraswamy (GKw) distri-
bution (dgkw) obtained by setting the parameters o« = 1 and 5 = 1. It was introduced by McDonald
(1984) and is related to the Generalized Beta distribution of the first kind (GB1). When A = 1, it
simplifies to the standard Beta distribution with parameters v and § + 1.

Value

A vector of density values (f(x)) or log-density values (log(f(x))). The length of the result is
determined by the recycling rule applied to the arguments (x, gamma, delta, lambda). Returns @ (or
-Inf if log = TRUE) for x outside the interval (0, 1), or NaN if parameters are invalid (e.g., gamma <=
0, delta <0, lambda <= 0).

Author(s)
Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw (parent distribution density), pmc, gmc, rmc (other Mc functions), dbeta

Examples

# Example values

x_vals <- c(0.2, 0.5, 0.8)

gamma_par <- 2.0

delta_par <- 1.5

lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)
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# Calculate density using dmc

densities <- dmc(x_vals, gamma_par, delta_par, lambda_par)
print(densities)

# Compare with Beta density

print(stats::dbeta(x_vals, shapel = gamma_par, shape2 = delta_par + 1))

# Calculate log-density
log_densities <- dmc(x_vals, gamma_par, delta_par, lambda_par, log = TRUE)
print(log_densities)

# Compare with dgkw setting alpha = 1, beta = 1
densities_gkw <- dgkw(x_vals,
alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par
)

print(paste(”Max difference:"”, max(abs(densities - densities_gkw)))) # Should be near zero

# Plot the density for different lambda values

curve_x <- seq(0.01, 0.99, length.out = 200)

curve_yl <- dmc(curve_x, gamma = 2, delta = 3, lambda = 0.5)

curve_y2 <- dmc(curve_x, gamma = 2, delta = 3, lambda = 1.0) # Beta(2, 4)
curve_y3 <- dmc(curve_x, gamma = 2, delta = 3, lambda = 2.0)

plot(curve_x, curve_y2,
type = "1", main = "McDonald (Mc) Density (gamma=2, delta=3)",

xlab = "x", ylab = "f(x)", col = "red"”, ylim = range(@, curve_yl, curve_y2, curve_y3)
)
lines(curve_x, curve_yl, col = "blue")
lines(curve_x, curve_y3, col = "green")

legend("topright”,
legend = c("lambda=0.5", "lambda=1.0 (Beta)", "lambda=2.0"),
col = c("blue”, "red”, "green"), lty =1, bty = "n”

)

gkwgetstartvalues Estimate Distribution Parameters Using Method of Moments

Description

Estimates parameters for various distribution families from the Generalized Kumaraswamy fam-
ily using the method of moments. The implementation is optimized for numerical stability and
computational efficiency through Nelder-Mead optimization and adaptive numerical integration.

Usage

gkwgetstartvalues(x, family = "gkw", n_starts = 5L)
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Arguments

X Numeric vector of observations. All values must be in the open interval (0,1).
Values outside this range will be automatically truncated to avoid numerical
issues.

family Character string specifying the distribution family. Valid options are: "gkw"
(Generalized Kumaraswamy - 5 parameters), "bkw” (Beta-Kumaraswamy - 4
parameters), "kkw" (Kumaraswamy-Kumaraswamy - 4 parameters), "ekw" (Ex-
ponentiated Kumaraswamy - 3 parameters), "mc” (McDonald - 3 parameters),
"kw" (Kumaraswamy - 2 parameters), "beta” (Beta - 2 parameters). The string
is case-insensitive. Default is "gkw".

n_starts Integer specifying the number of different initial parameter values to try during
optimization. More starting points increase the probability of finding the global
optimum at the cost of longer computation time. Default is 5.

Details

The function uses the method of moments to estimate distribution parameters by minimizing the
weighted sum of squared relative errors between theoretical and sample moments (orders 1 through
5). The optimization employs the Nelder-Mead simplex algorithm, which is derivative-free and
particularly robust for this problem.

Key implementation features: logarithmic calculations for numerical stability, adaptive numerical
integration using Simpson’s rule with fallback to trapezoidal rule, multiple random starting points
to avoid local minima, decreasing weights for higher-order moments (1.0, 0.8, 0.6, 0.4, 0.2), and
automatic parameter constraint enforcement.

Parameter Constraints: All parameters are constrained to positive values. Additionally, family-
specific constraints are enforced: alpha and beta in (0.1, 50.0), gamma in (0.1, 10.0) for GKw-
related families or (0.1, 50.0) for Beta, delta in (0.01, 10.0), and lambda in (0.1, 20.0).

The function will issue warnings for empty input vectors, sample sizes less than 10 (unreliable
estimation), or failure to find valid parameter estimates (returns defaults).

Value

Named numeric vector containing the estimated parameters for the specified distribution family.
Parameter names correspond to the distribution specification. If estimation fails, returns a vector of
NA values with appropriate parameter names.

References
Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

Examples

# Generate sample data from Beta distribution
set.seed(123)
X <- rbeta(100, shapel = 2, shape2 = 3)

# Estimate Beta parameters
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params_beta <- gkwgetstartvalues(x, family = "beta")
print(params_beta)

# Estimate Kumaraswamy parameters
params_kw <- gkwgetstartvalues(x, family = "kw")
print(params_kw)

# Estimate GKw parameters with more starting points
params_gkw <- gkwgetstartvalues(x, family = "gkw", n_starts = 10)
print(params_gkw)

grbeta Gradient of the Negative Log-Likelihood for the Beta Distribution
(gamma, delta+1 Parameterization)

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the standard Beta distribution, using a parameterization common in generalized distribu-
tion families. The distribution is parameterized by gamma () and delta (J), corresponding to the
standard Beta distribution with shape parameters shapel = gamma and shape2 = delta+ 1. The
gradient is useful for optimization algorithms.

Usage

grbeta(par, data)

Arguments
par A numeric vector of length 2 containing the distribution parameters in the order:
gamma (y > 0), delta (6 > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

This function calculates the gradient of the negative log-likelihood for a Beta distribution with
parameters shapel = gamma () and shape2 = delta+ 1 (§ + 1). The components of the gradient
vector (—V/{(0]x)) are:

ol -
gy =) - vl +3+ 1] - ;m(xi)
or -

—55 = WO+ —v(y+6+ 1] =Y In(l—x)

i=1
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where 1(-) is the digamma function (digamma). These formulas represent the derivatives of —£(6),
consistent with minimizing the negative log-likelihood. They correspond to the relevant compo-
nents of the general GKw gradient (grgkw) evaluated at « = 1, 5 = 1, A\ = 1. Note the parameteri-
zation: the standard Beta shape parameters are y and 6 + 1.

Value

Returns a numeric vector of length 2 containing the partial derivatives of the negative log-likelihood
function —¢(60|x) with respect to each parameter: (—9¢/dv, —0¢/00). Returns a vector of NaN if
any parameter values are invalid according to their constraints, or if any value in data is not in the
interval (0, 1).

Author(s)
Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw, grmc (related gradients), 1lbeta (negative log-likelihood function), hsbeta (Hessian, if
available), dbeta_, pbeta_, gbeta_, rbeta_, optim, grad (for numerical gradient comparison),
digamma.

Examples

## Example 1: Basic Gradient Evaluation

# Generate sample data

set.seed(123)

n <- 1000

true_params <- c(gamma = 2.0, delta = 3.0)

data <- rbeta_(n, gamma = true_params[1], delta = true_params[2])

# Evaluate gradient at true parameters

grad_true <- grbeta(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)

cat("Norm:", sqrt(sum(grad_true*2)), "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5),

c(2.0, 3.0),
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c(2.5, 3.5)
)

grad_norms <- apply(test_params, 1, function(p) {
g <- grbeta(p, data)
sqrt(sum(g*2))

1)

results <- data.frame(
Gamma = test_params[, 1],
Delta = test_params[, 2],
Grad_Norm = grad_norms

)
print(results, digits = 4)

## Example 2: Gradient in Optimization
# Optimization with analytical gradient

fit_with_grad <- optim(
par = c(1.5, 2.5),

fn = 1llbeta,
gr = grbeta,
data = data,

method = "L-BFGS-B",
lower = c(0.01, 0.01),
upper = c(100, 100),
hessian = TRUE,

control = list(trace = 0)

)

# Optimization without gradient
fit_no_grad <- optim(

par = c(1.5, 2.5),

fn = 1llbeta,

data = data,

method = "L-BFGS-B"”,

lower = c(0.01, 0.01),

upper = c(100, 100),

hessian = TRUE,

control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient”, "Without Gradient"),
Gamma = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Delta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
NeglLoglLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])
)

print(comparison, digits = 4, row.names = FALSE)
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## Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("gamma"”, "delta")

# At MLE, gradient should be approximately zero
gradient_at_mle <- grbeta(par = mle, data = data)
cat(”"\nGradient at MLE:\n")

print(gradient_at_mle)

cat("Max absolute component:”, max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle*2)), "\n")

## Example 4: Numerical vs Analytical Gradient

# Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {
grad <- numeric(length(x))
for (i in seq_along(x)) {
Xx_plus <- x_minus <- X
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}
return(grad)
3

# Compare at MLE
grad_analytical <- grbeta(par = mle, data = data)
grad_numerical <- numerical_gradient(llbeta, mle, data)

comparison_grad <- data.frame(
Parameter = c("gamma”, "delta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /
(abs(grad_analytical) + 1e-10)
)

print(comparison_grad, digits = 8)

## Example 5: Score Test Statistic

# Score test for HO: theta = theta®
thetad <- c(1.8, 2.8)

score_theta® <- -grbeta(par = theta@, data = data)

# Fisher information at theta®
fisher_info <- hsbeta(par = theta0, data = data)

# Score test statistic
score_stat <- t(score_theta®) %*% solve(fisher_info) %x% score_theta®
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p_value <- pchisq(score_stat, df = 2, lower.tail = FALSE)

cat("\nScore Test:\n")

cat("HO: gamma=1.8, delta=2.8\n")

cat("Test statistic:"”, score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

## Example 6: Confidence Ellipse (Gamma vs Delta)

# Observed information
obs_info <- hsbeta(par = mle, data = data)
vcov_full <- solve(obs_info)

# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- gchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_full)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(theta[i]), sin(thetal[il))
ellipse[i, ] <- mle + sqrt(chi2_val) *
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)
3

# Marginal confidence intervals

se_2d <- sqgrt(diag(vcov_full))

ci_gamma <- mle[1] + c(-1, 1) * 1.96 x se_2d[1]
ci_delta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot
plot(ellipse[, 1], ellipse[, 21,

type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),

main = "95% Confidence Region (Gamma vs Delta)"”, las = 1
)
# Add marginal CIs
abline(v = ci_gamma, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_delta, col = "#808080", 1ty = 3, 1lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#38B0000", "#006400", "#2E4057", "#808080"),
pch = c¢(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

23
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)
grid(col = "gray9e")

grbokw Gradient of the Negative Log-Likelihood for the BKw Distribution

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the Beta-Kumaraswamy (BKw) distribution with parameters alpha («), beta (/3), gamma
(), and delta (§). This distribution is the special case of the Generalized Kumaraswamy (GKw)
distribution where A = 1. The gradient is typically used in optimization algorithms for maximum
likelihood estimation.

Usage
grbkw(par, data)

Arguments
par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (a > 0), beta (6 > 0), gamma (v > 0), delta (§ > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The components of the gradient vector of the negative log-likelihood (—V£(0|x)) for the BKw
(A = 1) model are:

8[ n n
_% = —g — Zln(xl) + Z
=1
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°wi:1—vf:1—(1—m<’)5

K3

* 9(-) is the digamma function (digamma).

These formulas represent the derivatives of —¢(6), consistent with minimizing the negative log-
likelihood. They correspond to the general GKw gradient (grgkw) components for «, 3, 7, § evalu-
ated at A = 1. Note that the component for X is omitted. Numerical stability is maintained through
careful implementation.

Value

Returns a numeric vector of length 4 containing the partial derivatives of the negative log-likelihood
function —£(6|x) with respect to each parameter: (—9¢/da, —0¢/03, —0¢/d7y, —I€/IJ). Returns
a vector of NaN if any parameter values are invalid according to their constraints, or if any value in
data is not in the interval (0, 1).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), 11bkw (negative log-likelihood for BKw), hsbkw (Hessian for
BKw, if available), dbkw (density for BKw), optim, grad (for numerical gradient comparison),
digamma.

Examples

## Example 1: Basic Gradient Evaluation
# Generate sample data
set.seed(2203)
n <- 1000
true_params <- c(alpha = 2.0, beta = 1.5, gamma = 1.5, delta = 0.5)
data <- rbkw(n,
alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4]

)

# Evaluate gradient at true parameters

grad_true <- grbkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)

cat("Norm:", sqrt(sum(grad_true*2)), "\n")
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# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 1.0, 1.0, 0.3),
c(2.0, 1.5, 1.5, 0.5),
c(2.5, 2.0, 2.0, 0.7)

)

grad_norms <- apply(test_params, 1, function(p) {
g <- grbkw(p, data)
sqrt(sum(g”2))

»

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Gamma = test_params[, 3],
Delta = test_params[, 4],
Grad_Norm = grad_norms

)

print(results, digits = 4)

## Example 2: Gradient in Optimization
# Optimization with analytical gradient

fit_with_grad <- optim(
par = c(1.8, 1.2, 1.1, 0.3),

fn = 1lbkw,
gr = grbkw,
data = data,

method = "Nelder-Mead”,
hessian = TRUE,
control = list(trace = 0)

)

# Optimization without gradient
fit_no_grad <- optim(
par = ¢(1.8, 1.2, 1.1, 0.3),
fn = 1lbkw,
data = data,
method = "Nelder-Mead”,
hessian = TRUE,
control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient”, "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Gamma = c(fit_with_grad$par[3], fit_no_grad$par[3]),
Delta = c(fit_with_grad$par[4], fit_no_grad$par[4]),
NeglLoglLik = c(fit_with_grad$value, fit_no_grad$value),

grbkw
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Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])
)

print(comparison, digits = 4, row.names = FALSE)

## Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha”, "beta”, "gamma”, "delta")

# At MLE, gradient should be approximately zero
gradient_at_mle <- grbkw(par = mle, data = data)
cat("\nGradient at MLE:\n")

print(gradient_at_mle)

cat("Max absolute component:”, max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle*2)), "\n")

## Example 4: Numerical vs Analytical Gradient

# Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {
grad <- numeric(length(x))
for (i in seqg_along(x)) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}
return(grad)

}

# Compare at MLE
grad_analytical <- grbkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llbkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha”, "beta”, "gamma"”, "delta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)

print(comparison_grad, digits = 8)
## Example 5: Score Test Statistic
thetao

.4)
theta@, data = data)

# Score test for HO: theta
thetad <- c(1.8, 1.3, 1.2,
score_theta® <- -grbkw(par

N o 1
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# Fisher information at theta®
fisher_info <- hsbkw(par = theta®@, data = data)

# Score test statistic
score_stat <- t(score_theta®) %*% solve(fisher_info) %*% score_theta®
p_value <- pchisq(score_stat, df = 4, lower.tail = FALSE)

cat("\nScore Test:\n")

cat("Ho: alpha=1.8, beta=1.3, gamma=1.2, delta=0.4\n")
cat("Test statistic:"”, score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

## Example 6: Confidence Ellipses (Selected pairs)

# Observed information
obs_info <- hsbkw(par = mle, data = data)
vecov_full <- solve(obs_info)

# Create confidence ellipses
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- qchisq(@.95, df = 2)

# Alpha vs Beta ellipse
vcov_ab <- vcov_full[1:2, 1:2]
eig_decomp_ab <- eigen(vcov_ab)
ellipse_ab <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[il]), sin(thetal[il))
ellipse_ab[i, ] <- mle[1:2] + sqrt(chi2_val) =*
(eig_decomp_ab$vectors %x% diag(sqrt(eig_decomp_ab$values)) %*% v)
3

# Alpha vs Gamma ellipse
vcov_ag <- vcov_fulllc(1, 3), c(1, 3)]
eig_decomp_ag <- eigen(vcov_ag)
ellipse_ag <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(theta[i]), sin(thetal[il))
ellipse_agl[i, 1 <- mle[c(1, 3)] + sgrt(chi2_val) x
(eig_decomp_ag$vectors %*% diag(sqrt(eig_decomp_ag$values)) %*x% v)
3

# Beta vs Delta ellipse
vcov_bd <- vcov_fulllc(2, 4), c(2, 4)]
eig_decomp_bd <- eigen(vcov_bd)
ellipse_bd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il]))
ellipse_bd[i, ] <- mle[c(2, 4)] + sqrt(chi2_val) *
(eig_decomp_bd$vectors %x% diag(sqrt(eig_decomp_bd$values)) %*% v)
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# Marginal confidence intervals

se_ab <- sqrt(diag(vcov_ab))

ci_alpha_ab <- mle[1] + c(-1, 1) *x 1.96 * se_ab[1]
ci_beta_ab <- mle[2] + c(-1, 1) * 1.96 * se_ab[2]

se_ag <- sqrt(diag(vcov_ag))
ci_alpha_ag <- mle[1] + c(-1, 1) * 1.96 * se_ag[1]
ci_gamma_ag <- mle[3] + c(-1, 1) *x 1.96 * se_ag[2]

se_bd <- sqgrt(diag(vcov_bd))
ci_beta_bd <- mle[2] + c(-1, 1) * 1.96 * se_bd[1]
ci_delta_bd <- mle[4] + c(-1, 1) * 1.96 * se_bd[2]

# Plot selected ellipses

# Alpha vs Beta
plot(ellipse_ab[, 1], ellipse_ab[, 217,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "Alpha vs Beta”, las = 1, xlim = range(ellipse_ab[, 1], ci_alpha_ab),
ylim = range(ellipse_ab[, 2], ci_beta_ab)
)
abline(v = ci_alpha_ab, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_beta_ab, col = "#808080", 1ty = 3, lwd = 1.5)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

# Alpha vs Gamma
plot(ellipse_agl[, 11, ellipse_ag[, 21,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(gamma),

main = "Alpha vs Gamma", las = 1, xlim = range(ellipse_ag[, 11, ci_alpha_ag),
ylim = range(ellipse_ag[, 2], ci_gamma_ag)

)

abline(v = ci_alpha_ag, col = "#808080", lty = 3, lwd = 1.5)

abline(h = ci_gamma_ag, col = "#808080", 1ty = 3, 1lwd = 1.5)

points(mle[1], mle[3], pch = 19, col = "#8B000R®", cex = 1.5)

points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

# Beta vs Delta
plot(ellipse_bd[, 11, ellipse_bd[, 217,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = expression(delta),
main = "Beta vs Delta”, las = 1, xlim = range(ellipse_bd[, 1], ci_beta_bd),
ylim = range(ellipse_bd[, 2], ci_delta_bd)
)
abline(v = ci_beta_bd, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_delta_bd, col = "#808080", lty = 3, lwd = 1.5)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")



30 grekw

legend("topright”,
legend = c("MLE", "True"”, "95% CR"”, "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),

pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n", cex = 0.8
)
grekw Gradient of the Negative Log-Likelihood for the EKw Distribution
Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the Exponentiated Kumaraswamy (EKw) distribution with parameters alpha (a), beta (5),
and lambda (). This distribution is the special case of the Generalized Kumaraswamy (GKw)
distribution where v = 1 and § = 0. The gradient is useful for optimization.

Usage

grekw(par, data)

Arguments
par A numeric vector of length 3 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The components of the gradient vector of the negative log-likelihood (—V£(8|x)) for the EKw

(y =1, = 0) model are:
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where:
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cv=1—2af
°wi:1—vf:1—(1—xf‘)5

These formulas represent the derivatives of —¢(f), consistent with minimizing the negative log-
likelihood. They correspond to the relevant components of the general GKw gradient (grgkw)
evaluatedat y = 1,5 = 0.

Value

Returns a numeric vector of length 3 containing the partial derivatives of the negative log-likelihood
function —¢(6|x) with respect to each parameter: (—0¢/0a, —0L/03, —0L/ON). Returns a vector
of NaN if any parameter values are invalid according to their constraints, or if any value in data is
not in the interval (0, 1).

Author(s)
Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), 11ekw (negative log-likelihood for EKw), hsekw (Hessian for
EKw, if available), dekw (density for EKw), optim, grad (for numerical gradient comparison).

Examples

## Example 1: Basic Gradient Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5, lambda = 2.0)
data <- rekw(n,
alpha = true_params[1], beta = true_params[2],
lambda = true_params[3]

)

# Evaluate gradient at true parameters

grad_true <- grekw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)
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cat("Norm:", sqrt(sum(grad_true*2)), "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(2.0, 3.0, 1.5),

c(2.5, 3.5, 2.0),

c(3.0, 4.0, 2.5)
)

grad_norms <- apply(test_params, 1, function(p) {
g <- grekw(p, data)
sqrt(sum(g*2))

1)

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 21,
Lambda = test_params[, 317,
Grad_Norm = grad_norms

)

print(results, digits = 4)

## Example 2: Gradient in Optimization
# Optimization with analytical gradient

fit_with_grad <- optim(
par = c(2, 3, 1.5),

fn = 1lekw,
gr = grekw,
data = data,

method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

# Optimization without gradient
fit_no_grad <- optim(

par = c(2, 3, 1.5),

fn = 1llekw,

data = data,

method = "BFGS",

hessian = TRUE,

control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient”, "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Lambda = c(fit_with_grad$par[3], fit_no_grad$par[3]),
NeglLoglLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])
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)

print(comparison, digits = 4, row.names = FALSE)

## Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha”, "beta”, "lambda")

# At MLE, gradient should be approximately zero
gradient_at_mle <- grekw(par = mle, data = data)
cat(”"\nGradient at MLE:\n")

print(gradient_at_mle)

cat("Max absolute component:"”, max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle*2)), "\n")

## Example 4: Numerical vs Analytical Gradient

# Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {
grad <- numeric(length(x))
for (i in seg_along(x)) {
Xx_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}

return(grad)

3

# Compare at MLE
grad_analytical <- grekw(par = mle, data = data)
grad_numerical <- numerical_gradient(llekw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha"”, "beta"”, "lambda"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)

print(comparison_grad, digits = 8)

## Example 5: Score Test Statistic

# Score test for HO: theta = theta@
thetad <- c(2.2, 3.2, 1.8)

score_theta® <- -grekw(par = theta@, data = data)

# Fisher information at theta@
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fisher_info <- hsekw(par = theta@, data = data)

# Score test statistic
score_stat <- t(score_theta®) %x% solve(fisher_info) %x% score_theta®@
p_value <- pchisq(score_stat, df = 3, lower.tail = FALSE)

cat("\nScore Test:\n")

cat("HO: alpha=2.2, beta=3.2, lambda=1.8\n")

cat("Test statistic:"”, score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

## Example 6: Confidence Ellipse (Alpha vs Beta)

# Observed information

obs_info <- hsekw(par = mle, data = data)
vecov_full <- solve(obs_info)

veov_2d <- vcov_full[1:2, 1:2]

# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- qchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse[i, ] <- mle[1:2] + sqgrt(chi2_val) =*
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)
3

# Marginal confidence intervals

se_2d <- sqgrt(diag(vcov_2d))

ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot

plot(ellipse[, 11, ellipse[, 21,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Region (Alpha vs Beta)", las = 1

# Add marginal CIs
abline(v = ci_alpha, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_beta, col = "#808080", 1ty = 3, 1lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "95% CR"”, "Marginal 95% CI"),
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col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"
)
grid(col = "gray9e")

## Example 7: Confidence Ellipse (Alpha vs Lambda)

# Extract 2x2 submatrix for alpha and lambda
veov_2d_al <- vcov_fulll[c(1, 3), c(1, 3)]

# Create confidence ellipse
eig_decomp_al <- eigen(vcov_2d_al)
ellipse_al <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il]))
ellipse_al[i, ] <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_al$vectors %% diag(sqrt(eig_decomp_al$values)) %*% v)

}

# Marginal confidence intervals

se_2d_al <- sqgrt(diag(vcov_2d_al))

ci_alpha_2 <- mle[1] + c(-1, 1) * 1.96 * se_2d_al[1]
ci_lambda <- mle[3] + c(-1, 1) * 1.96 * se_2d_al[2]

# Plot

plot(ellipse_al[, 1], ellipse_al[, 21,

type = "1", 1lwd = 2, col = "#2E4057",

xlab = expression(alpha), ylab = expression(lambda),

main = "95% Confidence Region (Alpha vs Lambda)”, las = 1
)

# Add marginal CIs
abline(v = ci_alpha_2, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_lambda, col = "#808080", 1ty = 3, 1lwd = 1.5)

points(mle[1], mle[3], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")
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## Example 8: Confidence Ellipse (Beta vs Lambda)

# Extract 2x2 submatrix for beta and lambda
vcov_2d_bl <- vcov_full[2:3, 2:3]

# Create confidence ellipse
eig_decomp_bl <- eigen(vcov_2d_bl)
ellipse_bl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[il]), sin(thetal[il))
ellipse_bl[i, ] <- mle[2:3] + sqrt(chi2_val) *
(eig_decomp_bl$vectors %*% diag(sqrt(eig_decomp_bl$values)) %*% v)
3

# Marginal confidence intervals

se_2d_bl <- sqrt(diag(vcov_2d_bl))

ci_beta_2 <- mle[2] + c(-1, 1) * 1.96 * se_2d_b1[1]
ci_lambda_2 <- mle[3] + c(-1, 1) * 1.96 * se_2d_bl[2]

# Plot

plot(ellipse_bl[, 1], ellipse_bl[, 2],
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = expression(lambda),
main = "95% Confidence Region (Beta vs Lambda)”, las = 1

)

# Add marginal CIs

abline(v = ci_beta_2, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_lambda_2, col = "#808080", 1ty = 3, 1lwd = 1.5)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex

1.5)

points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

grgkw

grgkw Gradient of the Negative Log-Likelihood for the GKw Distribution
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Description

Computes the gradient vector (vector of partial derivatives) of the negative log-likelihood function
for the five-parameter Generalized Kumaraswamy (GKw) distribution. This provides the analytical
gradient, often used for efficient optimization via maximum likelihood estimation.

Usage
grgkw(par, data)

Arguments
par A numeric vector of length 5 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), gamma (v > 0), delta (6 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The components of the gradient vector of the negative log-likelihood (—V£(0|x)) are:
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Numerical stability is ensured through careful implementation, including checks for valid inputs and
handling of intermediate calculations involving potentially small or large numbers, often leveraging
the Armadillo C++ library for efficiency.
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Value

Returns a numeric vector of length 5 containing the partial derivatives of the negative log-likelihood
function —¢(6|x) with respect to each parameter: (—0¢/0a, —0L/0B, —0t /Dy, —0L/ Db, —DL/IN).
Returns a vector of NaN if any parameter values are invalid according to their constraints, or if any
value in data is not in the interval (0, 1).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

11gkw (negative log-likelihood), hsgkw (Hessian matrix), dgkw (density), optim, grad (for numeri-
cal gradient comparison), digamma

Examples

## Example 1: Basic Gradient Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, gamma = 1.5, delta = 2.0, lambda = 1.8)
data <- rgkw(n,
alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4],
lambda = true_params[5]

)

# Evaluate gradient at true parameters

grad_true <- grgkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)

cat("Norm:", sqrt(sum(grad_true*2)), "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.2, 1.5, 1.5),
c(2.0, 3.0, 1.5, 2.0, 1.8),
c(2.5, 3.5, 1.8, 2.5, 2.0)

)

grad_norms <- apply(test_params, 1, function(p) {
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g <- grgkw(p, data)
sqrt(sum(g”2))
»

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Gamma = test_params[, 3],
Delta = test_params[, 4],
Lambda = test_params[, 5],
Grad_Norm = grad_norms

)

print(results, digits = 4)

## Example 2: Gradient in Optimization

# Optimization with analytical gradient
fit_with_grad <- optim(
par = ¢c(1.5, 2.5, 1.2, 1.5, 1.5),

fn = 1llgkw,
gr = grgkw,
data = data,

method = "BFGS",

hessian = TRUE,

control = list(trace = @, maxit = 1000)
)

# Optimization without gradient
fit_no_grad <- optim(

par = c(1.5, 2.5, 1.2, 1.5, 1.5),

fn = 1lgkw,

data = data,

method = "BFGS",

hessian = TRUE,

control = list(trace = @, maxit = 1000)
)

comparison <- data.frame(
Method = c("With Gradient”, "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Gamma = c(fit_with_grad$par[3], fit_no_grad$par[3]),
Delta = c(fit_with_grad$par[4], fit_no_grad$par[4]),
Lambda = c(fit_with_grad$par[5], fit_no_grad$par[5]),
NegloglLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])
)

print(comparison, digits = 4, row.names = FALSE)

## Example 3: Verifying Gradient at MLE
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mle <- fit_with_grad$par
names(mle) <- c("alpha”, "beta”, "gamma"”, "delta”, "lambda")

# At MLE, gradient should be approximately zero
gradient_at_mle <- grgkw(par = mle, data = data)
cat(”"\nGradient at MLE:\n")

print(gradient_at_mle)

cat("Max absolute component:”, max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle*2)), "\n")

## Example 4: Numerical vs Analytical Gradient

# Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {
grad <- numeric(length(x))
for (i in seg_along(x)) {
X_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}

return(grad)

3

# Compare at MLE
grad_analytical <- grgkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llgkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha”, "beta”, "gamma”, "delta”, "lambda"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /
(abs(grad_analytical) + 1e-10)
)

print(comparison_grad, digits = 8)

## Example 5: Score Test Statistic

# Score test for HO: theta = theta@
theta® <- c(1.8, 2.8, 1.3, 1.8, 1.6)
score_theta® <- grgkw(par = thetad, data = data)

# Fisher information at theta@
fisher_info <- hsgkw(par = theta@, data = data)

# Score test statistic
score_stat <- t(score_theta®) %*% solve(fisher_info) %*% score_theta0
p_value <- pchisq(score_stat, df = 5, lower.tail = FALSE)

grgkw
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cat("\nScore Test:\n")

cat("Ho: alpha=1.8, beta=2.8, gamma=1.3, delta=1.8, lambda=1.6\n")
cat("Test statistic:", score_stat, "\n")

cat("P-value:", format.pval(p_value, digits = 4), "\n")

## Example 6: Confidence Ellipse (Alpha vs Beta)

# Observed information

obs_info <- hsgkw(par = mle, data = data)
vcov_full <- solve(obs_info)

vcov_2d <- vcov_full[1:2, 1:2]

# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = round(n / 4))
chi2_val <- qchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in T:round(n / 4)) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse[i, ] <- mle[1:2] + sqgrt(chi2_val) =*
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)
3

# Marginal confidence intervals

se_2d <- sqgrt(diag(vcov_2d))

ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot
plot(ellipsel[, 11, ellipse[, 21,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Region (Alpha vs Beta)”, las = 1

)

# Add marginal CIs
abline(v = ci_alpha, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_beta, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")
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## Example 7: Confidence Ellipse (Gamma vs Delta)

# Extract 2x2 submatrix for gamma and delta
vcov_2d_gd <- vcov_full[3:4, 3:4]

# Create confidence ellipse
eig_decomp_gd <- eigen(vcov_2d_gd)
ellipse_gd <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in 1:round(n / 4)) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_gd[i, ] <- mle[3:4] + sqgrt(chi2_val) =*
(eig_decomp_gd$vectors %x% diag(sqrt(eig_decomp_gd$values)) %*% v)
3

# Marginal confidence intervals

se_2d_gd <- sqrt(diag(vcov_2d_gd))

ci_gamma <- mle[3] + c(-1, 1) * 1.96 * se_2d_gd[1]
ci_delta <- mle[4] + c(-1, 1) * 1.96 *x se_2d_gd[2]

# Plot
plot(ellipse_gd[, 1], ellipse_gd[, 21,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "95% Confidence Region (Gamma vs Delta)”, las = 1

)

# Add marginal CIs
abline(v = ci_gamma, col = "#808080", 1ty = 3, 1lwd
abline(h = ci_delta, col "#808080", 1ty = 3, 1lwd

1.5)
1.5)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)

points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c¢(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

grkkw

grkkw Gradient of the Negative Log-Likelihood for the kkw Distribution
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Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the Kumaraswamy-Kumaraswamy (kkw) distribution with parameters alpha («), beta (53),
delta (d), and lambda (). This distribution is the special case of the Generalized Kumaraswamy
(GKw) distribution where v = 1. The gradient is typically used in optimization algorithms for
maximum likelihood estimation.

Usage

grkkw(par, data)

Arguments
par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), delta (6 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The components of the gradient vector of the negative log-likelihood (—V¢(8|x)) for the kkw (y =
1) model are:

T oa _*_Zln i)+ Zn: o) Z M 52 M}~ Boy” af In(a:)

V; w; Zi
=1 v =1 =1 v

n n A—1
—%z—ﬁ—zm A1) v; In(v;) _62)\10 o In(vy)

P
i=1 i=1 i=1 v

—% 5_'_1 Z:lnzZ

or O "L w In(w;)

where:

cv=1—2af
. wzflfvfflf(lfx )8
i=l-w}=1-[1—(—ap)]
These formulas represent the derivatives of —£(f), consistent with minimizing the negative log-
likelihood. They correspond to the general GKw gradient (grgkw) components for «, 3, §, A evalu-

ated at v = 1. Note that the component for ~y is omitted. Numerical stability is maintained through
careful implementation.
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Value

Returns a numeric vector of length 4 containing the partial derivatives of the negative log-likelihood
function —¢(6|x) with respect to each parameter: (—9¢/da, —0L/0S, —0L/Dd, —DC/IN). Returns
a vector of NaN if any parameter values are invalid according to their constraints, or if any value in
data is not in the interval (0, 1).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

grgkw (parent distribution gradient), 11kkw (negative log-likelihood for kkw), hskkw (Hessian for
kkw), dkkw (density for kkw), optim, grad (for numerical gradient comparison).

Examples

## Example 1: Basic Gradient Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, delta = 1.5, lambda = 2.0)
data <- rkkw(n,
alpha = true_params[1], beta = true_params[2],
delta = true_params[3], lambda = true_params[4]

)

# Evaluate gradient at true parameters

grad_true <- grkkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)

cat("Norm:", sqrt(sum(grad_true*2)), "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.0, 1.5),
c(2.0, 3.0, 1.5, 2.0),
c(2.5, 3.5, 2.0, 2.5)

)

grad_norms <- apply(test_params, 1, function(p) {
g <- grkkw(p, data)
sqrt(sum(g*2))
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results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 21,
Delta = test_params[, 3],
Lambda = test_params[, 4],
Grad_Norm = grad_norms

)
print(results, digits = 4)

## Example 2: Gradient in Optimization
# Optimization with analytical gradient

fit_with_grad <- optim(
par = c(1.5, 2.5, 1.0, 1.5),

fn = 1lkkw,
gr = grkkw,
data = data,

method = "BFGS",
hessian = TRUE,
control = list(trace = 0)

)

# Optimization without gradient
fit_no_grad <- optim(

par = c(1.5, 2.5, 1.0, 1.5),

fn = 11lkkw,

data = data,

method = "BFGS",

hessian = TRUE,

control = list(trace = 0)

)

comparison <- data.frame(
Method = c("With Gradient”, "Without Gradient"),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Delta = c(fit_with_grad$par[3], fit_no_grad$par[3]),
Lambda = c(fit_with_grad$par[4], fit_no_grad$par[4]),
NeglLoglLik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])
)

print(comparison, digits = 4, row.names = FALSE)

## Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha”, "beta”, "delta”, "lambda")

# At MLE, gradient should be approximately zero
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gradient_at_mle <- grkkw(par = mle, data = data)
cat("\nGradient at MLE:\n")

print(gradient_at_mle)

cat("Max absolute component:"”, max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle*2)), "\n")

## Example 4: Numerical vs Analytical Gradient

# Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {
grad <- numeric(length(x))
for (i in seq_along(x)) {
Xx_plus <- x_minus <- X
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}
return(grad)
3

# Compare at MLE
grad_analytical <- grkkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llkkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha”, "beta”, "delta”, "lambda"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /

(abs(grad_analytical) + 1e-10)
)

print(comparison_grad, digits = 8)
## Example 5: Score Test Statistic
thetad

.8)
theta0, data = data)

# Score test for HO: theta
thetad® <- c(1.8, 2.8, 1.3,
score_theta® <- -grkkw(par

n =1

# Fisher information at theta®
fisher_info <- hskkw(par = theta®, data = data)

# Score test statistic
score_stat <- t(score_theta®) %*% solve(fisher_info) %*% score_theta®
p_value <- pchisq(score_stat, df = 4, lower.tail = FALSE)

cat("\nScore Test:\n")

cat("Ho: alpha=1.8, beta=2.8, delta=1.3, lambda=1.8\n")
cat("Test statistic:"”, score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

grkkw
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## Example 6: Confidence Ellipse with Gradient Information

# For visualization, use first two parameters (alpha, beta)
# Observed information

obs_info <- hskkw(par = mle, data = data)

vcov_full <- solve(obs_info)

vcov_2d <- vcov_full[1:2, 1:2]

# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- qchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse[i, ] <- mle[1:2] + sqgrt(chi2_val) =*
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)
3

# Marginal confidence intervals

se_2d <- sqgrt(diag(vcov_2d))

ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot
plot(ellipsel[, 11, ellipse[, 21,

type = "1", 1lwd = 2, col = "#2E4057",

xlab = expression(alpha), ylab = expression(beta),

main = "95% Confidence Region (Alpha vs Beta)”, las = 1
)

# Add marginal CIs
abline(v = ci_alpha, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_beta, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")
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grkw Gradient of the Negative Log-Likelihood for the Kumaraswamy (Kw)
Distribution

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the two-parameter Kumaraswamy (Kw) distribution with parameters alpha («) and beta
(). This provides the analytical gradient often used for efficient optimization via maximum likeli-
hood estimation.

Usage

grkw(par, data)

Arguments
par A numeric vector of length 2 containing the distribution parameters in the order:
alpha (a > 0), beta (6 > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The components of the gradient vector of the negative log-likelihood (—V¢(6|x)) for the Kw model
are:

o - k)
o= D+ (- )

=1
ol n -
_% = _E — i:E - 111(%)

where v; = 1 — z%. These formulas represent the derivatives of —¢(#), consistent with minimiz-
ing the negative log-likelihood. They correspond to the relevant components of the general GKw
gradient (grgkw) evaluated aty = 1,0 =0, A = 1.

Value

Returns a numeric vector of length 2 containing the partial derivatives of the negative log-likelihood
function —¢(6|x) with respect to each parameter: (—d¢/da, —0¢/0f3). Returns a vector of NaN if
any parameter values are invalid according to their constraints, or if any value in data is not in the
interval (O, 1).

Author(s)
Lopes, J. E.
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References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), 11kw (negative log-likelihood for Kw), hskw (Hessian for Kw,
if available), dkw (density for Kw), optim, grad (for numerical gradient comparison).

Examples

## Example 1: Basic Gradient Evaluation

# Generate sample data

set.seed(123)

n <- 1000

true_params <- c(alpha = 2.5, beta = 3.5)

data <- rkw(n, alpha = true_params[1], beta = true_params[2])

# Evaluate gradient at true parameters

grad_true <- grkw(par = true_params, data = data)
cat("Gradient at true parameters:\n")
print(grad_true)

cat("Norm:", sqrt(sum(grad_true*2)), "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
c(2.5, 3.5),
c(3.0, 4.0)

)

grad_norms <- apply(test_params, 1, function(p) {
g <- grkw(p, data)
sqrt(sum(g*2))

)

results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Grad_Norm = grad_norms

)
print(results, digits = 4)

## Example 2: Gradient in Optimization
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# Optimization with analytical gradient
fit_with_grad <- optim(

par = c(2, 2),

fn = 11lkw,

gr = grkw,

data = data,

method = "BFGS",

hessian = TRUE,

control = list(trace = 0)

# Optimization without gradient
fit_no_grad <- optim(

par = c(2, 2),
fn = 11kw,
data = data,

method = "BFGS",
hessian = TRUE,
control = list(trace = @)

)

comparison <- data.frame(
Method = c("With Gradient”, "Without Gradient”),
Alpha = c(fit_with_grad$par[1], fit_no_grad$par[1]),
Beta = c(fit_with_grad$par[2], fit_no_grad$par[2]),
Negloglik = c(fit_with_grad$value, fit_no_grad$value),
Iterations = c(fit_with_grad$counts[1], fit_no_grad$counts[1])
)

print(comparison, digits = 4, row.names = FALSE)

## Example 3: Verifying Gradient at MLE

mle <- fit_with_grad$par
names(mle) <- c("alpha”, "beta")

# At MLE, gradient should be approximately zero
gradient_at_mle <- grkw(par = mle, data = data)

cat(”"\nGradient at MLE:\n")

print(gradient_at_mle)

cat("Max absolute component:"”, max(abs(gradient_at_mle)), "\n")
cat("Gradient norm:", sqrt(sum(gradient_at_mle*2)), "\n")

## Example 4: Numerical vs Analytical Gradient

# Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {
grad <- numeric(length(x))
for (i in seg_along(x)) {
Xx_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h

grkw
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grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}

return(grad)

}

# Compare at several points
test_points <- rbind(

c(1.5, 2.5),
c(2.90, 3.0),
mle,

c(3.0, 4.0)

)

cat("\nNumerical vs Analytical Gradient Comparison:\n")

for (i in 1:nrow(test_points)) {
grad_analytical <- grkw(par = test_points[i, ], data = data)
grad_numerical <- numerical_gradient(llkw, test_points[i, ], data)

cat(
"\nPoint", i, ": alpha =", test_points[i, 1],
", beta =", test_points[i, 2], "\n"

)

n n

comparison <- data.frame(
Parameter = c("alpha”, "beta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Abs_Diff = abs(grad_analytical - grad_numerical),
Rel_Error = abs(grad_analytical - grad_numerical) /
(abs(grad_analytical) + 1e-10)
)

print(comparison, digits = 8)

## Example 5: Gradient Path Visualization

# Create grid

alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = 20)
beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = 20)
alpha_grid <- alpha_grid[alpha_grid > 0]

beta_grid <- beta_grid[beta_grid > @]

# Compute gradient vectors
grad_alpha <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))
grad_beta <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))

for (i in seq_along(alpha_grid)) {
for (j in seqg_along(beta_grid)) {
g <- grkw(c(alpha_grid[i], beta_grid[j]), data)
grad_alphali, jJ] <- -g[1] # Negative for gradient ascent
grad_betali, j] <- -g[2]
}
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# Plot gradient field

plot(mle[1], mle[2],
pch = 19, col = "#8B000O", cex = 1.5,
xlim = range(alpha_grid), ylim = range(beta_grid),
xlab = expression(alpha), ylab = expression(beta),
main = "Gradient Vector Field”, las = 1

# Subsample for clearer visualization
step <- 2
for (i in seq(1, length(alpha_grid), by = step)) {
for (j in seq(1, length(beta_grid), by = step)) {
arrows(alpha_grid[i], beta_grid[j],
alpha_grid[i] + .05 * grad_alphali, jl,
beta_grid[j] + .05 * grad_betali, jI,
length = 0.05, col = "#2E4057", 1lwd = 1
)
}
}

points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
legend("topright”,
legend = c("MLE", "True"),
col = c("#8B0000", "#006400"),
pch = c(19, 17), bty = "n"
)
grid(col = "gray90")

## Example 6: Score Test Statistic

# Score test for HO: theta = theta0
thetad <- c(2, 3)
score_thetad <- -grkw(par = theta®, data = data) # Score is negative gradient

# Fisher information at theta® (using Hessian)
fisher_info <- hskw(par = theta@, data = data)

# Score test statistic
score_stat <- t(score_theta®) %*% solve(fisher_info) %*% score_theta0
p_value <- pchisq(score_stat, df = 2, lower.tail = FALSE)

cat("\nScore Test:\n")

cat("Ho: alpha = 2, beta = 3\n")

cat("Score vector:"”, score_theta@, "\n")

cat("Test statistic:"”, score_stat, "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")
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grmc Gradient of the Negative Log-Likelihood for the McDonald (Mc)/Beta
Power Distribution

Description

Computes the gradient vector (vector of first partial derivatives) of the negative log-likelihood func-
tion for the McDonald (Mc) distribution (also known as Beta Power) with parameters gamma (7y),
delta (d), and lambda (). This distribution is the special case of the Generalized Kumaraswamy
(GKw) distribution where o = 1 and 3 = 1. The gradient is useful for optimization.

Usage

grmc(par, data)

Arguments
par A numeric vector of length 3 containing the distribution parameters in the order:
gamma (y > 0), delta (6 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The components of the gradient vector of the negative log-likelihood (—V¢(6|x)) for the Mc (« =
1, 8 = 1) model are:

v
~5y = n[(y+8+1) — )\Zlnxl

or

7%:71['1/)(’)/4*54*1) P(6+1)] Zlnlfx

a———f—vzlnxl —1—5235 lnx;

7

where () is the digamma function (digamma). These formulas represent the derivatives of —¢(6),
consistent with minimizing the negative log-likelihood. They correspond to the relevant compo-
nents of the general GKw gradient (grgkw) evaluated at « = 1, 5 = 1.

Value

Returns a numeric vector of length 3 containing the partial derivatives of the negative log-likelihood
function —¢(60|x) with respect to each parameter: (—9¢/0v, —0¢/05, —0¢/ON). Returns a vector
of NaN if any parameter values are invalid according to their constraints, or if any value in data is
not in the interval (0, 1).
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Author(s)
Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific gradient formulas might be derived or sourced from additional references).

See Also

grgkw (parent distribution gradient), 11mc (negative log-likelihood for Mc), hsmc (Hessian for Mc,
if available), dmc (density for Mc), optim, grad (for numerical gradient comparison), digamma.

Examples

## Example 1: Basic Examples

# Generate sample data with more stable parameters
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 2.5, lambda = 1.5)
data <- rmc(n,

gamma = true_params[1], delta = true_params[2],

lambda = true_params[3]

)

# Evaluate Hessian at true parameters

hess_true <- hsmc(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

# Check symmetry
cat(
"\nSymmetry check (max |H - H*T|):",
max (abs(hess_true - t(hess_true))), "\n”

)
## Example 2: Hessian Properties at MLE
# Fit model

fit <- optim(
par = c(1.5, 2.0, 1.0),

fn = 1llmc,
gr = grmc,
data = data,

method = "BFGS”,
hessian = TRUE
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mle <- fit$par
names(mle) <- c("gamma", "delta”, "lambda")

# Hessian at MLE

hessian_at_mle <- hsmc(par = mle, data = data)
cat(”"\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",

max (abs(hessian_at_mle - fit$hessian)), "\n”

)

# Eigenvalue analysis

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")

print(eigenvals)

cat(”"\nPositive definite:"”, all(eigenvals > @), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

# Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("gamma”, "delta”, "lambda")

# Correlation matrix

corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(

Parameter = c("gamma"”, "delta”, "lambda"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - z_crit * se,
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CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(

c(1.5, 2.0, 1.0),

c(2.0, 2.5, 1.5),

mle,

c(2.5, 3.0, 2.9)
)

hess_properties <- data.frame(
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE
)

for (i in 1:nrow(test_params)) {
H <- hsmc(par = test_params[i, ], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Gamma = test_params[i, 1],
Delta = test_params[i, 2],
Lambda = test_params[i, 3],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

)

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

## Example 5: Curvature Visualization (All pairs side by side)

# Create grids around MLE with wider range (%1.5)

gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 25)
lambda_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 25)

grmce
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gamma_grid <- gamma_grid[gamma_grid > 0]
delta_grid <- delta_grid[delta_grid > 0]
lambda_grid <- lambda_grid[lambda_grid > @]

# Compute curvature measures for all pairs
determinant_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))
trace_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))

determinant_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))
trace_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))

determinant_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))
trace_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))

# Gamma vs Delta
for (i in seqg_along(gamma_grid)) {
for (j in seqg_along(delta_grid)) {
H <- hsmc(c(gamma_grid[i], delta_grid[j], mle[3]), data)
determinant_surface_gd[i, j] <- det(H)
trace_surface_gd[i, j] <- sum(diag(H))
}
3

# Gamma vs Lambda
for (i in seg_along(gamma_grid)) {
for (j in seqg_along(lambda_grid)) {
H <- hsmc(c(gamma_grid[i], mle[2], lambda_grid[j]), data)
determinant_surface_gl[i, j] <- det(H)
trace_surface_gl[i, j] <- sum(diag(H))
}
3

# Delta vs Lambda
for (i in seqg_along(delta_grid)) {
for (j in seqg_along(lambda_grid)) {
H <- hsmc(c(mle[1], delta_grid[i], lambda_grid[j]), data)
determinant_surface_dl[i, j] <- det(H)
trace_surface_dl[i, j] <- sum(diag(H))
}
3

# Plot

# Determinant plots
contour(gamma_grid, delta_grid, determinant_surface_gd,

xlab = expression(gamma), ylab = expression(delta),

main = "Determinant: Gamma vs Delta”, las = 1,

col = "#2E4057", 1wd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")
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contour(gamma_grid, lambda_grid, determinant_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Determinant: Gamma vs Lambda”, las = 1,
col = "#2E4057", 1lwd = 1.5, nlevels

)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex

grmce

points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col = "gray9e0")

contour(delta_grid, lambda_grid, determinant_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Determinant: Delta vs Lambda”, las =1,
col = "#2E4057", 1lwd = 1.5, nlevels

)

points(mle[2], mle[3], pch = 19, col = "#8B000Q", cex

points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col = "gray9e0")

# Trace plots

contour(gamma_grid, delta_grid, trace_surface_gd,
xlab = expression(gamma), ylab = expression(delta),
main = "Trace: Gamma vs Delta”, las =
col = "#2E4057", lwd = 1.5, nlevels

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex
points(true_params[1], true_params[2], pch = 17,

grid(col = "gray9e")

contour(gamma_grid, lambda_grid, trace_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Trace: Gamma vs Lambda", las
col = "#2E4057", lwd = 1.5, nlevels = 15

)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex
points(true_params[1], true_params[3], pch = 17,

grid(col = "gray9e")

contour(delta_grid, lambda_grid, trace_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Trace: Delta vs Lambda"”, las
col = "#2E4057", lwd = 1.5, nlevels

)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex
points(true_params[2], true_params[3], pch = 17,

grid(col = "gray9e")

legend("topright”,

legend = c("MLE", "True"),

col
pch
bty

c("#8B0000", "#006400"),
c(19, 17),

"o

n", cex = 0.8

col = "#006400", cex = 1.5)

col = "#006400", cex = 1.5)

col = "#006400", cex = 1.5)
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## Example 6: Confidence Ellipses (All pairs side by side)

# Extract all 2x2 submatrices

vecov_gd <- vcov_matrix[1:2, 1:2]

veov_gl <- vcov_matrix[c(1, 3), c(1, 3)]
vcov_dl <- vcov_matrix[2:3, 2:3]

# Create confidence ellipses
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- qgchisq(@.95, df = 2)

# Gamma vs Delta ellipse
eig_decomp_gd <- eigen(vcov_gd)
ellipse_gd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_gd[i, ] <- mle[1:2] + sqgrt(chi2_val) =*
(eig_decomp_gd$vectors %*% diag(sqrt(eig_decomp_gd$values)) %*x% v)
3

# Gamma vs Lambda ellipse
eig_decomp_gl <- eigen(vcov_gl)
ellipse_gl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(theta[i]), sin(thetal[il))
ellipse_gl[i, 1 <- mle[c(1, 3)] + sqgrt(chi2_val) x
(eig_decomp_gl$vectors %*% diag(sqrt(eig_decomp_gl$values)) %*x% v)
3

# Delta vs Lambda ellipse
eig_decomp_dl <- eigen(vcov_dl)
ellipse_dl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_d1l[i, ] <- mle[2:3] + sqgrt(chi2_val) =*
(eig_decomp_dl$vectors %x% diag(sqrt(eig_decomp_dl$values)) %*% v)
3

# Marginal confidence intervals

se_gd <- sqgrt(diag(vcov_gd))

ci_gamma_gd <- mle[1] + c(-1, 1) * 1.96 * se_gd[1]
ci_delta_gd <- mle[2] + c(-1, 1) * 1.96 * se_gd[2]

se_gl <- sqgrt(diag(vcov_gl))
ci_gamma_gl <- mle[1] + c(-1, 1) *x 1.96 * se_gl[1]
ci_lambda_gl <- mle[3] + c(-1, 1) * 1.96 * se_gl[2]

se_dl <- sqrt(diag(vcov_dl))
ci_delta_dl <- mle[2] + c(-1, 1) * 1.96 * se_dl[1]
ci_lambda_dl <- mle[3] + c(-1, 1) * 1.96 * se_dl[2]

59
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# Plot

# Gamma vs Delta
plot(ellipse_gd[, 1], ellipse_gd[, 21,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),

main = "Gamma vs Delta”, las = 1, xlim = range(ellipse_gd[, 11, ci_gamma_gd),

ylim = range(ellipse_gd[, 2], ci_delta_gd)
)
abline(v = ci_gamma_gd, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_delta_gd, col = "#808080", 1ty = 3, lwd = 1.5)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex
grid(col = "gray90")

# Gamma vs Lambda
plot(ellipse_gl[, 1], ellipse_gl[, 21,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(lambda),

main = "Gamma vs Lambda”, las = 1, xlim = range(ellipse_gl[, 11, ci_

ylim = range(ellipse_gl[, 2], ci_lambda_gl)
)
abline(v = ci_gamma_gl, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_lambda_gl, col = "#808080", 1ty = 3, 1lwd = 1.5)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex
grid(col = "gray9e0")

# Delta vs Lambda
plot(ellipse_dl[, 1], ellipse_dl[, 21,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = expression(lambda),

main = "Delta vs Lambda”, las = 1, xlim = range(ellipse_dl[, 1], ci_

ylim = range(ellipse_dl[, 2], ci_lambda_dl)
)
abline(v = ci_delta_dl, col = "#808080", lty = 3, lwd = 1.5)
abline(h = ci_lambda_dl, col = "#808080", 1ty = 3, lwd = 1.5)
points(mle[2], mle[3], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex
grid(col = "gray9e")

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n", cex = 0.8

=1.5)

gamma_gl),

=1.5)

delta_dl),

= 1.5)

grmce
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hsbeta Hessian Matrix of the Negative Log-Likelihood for the Beta Distribu-
tion (gamma, delta+1 Parameterization)

Description

Computes the analytic 2x2 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the standard Beta distribution, using a parameterization common in
generalized distribution families. The distribution is parameterized by gamma () and delta (9),
corresponding to the standard Beta distribution with shape parameters shape1 = gamma and shape2
=delta + 1. The Hessian is useful for estimating standard errors and in optimization algorithms.

Usage
hsbeta(par, data)

Arguments
par A numeric vector of length 2 containing the distribution parameters in the order:
gamma (y > 0), delta (6 > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion (—£(6|x)) for a Beta distribution with parameters shape1 = gamma () and shape2 = delta + 1
(6 + 1). The components of the Hessian matrix (—H(6)) are:

2
~ gz = Al )~ ¥y + 54 1)

o V'(y+6+1)
— = _n
9700 i
%0 , ,
o952 =n'(0+1) = (y+0+1)]

where 1)’ (-) is the trigamma function (trigamma). These formulas represent the second derivatives
of —£(8), consistent with minimizing the negative log-likelihood. They correspond to the relevant
2x2 submatrix of the general GKw Hessian (hsgkw) evaluated at « = 1,58 = 1, A = 1. Note the

parameterization difference from the standard Beta distribution (shape2 = delta + 1).

The returned matrix is symmetric.

Value

Returns a 2x2 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, —9%¢/(00;00;), where 0 = (y, ). Returns a 2x2 matrix populated with NaN if any parameter
values are invalid according to their constraints, or if any value in data is not in the interval (0, 1).
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Author(s)
Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw, hsmc (related Hessians), 11beta (negative log-likelihood function), grbeta (gradient, if
available), dbeta_, pbeta_, gbeta_, rbeta_, optim, hessian (for numerical Hessian comparison),
trigamma.

Examples

## Example 1: Basic Hessian Evaluation

# Generate sample data

set.seed(123)

n <- 1000

true_params <- c(gamma = 2.0, delta = 3.0)

data <- rbeta_(n, gamma = true_params[1], delta = true_params[2])

# Evaluate Hessian at true parameters

hess_true <- hsbeta(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

# Check symmetry
cat(
"\nSymmetry check (max |H - H*T|):",
max (abs(hess_true - t(hess_true))), "\n”

)

## Example 2: Hessian Properties at MLE

# Fit model
fit <- optim(
par = c(1.5, 2.5),

fn = llbeta,
gr = grbeta,
data = data,

method = "L-BFGS-B”,
lower = c(0.01, 0.01),
upper = c(100, 100),
hessian = TRUE
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mle <- fit$par
names(mle) <- c("gamma"”, "delta")

# Hessian at MLE

hessian_at_mle <- hsbeta(par = mle, data = data)
cat(”"\nHessian at MLE:\n")

print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",

max (abs(hessian_at_mle - fit$hessian)), "\n”

)

# Eigenvalue analysis

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")

print(eigenvals)

cat(”"\nPositive definite:"”, all(eigenvals > @), "\n")
cat("Condition number:", max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

# Standard errors
se <- sqrt(diag(vcov_matrix))
names(se) <- c("gamma”, "delta")

# Correlation matrix

corr_matrix <- cov2cor(vcov_matrix)
cat("\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(

Parameter = c("gamma”, "delta"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - z_crit * se,
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CI_Upper = mle + z_crit * se

)
print(results, digits = 4)

cat(sprintf(
"\nMLE corresponds approx to Beta(%.2f, %.2f)\n",
mle[1], mle[2] + 1

)

cat(
"True corresponds to Beta(%.2f, %.2f)\n",
true_params[1], true_params[2] + 1

)

## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
mle,

c(2.5, 3.5)

)

hess_properties <- data.frame(
Gamma = numeric(),
Delta = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hsbeta(par = test_params[i, ], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(

Gamma = test_params[i, 1],

Delta = test_params[i, 2],
Determinant = det(H),

Trace = sum(diag(H)),

Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

D)
}

cat(”"\nHessian Properties at Different Points:\n")

print(hess_properties, digits = 4, row.names = FALSE)

hsbeta
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## Example 5: Curvature Visualization (Gamma vs Delta)

# Create grid around MLE

gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 25)
gamma_grid <- gamma_grid[gamma_grid > 0]

delta_grid <- delta_grid[delta_grid > 0]

# Compute curvature measures
determinant_surface <- matrix(NA,
nrow = length(gamma_grid),
ncol = length(delta_grid)
)
trace_surface <- matrix(NA,
nrow = length(gamma_grid),
ncol = length(delta_grid)
)

for (i in seqg_along(gamma_grid)) {
for (j in seqg_along(delta_grid)) {
H <- hsbeta(c(gamma_grid[i], delta_grid[j]), data)
determinant_surfacel[i, j] <- det(H)
trace_surfacel[i, j] <- sum(diag(H))
}
3

# Plot

contour(gamma_grid, delta_grid, determinant_surface,

xlab = expression(gamma), ylab = expression(delta),

main = "Hessian Determinant”, las =1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

contour(gamma_grid, delta_grid, trace_surface,

xlab = expression(gamma), ylab = expression(delta),

main = "Hessian Trace”, las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

## Example 6: Confidence Ellipse (Gamma vs Delta)

# Extract 2x2 submatrix (full matrix in this case)
vcov_2d <- vcov_matrix
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# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- qgchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)

for (i in 1:100) {

v <- c(cos(thetal[i]), sin(thetal[il))
ellipse[i, ] <- mle + sqrt(chi2_val) =*
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)

}

# Marginal confidence intervals

se_2d <- sqrt(diag(vcov_2d))

ci_gamma <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_delta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot

plot(ellipsel[, 11, ellipse[, 21,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "95% Confidence Ellipse (Gamma vs Delta)", las =1

)

# Add marginal CIs

abline(v = ci_gamma, col = "#808080", lty
abline(h = ci_delta, col = "#808080", 1ty = 3, 1lwd

3, lwd

1.5)
1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,

legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#308080"),
pch = c¢(19, 17, NA, NA),

1ty = c(NA, NA, 1, 3),

lwd = c(NA, NA, 2, 1.5),

bty = "n”
)

grid(col = "gray9e0")

hsbkw

Hessian Matrix of the Negative Log-Likelihood for the BKw Distribu-
tion

Description

Computes the analytic 4x4 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the Beta-Kumaraswamy (BKw) distribution with parameters alpha (),
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beta (3), gamma (), and delta (§). This distribution is the special case of the Generalized Ku-
maraswamy (GKw) distribution where A = 1. The Hessian is useful for estimating standard errors
and in optimization algorithms.

Usage
hsbkw(par, data)

Arguments
par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), gamma (y > 0), delta (§ > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the BKw log-likelihood (A = 1 case of GKw, see 11bkw):

n

£(6]x) = () +In(8)~In B(y,6+1)1+)_[(a—1) In(w;)+(B(5+1)—1) In(v;)+(y~1) In(w;)]

i=1

where 6 = (a, 8,7, 9), B(a,b) is the Beta function (beta), and intermediate terms are:
e v =1-—2x¢
cwy=1-0=1-(1—2%)p

8%0(6]x)

The Hessian matrix returned contains the elements — 90,90, for 0;,0; € {«a, 8,7, 6}.

Key properties of the returned matrix:
* Dimensions: 4x4.
e Symmetry: The matrix is symmetric.
* Ordering: Rows and columns correspond to the parameters in the order «, 3,7, d.

* Content: Analytic second derivatives of the negative log-likelihood.
This corresponds to the relevant 4x4 submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at A = 1.
The exact analytical formulas are implemented directly.
Value

Returns a 4x4 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, —9%¢/(060,00;), where § = (a, 3,7,5). Returns a 4x4 matrix populated with NaN if any
parameter values are invalid according to their constraints, or if any value in data is not in the
interval (0, 1).

Author(s)
Lopes, J. E.
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References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,
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(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), 11bkw (negative log-likelihood for BKw), grbkw (gradient for
BKw, if available), dbkw (density for BKw), optim, hessian (for numerical Hessian comparison).

Examples

## Example 1: Basic Hessian Evaluation
# Generate sample data
set.seed(2203)
n <- 1000
true_params <- c(alpha = 2.0, beta = 1.5, gamma = 1.5, delta = 0.5)
data <- rbkw(n,
alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4]

)

# Evaluate Hessian at true parameters

hess_true <- hsbkw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

# Check symmetry
cat(
"\nSymmetry check (max |H - H*T|):",
max (abs(hess_true - t(hess_true))), "\n"

)
## Example 2: Hessian Properties at MLE
# Fit model

fit <- optim(
par = c(1.8, 1.2, 1.1, 0.3),

fn = 1lbkw,
gr = grbkw,
data = data,

method = "Nelder-Mead”,
hessian = TRUE
)

mle <- fit$par
names(mle) <- c("alpha”, "beta”, "gamma"”, "delta")
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# Hessian at MLE

hessian_at_mle <- hsbkw(par = mle, data = data)
cat(”"\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:"”,

max (abs(hessian_at_mle - fit$hessian)), "\n"

)

# Eigenvalue analysis

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")

print(eigenvals)

cat(”\nPositive definite:”, all(eigenvals > @), "\n")
cat("Condition number:"”, max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

# Standard errors
se <- sgrt(diag(vcov_matrix))
names(se) <- c("alpha”, "beta", "gamma"”, "delta")

# Correlation matrix

corr_matrix <- cov2cor(vcov_matrix)
cat(”"\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(

Parameter = c("alpha”, "beta”, "gamma"”, "delta"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se
)
print(results, digits = 4)
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## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(
c(1.5, 1.0, 1.0, 0.3),
c(2.9, 1.5, 1.5, 0.5),
mle,
c(2.5, 2.9, 2.0, 0.7)
)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE
)

for (i in 1:nrow(test_params)) {
H <- hsbkw(par = test_params[i, ], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
Beta = test_params[i, 2],
Gamma = test_params[i, 3],
Delta = test_params[i, 4],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

D)

3

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

## Example 5: Curvature Visualization (Selected pairs)

# Create grids around MLE with wider range (%1.5)

alpha_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)

beta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out
gamma_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out
delta_grid <- seq(mle[4] - 1.5, mle[4] + 1.5, length.out

alpha_grid <- alpha_grid[alpha_grid > 0]

25)

25)
25)
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beta_grid <- beta_grid[beta_grid > @]
gamma_grid <- gamma_grid[gamma_grid > 0]
delta_grid <- delta_grid[delta_grid > 0]

# Compute curvature measures for selected pairs
determinant_surface_ab <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))
trace_surface_ab <- matrix(NA, nrow = length(alpha_grid), ncol = length(beta_grid))

determinant_surface_ag <- matrix(NA, nrow = length(alpha_grid), ncol = length(gamma_grid))
trace_surface_ag <- matrix(NA, nrow = length(alpha_grid), ncol = length(gamma_grid))

determinant_surface_bd <- matrix(NA, nrow = length(beta_grid), ncol = length(delta_grid))
trace_surface_bd <- matrix(NA, nrow = length(beta_grid), ncol = length(delta_grid))

# Alpha vs Beta
for (i in seqg_along(alpha_grid)) {
for (j in seg_along(beta_grid)) {
H <- hsbkw(c(alpha_grid[i], beta_grid[j], mle[3], mle[4]), data)
determinant_surface_ab[i, j] <- det(H)
trace_surface_ab[i, j] <- sum(diag(H))
}
}

# Alpha vs Gamma
for (i in seqg_along(alpha_grid)) {
for (j in seg_along(gamma_grid)) {
H <- hsbkw(c(alpha_grid[i], mle[2], gamma_grid[j], mle[4]), data)
determinant_surface_ag[i, j] <- det(H)
trace_surface_agl[i, j] <- sum(diag(H))
}
3

# Beta vs Delta
for (i in seqg_along(beta_grid)) {
for (j in seqg_along(delta_grid)) {
H <- hsbkw(c(mle[1], beta_grid[i], mle[3], delta_grid[j]), data)
determinant_surface_bd[i, j] <- det(H)
trace_surface_bd[i, j] <- sum(diag(H))
}
3

# Plot selected curvature surfaces

# Determinant plots
contour(alpha_grid, beta_grid, determinant_surface_ab,

xlab = expression(alpha), ylab = expression(beta),

main = "Determinant: Alpha vs Beta”, las =1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000R®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")



hsbkw

contour(alpha_grid, gamma_grid, determinant_surface_ag,

xlab = expression(alpha), ylab = expression(gamma),

main = "Determinant: Alpha vs Gamma", las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[3], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

contour(beta_grid, delta_grid, determinant_surface_bd,

xlab = expression(beta), ylab = expression(delta),

main = "Determinant: Beta vs Delta”, las =1,

col = "#2E4057", 1wd = 1.5, nlevels = 15
)
points(mle[2], mle[4], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

# Trace plots
contour(alpha_grid, beta_grid, trace_surface_ab,

xlab = expression(alpha), ylab = expression(beta),

main = "Trace: Alpha vs Beta”, las =1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

contour(alpha_grid, gamma_grid, trace_surface_ag,

xlab = expression(alpha), ylab = expression(gamma),

main = "Trace: Alpha vs Gamma”, las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

contour(beta_grid, delta_grid, trace_surface_bd,

xlab = expression(beta), ylab = expression(delta),

main = "Trace: Beta vs Delta”, las =1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright”,
legend = c("MLE", "True"),
col = c("#8B0000", "#006400"),
pch = c(19, 17),
bty = "n", cex = 0.8
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## Example 6: Confidence Ellipses (Selected pairs)

# Extract selected 2x2 submatrices
vcov_ab <- vcov_matrix[1:2, 1:2]

vcov_ag <- vcov_matrix[c(1, 3), c(1, 3)]
vcov_bd <- vcov_matrix[c(2, 4), c(2, 4)]

# Create confidence ellipses
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- gchisq(@.95, df = 2)

# Alpha vs Beta ellipse
eig_decomp_ab <- eigen(vcov_ab)
ellipse_ab <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_ab[i, ] <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp_ab$vectors %*% diag(sqrt(eig_decomp_ab$values)) %*% v)
3

# Alpha vs Gamma ellipse
eig_decomp_ag <- eigen(vcov_ag)
ellipse_ag <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_agl[i, 1 <- mle[c(1, 3)] + sqgrt(chi2_val) x
(eig_decomp_ag$vectors %*% diag(sqrt(eig_decomp_ag$values)) %*% v)
3

# Beta vs Delta ellipse
eig_decomp_bd <- eigen(vcov_bd)
ellipse_bd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[il]), sin(thetal[il))
ellipse_bd[i, 1 <- mle[c(2, 4)] + sqgrt(chi2_val) x
(eig_decomp_bd$vectors %x% diag(sqrt(eig_decomp_bd$values)) %*% v)
3

# Marginal confidence intervals

se_ab <- sqrt(diag(vcov_ab))

ci_alpha_ab <- mle[1] + c(-1, 1) * 1.96 * se_ab[1]
ci_beta_ab <- mle[2] + c(-1, 1) * 1.96 * se_ab[2]

se_ag <- sqrt(diag(vcov_ag))
ci_alpha_ag <- mle[1] + c(-1, 1) * 1.96 * se_ag[1]
ci_gamma_ag <- mle[3] + c(-1, 1) *x 1.96 * se_ag[2]

se_bd <- sqgrt(diag(vcov_bd))
ci_beta_bd <- mle[2] + c(-1, 1) * 1.96 * se_bd[1]
ci_delta_bd <- mle[4] + c(-1, 1) * 1.96 * se_bd[2]

# Plot selected ellipses side by side
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# Alpha vs Beta
plot(ellipse_ab[, 1], ellipse_ab[, 217,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "Alpha vs Beta”, las = 1, xlim = range(ellipse_ab[, 1], ci_alpha_ab),
ylim = range(ellipse_ab[, 2], ci_beta_ab)
)
abline(v = ci_alpha_ab, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_beta_ab, col = "#808080", 1ty = 3, lwd = 1.5)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

# Alpha vs Gamma
plot(ellipse_agl[, 1], ellipse_ag[, 21,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(gamma),

main = "Alpha vs Gamma", las = 1, xlim = range(ellipse_ag[, 11, ci_alpha_ag),
ylim = range(ellipse_ag[, 2], ci_gamma_ag)

)

abline(v = ci_alpha_ag, col = "#808080", 1ty = 3, lwd = 1.5)

abline(h = ci_gamma_ag, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)

points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

# Beta vs Delta
plot(ellipse_bd[, 1], ellipse_bd[, 2],
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = expression(delta),
main = "Beta vs Delta”, las = 1, xlim = range(ellipse_bd[, 11, ci_beta_bd),
ylim = range(ellipse_bd[, 2], ci_delta_bd)
)
abline(v = ci_beta_bd, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_delta_bd, col = "#808080", lty = 3, lwd = 1.5)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

legend("topright”,
legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#38B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),

non

bty = "n", cex = 0.8
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hsekw Hessian Matrix of the Negative Log-Likelihood for the EKw Distribu-
tion

Description

Computes the analytic 3x3 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the Exponentiated Kumaraswamy (EKw) distribution with parameters
alpha («), beta (), and lambda (A). This distribution is the special case of the Generalized
Kumaraswamy (GKw) distribution where v = 1 and 6 = 0. The Hessian is useful for estimating
standard errors and in optimization algorithms.

Usage

hsekw(par, data)

Arguments
par A numeric vector of length 3 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the EKw log-likelihood (y = 1, = 0 case of GKw, see 11ekw):

(0]x) = n[ln(A) +In(a) + In(B)] + Z[(a — D n(z;) + (6 — 1) In(v;) + (A = 1) In(w;)]

where 6 = («, 8, \) and intermediate terms are:

s v, =1—za¢

cwy=1—0=1—(1—2%)p

2
The Hessian matrix returned contains the elements — %g‘;;) for 6,6, € {a, B, \}.

Key properties of the returned matrix:

* Dimensions: 3x3.

* Symmetry: The matrix is symmetric.

* Ordering: Rows and columns correspond to the parameters in the order «, 3, \.
» Content: Analytic second derivatives of the negative log-likelihood.

This corresponds to the relevant 3x3 submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at v =
1,6 = 0. The exact analytical formulas are implemented directly.
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Value

Returns a 3x3 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, —9%¢/(00,00;), where § = (c, 3, \). Returns a 3x3 matrix populated with NaN if any param-
eter values are invalid according to their constraints, or if any value in data is not in the interval (0,

1.

Author(s)
Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), 11ekw (negative log-likelihood for EKw), grekw (gradient for
EKw, if available), dekw (density for EKw), optim, hessian (for numerical Hessian comparison).

Examples

## Example 1: Basic Hessian Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5, lambda = 2.0)
data <- rekw(n,
alpha = true_params[1], beta = true_params[2],
lambda = true_params[3]

)

# Evaluate Hessian at true parameters

hess_true <- hsekw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

# Check symmetry
cat(
"\nSymmetry check (max |H - H*T|):",
max (abs(hess_true - t(hess_true))), "\n"

)
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## Example 2: Hessian Properties at MLE

# Fit model
fit <- optim(
par = c(2, 3, 1.5),

fn = 1llekw,
gr = grekw,
data = data,

method = "BFGS",
hessian = TRUE

mle <- fit$par
names(mle) <- c("alpha”, "beta”, "lambda")

# Hessian at MLE

hessian_at_mle <- hsekw(par = mle, data = data)
cat(”\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",

max (abs(hessian_at_mle - fit$hessian)), "\n"

)

# Eigenvalue analysis

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")

print(eigenvals)

cat("\nPositive definite:", all(eigenvals > @), "\n")
cat("Condition number:"”, max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

# Standard errors
se <- sgrt(diag(vcov_matrix))
names(se) <- c("alpha”, "beta”, "lambda")

# Correlation matrix
corr_matrix <- cov2cor(vcov_matrix)
cat(”"\nCorrelation Matrix:\n")
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print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(
Parameter = c("alpha”, "beta”, "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se
)
print(results, digits = 4)

## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(

c(2.0, 3.0, 1.5),

c(2.5, 3.5, 2.0),

mle,

c(3.0, 4.0, 2.5)
)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE
)

for (i in 1:nrow(test_params)) {
H <- hsekw(par = test_params[i, ], data =
eigs <- eigen(H, only.values = TRUE)$value

hess_properties <- rbind(hess_properties, data.frame(

Alpha = test_params[i, 1],

Beta = test_params[i, 2],

Lambda = test_params[i, 3],
Determinant = det(H),

Trace = sum(diag(H)),

Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

)

data)
s
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cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

## Example 5: Curvature Visualization (Alpha vs Beta)

# Create grid around MLE

alpha_grid <- seq(mle[1] - 0.5, mle[1] + 0.5, length.out = 25)
beta_grid <- seq(mle[2] - 0.5, mle[2] + 0.5, length.out = 25)
alpha_grid <- alpha_grid[alpha_grid > 0]

beta_grid <- beta_grid[beta_grid > 0]

# Compute curvature measures
determinant_surface <- matrix(NA,
nrow = length(alpha_grid),
ncol = length(beta_grid)
)
trace_surface <- matrix(NA,
nrow = length(alpha_grid),
ncol = length(beta_grid)
)

for (i in seg_along(alpha_grid)) {
for (j in seq_along(beta_grid)) {
H <- hsekw(c(alpha_grid[i], beta_grid[j], mle[3]), data)
determinant_surfacel[i, j] <- det(H)
trace_surfacel[i, j] <- sum(diag(H))
}
3

# Plot

contour(alpha_grid, beta_grid, determinant_surface,

xlab = expression(alpha), ylab = expression(beta),

main = "Hessian Determinant”, las =1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

contour(alpha_grid, beta_grid, trace_surface,

xlab = expression(alpha), ylab = expression(beta),

main = "Hessian Trace”, las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

## Example 6: Confidence Ellipse (Alpha vs Beta)

# Extract 2x2 submatrix for alpha and beta
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vcov_2d <- vcov_matrix[1:2, 1:2]

# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- gchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(theta[i]), sin(thetal[il]))
ellipse[i, ] <- mle[1:2] + sqgrt(chi2_val) =*
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)

# Marginal confidence intervals

se_2d <- sqgrt(diag(vcov_2d))

ci_alpha <- mle[1] + c(-1, 1) * 1.96 x se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot

plot(ellipse[, 11, ellipse[, 21,

type = "1", 1lwd = 2, col = "#2E4057",

xlab = expression(alpha), ylab = expression(beta),

main = "95% Confidence Ellipse (Alpha vs Beta)"”, las =1
)

# Add marginal CIs
abline(v = ci_alpha, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_beta, col = "#808080", 1ty = 3, 1lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)

points(true_params[1], true_params[2], pch = 17, col = "#006400", cex

legend("topright”,
legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#38B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

## Example 7: Confidence Ellipse (Alpha vs Lambda)

# Extract 2x2 submatrix for alpha and lambda
vcov_2d_al <- vcov_matrix[c(1, 3), c(1, 3)]

# Create confidence ellipse
eig_decomp_al <- eigen(vcov_2d_al)
ellipse_al <- matrix(NA, nrow = 100, ncol = 2)

1.5)
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for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_al[i, ] <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_al$vectors %*% diag(sqrt(eig_decomp_al$values)) %*% v)
3

# Marginal confidence intervals

se_2d_al <- sqrt(diag(vcov_2d_al))

ci_alpha_2 <- mle[1] + c(-1, 1) * 1.96 * se_2d_al[1]
ci_lambda <- mle[3] + c(-1, 1) * 1.96 * se_2d_al[2]

# Plot

plot(ellipse_all, 1], ellipse_al[, 21,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(lambda),
main = "95% Confidence Ellipse (Alpha vs Lambda)"”, las =1

)

# Add marginal CIs
abline(v = ci_alpha_2, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_lambda, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

## Example 8: Confidence Ellipse (Beta vs Lambda)

# Extract 2x2 submatrix for beta and lambda
vecov_2d_bl <- vcov_matrix[2:3, 2:3]

# Create confidence ellipse
eig_decomp_bl <- eigen(vcov_2d_bl)
ellipse_bl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_bl[i, ] <- mle[2:3] + sqgrt(chi2_val) =*
(eig_decomp_bl$vectors %x% diag(sqrt(eig_decomp_bl$values)) %*% v)
3

# Marginal confidence intervals
se_2d_bl <- sqrt(diag(vcov_2d_bl))
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ci_beta_2 <- mle[2] + c(-1, 1) * 1.96 * se_2d_bl[1]
ci_lambda_2 <- mle[3] + c(-1, 1) * 1.96 * se_2d_bl[2]

# Plot

plot(ellipse_bl[, 1], ellipse_bl[, 21,

type = "1", lwd = 2, col = "#2E4057",

xlab = expression(beta), ylab = expression(lambda),

main = "95% Confidence Ellipse (Beta vs Lambda)", las =1
)

# Add marginal CIs
abline(v = ci_beta_2, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_lambda_2, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[2], mle[3], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

hsgkw Hessian Matrix of the Negative Log-Likelihood for the GKw Distribu-
tion

Description

Computes the analytic Hessian matrix (matrix of second partial derivatives) of the negative log-
likelihood function for the five-parameter Generalized Kumaraswamy (GKw) distribution. This
is typically used to estimate standard errors of maximum likelihood estimates or in optimization
algorithms.

Usage
hsgkw(par, data)

Arguments
par A numeric vector of length 5 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), gamma (v > 0), delta (6 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1

(exclusive).
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Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the GKw PDF (see dgkw). The log-likelihood function ¢(6|x) is given by:

n

£(0) = nln(Aaf)—nln B(~, 5+1)+Z[(a—1) In(z;)+(8—1) In(v;)+ (yA—1) In(w;)+6 In(z;)]

i=1
where 6 = («, 8,7, 6, \), B(a,b) is the Beta function (beta), and intermediate terms are:

e v =1-—2x¢
cw=1-0"=1-(1—a2)°
s zi=1—-w)=1-[1-(1-a%)%}

(2

8%0(6]x)

The Hessian matrix returned contains the elements — =575~
1OV

Key properties of the returned matrix:

¢ Dimensions: 5x5.

* Symmetry: The matrix is symmetric.

* Ordering: Rows and columns correspond to the parameters in the order «a, 3,7, §, A.
* Content: Analytic second derivatives of the negative log-likelihood.

The exact analytical formulas for the second derivatives are implemented directly (often derived
using symbolic differentiation) for accuracy and efficiency, typically using C++.

Value

Returns a 5x5 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, i.e., the matrix of second partial derivatives —9%¢/(96;00;). Returns a 5x5 matrix populated
with NaN if any parameter values are invalid according to their constraints, or if any value in data
is not in the interval (0, 1).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.
See Also

11gkw (negative log-likelihood function), grgkw (gradient vector), dgkw (density function), optim,
hessian (for numerical Hessian comparison).
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Examples

## Example 1: Basic Hessian Evaluation

# Generate sample data

set.seed(2323)

n <- 1000

true_params <- c(alpha = 1.5, beta = 2.0, gamma =

data <- rgkw(n,
alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4],
lambda = true_params[5]

# Evaluate Hessian at true parameters

hess_true <- hsgkw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

# Check symmetry
cat(
"\nSymmetry check (max |H - H*T|):",
max (abs(hess_true - t(hess_true))), "\n”

)
## Example 2: Hessian Properties at MLE
# Fit model

fit <- optim(
par = ¢c(1.2, 2.0, 0.5, 1.5, 0.2),

fn = 1llgkw,
gr = grgkw,
data = data,

method = "Nelder-Mead”,
hessian = TRUE,
control = list(

maxit = 2000,
factr = 1e-15,
pgtol = 1e-15,

trace = FALSE

)
)

mle <- fit$par

names(mle) <- c("alpha”, "beta"”, "gamma", "delta”, "lambda")

# Hessian at MLE

hessian_at_mle <- hsgkw(par = mle, data = data)
cat(”"\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian

1.2, lambda

hsgkw
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cat("\nComparison with optim Hessian:\n")
cat(
"Max absolute difference:",
max (abs(hessian_at_mle - fit$hessian)), "\n"

)

# Eigenvalue analysis

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")

print(eigenvals)

cat(”\nPositive definite:"”, all(eigenvals > @), "\n")
cat("Condition number:"”, max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

# Standard errors
se <- sgrt(diag(vcov_matrix))
names(se) <- c("alpha”, "beta”, "gamma"”, "delta", "lambda")

# Correlation matrix

corr_matrix <- cov2cor(vcov_matrix)
cat(”"\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(

Parameter = c("alpha”, "beta”, "gamma”, "delta”, "lambda"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - z_crit * se,

mle + z_crit * se

CI_Upper

)
print(results, digits = 4)

## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(
c(1.5, 2.5, 1.2, 1.5, 1.5),
c(2.0, 3.0, 1.5, 2.0, 1.8),



mle,
c(2.5, 3.5, 1.8, 2.5, 2.0)
)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE
)

for (i in 1:nrow(test_params)) {
H <- hsgkw(par = test_params[i, ], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
Beta = test_params[i, 2],
Gamma = test_params[i, 3],
Delta = test_params[i, 4],
Lambda = test_params[i, 5],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

)
3

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)
## Example 5: Curvature Visualization (Alpha vs Beta)

xd <- 2
# Create grid around MLE

alpha_grid <- seq(mle[1] - xd, mle[1] + xd, length.out = round(n / 4))
beta_grid <- seq(mle[2] - xd, mle[2] + xd, length.out = round(n / 4))

alpha_grid <- alpha_grid[alpha_grid > 0]
beta_grid <- beta_grid[beta_grid > @]

# Compute curvature measures
determinant_surface <- matrix(NA,
nrow = length(alpha_grid),
ncol = length(beta_grid)

hsgkw
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)

trace_surface <- matrix(NA,
nrow = length(alpha_grid),
ncol = length(beta_grid)

)

for (i in seqg_along(alpha_grid)) {
for (j in seqg_along(beta_grid)) {
H <- hsgkw(c(alpha_grid[i], beta_grid[j], mle[3], mle[4], mle[5]), data)
determinant_surface[i, j] <- det(H)
trace_surfacel[i, j] <- sum(diag(H))
}
}

# Plot

contour(alpha_grid, beta_grid, determinant_surface,

xlab = expression(alpha), ylab = expression(beta),

main = "Hessian Determinant”, las =1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

contour(alpha_grid, beta_grid, trace_surface,

xlab = expression(alpha), ylab = expression(beta),

main = "Hessian Trace”, las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

## Example 6: Confidence Ellipse (Alpha vs Beta)

# Extract 2x2 submatrix for alpha and beta
vcov_2d <- vcov_matrix[1:2, 1:2]

# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = round(n / 4))
chi2_val <- gchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in 1:round(n / 4)) {
v <- c(cos(theta[i]), sin(thetal[il))
ellipse[i, ] <- mle[1:2] + sqgrt(chi2_val) =*
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)
3

# Marginal confidence intervals
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se_2d <- sqgrt(diag(vcov_2d))
ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot
plot(ellipsel[, 11, ellipse[, 21,

type = "1", lwd = 2, col = "#2E4057",

xlab = expression(alpha), ylab = expression(beta),

main = "95% Confidence Ellipse (Alpha vs Beta)"”, las = 1
)

# Add marginal CIs
abline(v = ci_alpha, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_beta, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

## Example 7: Confidence Ellipse (Gamma vs Delta)

# Extract 2x2 submatrix for gamma and delta
veov_2d_gd <- vcov_matrix[3:4, 3:4]

# Create confidence ellipse
eig_decomp_gd <- eigen(vcov_2d_gd)
ellipse_gd <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in T:round(n / 4)) {
v <- c(cos(theta[i]), sin(thetal[il))
ellipse_gd[i, ] <- mle[3:4] + sqgrt(chi2_val) =*
(eig_decomp_gd$vectors %x% diag(sqrt(eig_decomp_gd$values)) %*% v)
3

# Marginal confidence intervals

se_2d_gd <- sqrt(diag(vcov_2d_gd))

ci_gamma <- mle[3] + c(-1, 1) * 1.96 * se_2d_gd[1]
ci_delta <- mle[4] + c(-1, 1) * 1.96 * se_2d_gd[2]

# Plot
plot(ellipse_gd[, 1], ellipse_gd[, 2],
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = expression(delta),
main = "95% Confidence Ellipse (Gamma vs Delta)", las =1
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)

# Add marginal CIs
abline(v = ci_gamma, col = "#808080", 1ty = 3, 1lwd
abline(h = ci_delta, col = "#808080", 1ty = 3, lwd

1.5)
1.5)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[3], true_params[4], pch = 17, col = "#006400", cex

legend("topright”,
legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

## Example 8: Confidence Ellipse (Delta vs Lambda)

# Extract 2x2 submatrix for delta and lambda
veov_2d_dl <- vcov_matrix[4:5, 4:5]

# Create confidence ellipse
eig_decomp_dl <- eigen(vcov_2d_dl)
ellipse_dl <- matrix(NA, nrow = round(n / 4), ncol = 2)
for (i in T:round(n / 4)) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_dl[i, ] <- mle[4:5] + sqgrt(chi2_val) =*
(eig_decomp_dl$vectors %*x% diag(sqrt(eig_decomp_dl$values)) %*% v)
3

# Marginal confidence intervals

se_2d_dl <- sqrt(diag(vcov_2d_dl))

ci_delta_2 <- mle[4] + c(-1, 1) * 1.96 * se_2d_dl1[1]
ci_lambda <- mle[5] + c(-1, 1) * 1.96 * se_2d_d1[2]

# Plot
plot(ellipse_dl[, 1], ellipse_dl[, 2],

type = "1", lwd = 2, col = "#2E4057",

xlab = expression(delta), ylab = expression(lambda),

main = "95% Confidence Ellipse (Delta vs Lambda)"”, las =1
)

# Add marginal CIs
abline(v = ci_delta_2, col = "#808080", 1ty = 3, lwd = 1.5)
abline(h = ci_lambda, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[4], mle[5], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[4], true_params[5], pch = 17, col = "#006400", cex

1.5)

1.5)
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legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),

pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n”

)
grid(col = "gray9e0")

hskkw Hessian Matrix of the Negative Log-Likelihood for the kkw Distribu-
tion

Description

Computes the analytic 4x4 Hessian matrix (matrix of second partial derivatives) of the negative log-
likelihood function for the Kumaraswamy-Kumaraswamy (kkw) distribution with parameters alpha
(a), beta (), delta (d), and lambda (A). This distribution is the special case of the Generalized
Kumaraswamy (GKw) distribution where v = 1. The Hessian is useful for estimating standard
errors and in optimization algorithms.

Usage
hskkw(par, data)

Arguments
par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), delta (6 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion based on the kkw log-likelihood (v = 1 case of GKw, see 11kkw):

L(0]x) = n[ln(5+1)+1n(/\)+ln(a)+ln(ﬁ)]+z[(a—l) In(z;)+(6—1) In(v;)+(A—1) In(w; )+ In(z;)]

where § = (o, 8,0, A) and intermediate terms are:
e v =1-—2xf
. wizl—v-ﬁzl—(l—m?)ﬁ

s zi=1-w)=1-[1-(1-a%)%}

(2
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2
The Hessian matrix returned contains the elements — 889{,(2‘9};) for 0;,0; € {«, 8,6, A}.

Key properties of the returned matrix:
* Dimensions: 4x4.
* Symmetry: The matrix is symmetric.
* Ordering: Rows and columns correspond to the parameters in the order «, 5, 9, \.
* Content: Analytic second derivatives of the negative log-likelihood.

This corresponds to the relevant submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at v = 1.
The exact analytical formulas are implemented directly.

Value

Returns a 4x4 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, —02¢/(060;00;), where § = (a, 3,6, \). Returns a 4x4 matrix populated with NaN if any
parameter values are invalid according to their constraints, or if any value in data is not in the
interval (O, 1).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

hsgkw (parent distribution Hessian), 11kkw (negative log-likelihood for kkw), grkkw (gradient for
kkw), dkkw (density for kkw), optim, hessian (for numerical Hessian comparison).

Examples

## Example 1: Basic Hessian Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, delta = 1.5, lambda = 2.0)
data <- rkkw(n,
alpha = true_params[1], beta = true_params[2],
delta = true_params[3], lambda = true_params[4]

)

# Evaluate Hessian at true parameters
hess_true <- hskkw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
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print(hess_true, digits = 4)

# Check symmetry

cat(
"\nSymmetry check (max |H - H*T|):",
max (abs(hess_true - t(hess_true))), "\n

)

n

## Example 2: Hessian Properties at MLE

# Fit model
fit <- optim(
par = ¢(1.5, 2.5, 1.0, 1.5),

fn = 11lkkw,
gr = grkkw,
data = data,

method = "BFGS",
hessian = TRUE

mle <- fit$par
names(mle) <- c("alpha”, "beta”, "delta”, "lambda")

# Hessian at MLE

hessian_at_mle <- hskkw(par = mle, data = data)
cat(”\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",

max (abs(hessian_at_mle - fit$hessian)), "\n

)

"

# Eigenvalue analysis
eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat(”"\nEigenvalues:\n")

print(eigenvals)
cat(”"\nPositive definite:"”, all(eigenvals > @), "\n")
cat("Condition number:"”, max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat("\nVariance-Covariance Matrix:\n")
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print(vcov_matrix, digits = 6)

# Standard errors
se <- sqgrt(diag(vcov_matrix))
names(se) <- c("alpha”, "beta”, "delta”, "lambda")

# Correlation matrix

corr_matrix <- cov2cor(vcov_matrix)
cat(”\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(
Parameter = c("alpha”, "beta”, "delta”, "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se
)
print(results, digits = 4)

## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(
c(1.5, 2.5, 1.0, 1.5),
c(2.0, 3.9, 1.5, 2.0),
mle,
c(2.5, 3.5, 2.0, 2.5)

hess_properties <- data.frame(

Alpha = numeric(),

Beta = numeric(),

Delta = numeric(),

Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

for (i in 1:nrow(test_params)) {
H <- hskkw(par = test_params[i, ], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
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Beta = test_params[i, 2],
Delta = test_params[i, 3],
Lambda = test_params[i, 4],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)
D)
}

cat(”"\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

## Example 5: Curvature Visualization (Alpha vs Beta)

# Create grid around MLE

alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = round(n / 4))
beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = round(n / 4))

alpha_grid <- alpha_grid[alpha_grid > 0]
beta_grid <- beta_grid[beta_grid > @]

# Compute curvature measures
determinant_surface <- matrix(NA,
nrow = length(alpha_grid),
ncol = length(beta_grid)
)
trace_surface <- matrix(NA,
nrow = length(alpha_grid),
ncol = length(beta_grid)
)

for (i in seqg_along(alpha_grid)) {
for (j in seqg_along(beta_grid)) {

H <- hskkw(c(alpha_grid[i], beta_grid[j], mle[3], mle[4]), data)

determinant_surface[i, j] <- det(H)
trace_surfacel[i, j] <- sum(diag(H))
}
3

# Plot

contour(alpha_grid, beta_grid, determinant_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "Hessian Determinant”, las =1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B000Q", cex = 1.5)

points(true_params[1], true_params[2], pch = 17, col = "#006400", cex

grid(col = "gray9e0")

contour(alpha_grid, beta_grid, trace_surface,
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xlab = expression(alpha), ylab = expression(beta),

main = "Hessian Trace”, las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

## Example 6: Confidence Ellipse (Alpha vs Beta)

# Extract 2x2 submatrix for alpha and beta
vcov_2d <- vcov_matrix[1:2, 1:2]

# Create confidence ellipse
theta <- seq(@, 2 * pi, length.out = round(n / 2))
chi2_val <- qchisq(@.95, df = 2)

eig_decomp <- eigen(vcov_2d)
ellipse <- matrix(NA, nrow = round(n / 2), ncol = 2)
for (i in T:round(n / 2)) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse[i, ] <- mle[1:2] + sqgrt(chi2_val) =*
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)
3

# Marginal confidence intervals

se_2d <- sqgrt(diag(vcov_2d))

ci_alpha <- mle[1] + c(-1, 1) * 1.96 * se_2d[1]
ci_beta <- mle[2] + c(-1, 1) * 1.96 * se_2d[2]

# Plot
plot(ellipsel[, 11, ellipse[, 21,

type = "1", 1lwd = 2, col = "#2E4057",

xlab = expression(alpha), ylab = expression(beta),

main = "95% Confidence Ellipse (Alpha vs Beta)"”, las = 1
)

# Add marginal CIs
abline(v = ci_alpha, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_beta, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")
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## Example 7: Confidence Ellipse (Delta vs Lambda)

# Extract 2x2 submatrix for delta and lambda
vecov_2d_dl <- vcov_matrix[3:4, 3:4]

# Create confidence ellipse
eig_decomp_dl <- eigen(vcov_2d_dl)
ellipse_dl <- matrix(NA, nrow = round(n / 2), ncol = 2)
for (i in 1:round(n / 2)) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_dl[i, ] <- mle[3:4] + sqrt(chi2_val) =*
(eig_decomp_dl$vectors %*x% diag(sqrt(eig_decomp_dl$values)) %*% v)
3

# Marginal confidence intervals

se_2d_dl <- sqrt(diag(vcov_2d_dl))

ci_delta <- mle[3] + c(-1, 1) * 1.96 * se_2d_d1[1]
ci_lambda <- mle[4] + c(-1, 1) * 1.96 * se_2d_d1[2]

# Plot
plot(ellipse_dl[, 1], ellipse_dl[, 2],

type = "1", 1lwd = 2, col = "#2E4057",

xlab = expression(delta), ylab = expression(lambda),

main = "95% Confidence Ellipse (Delta vs Lambda)"”, las =1
)

# Add marginal CIs
abline(v = ci_delta, col = "#808080", 1ty = 3, 1lwd = 1.5)
abline(h = ci_lambda, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[3], mle[4], pch = 19, col = "#8B0000", cex = 1.5)

points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c¢(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n"

)

grid(col = "gray9e")

hskw

hskw Hessian Matrix of the Negative Log-Likelihood for the Kw Distribution
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Description

Computes the analytic 2x2 Hessian matrix (matrix of second partial derivatives) of the negative
log-likelihood function for the two-parameter Kumaraswamy (Kw) distribution with parameters
alpha («) and beta (3). The Hessian is useful for estimating standard errors and in optimization
algorithms.

Usage
hskw(par, data)

Arguments
par A numeric vector of length 2 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion (—¢(f|x)). The components are the negative of the second derivatives of the log-likelihood ¢
(derived from the PDF in dkw).

Letv; = 1 — z*. The second derivatives of the positive log-likelihood (¢) are:
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The function returns the Hessian matrix containing the negative of these values.

Key properties of the returned matrix:

e Dimensions: 2x2.
e Symmetry: The matrix is symmetric.
* Ordering: Rows and columns correspond to the parameters in the order «, 5.

* Content: Analytic second derivatives of the negative log-likelihood.
This corresponds to the relevant 2x2 submatrix of the 5x5 GKw Hessian (hsgkw) evaluated at v =
1,6=0,A=1.
Value

Returns a 2x2 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, —9%¢/(06;00;), where 6 = («, 3). Returns a 2x2 matrix populated with NaN if any parameter
values are invalid according to their constraints, or if any value in data is not in the interval (0, 1).
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Author(s)
Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), 11kw (negative log-likelihood for Kw), grkw (gradient for Kw,
if available), dkw (density for Kw), optim, hessian (for numerical Hessian comparison).

Examples

## Example 1: Basic Hessian Evaluation

# Generate sample data

set.seed(123)

n <- 1000

true_params <- c(alpha = 2.5, beta = 3.5)

data <- rkw(n, alpha = true_params[1], beta = true_params[2])

# Evaluate Hessian at true parameters

hess_true <- hskw(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

# Check symmetry
cat(
"\nSymmetry check (max |H - H"T|):",
max (abs(hess_true - t(hess_true))), "\n”

)

## Example 2: Hessian Properties at MLE

# Fit model

fit <- optim(
par = c(2, 2),
fn = 11lkw,
gr = grkw,
data = data,

method = "BFGS",
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha”, "beta")
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# Hessian at MLE

hessian_at_mle <- hskw(par = mle, data = data)
cat(”"\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",

max (abs(hessian_at_mle - fit$hessian)), "\n”

)

# Eigenvalue analysis

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")

print(eigenvals)

cat("\nPositive definite:", all(eigenvals > @), "\n")
cat("Condition number:"”, max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix (negative Hessian for neg-loglik)
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat(”\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

# Standard errors
se <- sqgrt(diag(vcov_matrix))
names(se) <- c("alpha”, "beta")

# Correlation matrix

corr_matrix <- cov2cor(vcov_matrix)
cat(”\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(

Parameter = c("alpha”, "beta"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)
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## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(

c(1.5, 2.5),

c(2.90, 3.0),

mle,

c(3.0, 4.0)
)

hess_properties <- data.frame(
Alpha = numeric(),
Beta = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE

)

for (i in 1:nrow(test_params)) {
H <- hskw(par = test_params[i, ], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Alpha = test_params[i, 1],
Beta = test_params[i, 2],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

)

3

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

## Example 5: Curvature Visualization

# Create grid around MLE

alpha_grid <- seq(mle[1] - 0.5, mle[1] + 0.5, length.out = 30)
beta_grid <- seq(mle[2] - 0.5, mle[2] + 0.5, length.out = 30)
alpha_grid <- alpha_grid[alpha_grid > 0]

beta_grid <- beta_grid[beta_grid > @]

# Compute curvature measures
determinant_surface <- matrix(NA,
nrow = length(alpha_grid),
ncol = length(beta_grid)
)

trace_surface <- matrix(NA,



hskw 101

nrow = length(alpha_grid),
ncol = length(beta_grid)
)

for (i in seqg_along(alpha_grid)) {
for (j in seqg_along(beta_grid)) {
H <- hskw(c(alpha_grid[i], beta_grid[j]), data)
determinant_surfacel[i, j] <- det(H)
trace_surfacel[i, j] <- sum(diag(H))
}
3

# Plot

contour(alpha_grid, beta_grid, determinant_surface,

xlab = expression(alpha), ylab = expression(beta),

main = "Hessian Determinant”, las =1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

contour(alpha_grid, beta_grid, trace_surface,

xlab = expression(alpha), ylab = expression(beta),

main = "Hessian Trace”, las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

## Example 6: Fisher Information and Asymptotic Efficiency

# Observed information (at MLE)
obs_fisher <- hessian_at_mle

# Asymptotic covariance matrix
asymp_cov <- solve(obs_fisher)

cat("\nAsymptotic Standard Errors:\n")
cat(”"SE(alpha):", sqrt(asymp_cov[1, 11), "\n")
cat("SE(beta):", sqrt(asymp_cov[2, 2]1), "\n")

# Cramér-Rao Lower Bound

cat("\nCramér-Rao Lower Bounds:\n")
cat("CRLB(alpha):", sqrt(asymp_cov[1, 11), "\n")
cat("CRLB(beta):", sqrt(asymp_cov[2, 21), "\n")

# Efficiency ellipse (95% confidence region)
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- qchisq(@.95, df = 2)
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# Eigendecomposition

hsmc

eig_decomp <- eigen(asymp_cov)

# Ellipse points

ellipse <- matrix(NA, nrow = 100, ncol = 2)

for (i in 1:100) {

v <- c(cos(thetal[i]), sin(thetalil))
ellipse[i, ] <- mle + sqrt(chi2_val) *
(eig_decomp$vectors %x% diag(sqrt(eig_decomp$values)) %*% v)

}

# Plot confidence ellipse

plot(ellipsel[, 11, ellipse[, 21,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = expression(beta),
main = "95% Confidence Ellipse”, las = 1

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,

legend = c("MLE”, "True”, "95% CR"),
col = c("#8B0000", "#006400", "#2E4057"),

pch

c(19, 17, NA), 1ty = c(NA, NA, 1),

lwd = c(NA, NA, 2), bty = "n"

)

grid(col = "gray9e0")

hsmc

Hessian Matrix of the Negative Log-Likelihood for the McDonald
(Mc)/Beta Power Distribution

Description

Computes the analytic 3x3 Hessian matrix (matrix of second partial derivatives) of the negative log-
likelihood function for the McDonald (Mc) distribution (also known as Beta Power) with parameters
gamma (), delta (J), and lambda (A\). This distribution is the special case of the Generalized
Kumaraswamy (GKw) distribution where o« = 1 and § = 1. The Hessian is useful for estimating
standard errors and in optimization algorithms.

Usage

hsmc(par, data)

Arguments

par

A numeric vector of length 3 containing the distribution parameters in the order:
gamma (y > 0), delta (6 > 0), lambda (A > 0).
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data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).

Details

This function calculates the analytic second partial derivatives of the negative log-likelihood func-
tion (—¢(0]x)). The components are based on the second derivatives of the log-likelihood ¢ (derived
from the PDF in dmc).

Note: The formulas below represent the second derivatives of the positive log-likelihood (¢). The
function returns the negative of these values. Users should verify these formulas independently if
using for critical applications.
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where 1'(-) is the trigamma function (trigamma). (Note: The formula for 0*¢/ON? provided in

the source comment was different and potentially related to the expected information matrix; the
formula shown here is derived from the gradient provided earlier. Verification is recommended.)

The returned matrix is symmetric, with rows/columns corresponding to -, 9, A.

Value

Returns a 3x3 numeric matrix representing the Hessian matrix of the negative log-likelihood func-
tion, —92¢/(00;00;), where § = (7,4, \). Returns a 3x3 matrix populated with NaN if any param-
eter values are invalid according to their constraints, or if any value in data is not in the interval (0,

1.

Author(s)

Lopes, J. E.
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References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

(Note: Specific Hessian formulas might be derived or sourced from additional references).

See Also

hsgkw (parent distribution Hessian), 11mc (negative log-likelihood for Mc), grmc (gradient for Mc,
if available), dmc (density for Mc), optim, hessian (for numerical Hessian comparison), trigamma.

Examples

## Example 1: Basic Hessian Evaluation

# Generate sample data with more stable parameters
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 2.5, lambda = 1.5)
data <- rmc(n,

gamma = true_params[1], delta = true_params[2],

lambda = true_params[3]

)

# Evaluate Hessian at true parameters

hess_true <- hsmc(par = true_params, data = data)
cat("Hessian matrix at true parameters:\n")
print(hess_true, digits = 4)

# Check symmetry
cat(
"\nSymmetry check (max |H - H*T|):",
max (abs(hess_true - t(hess_true))), "\n”

)
## Example 2: Hessian Properties at MLE
# Fit model

fit <- optim(
par = c(1.5, 2.0, 1.0),

fn = 1llmc,
gr = grmc,
data = data,

method = "BFGS”,
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("gamma”, "delta”, "lambda")
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# Hessian at MLE

hessian_at_mle <- hsmc(par = mle, data = data)
cat(”"\nHessian at MLE:\n")
print(hessian_at_mle, digits = 4)

# Compare with optim's numerical Hessian
cat("\nComparison with optim Hessian:\n")
cat(

"Max absolute difference:",

max (abs(hessian_at_mle - fit$hessian)), "\n”

)

# Eigenvalue analysis

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
cat("\nEigenvalues:\n")

print(eigenvals)

cat("\nPositive definite:", all(eigenvals > @), "\n")
cat("Condition number:"”, max(eigenvals) / min(eigenvals), "\n")

## Example 3: Standard Errors and Confidence Intervals

# Observed information matrix
obs_info <- hessian_at_mle

# Variance-covariance matrix
vcov_matrix <- solve(obs_info)
cat(”\nVariance-Covariance Matrix:\n")
print(vcov_matrix, digits = 6)

# Standard errors
se <- sqgrt(diag(vcov_matrix))
names(se) <- c("gamma”, "delta”, "lambda")

# Correlation matrix

corr_matrix <- cov2cor(vcov_matrix)
cat(”\nCorrelation Matrix:\n")
print(corr_matrix, digits = 4)

# Confidence intervals
z_crit <- gnorm(@.975)
results <- data.frame(

Parameter = c("gamma”, "delta”, "lambda"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - z_crit * se,
CI_Upper = mle + z_crit * se

)
print(results, digits = 4)



106 hsmc

## Example 4: Determinant and Trace Analysis

# Compute at different points
test_params <- rbind(

c(1.5, 2.9, 1.0),

c(2.0, 2.5, 1.5),

mle,

c(2.5, 3.9, 2.0)

hess_properties <- data.frame(
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
Determinant = numeric(),
Trace = numeric(),
Min_Eigenval = numeric(),
Max_Eigenval = numeric(),
Cond_Number = numeric(),
stringsAsFactors = FALSE
)

for (i in 1:nrow(test_params)) {
H <- hsmc(par = test_params[i, ], data = data)
eigs <- eigen(H, only.values = TRUE)$values

hess_properties <- rbind(hess_properties, data.frame(
Gamma = test_params[i, 1],
Delta = test_params[i, 2],
Lambda = test_params[i, 3],
Determinant = det(H),
Trace = sum(diag(H)),
Min_Eigenval = min(eigs),
Max_Eigenval = max(eigs),
Cond_Number = max(eigs) / min(eigs)

)

3

cat("\nHessian Properties at Different Points:\n")
print(hess_properties, digits = 4, row.names = FALSE)

## Example 5: Curvature Visualization (All pairs side by side)

# Create grids around MLE with wider range (%1.5)

gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 25)
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 25)
lambda_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 25)

gamma_grid <- gamma_grid[gamma_grid > 0]
delta_grid <- delta_grid[delta_grid > 0]
lambda_grid <- lambda_grid[lambda_grid > @]
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# Compute curvature measures for all pairs
determinant_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))
trace_surface_gd <- matrix(NA, nrow = length(gamma_grid), ncol = length(delta_grid))

determinant_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))
trace_surface_gl <- matrix(NA, nrow = length(gamma_grid), ncol = length(lambda_grid))

determinant_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))
trace_surface_dl <- matrix(NA, nrow = length(delta_grid), ncol = length(lambda_grid))

# Gamma vs Delta
for (i in seqg_along(gamma_grid)) {
for (j in seg_along(delta_grid)) {
H <- hsmc(c(gamma_grid[i], delta_grid[j], mle[3]), data)
determinant_surface_gd[i, j] <- det(H)
trace_surface_gd[i, j] <- sum(diag(H))
}
}

# Gamma vs Lambda
for (i in seqg_along(gamma_grid)) {
for (j in seg_along(lambda_grid)) {
H <- hsmc(c(gamma_grid[i], mle[2], lambda_grid[j]), data)
determinant_surface_gl[i, j] <- det(H)
trace_surface_gl[i, j] <- sum(diag(H))
}
}

# Delta vs Lambda
for (i in seqg_along(delta_grid)) {
for (j in seg_along(lambda_grid)) {
H <- hsmc(c(mle[1], delta_grid[i], lambda_grid[j]), data)
determinant_surface_dl[i, j] <- det(H)
trace_surface_dl[i, j] <- sum(diag(H))
}
}

# Plot

# Determinant plots
contour(gamma_grid, delta_grid, determinant_surface_gd,

xlab = expression(gamma), ylab = expression(delta),

main = "Determinant: Gamma vs Delta”, las = 1,

col = "#2E4057", lwd = 1.5, nlevels = 15
)
points(mle[1], mle[2], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

contour(gamma_grid, lambda_grid, determinant_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Determinant: Gamma vs Lambda”, las =1,
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col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[3], pch = 19, col = "#8B000R", cex = 1.5)

hsmc

points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col = "gray9e")

contour(delta_grid, lambda_grid, determinant_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Determinant: Delta vs Lambda”, las =1,
col = "#2E4057", 1wd = 1.5, nlevels = 15

)

points(mle[2], mle[3], pch = 19, col = "#8B000®", cex = 1.5)

points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col = "gray90")

# Trace plots

contour(gamma_grid, delta_grid, trace_surface_gd,
xlab = expression(gamma), ylab = expression(delta),
main = "Trace: Gamma vs Delta”, las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)

points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

grid(col = "gray9e0")

contour(gamma_grid, lambda_grid, trace_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Trace: Gamma vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[1], mle[3], pch = 19, col = "#8B000Q", cex = 1.5)

points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col = "gray9e0")

contour(delta_grid, lambda_grid, trace_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Trace: Delta vs Lambda", las = 1,
col = "#2E4057", lwd = 1.5, nlevels = 15

)
points(mle[2], mle[3], pch = 19, col = "#8B000Q", cex = 1.5)

points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col = "gray9e0")

legend("topright”,
legend = c("MLE", "True"),
col = c("#8B0000", "#006400"),
pch = c(19, 17),
bty = "n", cex = 0.8
)

## Example 6: Confidence Ellipses (All pairs side by side)

# Extract all 2x2 submatrices
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veov_gd <- vcov_matrix[1:2, 1:2]
vecov_gl <- vcov_matrix[c(1, 3), c(1, 3)]
vcov_dl <- vcov_matrix[2:3, 2:3]

# Create confidence ellipses
theta <- seq(@, 2 * pi, length.out = 100)
chi2_val <- qchisq(@.95, df = 2)

# Gamma vs Delta ellipse
eig_decomp_gd <- eigen(vcov_gd)
ellipse_gd <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il]))
ellipse_gd[i, 1 <- mle[1:2] + sqrt(chi2_val) *
(eig_decomp_gd$vectors %*x% diag(sqrt(eig_decomp_gd$values)) %*% v)
}

# Gamma vs Lambda ellipse
eig_decomp_gl <- eigen(vcov_gl)
ellipse_gl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetal[il))
ellipse_gl[i, 1 <- mle[c(1, 3)] + sqrt(chi2_val) *
(eig_decomp_gl$vectors %*x% diag(sqrt(eig_decomp_gl$values)) %*% v)
}

# Delta vs Lambda ellipse
eig_decomp_dl <- eigen(vcov_dl)
ellipse_dl <- matrix(NA, nrow = 100, ncol = 2)
for (i in 1:100) {
v <- c(cos(thetal[i]), sin(thetalil]))
ellipse_dl[i, ] <- mle[2:3] + sqrt(chi2_val) *
(eig_decomp_dl$vectors %*x% diag(sqrt(eig_decomp_dl$values)) %*% v)
3

# Marginal confidence intervals

se_gd <- sqgrt(diag(vcov_gd))

ci_gamma_gd <- mle[1] + c(-1, 1) * 1.96 * se_gd[1]
ci_delta_gd <- mle[2] + c(-1, 1) * 1.96 x se_gd[2]

se_gl <- sqrt(diag(vcov_gl))
ci_gamma_gl <- mle[1] + c(-1, 1) * 1.96 * se_gl[1]
ci_lambda_gl <- mle[3] + c(-1, 1) * 1.96 * se_gl[2]

se_dl <- sqgrt(diag(vcov_dl))
ci_delta_dl <- mle[2] + c(-1, 1) * 1.96 * se_dl[1]
ci_lambda_dl <- mle[3] + c(-1, 1) * 1.96 * se_dl[2]

# Plot
# Gamma vs Delta

plot(ellipse_gd[, 1], ellipse_gd[, 21,
type = "1", lwd = 2, col = "#2E4057",
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xlab =

main =

ylim =
)
abline(v
abline(h

expression(gamma), ylab = expression(delta),
"Gamma vs Delta”, las = 1, xlim = range(ellipse_gd[, 1], ci_gamma_gd),
range(ellipse_gd[, 2], ci_delta_gd)

= ci_gamma_gd, col = "#808080", lty = 3, lwd = 1.5)
= ci_delta_gd, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[2], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

grid(col

= "gray90")

# Gamma vs Lambda
plot(ellipse_gl[, 1], ellipse_gl[, 21,

type =
xlab =
main =
ylim =
)
abline(v
abline(h

"1", lwd = 2, col = "#2E4057",

expression(gamma), ylab = expression(lambda),

"Gamma vs Lambda”, las = 1, xlim = range(ellipse_gl[, 1], ci_gamma_gl),
range(ellipse_gl[, 2], ci_lambda_gl)

= ci_gamma_gl, col = "#808080", 1ty = 3, lwd = 1.5)
= ci_lambda_gl, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[1], mle[3], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col

= "gray90")

# Delta vs Lambda
plot(ellipse_dl[, 1], ellipse_dl[, 21,

type =
xlab =
main =
ylim =
)
abline(v
abline(h

"1", lwd = 2, col = "#2E4057",

expression(delta), ylab = expression(lambda),

"Delta vs Lambda”, las = 1, xlim = range(ellipse_dl[, 1], ci_delta_dl),
range(ellipse_dl[, 2], ci_lambda_dl)

= ci_delta_dl, col = "#808080", 1ty = 3, lwd = 1.5)
= ci_lambda_dl, col = "#808080", 1ty = 3, lwd = 1.5)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

grid(col

= "gray90”)

legend("topright”,

llbeta

legend = c("MLE", "True"”, "95% CR", "Marginal 95% CI"),
col = c("#8B0000", "#006400", "#2E4057", "#808080"),
pch = c(19, 17, NA, NA),
1ty = c(NA, NA, 1, 3),
lwd = c(NA, NA, 2, 1.5),
bty = "n", cex = 0.8
)
1llbeta Negative Log-Likelihood for the Beta Distribution (gamma, delta+1

Parameterization)
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Description

Computes the negative log-likelihood function for the standard Beta distribution, using a parame-
terization common in generalized distribution families. The distribution is parameterized by gamma
(7) and delta (9), corresponding to the standard Beta distribution with shape parameters shapel =
gamma and shape?2 = delta + 1. This function is suitable for maximum likelihood estimation.

Usage

llbeta(par, data)

Arguments
par A numeric vector of length 2 containing the distribution parameters in the order:
gamma (y > 0), delta (6 > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

This function calculates the negative log-likelihood for a Beta distribution with parameters shape
= gamma (y) and shape2 = delta + 1 (§ + 1). The probability density function (PDF) is:

7711 - z)?

f(as|'y,5) = B(’}/,(S-i- 1)

for 0 < z < 1, where B(a, b) is the Beta function (beta). The log-likelihood function £(#|x) for a
sample x = (z1,...,2,) is Doy In f(z;]0):

n

001x) = > [(y = D In(z;) + 6In(l - z;)] = nln B(y,d + 1)

i=1

where 6 = (-, ). This function computes and returns the negative log-likelihood, —¢(6|x), suit-
able for minimization using optimization routines like optim. It is equivalent to the negative log-
likelihood of the GKw distribution (11gkw) evaluated at « = 1, 8 = 1, A = 1, and also to the nega-
tive log-likelihood of the McDonald distribution (11mc) evaluated at A = 1. The term In B(~y,§+1)
is typically computed using log-gamma functions (1gamma) for numerical stability.

Value

Returns a single double value representing the negative log-likelihood (—¢(6|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.
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References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

11gkw, 11mc (related negative log-likelihoods), dbeta_, pbeta_, gbeta_, rbeta_, grbeta (gradi-
ent, if available), hsbeta (Hessian, if available), optim, 1beta.

Examples

## Example 1: Basic Log-Likelihood Evaluation

# Generate sample data

set.seed(123)

n <- 1000

true_params <- c(gamma = 2.0, delta = 3.0)

data <- rbeta_(n, gamma = true_params[1], delta = true_params[2])

# Evaluate negative log-likelihood at true parameters
nll_true <- llbeta(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5),
c(2.0, 3.0),
c(2.5, 3.5)

)

nll_values <- apply(test_params, 1, function(p) llbeta(p, data))
results <- data.frame(
Gamma = test_params[, 1],
Delta = test_params[, 2],
NegLoglLik = nll_values
)
print(results, digits = 4)

## Example 2: Maximum Likelihood Estimation
# Optimization using L-BFGS-B with bounds

fit <- optim(
par = c(1.5, 2.5),

fn = 1llbeta,
gr = grbeta,
data = data,

method = "L-BFGS-B”,
lower = c(0.01, 0.01),
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upper = c(100, 100),
hessian = TRUE
)

mle <- fit$par
names(mle) <- c("gamma”, "delta")

se <- sqgrt(diag(solve(fit$hessian)))

results <- data.frame(

Parameter = c("gamma"”, "delta"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat(sprintf(
"\nMLE corresponds approx to Beta(%.2f, %.2f)\n",
mle[1], mle[2] + 1

)

cat(
"True corresponds to Beta(%.2f, %.2f)\n",
true_params[1], true_params[2] + 1

)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 x fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 x fit$value + length(mle) x log(n), "\n")

## Example 3: Comparing Optimization Methods

methods <- c("BFGS"”, "L-BFGS-B"”, "Nelder-Mead", "CG")
start_params <- c(1.5, 2.5)

comparison <- data.frame(
Method = character(),
Gamma = numeric(),
Delta = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(
par = start_params,
fn = llbeta,
gr = grbeta,
data = data,
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method = method
)
} else if (method == "L-BFGS-B") {
fit_temp <- optim(
par = start_params,

fn = llbeta,
gr = grbeta,
data = data,

method = method,
lower = c(0.01, 0.01),
upper = c(100, 100)
)
} else {
fit_temp <- optim(
par = start_params,
fn = llbeta,
data = data,
method = method
)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Gamma = fit_temp$par[1],
Delta = fit_temp$par[2],
NeglLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

D)

3

print(comparison, digits = 4, row.names = FALSE)

## Example 4: Likelihood Ratio Test

# Test HO: delta = 3 vs H1: delta free
loglik_full <- -fit$value

restricted_11 <- function(params_restricted, data, delta_fixed) {
llbeta(par = c(params_restricted[1], delta_fixed), data = data)
3

fit_restricted <- optim(

par = mle[1],
fn = restricted_11,
data = data,

delta_fixed = 3,
method = "BFGS"”
)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)

llbeta
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p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)
cat("LR Statistic:"”, round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")
## Example 5: Univariate Profile Likelihoods

# Profile for gamma

gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)

gamma_grid <- gamma_grid[gamma_grid > 0]
profile_11_gamma <- numeric(length(gamma_grid))

for (i in seqg_along(gamma_grid)) {
profile_fit <- optim(
par = mle[2],
fn = function(p) llbeta(c(gamma_grid[i], p), data),
method = "BFGS"
)
profile_11_gamma[i] <- -profile_fit$value
3

# Profile for delta

delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)

delta_grid <- delta_grid[delta_grid > 0]
profile_11_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
profile_fit <- optim(
par = mle[1],
fn = function(p) llbeta(c(p, delta_grid[i]), data),
method = "BFGS"
)
profile_11_delta[i] <- -profile_fit$value
3

# 95% confidence threshold
chi_crit <- gchisq(@.95, df = 1)
threshold <- max(profile_11_gamma) - chi_crit / 2

# Plot

plot(gamma_grid, profile_11_gamma,
type = "1", lwd = 2, col = "#2E4057",

xlab = expression(gamma), ylab = "Profile Log-Likelihood”,

n

main = expression(paste("Profile:

)
abline(v = mle[1], col = "#8B0000", 1ty = 2, 1lwd = 2)

, gamma)), las =1

abline(v = true_params[1], col = "#006400", 1ty = 2, lwd = 2)

abline(h = threshold, col = "#808080", 1ty = 3, 1lwd = 1.5)
legend("topright”,

legend = c("MLE", "True", "95% CI"),

col = c("#8B0000", "#006400", "#808080"),

115



116

1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e0")

plot(delta_grid, profile_11_delta,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood”,
main = expression(paste("Profile: ", delta)), las =1
)
abline(v = mle[2], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, 1lwd = 1.5)
legend("topright”,
legend = c("MLE", "True”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e0")

## Example 6: 2D Log-Likelihood Surface (Gamma vs Delta)

# Create 2D grid with wider range (1.5)

gamma_2d <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = round(n / 25))
delta_2d <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = round(n / 25))
gamma_2d <- gamma_2d[gamma_2d > @]

delta_2d <- delta_2d[delta_2d > 0]

# Compute log-likelihood surface
11_surface_gd <- matrix(NA, nrow = length(gamma_2d), ncol = length(delta_2d))

for (i in seqg_along(gamma_2d)) {
for (j in seq_along(delta_2d)) {
11_surface_gd[i, j] <- -llbeta(c(gamma_2d[i], delta_2d[j]l), data)
}
3

# Confidence region levels
max_11_gd <- max(ll_surface_gd, na.rm = TRUE)

levels_90_gd <- max_ll_gd - qchisq(@.90, df = 2) / 2
levels_95_gd <- max_ll_gd - qchisq(@.95, df =2) / 2
levels_99_gd <- max_ll_gd - qchisq(@.99, df =2) / 2

# Plot contour

contour(gamma_2d, delta_2d, 11_surface_gd,
xlab = expression(gamma), ylab = expression(delta),
main = "2D Log-Likelihood: Gamma vs Delta”,
levels = seq(min(ll_surface_gd, na.rm = TRUE), max_11_gd, length.out = 20),
col = "#2E4057", las = 1, 1lwd =1
)

contour(gamma_2d, delta_2d, 11_surface_gd,

llbeta
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levels = c(levels_90_gd, levels_95_gd, levels_99_gd),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8
)

points(mle[1], mle[2], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFAQ7A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8
)
grid(col = "gray9e0")

11bkw Negative Log-Likelihood for Beta-Kumaraswamy (BKw) Distribution

Description

Computes the negative log-likelihood function for the Beta-Kumaraswamy (BKw) distribution with
parameters alpha (a), beta (), gamma (), and delta (9), given a vector of observations. This
distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where A = 1.
This function is typically used for maximum likelihood estimation via numerical optimization.

Usage
1lbkw(par, data)

Arguments
par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), gamma (y > 0), delta (§ > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The Beta-Kumaraswamy (BKw) distribution is the GKw distribution (dgkw) with A = 1. Its proba-
bility density function (PDF) is:

f(m\&) _ Baiﬁxa—l(l _ xa)ﬁ(tprl)*l [1 . (1 .

a\By1v—1
(7,0 +1) ) ]
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for0 < 2z < 1,0 = (a,8,7,0), and B(a,b) is the Beta function (beta). The log-likelihood
function ¢(6|x) for a sample x = (x1,...,2,) is Y., In f(z;0):

n

£(0)x) = n[ln(a)+In(5)—In B(y, 5+1)]+Z[(a71) In(z;)+(8(6+1)—1) In(v;)+(y—1) In(w;)]

i=1
where:

e v =1—2xf

cwy=1—0=1-(1—2%)p

K2

This function computes and returns the negative log-likelihood, —¢(0|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained similarly to 11gkw.

Value

Returns a single double value representing the negative log-likelihood (—¢(6|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

11gkw (parent distribution negative log-likelihood), dbkw, pbkw, gbkw, rbkw, grbkw (gradient, if
available), hsbkw (Hessian, if available), optim, lbeta

Examples

## Example 1: Basic Log-Likelihood Evaluation
# Generate sample data
set.seed(2203)
n <- 1000
true_params <- c(alpha = 2.0, beta = 1.5, gamma = 1.5, delta = 0.5)
data <- rbkw(n,
alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4]

)

# Evaluate negative log-likelihood at true parameters
nll_true <- llbkw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")
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# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 1.0, 1.0, 0.3),
c(2.0, 1.5, 1.5, 0.5),
c(2.5, 2.0, 2.0, 0.7)

)

nll_values <- apply(test_params, 1, function(p) llbkw(p, data))
results <- data.frame(
Alpha = test_params[, 11,
Beta = test_params[, 21,
Gamma = test_params[, 3],
Delta = test_params[, 4],
NegLogLik = nll_values
)
print(results, digits = 4)

## Example 2: Maximum Likelihood Estimation
# Optimization using BFGS with no analytical gradient

fit <- optim(
par = c(0.5, 1, 1.1, 0.3),

fn = 1lbkw,
# gr = grbkw,
data = data,

method = "BFGS",
control = list(maxit = 2000),
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha”, "beta”, "gamma", "delta")

se <- sqgrt(diag(solve(fit$hessian)))

results <- data.frame(

Parameter = c("alpha”, "beta”, "gamma"”, "delta"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat(”"\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 x fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 x fit$value + length(mle) * log(n), "\n")

## Example 3: Comparing Optimization Methods
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methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead”, "CG")
start_params <- c(1.8, 1.2, 1.1, 0.3)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
NegLoglLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(
par = start_params,
fn = 1lbkw,
gr = grbkw,
data = data,
method = method
)
} else if (method == "L-BFGS-B") {
fit_temp <- optim(
par = start_params,

fn = 1lbkw,
gr = grbkw,
data = data,

method = method,
lower = c(0.01, 0.01, 0.01, 0.01),
upper = c(100, 100, 100, 100)
)
} else {
fit_temp <- optim(
par = start_params,
fn = 1lbkw,
data = data,
method = method
)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Alpha = fit_temp$par[1],
Beta = fit_temp$par[2],
Gamma = fit_temp$par([3],
Delta = fit_temp$par[4],
NegLoglLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE
D)
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print(comparison, digits = 4, row.names = FALSE)

## Example 4: Likelihood Ratio Test

# Test HO: delta = 0.5 vs H1: delta free
loglik_full <- -fit$value

restricted_11 <- function(params_restricted, data, delta_fixed) {
11bkw(par = c(
params_restricted[1], params_restricted[2],
params_restricted[3], delta_fixed
), data = data)
3

fit_restricted <- optim(
par = mle[1:3],
fn = restricted_11,
data = data,
delta_fixed = 0.5,
method = "Nelder-Mead”
)

loglik_restricted <- -fit_restricted$value
Ir_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:”, round(lr_stat, 4), "\n")
cat("P-value:”, format.pval(p_value, digits = 4), "\n")

## Example 5: Univariate Profile Likelihoods

# Profile for alpha

alpha_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)
alpha_grid <- alpha_grid[alpha_grid > 0]

profile_11_alpha <- numeric(length(alpha_grid))

for (i in seqg_along(alpha_grid)) {
profile_fit <- optim(
par = mle[-1],
fn = function(p) llbkw(c(alpha_grid[i], p), data),
method = "Nelder-Mead”
)
profile_11_alphal[i] <- -profile_fit$value
3

# Profile for beta

beta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
beta_grid <- beta_grid[beta_grid > @]

profile_11_beta <- numeric(length(beta_grid))
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for (i in seq_along(beta_grid)) {
profile_fit <- optim(
par = c(mle[1], mle[3], mle[4]),
fn = function(p) llbkw(c(mle[1], beta_grid[il, p[1], p[2]), data),
method = "Nelder-Mead”
)
profile_11_betal[i] <- -profile_fit$value
3

# Profile for gamma

gamma_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 50)
gamma_grid <- gamma_grid[gamma_grid > 0]

profile_11_gamma <- numeric(length(gamma_grid))

for (i in seq_along(gamma_grid)) {
profile_fit <- optim(
par = c(mle[1], mle[2], mle[4]),
fn = function(p) 1llbkw(c(p[1], mle[2], gamma_grid[i], p[2]), data),
method = "Nelder-Mead"
)
profile_11_gammal[i] <- -profile_fit$value
}

# Profile for delta

delta_grid <- seq(mle[4] - 1.5, mle[4] + 1.5, length.out = 50)
delta_grid <- delta_grid[delta_grid > 0]

profile_11_delta <- numeric(length(delta_grid))

for (i in seqg_along(delta_grid)) {
profile_fit <- optim(
par = mle[-4],
fn = function(p) 1llbkw(c(p[1]1, p[2], p[3]1, delta_grid[i]), data),
method = "Nelder-Mead”
)
profile_11_delta[i] <- -profile_fit$value
3

# 95% confidence threshold
chi_crit <- qchisq(@.95, df = 1)
threshold <- max(profile_11_alpha) - chi_crit / 2

# Plot all profiles

plot(alpha_grid, profile_l1_alpha,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood”,
main = expression(paste(”Profile: ", alpha)), las = 1
)
abline(v = mle[1], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[1], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
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col
1ty

)
grid(col = "gray90")

c("#8B0000", "#006400", "#808080"),
c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8

plot(beta_grid, profile_l1_beta,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", beta)), las =1
)
abline(v = mle[2], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray90")

plot(gamma_grid, profile_l1_gamma,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = "Profile Log-Likelihood”,
main = expression(paste(”Profile: ", gamma)), las = 1
)
abline(v = mle[3], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e")

plot(delta_grid, profile_l1_delta,
type = "1", 1wd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood”,
main = expression(paste(”Profile: ", delta)), las =1
)
abline(v = mle[4], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[4], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e")

## Example 6: 2D Log-Likelihood Surfaces (Selected pairs)
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# Create 2D grid
alpha_2d <- seq(
beta_2d <- seq(m
gamma_2d <- seq(
delta_2d <- seq(

alpha_2d <- alph
beta_2d <- beta_
gamma_2d <- gamm
delta_2d <- delt

# Compute select
11_surface_ab <-
11_surface_ag <-
11_surface_bhd <-

# Alpha vs Beta
for (i in seqg_al
for (j in seq_

11_surface_ab[i, j] <- -1llbkw(c(alpha_2d[i], beta_2d[j1, mle[3], mle[4]), data)

b
}

# Alpha vs Gamma
for (i in seq_al
for (j in seq_

s with wider range (£1.5)

mle[1] - 1.5, mle[1] + 1.5, length.out = round(n / 25))
le[2] - 1.5, mle[2] + 1.5, length.out = round(n / 25))
mle[3] - 1.5, mle[3] + 1.5, length.out = round(n / 25))
mle[4] - 1.5, mle[4] + 1.5, length.out = round(n / 25))

a_2d[alpha_2d > 0]
2d[beta_2d > 0]

a_2d[gamma_2d > @]
a_2d[delta_2d > 0]

ed log-likelihood surfaces

matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))
matrix(NA, nrow = length(alpha_2d), ncol = length(gamma_2d))
matrix(NA, nrow = length(beta_2d), ncol = length(delta_2d))

ong(alpha_2d)) {
along(beta_2d)) {

ong(alpha_2d)) {
along(gamma_2d)) {

IIbkw

11_surface_ag[i, j] <- -llbkw(c(alpha_2d[i], mle[2], gamma_2d[j], mle[4]), data)

3
3

# Beta vs Delta
for (i in seqg_al
for (j in seq_

11_surface_bd[i, j] <- -1llbkw(c(mle[1], beta_2d[i], mle[3], delta_2d[j]), data)

b
3

# Confidence reg
max_l1_ab <- max
max_l1_ag <- max
max_11_bd <- max

levels_95_ab <-
levels_95_ag <-
levels_95_bd <-

# Plot selected

# Alpha vs Beta

contour(alpha_2d
xlab = express
main = "Alpha
levels = seq(m

ong(beta_2d)) {
along(delta_2d)) {

ion levels

(11_surface_ab, na.rm = TRUE)
(11_surface_ag, na.rm = TRUE)
(11_surface_bd, na.rm = TRUE)

max_11_ab - qchisq(0.95, df = 2) / 2
max_l1_ag - qchisq(0.95, df =2) / 2
max_11_bd - qchisq(@.95, df =2) / 2

surfaces

, beta_2d, 11_surface_ab,

ion(alpha), ylab = expression(beta),

vs Beta”, las =1,

in(11_surface_ab, na.rm = TRUE), max_l1_ab, length.out = 20),
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col = "#2E4057", lwd = 1
)
contour(alpha_2d, beta_2d, 11_surface_ab,

levels = levels_95_ab, col = "#FF6347", 1lwd = 2.5, 1ty = 1, add = TRUE
)
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

# Alpha vs Gamma
contour(alpha_2d, gamma_2d, 11_surface_ag,
xlab = expression(alpha), ylab = expression(gamma),
main = "Alpha vs Gamma", las = 1,
levels = seq(min(11l_surface_ag, na.rm = TRUE), max_l1_ag, length.out = 20),
col = "#2E4057", lwd = 1
)
contour(alpha_2d, gamma_2d, 11_surface_ag,
levels = levels_95_ag, col = "#FF6347", lwd = 2.5, 1ty = 1, add = TRUE
)
points(mle[1], mle[3], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e")

# Beta vs Delta
contour(beta_2d, delta_2d, 11_surface_bd,
xlab = expression(beta), ylab = expression(delta),
main = "Beta vs Delta”, las = 1,
levels = seq(min(ll_surface_bd, na.rm = TRUE), max_l1_bd, length.out = 20),
col = "#2E4057", lwd = 1
)
contour(beta_2d, delta_2d, 11_surface_bd,
levels = levels_95_bd, col = "#FF6347", lwd = 2.5, 1ty = 1, add = TRUE
)
points(mle[2], mle[4], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[4], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

legend("topright”,
legend = c("MLE", "True"”, "95% CR"),
col = c("#8B000Q", "#006400", "#FF6347"),

pch = c(19, 17, NA),
1ty = c(NA, NA, 1),
lwd = c(NA, NA, 2.5),
bty = "n", cex = 0.8
)
1lekw Negative Log-Likelihood for the Exponentiated Kumaraswamy (EKw)

Distribution
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Description

Computes the negative log-likelihood function for the Exponentiated Kumaraswamy (EKw) distri-
bution with parameters alpha («), beta (5), and lambda (\), given a vector of observations. This
distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where v = 1
and 0 = 0. This function is suitable for maximum likelihood estimation.

Usage

llekw(par, data)

Arguments
par A numeric vector of length 3 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The Exponentiated Kumaraswamy (EKw) distribution is the GKw distribution (dekw) with v = 1
and § = 0. Its probability density function (PDF) is:

F(2]6) = AaBa 1 (1 —2®)f 11— (1 — )P}

for0 <z < 1land 6 = (a, 8, ). The log-likelihood function ¢(|x) for a sample x = (z1,...,%,)
is >0 In f(z;]0):

n

£(0]x) = n[ln(\) + In(a) + In(B)] + Z[(a — D n(z;) + (6 — 1) In(v;) + (A = 1) In(w;)]

i=1
where:
e v =1-—2x¢
. wizl—vle—(l—x?)ﬁ
This function computes and returns the negative log-likelihood, —£(#|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained similarly to 11gkw.
Value

Returns a single double value representing the negative log-likelihood (—¢(6|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.
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References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
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See Also

11gkw (parent distribution negative log-likelihood), dekw, pekw, gekw, rekw, grekw (gradient, if
available), hsekw (Hessian, if available), optim

Examples

## Example 1: Basic Log-Likelihood Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5, lambda = 2.0)
data <- rekw(n,
alpha = true_params[1], beta = true_params[2],
lambda = true_params[3]

)

# Evaluate negative log-likelihood at true parameters
nll_true <- llekw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(2.0, 3.0, 1.5),

c(2.5, 3.5, 2.9),

c(3.0, 4.0, 2.5)
)

nll_values <- apply(test_params, 1, function(p) llekw(p, data))
results <- data.frame(
Alpha = test_params[, 11,
Beta = test_params[, 2],
Lambda = test_params[, 3],
NegLoglLik = nll_values
)
print(results, digits = 4)

## Example 2: Maximum Likelihood Estimation

# Optimization using BFGS with analytical gradient
fit <- optim(
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par = c(2, 3, 1.5),
fn = 1lekw,

gr = grekw,

data = data,

method = "BFGS”,
hessian = TRUE

)

mle <- fit$par
names(mle) <- c("alpha", "beta”, "lambda")
se <- sqgrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("alpha"”, "beta”, "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se
)
print(results, digits = 4)

cat(”"\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 x fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 x fit$value + length(mle) * log(n), "\n")

## Example 3: Comparing Optimization Methods

methods <- c("BFGS"”, "L-BFGS-B"”, "Nelder-Mead”, "CG")
start_params <- c(2, 3, 1.5)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Lambda = numeric(),
NegLogLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE
)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(
par = start_params,
fn = llekw,
gr = grekw,
data = data,
method = method
)
} else if (method == "L-BFGS-B") {
fit_temp <- optim(

llekw
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par = start_params,

fn = llekw,
gr = grekw,
data = data,

method = method,

lower = c(0.01, 0.01, 0.01),
upper = c(100, 100, 100)

)
} else {
fit_temp <- optim(
par = start_params,
fn = llekw,
data = data,
method = method
)
3

comparison <- rbind(comparison, data.frame(

Method = method,

Alpha = fit_temp$par[1],

Beta = fit_temp$par[2],

Lambda = fit_temp$par[3],
NeglLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

)
3

print(comparison, digits = 4, row.names

## Example 4: Likelihood Ratio Test

# Test HO: lambda = 2 vs H1:

loglik_full <- -fit$value

restricted_11 <- function(params_restricted, data, lambda_fixed) {

llekw(par = c(

params_restricted[1], params_restricted[2],

lambda_fixed
), data = data)
3

fit_restricted <- optim(
par = c(mle[1], mle[2]),
fn = restricted_11,
data = data,
lambda_fixed = 2,
method = "BFGS"

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)

lambda free

129
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p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:”, round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

## Example 5: Univariate Profile Likelihoods

# Profile for alpha

alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = 50)
alpha_grid <- alpha_grid[alpha_grid > 0]

profile_11_alpha <- numeric(length(alpha_grid))

for (i in seqg_along(alpha_grid)) {
profile_fit <- optim(
par = mle[-1],
fn = function(p) llekw(c(alpha_grid[i]l, p), data),
method = "BFGS"
)
profile_11_alpha[i] <- -profile_fit$value
3

# Profile for beta

beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = 50)
beta_grid <- beta_grid[beta_grid > @]

profile_11_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optim(
par = mle[-2],
fn = function(p) llekw(c(p[1], beta_grid[i], p[2]), data),
method = "BFGS”
)
profile_11_betal[i] <- -profile_fit$value
3

# Profile for lambda

lambda_grid <- seq(mle[3] - 1, mle[3] + 1, length.out = 50)
lambda_grid <- lambda_grid[lambda_grid > @]
profile_11_lambda <- numeric(length(lambda_grid))

for (i in seq_along(lambda_grid)) {
profile_fit <- optim(
par = mle[-3],
fn = function(p) llekw(c(p[1], p[2], lambda_grid[i]), data),
method = "BFGS"
)
profile_11_lambdal[i] <- -profile_fit$value
}

# 95% confidence threshold
chi_crit <- gchisq(@.95, df = 1)
threshold <- max(profile_l1_alpha) - chi_crit / 2
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# Plot all profiles

plot(alpha_grid, profile_l11_alpha,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood”,
main = expression(paste("Profile: ", alpha)), las =1
)
abline(v = mle[1], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, 1lwd = 1.5)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B000Q", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e0")

plot(beta_grid, profile_l1_beta,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste("Profile: ", beta)), las =1
)
abline(v = mle[2], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e0")

plot(lambda_grid, profile_l11_lambda,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood"”,
main = expression(paste(”Profile: ", lambda)), las = 1
)
abline(v = mle[3], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[3], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e")

## Example 6: 2D Log-Likelihood Surface (Alpha vs Beta)

# Create 2D grid
alpha_2d <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n / 25))
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beta_2d <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n / 25))
alpha_2d <- alpha_2d[alpha_2d > @]
beta_2d <- beta_2d[beta_2d > 0]

# Compute log-likelihood surface
11_surface_ab <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seg_along(alpha_2d)) {
for (j in seg_along(beta_2d)) {
11_surface_ab[i, j] <- -llekw(c(alpha_2d[i], beta_2d[j], mle[3]), data)
}
3

# Confidence region levels
max_11_ab <- max(ll_surface_ab, na.rm = TRUE)

levels_90_ab <- max_ll_ab - qchisq(@.90, df = 2) / 2
levels_95_ab <- max_l1l_ab - qchisq(@.95, df =2) / 2
levels_99_ab <- max_ll_ab - qchisq(@.99, df =2) / 2

# Plot contour
contour(alpha_2d, beta_2d, 11_surface_ab,
xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood: Alpha vs Beta”,
levels = seq(min(ll_surface_ab, na.rm = TRUE), max_l1l_ab, length.out = 20),
col = "#2E4057", las = 1, lwd = 1
)

contour(alpha_2d, beta_2d, 11_surface_ab,
levels = c(levels_90_ab, levels_95_ab, levels_99_ab),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8
)

points(mle[1], mle[2], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFAQ7A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8
)
grid(col = "gray9e")

## Example 7: 2D Log-Likelihood Surface (Alpha vs Lambda)
# Create 2D grid

alpha_2d_2 <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n / 25))
lambda_2d <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = round(n / 25))
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alpha_2d_2 <- alpha_2d_2[alpha_2d_2 > 0]
lambda_2d <- lambda_2d[lambda_2d > @]

# Compute log-likelihood surface
11_surface_al <- matrix(NA, nrow = length(alpha_2d_2), ncol = length(lambda_2d))

for (i in seqg_along(alpha_2d_2)) {
for (j in seqg_along(lambda_2d)) {
11_surface_alli, j] <- -llekw(c(alpha_2d_2[i], mle[2], lambda_2d[j]), data)
}
3

# Confidence region levels
max_11_al <- max(ll_surface_al, na.rm = TRUE)

levels_90_al <- max_l1l_al - qchisq(@.90, df =2) / 2
levels_95_al <- max_ll_al - qchisq(@.95, df = 2) / 2
levels_99_al <- max_l1l_al - qchisq(@.99, df =2) / 2

# Plot contour
contour(alpha_2d_2, lambda_2d, 11_surface_al,
xlab = expression(alpha), ylab = expression(lambda),
main = "2D Log-Likelihood: Alpha vs Lambda”,
levels = seq(min(11l_surface_al, na.rm = TRUE), max_11_al, length.out = 20),
col = "#2E4057", las = 1, 1lwd =1
)

contour(alpha_2d_2, lambda_2d, 11_surface_al,
levels = c(levels_90_al, levels_95_al, levels_99_al),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8
)

points(mle[1], mle[3], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True”, "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFAQ7A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8
)
grid(col = "gray9e0")

## Example 8: 2D Log-Likelihood Surface (Beta vs Lambda)

# Create 2D grid

beta_2d_2 <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n / 25))
lambda_2d_2 <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = round(n / 25))
beta_2d_2 <- beta_2d_2[beta_2d_2 > 0]

133
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lambda_2d_2 <- lambda_2d_2[lambda_2d_2 > @]

# Compute log-likelihood surface
11_surface_bl <- matrix(NA, nrow = length(beta_2d_2), ncol = length(lambda_2d_2))

for (i in seqg_along(beta_2d_2)) {
for (j in seg_along(lambda_2d_2)) {
11_surface_bl[i, j] <- -1llekw(c(mle[1], beta_2d_2[i], lambda_2d_2[j]), data)
}
}

# Confidence region levels
max_11_bl <- max(ll_surface_bl, na.rm = TRUE)

levels_90_bl <- max_l1_bl - qchisq(@.90, df = 2) / 2
levels_95_bl <- max_l1_bl - qchisq(@.95, df =2) / 2
levels_99_bl <- max_l1_bl - qchisq(@.99, df = 2) / 2

# Plot contour
contour(beta_2d_2, lambda_2d_2, 11_surface_bl,
xlab = expression(beta), ylab = expression(lambda),
main = "2D Log-Likelihood: Beta vs Lambda”,
levels = seq(min(ll_surface_bl, na.rm = TRUE), max_11_bl, length.out = 20),
col = "#2E4057", las =1, 1lwd =1
)

contour(beta_2d_2, lambda_2d_2, 11_surface_bl,
levels = c(levels_90_bl, levels_95_bl, levels_99_bl),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8
)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFAQ7A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8
)
grid(col = "gray9e")

11gkw Negative Log-Likelihood for the Generalized Kumaraswamy Distribu-
tion
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Description

Computes the negative log-likelihood function for the five-parameter Generalized Kumaraswamy
(GKw) distribution given a vector of observations. This function is designed for use in optimization
routines (e.g., maximum likelihood estimation).

Usage
llgkw(par, data)

Arguments
par A numeric vector of length 5 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), gamma (y > 0), delta (§ > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The probability density function (PDF) of the GKw distribution is given in dgkw. The log-likelihood
function £(6) for a sample x = (x1,...,2,) is:

£(0|x) = nIn(AaB)—nl1n B(y, 5+1)+Z[(a—1) In(x;)+(8—1) In(v;)+(yA—=1) In(w; )46 In(z;)]
i=1

where 6 = (a, 8,7, 9, A), B(a, b) is the Beta function (beta), and:
e v =1-—2x¢
. wizl—vle—(l—mf‘)ﬁ
czi=1l-w)d=1-[1—(1-aP

This function computes —¢(6|x).

Numerical stability is prioritized using:

* lbeta function for the log-Beta term.

» Log-transformations of intermediate terms (v;, w;, 2;) and use of log1p where appropriate to
handle values close to 0 or 1 accurately.

* Checks for invalid parameters and data.

Value

Returns a single double value representing the negative log-likelihood (—¢(6|x)). Returns a large
positive value (e.g., Inf) if any parameter values in par are invalid according to their constraints,
or if any value in data is not in the interval (0, 1).

Author(s)
Lopes, J. E.
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References
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See Also

dgkw, pgkw, qgkw, rgkw, grgkw, hsgkw (gradient and Hessian functions, if available), optim, lbeta,
logip

Examples

## Example 1: Basic Log-Likelihood Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, gamma = 1.5, delta = 2.0, lambda = 1.8)
data <- rgkw(n,
alpha = true_params[1], beta = true_params[2],
gamma = true_params[3], delta = true_params[4],
lambda = true_params[5]

)

# Evaluate negative log-likelihood at true parameters
nll_true <- llgkw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.2, 1.5, 1.5),
c(2.0, 3.0, 1.5, 2.0, 1.8),
c(2.5, 3.5, 1.8, 2.5, 2.0)

nll_values <- apply(test_params, 1, function(p) llgkw(p, data))
results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Gamma = test_params[, 3],
Delta = test_params[, 4],
Lambda = test_params[, 5],
NegLoglLik = nll_values
)
print(results, digits = 4)

## Example 2: Maximum Likelihood Estimation

# Optimization using BFGS with analytical gradient
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fit <- optim(
par = c(1.5, 2.5, 1.2, 1.5, 1.5),

fn = 1llgkw,
gr = grgkw,
data = data,

method = "BFGS",

hessian = TRUE,

control = list(maxit = 1000)
)

mle <- fit$par
names(mle) <- c("alpha”, "beta”, "gamma”, "delta"”, "lambda")
se <- sqgrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("alpha”, "beta”, "gamma”, "delta”, "lambda"),
True = true_params,

MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,

CI_Upper = mle + 1.96 * se
)
print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
cat("AIC:", 2 x fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 x fit$value + length(mle) x log(n), "\n")

## Example 3: Comparing Optimization Methods

methods <- c("BFGS"”, "Nelder-Mead")
start_params <- c¢(1.5, 2.5, 1.2, 1.5, 1.5)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
NegLoglLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE
)

for (method in methods) {
if (method == "BFGS") {
fit_temp <- optim(
par = start_params,
fn = 1lgkw,
gr = grgkw,
data = data,



138 Iigkw

method = method,
control = list(maxit = 1000)
)
} else if (method == "L-BFGS-B") {
fit_temp <- optim(
par = start_params,

fn = 1lgkw,
gr = grgkw,
data = data,

method = method,
lower = rep(0.001, 5),
upper = rep(20, 5),
control = list(maxit
)
} else {
fit_temp <- optim(
par = start_params,
fn = 1llgkw,
data = data,
method = method,
control = list(maxit = 1000)
)
}

1000)

comparison <- rbind(comparison, data.frame(
Method = method,
Alpha = fit_temp$par[1],
Beta = fit_temp$par[2],
Gamma = fit_temp$par[3],
Delta = fit_temp$par[4],
Lambda = fit_temp$par[5],
NeglLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

D)

3

print(comparison, digits = 4, row.names = FALSE)

## Example 4: Likelihood Ratio Test

# Test HO: gamma = 1.5 vs H1: gamma free
loglik_full <- -fit$value

restricted_11 <- function(params_restricted, data, gamma_fixed) {
11gkw(
par = c(
params_restricted[1], params_restricted[2],
gamma_fixed, params_restricted[3], params_restricted[4]
),
data = data
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}

fit_restricted <- optim(
par = c(mle[1], mle[2], mle[4], mle[5]),
fn = restricted_11,
data = data,
gamma_fixed = 1.5,
method = "Nelder-Mead”,
control = list(maxit = 1000)
)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 x (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:”, round(lr_stat, 4), "\n")
cat("P-value:"”, format.pval(p_value, digits = 4), "\n")

## Example 5: Univariate Profile Likelihoods

# Profile for alpha

xd <- 1

alpha_grid <- seq(mle[1] - xd, mle[1] + xd, length.out = 35)
alpha_grid <- alpha_grid[alpha_grid > 0]

profile_11_alpha <- numeric(length(alpha_grid))

for (i in seqg_along(alpha_grid)) {
profile_fit <- optim(
par = mle[-1],
fn = function(p) llgkw(c(alpha_grid[i], p), data),
method = "Nelder-Mead”,
control = list(maxit = 500)
)
profile_11_alphal[i] <- -profile_fit$value
3

# Profile for beta

beta_grid <- seq(mle[2] - xd, mle[2] + xd, length.out = 35)
beta_grid <- beta_grid[beta_grid > @]

profile_11_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optim(
par = mle[-2],
fn = function(p) llgkw(c(p[1], beta_grid[il, p[2], p[3], p[4]1), data),
method = "Nelder-Mead”,
control = list(maxit = 500)
)
profile_11_betal[i] <- -profile_fit$value
3

# Profile for gamma
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gamma_grid <- seq(mle[3] - xd, mle[3] + xd, length.out = 35)
gamma_grid <- gamma_grid[gamma_grid > 0]
profile_11_gamma <- numeric(length(gamma_grid))

for (i in seqg_along(gamma_grid)) {
profile_fit <- optim(
par = mle[-3],
fn = function(p) 1llgkw(c(p[11, p[2], gamma_grid[il, p[3], p[4]), data),
method = "Nelder-Mead”,
control = list(maxit = 500)
)
profile_11_gammal[i] <- -profile_fit$value
}

# Profile for delta

delta_grid <- seq(mle[4] - xd, mle[4] + xd, length.out = 35)
delta_grid <- delta_grid[delta_grid > 0]

profile_11_delta <- numeric(length(delta_grid))

for (i in seqg_along(delta_grid)) {
profile_fit <- optim(
par = mle[-4],
fn = function(p) 1llgkw(c(p[1], p[2], p[3], delta_grid[i], p[4]), data),
method = "Nelder-Mead”,
control = list(maxit = 500)
)
profile_11_deltali] <- -profile_fit$value
}

# Profile for lambda

lambda_grid <- seq(mle[5] - xd, mle[5] + xd, length.out = 35)
lambda_grid <- lambda_grid[lambda_grid > @]

profile_11_lambda <- numeric(length(lambda_grid))

for (i in seqg_along(lambda_grid)) {
profile_fit <- optim(
par = mle[-5],
fn = function(p) llgkw(c(p[11, p[2], p[31, p[4], lambda_grid[il]), data),
method = "Nelder-Mead”,
control = list(maxit = 500)
)
profile_11_lambda[i] <- -profile_fit$value
3

# 95% confidence threshold
chi_crit <- gchisq(@.95, df = 1)
threshold <- max(profile_l1_alpha) - chi_crit / 2

# Plot all profiles
plot(alpha_grid, profile_l1_alpha,

type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood”,
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main = expression(paste("Profile: ", alpha)), las =1
)
abline(v = mle[1], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,

legend = c("MLE", "True", "95% CI"),

col = c("#8B0000", "#006400", "#808080"),

1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.6
)
grid(col = "gray9e0")

plot(beta_grid, profile_l1_beta,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood”,
main = expression(paste("Profile: ", beta)), las =1
)
abline(v = mle[2], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, 1lwd = 1.5)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.6
)
grid(col = "gray9e0")

plot(gamma_grid, profile_11_gamma,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = "Profile Log-Likelihood”,
main = expression(paste("Profile: ", gamma)), las = 1
)
abline(v = mle[3], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[3], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = ¢(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.6
)
grid(col = "gray90")

plot(delta_grid, profile_11_delta,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood”,
main = expression(paste(”Profile: ", delta)), las =1
)
abline(v = mle[4], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[4], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
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1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.6
)
grid(col = "gray9e0")

plot(lambda_grid, profile_11_lambda,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood"”,
main = expression(paste(”"Profile: ", lambda)), las = 1
)
abline(v = mle[5], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[5], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, 1lwd = 1.5)
legend("topright”,
legend = c("MLE", "True”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.6
)
grid(col = "gray9e0")

## Example 6: 2D Log-Likelihood Surface (Alpha vs Beta)
# Plot all profiles

# Create 2D grid

alpha_2d <- seq(mle[1] - xd, mle[1] + xd, length.out = round(n / 4))
beta_2d <- seq(mle[2] - xd, mle[2] + xd, length.out = round(n / 4))
alpha_2d <- alpha_2d[alpha_2d > @]

beta_2d <- beta_2d[beta_2d > 0]

# Compute log-likelihood surface
11_surface_ab <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seq_along(alpha_2d)) {
for (j in seqg_along(beta_2d)) {
11_surface_ab[i, j] <- llgkw(c(
alpha_2d[i], beta_2d[j],
mle[3], mle[4], mle[5]
), data)
}
3

# Confidence region levels
max_11_ab <- max(ll_surface_ab, na.rm = TRUE)

levels_90_ab <- max_ll_ab - qchisq(@.90, df =2) / 2
levels_95_ab <- max_ll_ab - qchisq(@.95, df =2) / 2
levels_99_ab <- max_l1_ab - qchisq(@.99, df = 2) / 2

# Plot contour
contour(alpha_2d, beta_2d, 11_surface_ab,
xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood: Alpha vs Beta”,
levels = seq(min(ll_surface_ab, na.rm = TRUE), max_l1_ab, length.out = 20),
col = "#2E4057", las = 1, 1lwd =1
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)

contour(alpha_2d, beta_2d, 11_surface_ab,

levels = c(levels_90_ab, levels_95_ab, levels_99_ab),

col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex

points(true_params[1], true_params[2], pch = 17,

legend("topright”,

=1.5)

col = "#006400", cex = 1.5)

legend = c("MLE", "True”, "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "H#FFAGTA", "#FF6347", "#8B0000"),

pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)

grid(col = "gray9e0")

## Example 7: 2D Log-Likelihood Surface (Gamma vs Delta)

# Create 2D grid

gamma_2d <- seq(mle[3] - xd, mle[3] + xd, length.out
delta_2d <- seq(mle[4] - xd, mle[4] + xd, length.out

gamma_2d <- gamma_2d[gamma_2d > @]
delta_2d <- delta_2d[delta_2d > 0]

# Compute log-likelihood surface

11_surface_gd <- matrix(NA, nrow = length(gamma_2d),

for (i in seqg_along(gamma_2d)) {
for (j in seqg_along(delta_2d)) {
11_surface_gd[i, j] <- -1llgkw(c(
mle[1], mle[2], gamma_2d[i],
delta_2d[j], mle[5]
), data)
}
3

# Confidence region levels

max_11_gd <- max(ll_surface_gd, na.rm = TRUE)

levels_90_gd <- max_l1l_gd - qchisq(0.90, df
levels_95_gd <- max_l1l_gd - qchisq(@.95, df
levels_99_gd <- max_ll_gd - qchisq(@.99, df

# Plot contour
contour(gamma_2d, delta_2d, 1l_surface_gd,

xlab = expression(gamma), ylab = expression(delta),

N

main = "2D Log-Likelihood: Gamma vs Delta”,

NN

N

~N N
N NN

= round(n / 4))
= round(n / 4))

ncol = length(delta_2d))
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levels = seq(min(ll_surface_gd, na.rm = TRUE), max_ll_gd, length.out = 20),

col = "#2E4057", las = 1, 1lwd =1
)

contour(gamma_2d, delta_2d, 11_surface_gd,

levels = c(levels_90_gd, levels_95_gd, levels_99_gd),

col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[3], mle[4], pch = 19, col = "#8B000Q", cex
points(true_params[3], true_params[4], pch = 17, col = "#006400",

legend("topright”,

legend = c("MLE", "True", "9@% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "H#FFAQTA", "#FF6347", "#8B0000"),

pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8

)

grid(col = "gray90")

## Example 8: 2D Log-Likelihood Surface (Delta vs Lambda)

# Create 2D grid

delta_2d_2 <- seq(mle[4] - xd, mle[4] + xd, length.out
lambda_2d <- seq(mle[5] - xd, mle[5] + xd, length.out = round(n / 30))

delta_2d_2 <- delta_2d_2[delta_2d_2 > @]
lambda_2d <- lambda_2d[lambda_2d > @]

# Compute log-likelihood surface

11_surface_dl <- matrix(NA, nrow = length(delta_2d_2), ncol = length(lambda_2d))

for (i in seqg_along(delta_2d_2)) {
for (j in seg_along(lambda_2d)) {
11_surface_d1[i, j] <- -1llgkw(c(
mle[1], mle[2], mle[3],
delta_2d_2[i], lambda_2d[j]
), data)
}
3

# Confidence region levels

max_11_dl <- max(ll_surface_dl, na.rm = TRUE)

levels_90_dl <- max_l1_dl - qgchisq(@.90, df
levels_95_dl <- max_11_dl - gchisq(@.95, df
levels_99_dl <- max_l1_dl - gchisq(@.99, df

# Plot contour

contour(delta_2d_2, lambda_2d, 11_surface_dl,

N NN

N

~N N
N NN

round(n / 30))
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xlab = expression(delta), ylab = expression(lambda),
main = "2D Log-Likelihood: Delta vs Lambda”,
levels = seq(min(ll_surface_dl, na.rm = TRUE), max_l1_dl, length.out = 20),
col = "#2E4057", las = 1, lwd = 1
)

contour(delta_2d_2, lambda_2d, 11l_surface_dl,
levels = c(levels_90_dl, levels_95_dl, levels_99_dl),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8
)

points(mle[4], mle[5], pch = 19, col = "#8B0000®", cex = 1.5)
points(true_params[4], true_params[5], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000", "#006400", "#FFAQ7A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8
)
grid(col = "gray9e")

11kkw Negative Log-Likelihood for the kkw Distribution

Description

Computes the negative log-likelihood function for the Kumaraswamy-Kumaraswamy (kkw) distri-
bution with parameters alpha (), beta (), delta (9), and lambda (\), given a vector of obser-
vations. This distribution is a special case of the Generalized Kumaraswamy (GKw) distribution
where v = 1.

Usage
llkkw(par, data)

Arguments
par A numeric vector of length 4 containing the distribution parameters in the order:
alpha (a > 0), beta (8 > 0), delta (6 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1

(exclusive).
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Details

The kkw distribution is the GKw distribution (dgkw) with v = 1. Its probability density function
(PDF) is:

F(@]0) = (6 + DAaBz® 11— ™) 1 — (1—2*) ] 1= [1— (1 -2}

for0 < 2 < land § = («,3,0,\). The log-likelihood function ¢(f|x) for a sample x =
(@1, 2y) is Y0 In f(24]0):

00)x) = n[ln(5+1)—|—1n()\)—Hn(a)—i—ln(ﬁ)]—&-z[(a—l) In(2;)+(8—1) In(v;)+(A—1) In(w;)+6 In(2;)]
i=1

where:

cv=1—2af
cwy=1—0=1—(1—2%)7
s zi=1—-w)=1-[1-(1-a%)%}

(2

This function computes and returns the negative log-likelihood, —£(#|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained similarly to 11gkw.

Value

Returns a single double value representing the negative log-likelihood (—¢(6|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

11gkw (parent distribution negative log-likelihood), dkkw, pkkw, gkkw, rkkw, grkkw (gradient, if
available), hskkw (Hessian, if available), optim

Examples

## Example 1: Basic Log-Likelihood Evaluation

# Generate sample data
set.seed(123)
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n <- 1000
true_params <- c(alpha = 2.0, beta = 3.0, delta = 1.5, lambda = 2.0)
data <- rkkw(n,

alpha = true_params[1], beta = true_params[2],

delta = true_params[3], lambda = true_params[4]

)

# Evaluate negative log-likelihood at true parameters
nll_true <- llkkw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.5, 1.0, 1.5),
c(2.0, 3.0, 1.5, 2.0),
c(2.5, 3.5, 2.0, 2.5)

)

nll_values <- apply(test_params, 1, function(p) llkkw(p, data))
results <- data.frame(
Alpha = test_params[, 1],
Beta = test_params[, 2],
Delta = test_params[, 3],
Lambda = test_params[, 4],
NegLoglLik = nll_values
)
print(results, digits = 4)

## Example 2: Maximum Likelihood Estimation
# Optimization using BFGS with analytical gradient

fit <- optim(
par = c(1.5, 2.5, 1.0, 1.5),

fn = 11lkkw,
gr = grkkw,
data = data,

method = "BFGS",
hessian = TRUE
)

mle <- fit$par
names(mle) <- c("alpha”, "beta”, "delta”, "lambda")
se <- sqgrt(diag(solve(fit$hessian)))

results <- data.frame(
Parameter = c("alpha”, "beta”, "delta”, "lambda"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se



print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")

cat("AIC:", 2 x fit$value + 2 * length(mle), "\n")

cat("BIC:", 2 x fit$value + length(mle) * log(n), "\n")

## Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead”, "CG")

start_params <- c(1.5, 2.5, 1.0, 1.5)

comparison <- data.frame(
Method = character(),
Alpha = numeric(),
Beta = numeric(),
Delta = numeric(),
Lambda = numeric(),
NeglLoglLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE
)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(
par = start_params,
fn = 11kkw,
gr = grkkw,
data = data,
method = method
)
} else if (method == "L-BFGS-B") {
fit_temp <- optim(
par = start_params,

fn = 11kkw,
gr = grkkw,
data = data,

method = method,
lower = c(0.01, 0.01, 0.01, 0.01),
upper = c(100, 100, 100, 100)
)
} else {
fit_temp <- optim(
par = start_params,
fn = 11kkw,
data = data,
method = method
)
}

comparison <- rbind(comparison, data.frame(
Method = method,
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Alpha = fit_temp$par[1],
Beta = fit_temp$par[2],
Delta = fit_temp$par[3],
Lambda = fit_temp$par[4],
NeglLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE
D)
3

print(comparison, digits = 4, row.names = FALSE)

## Example 4: Likelihood Ratio Test

# Test HO: delta = 1.5 vs H1: delta free
loglik_full <- -fit$value

restricted_11 <- function(params_restricted, data, delta_fixed) {
11kkw(par = c(
params_restricted[1], params_restricted[2],
delta_fixed, params_restricted[3]
), data = data)
3

fit_restricted <- optim(
par = c(mle[1], mle[2], mle[4]),
fn = restricted_11,
data = data,
delta_fixed = 1.5,
method = "BFGS"
)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:”, round(lr_stat, 4), "\n")
cat("P-value:”, format.pval(p_value, digits = 4), "\n")

## Example 5: Univariate Profile Likelihoods

# Profile for alpha

alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = 40)
alpha_grid <- alpha_grid[alpha_grid > 0]

profile_11_alpha <- numeric(length(alpha_grid))

for (i in seqg_along(alpha_grid)) {
profile_fit <- optim(
par = mle[-1],
fn = function(p) llkkw(c(alpha_grid[i], p), data),
method = "Nelder-Mead”
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)
profile_11_alpha[i] <- -profile_fit$value

}

# Profile for beta

beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = 40)
beta_grid <- beta_grid[beta_grid > @]

profile_11_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optim(
par = mle[-2],
fn = function(p) 1lkkw(c(p[1], beta_grid[i], p[2], p[3]), data),
method = "Nelder-Mead”
)
profile_11_betal[i] <- -profile_fit$value
3

# Profile for delta

delta_grid <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = 40)
delta_grid <- delta_grid[delta_grid > 0]

profile_11_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
profile_fit <- optim(
par = mle[-3],
fn = function(p) 1lkkw(c(p[1]1, p[2], delta_grid[il, p[3]), data),
method = "Nelder-Mead"
)
profile_11_deltali] <- -profile_fit$value
}

# Profile for lambda

lambda_grid <- seq(mle[4] - 1, mle[4] + 1, length.out = 40)
lambda_grid <- lambda_grid[lambda_grid > @]
profile_11_lambda <- numeric(length(lambda_grid))

for (i in seqg_along(lambda_grid)) {
profile_fit <- optim(
par = mle[-4],
fn = function(p) 1llkkw(c(p[11, p[2], p[3]1, lambda_grid[i]), data),
method = "Nelder-Mead"
)
profile_l11_lambdal[i] <- -profile_fit$value
3

# 95% confidence threshold

chi_crit <- qchisq(@.95, df = 1)

threshold <- max(profile_11_alpha) - chi_crit / 2
# Plot all profiles

plot(alpha_grid, profile_l1_alpha,
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type = "1", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood”,
main = expression(paste(”Profile: ", alpha)), las =1
)
abline(v = mle[1], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.7
)
grid(col = "gray9e")

plot(beta_grid, profile_l1_beta,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood"”,
main = expression(paste(”Profile: ", beta)), las = 1
)
abline(v = mle[2], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.7
)
grid(col = "gray9e")

plot(delta_grid, profile_l1_delta,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood”,
main = expression(paste(”Profile: ", delta)), las =1
)
abline(v = mle[3], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.7
)
grid(col = "gray9e")

plot(lambda_grid, profile_l11_lambda,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood",
main = expression(paste(”Profile: ", lambda)), las = 1
)
abline(v = mle[4], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[4], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
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legend = c("MLE", "True", "95% CI"),

col = c("#8B000Q", "#006400", "#808080"),

1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.7
)
grid(col = "gray9e")

## Example 6: 2D Log-Likelihood Surface (Alpha vs Beta)

# Create 2D grid

alpha_2d <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n / 25))
beta_2d <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n / 25))
alpha_2d <- alpha_2d[alpha_2d > @]

beta_2d <- beta_2d[beta_2d > @]

# Compute log-likelihood surface
11_surface <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seqg_along(alpha_2d)) {
for (j in seqg_along(beta_2d)) {

11_surfaceli, jl <- -1llkkw(c(alpha_2d[i], beta_2d[j1, mle[3]1, mle[4]), data)

b
}

# Confidence region levels
max_11 <- max(ll_surface, na.rm = TRUE)

levels_90 <- max_11 - qchisq(@.90, df = 2) / 2
levels_95 <- max_l1 - qchisq(@.95, df =2) / 2
levels_99 <- max_ll - qgchisq(@.99, df =2) / 2

# Plot contour
contour(alpha_2d, beta_2d, 11_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood: Alpha vs Beta”,
levels = seq(min(ll_surface, na.rm = TRUE), max_l1, length.out = 20),
col = "#2E4057", las =1, 1lwd =1
)

contour(alpha_2d, beta_2d, 1l_surface,
levels = c(levels_90, levels_95, levels_99),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8

)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)

points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B0000Q", "#006400", "#FFAQ7A", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
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bty = "n", cex = 0.8
)
grid(col = "gray9e0")

## Example 7: 2D Log-Likelihood Surface (Delta vs Lambda)

# Create 2D grid

delta_2d <- seq(mle[3] - @.6, mle[3] + 0.6, length.out = round(n / 25))
lambda_2d <- seq(mle[4] - 0.8, mle[4] + 0.8, length.out = round(n / 25))
delta_2d <- delta_2d[delta_2d > @]

lambda_2d <- lambda_2d[lambda_2d > @]

# Compute log-likelihood surface
11_surface2 <- matrix(NA, nrow = length(delta_2d), ncol = length(lambda_2d))

for (i in seg_along(delta_2d)) {
for (j in seqg_along(lambda_2d)) {
11_surface2[i, j] <- -llkkw(c(mle[1], mle[2], delta_2d[i], lambda_2d[j]), data)
}
3

# Confidence region levels
max_112 <- max(1ll_surface2, na.rm = TRUE)

levels2_90 <- max_112 - qchisq(@.90, df =2) / 2
levels2_95 <- max_112 - qchisq(@.95, df = 2) / 2
levels2_99 <- max_112 - qchisq(@.99, df =2) / 2

# Plot contour
contour(delta_2d, lambda_2d, 11_surface2,
xlab = expression(delta), ylab = expression(lambda),
main = "2D Log-Likelihood: Delta vs Lambda”,
levels = seq(min(ll_surface2, na.rm = TRUE), max_112, length.out = 20),
col = "#2E4057", las = 1, lwd = 1
)

contour(delta_2d, lambda_2d, 11_surface2,
levels = c(levels2_90, levels2_95, levels2_99),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), 1ty = c(3, 2, 1),
add = TRUE, labcex = 0.8
)

points(mle[3], mle[4], pch = 19, col = "#8B000®", cex = 1.5)
points(true_params[3], true_params[4], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
col = c("#8B000Q", "#006400", "#FFAQTA", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8
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)
grid(col = "gray9e")

11kw Negative Log-Likelihood of the Kumaraswamy (Kw) Distribution

Description

Computes the negative log-likelihood function for the two-parameter Kumaraswamy (Kw) distri-
bution with parameters alpha («) and beta (3), given a vector of observations. This function is
suitable for maximum likelihood estimation.

Usage
llkw(par, data)

Arguments
par A numeric vector of length 2 containing the distribution parameters in the order:
alpha (a > 0), beta (6 > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1
(exclusive).
Details

The Kumaraswamy (Kw) distribution’s probability density function (PDF) is (see dkw):
f(2]6) = apz®~ (1 —a)P7!

for0 < z < 1and @ = («, 8). The log-likelihood function ¢(6|x) for a sample x = (z1,...,%,)
is >0 In f(z4]0):

n

£(61x) = nlln(a) +n(8)] + Y _[(a — 1) In(z;) + (5 — 1) In(v;)]

i=1

where v; = 1 — 2. This function computes and returns the negative log-likelihood, —¢(6|x),
suitable for minimization using optimization routines like optim. It is equivalent to the negative
log-likelihood of the GKw distribution (11gkw) evaluated aty = 1,6 = 0, A = 1.

Value

Returns a single double value representing the negative log-likelihood (—¢(6|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).
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Author(s)
Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
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See Also

11gkw (parent distribution negative log-likelihood), dkw, pkw, gkw, rkw, grkw (gradient, if available),
hskw (Hessian, if available), optim

Examples

## Example 1: Maximum Likelihood Estimation with Analytical Gradient

# Generate sample data

set.seed(123)

n <- 1000

true_params <- c(alpha = 2.5, beta = 3.5)

data <- rkw(n, alpha = true_params[1], beta = true_params[2])

# Optimization using BFGS with analytical gradient
fit <- optim(

par = c(2, 2),
fn = 11kw,

gr = grkw,
data = data,

method = "BFGS",
hessian = TRUE

)

# Extract results

mle <- fit$par

names(mle) <- c("alpha", "beta")

se <- sqgrt(diag(solve(fit$hessian)))
ci_lower <- mle - 1.96 * se
ci_upper <- mle + 1.96 * se

# Summary table
results <- data.frame(
Parameter = c("alpha”, "beta"),
True = true_params,
MLE = mle,
SE = se,
CI_Lower = ci_lower,
CI_Upper = ci_upper
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print(results, digits = 4)
## Example 2: Verifying Gradient at MLE

# At MLE, gradient should be approximately zero
gradient_at_mle <- grkw(par = mle, data = data)
print(gradient_at_mle)

cat("Max absolute score:”, max(abs(gradient_at_mle)), "\n")

## Example 3: Checking Hessian Properties

# Hessian at MLE
hessian_at_mle <- hskw(par = mle, data = data)
print(hessian_at_mle, digits = 4)

# Check positive definiteness via eigenvalues

eigenvals <- eigen(hessian_at_mle, only.values = TRUE)$values
print(eigenvals)

all(eigenvals > 0)

# Condition number
cond_number <- max(eigenvals) / min(eigenvals)
cat("Condition number:"”, format(cond_number, scientific = TRUE), "\n")

## Example 4: Comparing Optimization Methods

methods <- c("BFGS"”, "L-BFGS-B"”, "Nelder-Mead”, "CG")
start_params <- c(2, 2)

comparison <- data.frame(
Method = character(),
Alpha_Est = numeric(),
Beta_Est = numeric(),
NeglLoglLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(
par = start_params,
fn = 1lkw,
gr = grkw,
data = data,
method = method
)
} else if (method == "L-BFGS-B") {
fit_temp <- optim(
par = start_params,
fn = 1lkw,
gr = grkw,
data = data,
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method = method,
lower = c(0.01, 0.01),
upper = c(100, 100)
)
} else {
fit_temp <- optim(
par = start_params,
fn = 1lkw,
data = data,
method = method
)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Alpha_Est = fit_temp$par[1],
Beta_Est = fit_temp$par[2],
NegLogLik = fit_temp$value,
Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

»

print(comparison, digits = 4, row.names = FALSE)
## Example 5: Likelihood Ratio Test

# Test HO: beta = 3 vs H1: beta free
loglik_full <- -fit$value

# Restricted model: fix beta = 3

restricted_11 <- function(alpha, data, beta_fixed) {
llkw(par = c(alpha, beta_fixed), data = data)

3

fit_restricted <- optimize(
f = restricted_11,
interval = c(0.1, 10),
data = data,
beta_fixed = 3,
maximum = FALSE

)

loglik_restricted <- -fit_restricted$objective

lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:”, round(lr_stat, 4), "\n")
cat("P-value:", format.pval(p_value, digits = 4), "\n")

## Example 6: Univariate Profile Likelihoods

# Grid for alpha
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alpha_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)
alpha_grid <- alpha_grid[alpha_grid > 0]
profile_11_alpha <- numeric(length(alpha_grid))

for (i in seqg_along(alpha_grid)) {
profile_fit <- optimize(
f = function(beta) llkw(c(alpha_grid[i], beta), data),
interval = c(0.1, 10),
maximum = FALSE
)
profile_11_alphal[i] <- -profile_fit$objective
3

# Grid for beta

beta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
beta_grid <- beta_grid[beta_grid > @]

profile_11_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
profile_fit <- optimize(
f = function(alpha) llkw(c(alpha, beta_grid[i]), data),
interval = c(0.1, 10),
maximum = FALSE
)
profile_11_betal[i] <- -profile_fit$objective
3

# 95% confidence threshold
chi_crit <- gchisq(@.95, df = 1)
threshold <- max(profile_11_alpha) - chi_crit / 2

# Plot

# Profile for alpha
plot(alpha_grid, profile_l1_alpha,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood”,
main = expression(paste("Profile Likelihood: ", alpha)), las =1
)
abline(v = mle[1], col = "#8B000V", 1ty = 2, 1lwd = 2)
abline(v = true_params[1], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e")

# Profile for beta
plot(beta_grid, profile_l1_beta,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood”,
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main = expression(paste(”Profile Likelihood: ", beta)), las =1
)
abline(v = mle[2], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,

legend = c("MLE", "True", "95% CI"),

col = c("#8B0000", "#006400", "#808080"),

1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e")

## Example 7: 2D Profile Likelihood Surface

# Create 2D grid

alpha_2d <- seq(mle[1] - 1, mle[1] + 1, length.out = round(n / 4))
beta_2d <- seq(mle[2] - 1, mle[2] + 1, length.out = round(n / 4))
alpha_2d <- alpha_2d[alpha_2d > @]

beta_2d <- beta_2d[beta_2d > @]

# Compute log-likelihood surface
11_surface <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seq_along(alpha_2d)) {
for (j in seqg_along(beta_2d)) {
11_surfaceli, j1 <- -1llkw(c(alpha_2d[i], beta_2d[j]), data)
}
}

# Confidence region levels
max_l11 <- max(ll_surface, na.rm = TRUE)

levels_90 <- max_11 - qchisq(@.90, df = 2) / 2
levels_95 <- max_l1 - qchisq(@.95, df =2) / 2
levels_99 <- max_ll - qgchisq(@.99, df = 2) / 2

# Plot contour
contour(alpha_2d, beta_2d, 11_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "2D Profile Log-Likelihood",
levels = seq(min(ll_surface, na.rm = TRUE), max_l1l, length.out = round(n / 4)),
col = "#2E4057", las =1, 1lwd =1
)

# Add confidence region contours
contour(alpha_2d, beta_2d, 11_surface,
levels = c(levels_90, levels_95, levels_99),
col = c("#FFAQ7A", "#FF6347", "#8B0000"),
lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
add = TRUE, labcex = 0.8
)

# Mark points
points(mle[1], mle[2], pch = 19, col = "#8B000®", cex = 1.5)
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points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright”,
legend = c("MLE", "True"”, "90% CR", "95% CR", "99% CR"),
col = c("#8B000Q", "#006400", "#FFAQTA", "#FF6347", "#8B0000"),
pch = c(19, 17, NA, NA, NA),
1ty = c(NA, NA, 3, 2, 1),
lwd = c(NA, NA, 2, 2.5, 3),
bty = "n", cex = 0.8
)
grid(col = "gray9e")

## Example 8: Combined View - Profiles with 2D Surface

# Top left: Profile for alpha
plot(alpha_grid, profile_11_alpha,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(alpha), ylab = "Profile Log-Likelihood”,
main = expression(paste("Profile: ", alpha)), las =1
)
abline(v = mle[1], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[1], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3)
grid(col = "gray9e0")

# Top right: Profile for beta
plot(beta_grid, profile_l1_beta,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(beta), ylab = "Profile Log-Likelihood",
main = expression(paste(”Profile: ", beta)), las = 1
)
abline(v = mle[2], col = "#8B0000", 1ty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, 1lwd = 2)
abline(h = threshold, col = "#808080", lty = 3)
grid(col = "gray9e0")

# Bottom left: 2D contour
contour(alpha_2d, beta_2d, 1l_surface,
xlab = expression(alpha), ylab = expression(beta),
main = "2D Log-Likelihood Surface”,
levels = seq(min(ll_surface, na.rm = TRUE), max_l1, length.out = 15),
col = "#2E4057", las = 1, 1lwd = 1
)
contour(alpha_2d, beta_2d, 1l_surface,
levels = c(levels_95),
col = "#8B0Q00O", lwd = 2.5, add = TRUE
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

## Example 9: Numerical Gradient Verification
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# Manual finite difference gradient
numerical_gradient <- function(f, x, data, h = 1e-7) {
grad <- numeric(length(x))
for (i in seq_along(x)) {
x_plus <- x_minus <- X
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
grad[i] <- (f(x_plus, data) - f(x_minus, data)) / (2 * h)
}
return(grad)
3

# Compare
grad_analytical <- grkw(par = mle, data = data)
grad_numerical <- numerical_gradient(llkw, mle, data)

comparison_grad <- data.frame(
Parameter = c("alpha”, "beta"),
Analytical = grad_analytical,
Numerical = grad_numerical,
Difference = abs(grad_analytical - grad_numerical)

)

print(comparison_grad, digits = 8)
## Example 10: Bootstrap Confidence Intervals

n_boot <- round(n / 4)
boot_estimates <- matrix(NA, nrow = n_boot, ncol = 2)

set.seed(456)

for (b in 1:n_boot) {
boot_data <- rkw(n, alpha = mle[1], beta = mle[2])
boot_fit <- optim(

par = mle,
fn = 11lkw,
gr = grkw,

data = boot_data,
method = "BFGS”,
control = list(maxit = 500)
)
if (boot_fit$convergence == 0) {
boot_estimates[b, ] <- boot_fit$par
}
3

boot_estimates <- boot_estimates[complete.cases(boot_estimates), ]
boot_ci <- apply(boot_estimates, 2, quantile, probs = c(0.025, 0.975))
colnames(boot_ci) <- c("alpha”, "beta")

print(t(boot_ci), digits = 4)

# Plot bootstrap distributions
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hist(boot_estimates[, 11,
breaks = 20, col = "#87CEEB", border = "white",

main = expression(paste(”Bootstrap: ", hat(alpha))),
xlab = expression(hat(alpha)), las =1
)
abline(v = mle[1], col = "#8B0000", 1lwd = 2)
abline(v = true_params[1], col = "#006400", lwd = 2, 1ty = 2)
abline(v = boot_cil[, 1], col = "#2E4057", lwd = 2, 1ty = 3)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B000Q", "#006400", "#2E4057"),
lwd = 2, 1ty = c(1, 2, 3), bty = "n"
)
hist(boot_estimates[, 217,
breaks = 20, col = "#FFAQ7A", border = "white"”,
main = expression(paste(”"Bootstrap: ", hat(beta))),
xlab = expression(hat(beta)), las =1
)
abline(v = mle[2], col = "#8B0000", 1lwd = 2)
abline(v = true_params[2], col = "#006400", lwd = 2, 1ty = 2)
abline(v = boot_ci[, 2], col = "#2E4057", 1lwd = 2, 1ty = 3)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#2E4057"),
lwd = 2, 1ty = c(1, 2, 3), bty = "n"
)
11mc Negative Log-Likelihood for the McDonald (Mc)/Beta Power Distri-
bution
Description

Computes the negative log-likelihood function for the McDonald (Mc) distribution (also known as
Beta Power) with parameters gamma (vy), delta (§), and lambda (), given a vector of observations.
This distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where
«a = 1 and 8 = 1. This function is suitable for maximum likelihood estimation.

Usage

llmc(par, data)

Arguments
par A numeric vector of length 3 containing the distribution parameters in the order:
gamma (v > 0), delta (6 > 0), lambda (A > 0).
data A numeric vector of observations. All values must be strictly between 0 and 1

(exclusive).
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Details

The McDonald (Mc) distribution is the GKw distribution (dmc) with « = 1 and 5 = 1. Its proba-
bility density function (PDF) is:

f(z]0) = mfﬂw_l(l —z*)°

for0 <z < 1,60 = (v,6,A), and B(a,b) is the Beta function (beta). The log-likelihood function
£(0|x) for a sample x = (z1,...,2,) is > ; In f(z;]0):

£(01x) = n[ln(A) —In B(y,6 + 1)] + Y _[(vA — 1) In(z;) + 6 In(1 — 2)]
=1

This function computes and returns the negative log-likelihood, —¢(6|x), suitable for minimization
using optimization routines like optim. Numerical stability is maintained, including using the log-
gamma function (1gamma) for the Beta function term.

Value

Returns a single double value representing the negative log-likelihood (—¢(6|x)). Returns Inf if
any parameter values in par are invalid according to their constraints, or if any value in data is not
in the interval (0, 1).

Author(s)
Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also
11gkw (parent distribution negative log-likelihood), dmc, pmc, gme, rmc, grmc (gradient, if available),
hsmc (Hessian, if available), optim, lbeta

Examples

## Example 1: Basic Log-Likelihood Evaluation

# Generate sample data with more stable parameters
set.seed(123)

n <- 1000

true_params <- c(gamma = 2.0, delta = 2.5, lambda = 1.5)
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data <- rmc(n,
gamma = true_params[1], delta = true_params[2],
lambda = true_params[3]

)

# Evaluate negative log-likelihood at true parameters
nll_true <- llmc(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")

# Evaluate at different parameter values
test_params <- rbind(

c(1.5, 2.9, 1.0),

c(2.9, 2.5, 1.5),

c(2.5, 3.9, 2.9)
)

nll_values <- apply(test_params, 1, function(p) llmc(p, data))
results <- data.frame(
Gamma = test_params[, 1],
Delta = test_params[, 2],
Lambda = test_params[, 3],
NegLoglLik = nll_values
)
print(results, digits = 4)

## Example 2: Maximum Likelihood Estimation
# Optimization using BFGS with analytical gradient

fit <- optim(
par = c(1.5, 2.0, 1.0),

fn = 1llmc,
gr = grmc,
data = data,

method = "BFGS",
hessian = TRUE
)

mle <- fit$par
names(mle) <- c("gamma”, "delta”, "lambda")

se <- sqgrt(diag(solve(fit$hessian)))

results <- data.frame(

Parameter = c("gamma”, "delta"”, "lambda"),
True = true_params,

MLE = mle,

SE = se,

CI_Lower = mle - 1.96 * se,
CI_Upper = mle + 1.96 * se

)
print(results, digits = 4)

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
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cat("AIC:", 2 x fit$value + 2 * length(mle), "\n")
cat("BIC:", 2 x fit$value + length(mle) * log(n), "\n")

## Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead”, "CG")
start_params <- c(1.5, 2.0, 1.0)

comparison <- data.frame(
Method = character(),
Gamma = numeric(),
Delta = numeric(),
Lambda = numeric(),
NegLoglLik = numeric(),
Convergence = integer(),
stringsAsFactors = FALSE

)

for (method in methods) {
if (method %in% c("BFGS", "CG")) {
fit_temp <- optim(
par = start_params,
fn = 1llmc,
gr = grmc,
data = data,
method = method
)
} else if (method == "L-BFGS-B") {
fit_temp <- optim(
par = start_params,

fn = 1llmc,
gr = grmc,
data = data,

method = method,
lower = c(0.01, 0.01, 0.01),
upper = c(100, 100, 100)
)
} else {
fit_temp <- optim(
par = start_params,
fn = 1llmc,
data = data,
method = method
)
}

comparison <- rbind(comparison, data.frame(
Method = method,
Gamma = fit_temp$par[1],
Delta = fit_temp$par[2],
Lambda = fit_temp$par[3],
NeglLogLik = fit_temp$value,
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Convergence = fit_temp$convergence,
stringsAsFactors = FALSE

)
}

print(comparison, digits = 4, row.names = FALSE)

## Example 4: Likelihood Ratio Test

# Test HO: lambda = 1.5 vs H1: lambda free
loglik_full <- -fit$value

restricted_11 <- function(params_restricted, data, lambda_fixed) {

1lmc(par = c(
params_restricted[1], params_restricted[2],
lambda_fixed
), data = data)
3

fit_restricted <- optim(
par = c(mle[1], mle[2]),
fn = restricted_11,
data = data,
lambda_fixed = 1.5,
method = "BFGS"

)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)

p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:”, round(lr_stat, 4), "\n")

cat("P-value:", format.pval(p_value, digits = 4), "\n")

## Example 5: Univariate Profile Likelihoods

# Profile for gamma

gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)

gamma_grid <- gamma_grid[gamma_grid > 0]
profile_11_gamma <- numeric(length(gamma_grid))

for (i in seqg_along(gamma_grid)) {
profile_fit <- optim(
par = mle[-1],

fn = function(p) llmc(c(gamma_grid[i], p), data),

method = "BFGS"

)
profile_11_gamma[i] <- -profile_fit$value

3

# Profile for delta

Illmc
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delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
delta_grid <- delta_grid[delta_grid > @]
profile_11_delta <- numeric(length(delta_grid))

for (i in seqg_along(delta_grid)) {
profile_fit <- optim(
par = mle[-2],
fn = function(p) 1llmc(c(pl[1], delta_grid[il], p[2]1), data),
method = "BFGS"
)
profile_11_deltal[i] <- -profile_fit$value
3

# Profile for lambda

lambda_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 50)
lambda_grid <- lambda_grid[lambda_grid > @]

profile_11_lambda <- numeric(length(lambda_grid))

for (i in seqg_along(lambda_grid)) {
profile_fit <- optim(
par = mle[-3],
fn = function(p) llmc(c(p[1], p[2], lambda_grid[i]), data),
method = "BFGS"
)
profile_11_lambda[i] <- -profile_fit$value
3

# 95% confidence threshold
chi_crit <- gchisq(@.95, df = 1)
threshold <- max(profile_11_gamma) - chi_crit / 2

# Plot all profiles

plot(gamma_grid, profile_l1_gamma,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(gamma), ylab = "Profile Log-Likelihood”,
main = expression(paste(”Profile: ", gamma)), las = 1
)
abline(v = mle[1], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[1], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, lwd = 1.5)
legend("topright”,
legend = c("MLE", "True", "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), 1lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e0")

plot(delta_grid, profile_11_delta,
type = "1", lwd = 2, col = "#2E4057",
xlab = expression(delta), ylab = "Profile Log-Likelihood”,
main = expression(paste("Profile: ", delta)), las =1

167
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abline(v = mle[2], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[2], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, 1lwd = 1.5)
legend("topright”,

legend = c("MLE”, "True”, "95% CI"),

col = c("#8B0000", "#006400", "#808080"),

1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e")

plot(lambda_grid, profile_1l1_lambda,
type = "1", 1lwd = 2, col = "#2E4057",
xlab = expression(lambda), ylab = "Profile Log-Likelihood"”,
main = expression(paste("Profile: ", lambda)), las = 1
)
abline(v = mle[3], col = "#8B0000", 1ty = 2, 1lwd = 2)
abline(v = true_params[3], col = "#006400", 1ty = 2, lwd = 2)
abline(h = threshold, col = "#808080", 1ty = 3, 1lwd = 1.5)
legend("topright”,
legend = c("MLE", "True"”, "95% CI"),
col = c("#8B0000", "#006400", "#808080"),
1ty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8
)
grid(col = "gray9e0")

## Example 6: 2D Log-Likelihood Surfaces (All pairs side by side)

# Create 2D grids with wider range (£1.5)

gamma_2d <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = round(n / 25))
delta_2d <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = round(n / 25))
lambda_2d <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = round(n / 25))

gamma_2d <- gamma_2d[gamma_2d > @]
delta_2d <- delta_2d[delta_2d > @]
lambda_2d <- lambda_2d[lambda_2d > @]

# Compute all log-likelihood surfaces

11_surface_gd <- matrix(NA, nrow = length(gamma_2d), ncol = length(delta_2d))
11_surface_gl <- matrix(NA, nrow = length(gamma_2d), ncol = length(lambda_2d))
11_surface_dl <- matrix(NA, nrow = length(delta_2d), ncol = length(lambda_2d))

# Gamma vs Delta
for (i in seq_along(gamma_2d)) {
for (j in seg_along(delta_2d)) {
11_surface_gd[i, j] <- -1llmc(c(gamma_2d[i], delta_2d[j], mle[3]), data)
}
3

# Gamma vs Lambda
for (i in seqg_along(gamma_2d)) {
for (j in seqg_along(lambda_2d)) {
11_surface_gl[i, j] <- -1llmc(c(gamma_2d[i], mle[2], lambda_2d[j]), data)
}
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}

# Delta vs Lambda
for (i in seq_along(delta_2d)) {
for (j in seqg_along(lambda_2d)) {
11_surface_dl[i, jJ] <- -1llmc(c(mle[1], delta_2d[i], lambda_2d[j1), data)
}
3

# Confidence region levels

max_11_gd <- max(ll_surface_gd, na.rm = TRUE)
max_11_gl <- max(ll_surface_gl, na.rm = TRUE)
max_11_dl <- max(ll_surface_dl, na.rm = TRUE)

levels_95_gd <- max_l1l_gd - qchisq(@.95, df =2) / 2
levels_95_gl <- max_l1l_gl - qchisq(@.95, df = 2) / 2
levels_95_dl <- max_l1_dl - qchisq(@.95, df =2) / 2

# Plot

# Gamma vs Delta
contour(gamma_2d, delta_2d, 11_surface_gd,
xlab = expression(gamma), ylab = expression(delta),
main = "Gamma vs Delta”, las = 1,
levels = seq(min(ll_surface_gd, na.rm = TRUE), max_l1l_gd, length.out = 20),
col = "#2E4057", lwd = 1
)
contour(gamma_2d, delta_2d, 11_surface_gd,
levels = levels_95_gd, col = "#FF6347", lwd = 2.5, 1ty = 1, add = TRUE
)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

# Gamma vs Lambda
contour(gamma_2d, lambda_2d, 11_surface_gl,
xlab = expression(gamma), ylab = expression(lambda),
main = "Gamma vs Lambda", las = 1,
levels = seq(min(ll_surface_gl, na.rm = TRUE), max_11_gl, length.out = 20),
col = "#2E4057", lwd = 1
)
contour(gamma_2d, lambda_2d, 11_surface_gl,
levels = levels_95_gl, col = "#FF6347", 1wd = 2.5, 1ty = 1, add = TRUE
)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

# Delta vs Lambda
contour(delta_2d, lambda_2d, 11_surface_dl,
xlab = expression(delta), ylab = expression(lambda),
main = "Delta vs Lambda", las = 1,
levels = seq(min(1l1l_surface_dl, na.rm = TRUE), max_11_dl, length.out = 20),
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col = "#2E4057", lwd = 1
)
contour(delta_2d, lambda_2d, 11_surface_dl,

levels = levels_95_dl, col = "#FF6347", 1lwd = 2.5, 1ty = 1, add = TRUE
)
points(mle[2], mle[3], pch = 19, col = "#8B000Q", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray9e0")

legend("topright”,
legend = c("MLE”, "True”, "95% CR"),
col = c("#8B0000", "#006400", "H#FF6347"),
pch = c(19, 17, NA),
1ty = c(NA, NA, 1),
lwd = c(NA, NA, 2.5),
bty = "n", cex = 0.8

pbeta_ CDF of the Beta Distribution (gamma, delta+1 Parameterization)

Description

Computes the cumulative distribution function (CDF), F(q) = P(X < q), for the standard Beta
distribution, using a parameterization common in generalized distribution families. The distribution
is parameterized by gamma () and delta (4), corresponding to the standard Beta distribution with
shape parameters shapel = gamma and shape2 = delta + 1.

Usage

pbeta_(q, gamma = 1, delta = @, lower.tail = TRUE, log.p = FALSE)

Arguments
q Vector of quantiles (values generally between 0 and 1).
gamma First shape parameter (shapel), v > 0. Can be a scalar or a vector. Default:
1.0.
delta Second shape parameter is delta + 1 (shape2), requires § > 0 so that shape2
>=1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 = 1).
lower.tail Logical; if TRUE (default), probabilities are P(X < q), otherwise, P(X > q).

log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
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Details

This function computes the CDF of a Beta distribution with parameters shapel = gamma and shape?2

=delta + 1. Itis equivalent to calling stats: :pbeta(q, shapel = gamma, shape2 =delta + 1,lower.tail
= lower.tail, log.p =1log.p).

This distribution arises as a special case of the five-parameter Generalized Kumaraswamy (GKw)

distribution (pgkw) obtained by setting & = 1, 8 = 1, and A = 1. It is therefore also equivalent to
the McDonald (Mc)/Beta Power distribution (pmc) with A = 1.

The function likely calls R’s underlying pbeta function but ensures consistent parameter recycling
and handling within the C++ environment, matching the style of other functions in the related
families.

Value

A vector of probabilities, F'(q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
gamma, delta). Returns @ (or -Inf if log.p = TRUE) for g <=0 and 1 (or 0 if log.p = TRUE) for q
>= 1. Returns NaN for invalid parameters.

Author(s)
Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

pbeta (standard R implementation), pgkw (parent distribution CDF), pmc (McDonald/Beta Power
CDF), dbeta_, gbeta_, rbeta_ (other functions for this parameterization, if they exist).

Examples

# Example values

g_vals <- c(0.2, 0.5, 0.8)

gamma_par <- 2.0 # Corresponds to shapel
delta_par <- 3.0 # Corresponds to shape2 - 1
shapel <- gamma_par

shape2 <- delta_par + 1

# Calculate CDF using pbeta_
probs <- pbeta_(q_vals, gamma_par, delta_par)
print(probs)

# Compare with stats::pbeta
probs_stats <- stats::pbeta(g_vals, shapel = shapel, shape2 = shape2)



172 pbkw

print(paste("Max difference vs stats::pbeta:”, max(abs(probs - probs_stats))))

# Compare with pgkw setting alpha=1, beta=1, lambda=1
probs_gkw <- pgkw(g_vals,

alpha = 1.0, beta = 1.0, gamma = gamma_par,

delta = delta_par, lambda = 1.0

)
print(paste(”Max difference vs pgkw:", max(abs(probs - probs_gkw))))

# Compare with pmc setting lambda=1
probs_mc <- pmc(g_vals, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print(paste(”Max difference vs pmc:", max(abs(probs - probs_mc))))

# Calculate upper tail P(X > q)

probs_upper <- pbeta_(q_vals, gamma_par, delta_par, lower.tail = FALSE)
print(probs_upper)

print(stats::pbeta(g_vals, shapel, shape2, lower.tail = FALSE))

# Calculate log CDF

log.probs <- pbeta_(q_vals, gamma_par, delta_par, log.p = TRUE)
print(log.probs)

print(stats::pbeta(q_vals, shapel, shape2, log.p = TRUE))

# Plot the CDF
curve_q <- seq(0.001, 0.999, length.out = 200)
curve_p <- pbeta_(curve_q, gamma = 2, delta = 3) # Beta(2, 4)
plot(curve_q, curve_p,
type = "1", main = "Beta(2, 4) CDF via pbeta_",
xlab = "q", ylab = "F(q)", col = "blue”
)
curve(stats::pbeta(x, 2, 4), add = TRUE, col = "red"”, 1ty = 2)
legend("bottomright”,
legend = c("pbeta_(gamma=2, delta=3)", "stats::pbeta(shapel=2, shape2=4)"),
col = c("blue”, "red"), 1ty = c(1, 2), bty = "n"

)
pbkw Cumulative Distribution Function (CDF) of the Beta-Kumaraswanty
(BKw) Distribution
Description

Computes the cumulative distribution function (CDF), P(X < gq), for the Beta-Kumaraswamy
(BKw) distribution with parameters alpha («), beta (/3), gamma (v), and delta (§). This distribu-
tion is defined on the interval (0, 1) and is a special case of the Generalized Kumaraswamy (GKw)

distribution where A = 1.
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Usage
pbkw(
q,
alpha = 1,
beta = 1,
gamma = 1,
delta = 0,
lower.tail = TRUE,
log.p = FALSE
)
Arguments
q Vector of quantiles (values generally between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lower. tail Logical; if TRUE (default), probabilities are P(X < ¢), otherwise, P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The Beta-Kumaraswamy (BKw) distribution is a special case of the five-parameter Generalized
Kumaraswamy distribution (pgkw) obtained by setting the shape parameter A = 1.

The CDF of the GKw distribution is Fxuw(q) = Iyq) (7,6 + 1), where y(q) = [1 — (1 — ¢*)?]*
and I.(a,b) is the regularized incomplete beta function (pbeta). Setting A = 1 simplifies y(q) to
1 — (1 - ¢*)?, yielding the BKw CDF:

F(Q;Oé,ﬂ»%a) = Il—(l—q"‘)ﬂ (776+ 1)

This is evaluated using the pbeta function.

Value

A vector of probabilities, F'(q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta, gamma, delta). Returns @ (or -Inf if log.p = TRUE) forq<=0 and 1 (or @ if log.p =
TRUE) for q >= 1. Returns NaN for invalid parameters.

Author(s)

Lopes, J. E.
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References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also
pgkw (parent distribution CDF), dbkw, gbkw, rbkw (other BKw functions), pbeta

Examples

# Example values
g_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 1.5
gamma_par <- 1.0
delta_par <- 0.5

# Calculate CDF P(X <= q)
probs <- pbkw(q_vals, alpha_par, beta_par, gamma_par, delta_par)
print(probs)

# Calculate upper tail P(X > q)

probs_upper <- pbkw(g_vals, alpha_par, beta_par, gamma_par, delta_par,
lower.tail = FALSE

)

print(probs_upper)

# Check: probs + probs_upper should be 1

print(probs + probs_upper)

# Calculate log CDF

logs <- pbkw(q_vals, alpha_par, beta_par, gamma_par, delta_par,
log.p = TRUE

)

print(logs)

# Check: should match log(probs)

print(log(probs))

# Compare with pgkw setting lambda = 1
probs_gkw <- pgkw(g_vals, alpha_par, beta_par,
gamma = gamma_par,
delta = delta_par, lambda = 1.0
)
print(paste(”Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero

# Plot the CDF
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p <- pbkw(curve_q, alpha = 2, beta = 3, gamma = 0.5, delta = 1)
plot(curve_q, curve_p,
type = "1", main = "BKw CDF Example”,
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xlab = "q", ylab = "F(q)", col = "blue”, ylim = c(0, 1)
)

pekw Cumulative Distribution Function (CDF) of the EKw Distribution

Description

Computes the cumulative distribution function (CDF), P(X < g¢), for the Exponentiated Ku-
maraswamy (EKw) distribution with parameters alpha («), beta (3), and lambda (\). This dis-
tribution is defined on the interval (0, 1) and is a special case of the Generalized Kumaraswamy

(GKw) distribution where v = 1 and § = 0.

Usage

pekw(q, alpha = 1, beta = 1, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments
q Vector of quantiles (values generally between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
lambda Shape parameter 1ambda > 0 (exponent parameter). Can be a scalar or a vector.
Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P(X < g¢), otherwise, P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The Exponentiated Kumaraswamy (EKw) distribution is a special case of the five-parameter Gen-
eralized Kumaraswamy distribution (pgkw) obtained by setting parameters v = 1 and § = 0.

The CDF of the GKw distribution is Fxw(q) = Iyq) (7,6 + 1), where y(q) = [1 — (1 — ¢*)"]*
and I, (a,b) is the regularized incomplete beta function (pbeta). Setting v = 1 and § = 0 gives
Iyq)(1,1). Since I,.(1,1) = x, the CDF simplifies to y(g):

ar BTN
for 0 < ¢ < 1. The implementation uses this closed-form expression for efficiency and handles
lower.tail and log.p arguments appropriately.

Value

A vector of probabilities, F'(q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta, lambda). Returns @ (or -Inf if log.p = TRUE) for g <= @ and 1 (or @ if log.p = TRUE)
for g >= 1. Returns NaN for invalid parameters.
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Author(s)
Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw (parent distribution CDF), dekw, gekw, rekw (other EKw functions),

Examples

# Example values

g_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0

beta_par <- 3.0
lambda_par <- 1.5

# Calculate CDF P(X <= q)
probs <- pekw(g_vals, alpha_par, beta_par, lambda_par)
print(probs)

# Calculate upper tail P(X > q)

probs_upper <- pekw(g_vals, alpha_par, beta_par, lambda_par,
lower.tail = FALSE

)

print(probs_upper)

# Check: probs + probs_upper should be 1

print(probs + probs_upper)

# Calculate log CDF

logs <- pekw(q_vals, alpha_par, beta_par, lambda_par, log.p = TRUE)
print(logs)

# Check: should match log(probs)

print(log(probs))

# Compare with pgkw setting gamma = 1, delta = @
probs_gkw <- pgkw(g_vals, alpha_par, beta_par,
gamma = 1.0, delta = 0.0,
lambda = lambda_par
)
print(paste(”Max difference:"”, max(abs(probs - probs_gkw)))) # Should be near zero

# Plot the CDF for different lambda values
curve_q <- seq(0.01, 0.99, length.out = 200)



pgkw

curve_pl <- pekw(curve_qg, alpha = 2, beta
curve_p2 <- pekw(curve_q, alpha
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3, lambda = 0.5)
3, lambda = 1.0) # standard Kw

2, beta

curve_p3 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 2.0)

plot(curve_q, curve_p2,
type = "1", main = "EKw CDF Examples (alpha=2, beta=3)",
xlab = "q", ylab = "F(q)", col = "red"”, ylim = c(0, 1)

)
lines(curve_q, curve_pl, col = "blue”)
lines(curve_q, curve_p3, col = "green")

legend("bottomright”,
legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),

col = c("blue”, "red”, "green"), lty =1, bty = "n"
)
pgkw Generalized Kumaraswamy Distribution CDF
Description

Computes the cumulative distribution function (CDF) for the five-parameter Generalized Kumaraswamy
(GKw) distribution, defined on the interval (0, 1). Calculates P(X < q).

Usage

pgkw (
q,
alpha = 1,
beta = 1
gamma =
delta ,
lambda = 1,

’

1
S — -

lower.tail = TRUE,

log.p = FALSE

Arguments

q

alpha

beta

gamma
delta
lambda
lower.tail

log.p

Vector of quantiles (values generally between 0 and 1).

Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.

Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.

Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.

Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.

Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.
Logical; if TRUE (default), probabilities are P(X < q), otherwise, P(X > q).
Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
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Details

The cumulative distribution function (CDF) of the Generalized Kumaraswamy (GKw) distribution
with parameters alpha («), beta (/3), gamma (), delta (§), and lambda ()) is given by:

F(Q; a, 3,7, 9, )‘) = a:(q)(’% o+ 1)
where z(q) = [1 — (1 —¢®)?]* and I, (a, b) is the regularized incomplete beta function, defined as:

By(a,b) [y t* (1 —t)" " dt
Bla,b)  [lta=1(1 —¢)b-1dt

Iz(a7 b) =

This corresponds to the pbeta function in R, such that F'(¢; «, 3,7, 6, A) = pbeta(z(q), shapel =
~,shape2 = § + 1).

The GKw distribution includes several special cases, such as the Kumaraswamy, Beta, and Ex-
ponentiated Kumaraswamy distributions (see dgkw for details). The function utilizes numerical
algorithms for computing the regularized incomplete beta function accurately, especially near the
boundaries.

Value

A vector of probabilities, F'(q), or their logarithms if log.p = TRUE. The length of the result is
determined by the recycling rule applied to the arguments (g, alpha, beta, gamma, delta, lambda).
Returns @ (or -Inf if log.p = TRUE) for g <= @ and 1 (or @ if 1log.p = TRUE) for g >= 1. Returns NaN
for invalid parameters.

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw, ggkw, rgkw, pbeta

Examples

# Simple CDF evaluation
prob <- pgkw(0.5, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1) # Kw case
print(prob)

# Upper tail probability P(X > q)
prob_upper <- pgkw(0.5,
alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1,
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lower.tail = FALSE
)
print(prob_upper)
# Check: prob + prob_upper should be 1
print(prob + prob_upper)

# Log probability

log <- pgkw(0.5,
alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1,
log.p = TRUE

)

print(log)

# Check: exp(log) should be prob

print(exp(log))

# Use of vectorized parameters

g_vals <- c(0.2, 0.5, 0.8)

alphas_vec <- c(0.5, 1.0, 2.0)

betas_vec <- c(1.0, 2.0, 3.0)

# Vectorizes over q, alpha, beta

pgkw(g_vals, alpha = alphas_vec, beta = betas_vec, gamma = 1, delta = 0.5, lambda = 0.5)

# Plotting the CDF for special cases

x_seq <- seq(0.01, 0.99, by = 0.01)

# Standard Kumaraswamy CDF

cdf_kw <- pgkw(x_seq, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1)

# Beta distribution CDF equivalent (Beta(gamma, delta+1))

cdf_beta_equiv <- pgkw(x_seq, alpha = 1, beta = 1, gamma = 2, delta = 3, lambda = 1)
# Compare with stats::pbeta

cdf_beta_check <- stats::pbeta(x_seq, shapel = 2, shape2 = 3 + 1)

# max(abs(cdf_beta_equiv - cdf_beta_check)) # Should be close to zero

plot(x_seq, cdf_kw,

type = "1", ylim = c(0, 1),

main = "GKw CDF Examples”, ylab = "F(x)", xlab = "x", col = "blue”
)
lines(x_seq, cdf_beta_equiv, col = "red", 1ty = 2)
legend("bottomright”,

legend = c("Kw(2,3)", "Beta(2,4) equivalent"”),

col = c("blue”, "red"), 1ty = c(1, 2), bty = "n"
)

pkkw Cumulative Distribution Function (CDF) of the kkw Distribution

Description

Computes the cumulative distribution function (CDF), P(X < ¢), for the Kumaraswamy-Kumaraswamy
(kkw) distribution with parameters alpha («), beta (), delta (4), and lambda (A). This distribu-
tion is defined on the interval (0, 1).
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Usage
pkkw (
q,
alpha = 1,
beta = 1,
delta = 0,
lambda = 1,
lower.tail = TRUE,
log.p = FALSE
)
Arguments
q Vector of quantiles (values generally between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P(X < q), otherwise, P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The Kumaraswamy-Kumaraswamy (kkw) distribution is a special case of the five-parameter Gen-
eralized Kumaraswamy distribution (pgkw) obtained by setting the shape parameter v = 1.

The CDF of the GKw distribution is Fxw(q) = Iy(q) (7,6 + 1), where y(q) = [1 — (1 — ¢*)"]*
and I, (a,b) is the regularized incomplete beta function (pbeta). Setting v = 1 utilizes the property
I,(1,b) =1 — (1 — 2), yielding the kkw CDF:

F(g0,8,60) =1—{1—[1—(1-¢9)°]"}""

for0 < ¢g< 1.

The implementation uses this closed-form expression for efficiency and handles lower.tail and
log.p arguments appropriately.
Value

A vector of probabilities, F'(q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta, delta, lambda). Returns @ (or -Inf if log.p = TRUE) for g <=0 and 1 (or 0 if log.p
= TRUE) for g >= 1. Returns NaN for invalid parameters.

Author(s)
Lopes, J. E.
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References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also
pgkw (parent distribution CDF), dkkw, gkkw, rkkw, pbeta

Examples

# Example values

g_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0

beta_par <- 3.0

delta_par <- 0.5
lambda_par <- 1.5

# Calculate CDF P(X <= q)
probs <- pkkw(q_vals, alpha_par, beta_par, delta_par, lambda_par)
print(probs)

# Calculate upper tail P(X > q)

probs_upper <- pkkw(g_vals, alpha_par, beta_par, delta_par, lambda_par,
lower.tail = FALSE

)

print(probs_upper)

# Check: probs + probs_upper should be 1

print(probs + probs_upper)

# Calculate log CDF

logs <- pkkw(q_vals, alpha_par, beta_par, delta_par, lambda_par,
log.p = TRUE

)

print(logs)

# Check: should match log(probs)

print(log(probs))

# Compare with pgkw setting gamma = 1
probs_gkw <- pgkw(g_vals, alpha_par, beta_par,
gamma = 1.0,
delta_par, lambda_par
)
print(paste(”Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero

# Plot the CDF
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p <- pkkw(curve_q, alpha_par, beta_par, delta_par, lambda_par)
plot(curve_q, curve_p,
type = "1", main = "kkw CDF Example”,
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pkw
xlab = "q", ylab = "F(q)", col = "blue”, ylim = c(0, 1)
)
pkw Cumulative Distribution Function (CDF) of the Kumaraswamy (Kw)
Distribution
Description

Computes the cumulative distribution function (CDF), P(X < g), for the two-parameter Ku-

maraswamy (Kw) distribution with shape parameters alpha («) and beta (8). This distribution
is defined on the interval (0, 1).

Usage

pkw(qg, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)

Arguments
q Vector of quantiles (values generally between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P(X < ¢), otherwise, P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The cumulative distribution function (CDF) of the Kumaraswamy (Kw) distribution is given by:
Flra,8) =1— (1—a%)°

forO<z <1,a>0,and 8 > 0.

The Kw distribution is a special case of several generalized distributions:

* Generalized Kumaraswamy (pgkw) withy =1, =0, A = 1.
* Exponentiated Kumaraswamy (pekw) with A = 1.

¢ Kumaraswamy-Kumaraswamy (pkkw) with § = 0, A = 1.

The implementation uses the closed-form expression for efficiency.

Value

A vector of probabilities, F'(q), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
alpha, beta). Returns @ (or -Inf if log.p = TRUE) for q <= @ and 1 (or @ if 1log.p = TRUE) for q >=
1. Returns NaN for invalid parameters.
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Author(s)
Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

See Also

pgkw, pekw, pkkw (related generalized CDFs), dkw, gkw, rkw (other Kw functions), pbeta

Examples

# Example values
g_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0

# Calculate CDF P(X <= q) using pkw
probs <- pkw(g_vals, alpha_par, beta_par)
print(probs)

# Calculate upper tail P(X > q)

probs_upper <- pkw(q_vals, alpha_par, beta_par, lower.tail = FALSE)
print(probs_upper)

# Check: probs + probs_upper should be 1

print(probs + probs_upper)

# Calculate log CDF

logs <- pkw(g_vals, alpha_par, beta_par, log.p = TRUE)
print(logs)

# Check: should match log(probs)

print(log(probs))

# Compare with pgkw setting gamma = 1, delta = @, lambda = 1
probs_gkw <- pgkw(q_vals, alpha_par, beta_par,

gamma = 1.0, delta = 0.0,

lambda = 1.0

)
print(paste("Max difference:"”, max(abs(probs - probs_gkw)))) # Should be near zero

# Plot the CDF for different shape parameter combinations
curve_q <- seq(0.001, 0.999, length.out = 200)
plot(curve_q, pkw(curve_qg, alpha = 2, beta = 3),
type = "1",
main = "Kumaraswamy CDF Examples”, xlab = "q", ylab = "F(q)",
col = "blue”, ylim = c(0@, 1)
)
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lines(curve_q, pkw(curve_q, alpha = 3, beta = 2), col = "red")
lines(curve_q, pkw(curve_q, alpha = 0.5, beta = 0.5), col = "green")
lines(curve_q, pkw(curve_q, alpha = 5, beta = 1), col = "purple”)
lines(curve_q, pkw(curve_q, alpha = 1, beta = 3), col = "orange")
legend("bottomright”,
legend = c("a=2, b=3", "a=3, b=2", "a=0.5, b=0.5", "a=5, b=1", "a=1, b=3"),
col = c("blue”, "red", "green", "purple", "orange"), lty = 1, bty = "n", ncol = 2

)

pmc CDF of the McDonald (Mc)/Beta Power Distribution

Description

Computes the cumulative distribution function (CDF), F'(¢q) = P(X < q), for the McDonald (Mc)
distribution (also known as Beta Power) with parameters gamma (), delta (9), and Lambda (\). This
distribution is defined on the interval (0, 1) and is a special case of the Generalized Kumaraswamy
(GKw) distribution where o = 1 and 3 = 1.

Usage

pmc(g, gamma = 1, delta = @, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments
q Vector of quantiles (values generally between 0 and 1).
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P(X < ¢), otherwise, P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.

Details

The McDonald (Mc) distribution is a special case of the five-parameter Generalized Kumaraswamy
(GKw) distribution (pgkw) obtained by setting parameters « = 1 and § = 1.

The CDF of the GKw distribution is F; i (q) = I, () (7, 6+1), where y(¢q) = [1—(1—¢*)?]* and
I.(a,b) is the regularized incomplete beta function (pbeta). Setting & = 1 and S = 1 simplifies
y(q) to ¢*, yielding the Mc CDF:

F(g;7,6,A) = Ip(v,6 +1)

This is evaluated using the pbeta function as pbeta(q*lambda, shapel = gamma, shape2 = delta
+1).
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Value

A vector of probabilities, F'(g), or their logarithms/complements depending on lower.tail and
log.p. The length of the result is determined by the recycling rule applied to the arguments (q,
gamma, delta, lambda). Returns @ (or -Inf if log.p = TRUE) for <=0 and 1 (or 0@ if log.p =
TRUE) for q >= 1. Returns NaN for invalid parameters.

Author(s)
Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

pgkw (parent distribution CDF), dmc, gmc, rmc (other Mc functions), pbeta

Examples

# Example values

g_vals <- c(0.2, 0.5, 0.8)

gamma_par <- 2.0

delta_par <- 1.5

lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)

# Calculate CDF P(X <= q) using pmc

probs <- pmc(g_vals, gamma_par, delta_par, lambda_par)

print(probs)

# Compare with Beta CDF

print(stats::pbeta(q_vals, shapel = gamma_par, shape2 = delta_par + 1))

# Calculate upper tail P(X > q)

probs_upper <- pmc(q_vals, gamma_par, delta_par, lambda_par,
lower.tail = FALSE

)

print(probs_upper)

# Check: probs + probs_upper should be 1

print(probs + probs_upper)

# Calculate log CDF

logs <- pmc(qg_vals, gamma_par, delta_par, lambda_par, log.p = TRUE)
print(logs)

# Check: should match log(probs)

print(log(probs))
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# Compare with pgkw setting alpha = 1, beta = 1
probs_gkw <- pgkw(g_vals,
alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par

)
print(paste(”Max difference:"”, max(abs(probs - probs_gkw)))) # Should be near zero

# Plot the CDF for different lambda values

curve_q <- seq(0.01, 0.99, length.out = 200)

curve_pl <- pmc(curve_q, gamma = 2, delta = 3, lambda = 0.5)

curve_p2 <- pmc(curve_q, gamma = 2, delta = 3, lambda = 1.0) # Beta(2, 4)
curve_p3 <- pmc(curve_q, gamma = 2, delta = 3, lambda = 2.0)

plot(curve_q, curve_p2,
type = "1", main = "Mc/Beta Power CDF (gamma=2, delta=3)",
xlab = "q", ylab = "F(q)", col = "red”, ylim = c(0, 1)

)

lines(curve_q, curve_pl1, col = "blue")

lines(curve_q, curve_p3, col "green")

legend("bottomright”,
legend = c("lambda=0.5", "lambda=1.0 (Beta)"”, "lambda=2.0"),
col = c("blue”, "red”, "green"), lty =1, bty = "n"

)
gbeta_ Quantile Function of the Beta Distribution (gamma, delta+1 Parame-
terization)
Description

Computes the quantile function (inverse CDF) for the standard Beta distribution, using a parameter-
ization common in generalized distribution families. It finds the value q such that P(X < q) = p.
The distribution is parameterized by gamma () and delta (), corresponding to the standard Beta
distribution with shape parameters shape1 = gamma and shape2 = delta + 1.

Usage

gbeta_(p, gamma = 1, delta = @, lower.tail = TRUE, log.p = FALSE)

Arguments
p Vector of probabilities (values between 0 and 1).
gamma First shape parameter (shapel), v > 0. Can be a scalar or a vector. Default:
1.0.
delta Second shape parameter is delta + 1 (shape2), requires § > 0 so that shape?2

>= 1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 =1).
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lower.tail Logical; if TRUE (default), probabilities are p = P(X < q), otherwise, proba-
bilities are p = P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

This function computes the quantiles of a Beta distribution with parameters shapel = gamma and
shape2 = delta + 1. Itis equivalent to calling stats: :gbeta(p, shapel = gamma, shape2 = delta
+1,lower.tail = lower.tail, log.p =1log.p).

This distribution arises as a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (qgkw) obtained by setting & = 1, § = 1, and A = 1. It is therefore also equivalent to
the McDonald (Mc)/Beta Power distribution (gmc) with A = 1.

The function likely calls R’s underlying gbeta function but ensures consistent parameter recycling
and handling within the C++ environment, matching the style of other functions in the related
families. Boundary conditions (p=0, p=1) are handled explicitly.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, gamma, delta). Returns:

e Qforp=0 (or p=-Infiflog.p=TRUE, when lower.tail = TRUE).
e Tforp=1(orp=0if log.p =TRUE, when lower.tail = TRUE).
* NaN for p<®@or p > 1 (or corresponding log scale).

* NaN for invalid parameters (e.g., gamma <= @, delta < 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

See Also

gbeta (standard R implementation), qgkw (parent distribution quantile function), gmc (McDon-
ald/Beta Power quantile function), dbeta_, pbeta_, rbeta_ (other functions for this parameteriza-
tion, if they exist).



188 gbeta_

Examples

# Example values

p_vals <- c(0.1, 0.5, 0.9)

gamma_par <- 2.0 # Corresponds to shapel
delta_par <- 3.0 # Corresponds to shape2 - 1
shapel <- gamma_par

shape2 <- delta_par + 1

# Calculate quantiles using gbeta_
quantiles <- gbeta_(p_vals, gamma_par, delta_par)
print(quantiles)

# Compare with stats::gbeta
quantiles_stats <- stats::gbeta(p_vals, shapel = shapel, shape2 = shape2)
print(paste(”Max difference vs stats::gbeta:"”, max(abs(quantiles - quantiles_stats))))

# Compare with ggkw setting alpha=1, beta=1, lambda=1
quantiles_gkw <- qggkw(p_vals,
alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = 1.0
)
print(paste(”Max difference vs qgkw:", max(abs(quantiles - quantiles_gkw))))

# Compare with gmc setting lambda=1
quantiles_mc <- gmc(p_vals, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print(paste("Max difference vs gmc:”, max(abs(quantiles - quantiles_mc))))

# Calculate quantiles for upper tail

quantiles_upper <- gbeta_(p_vals, gamma_par, delta_par, lower.tail = FALSE)
print(quantiles_upper)

print(stats::qgbeta(p_vals, shapel, shape2, lower.tail = FALSE))

# Calculate quantiles from log probabilities

log.p_vals <- log(p_vals)

quantiles_logp <- gbeta_(log.p_vals, gamma_par, delta_par, log.p = TRUE)
print(quantiles_logp)

print(stats::qgbeta(log.p_vals, shapel, shape2, log.p = TRUE))

# Verify inverse relationship with pbeta_

p_check <- 0.75

g_calc <- gbeta_(p_check, gamma_par, delta_par)

p_recalc <- pbeta_(gq_calc, gamma_par, delta_par)
print(paste(”Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE

# Boundary conditions
print(gbeta_(c(@, 1), gamma_par, delta_par)) # Should be 0, 1
print(gbeta_(c(-Inf, @), gamma_par, delta_par, log.p = TRUE)) # Should be 0, 1
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gbkw Quantile Function of the Beta-Kumaraswamy (BKw) Distribution

Description

Computes the quantile function (inverse CDF) for the Beta-Kumaraswamy (BKw) distribution with
parameters alpha («), beta (), gamma (y), and delta (d). It finds the value q such that P(X <
q) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw) distribution
where the parameter A = 1.

Usage
gbkw(
P,
alpha = 1,
beta = 1,
gamma = 1,
delta = 0,
lower.tail = TRUE,
log.p = FALSE
)
Arguments
p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lower.tail Logical; if TRUE (default), probabilities are p = P(X < ¢), otherwise, proba-
bilities are p = P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The quantile function Q(p) is the inverse of the CDF F(g). The CDF for the BKw (A = 1)
distribution is F'(q) = I,,(¢) (7,6 + 1), where y(q) = 1 — (1 — ¢*)” and I.(a, b) is the regularized
incomplete beta function (see pbkw).

To find the quantile g, we first invert the outer Beta part: let y = Ip’1 (7,0 + 1), where I;l (a,b) is
the inverse of the regularized incomplete beta function, computed via gbeta. Then, we invert the
inner Kumaraswamy part: y = 1 — (1 —¢®)”, which leads to ¢ = {1 — (1 —%)/#}!/, Substituting
y gives the quantile function:

Qp) = {1 — 1=, (v, 6+ 1)]%}1/@

The function uses this formula, calculating Ip*l(*y, 0 + 1) via gbeta(p, gamma, delta+1, ...)
while respecting the lower.tail and log.p arguments.
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Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta, gamma, delta). Returns:

e @ for p=0 (or p=-Infif log.p = TRUE, when lower.tail = TRUE).
e 1forp=1(orp=0if log.p = TRUE, when lower.tail = TRUE).
* NaN for p <@ or p > 1 (or corresponding log scale).

* NaN for invalid parameters (e.g., alpha <= @, beta <= 0, gamma <= 0, delta < 9).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

ggkw (parent distribution quantile function), dbkw, pbkw, rbkw (other BKw functions), gbeta

Examples

# Example values

p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0

beta_par <- 1.5

gamma_par <- 1.0
delta_par <- 0.5

# Calculate quantiles
quantiles <- gbkw(p_vals, alpha_par, beta_par, gamma_par, delta_par)
print(quantiles)

# Calculate quantiles for upper tail probabilities P(X > q) = p

quantiles_upper <- gbkw(p_vals, alpha_par, beta_par, gamma_par, delta_par,
lower.tail = FALSE

)

print(quantiles_upper)

# Check: gbkw(p, ..., 1t=F) == gbkw(1-p, ..., 1t=T)

print(gbkw(1 - p_vals, alpha_par, beta_par, gamma_par, delta_par))

# Calculate quantiles from log probabilities
log.p_vals <- log(p_vals)
quantiles_logp <- gbkw(log.p_vals, alpha_par, beta_par, gamma_par, delta_par,
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log.p = TRUE
)
print(quantiles_logp)
# Check: should match original quantiles
print(quantiles)

# Compare with qgkw setting lambda = 1
quantiles_gkw <- qgkw(p_vals, alpha_par, beta_par,
gamma = gamma_par,
delta = delta_par, lambda = 1.0
)

print(paste(”Max difference:"”, max(abs(quantiles - quantiles_gkw)))) # Should be near zero

# Verify inverse relationship with pbkw

p_check <- 0.75

g_calc <- gbkw(p_check, alpha_par, beta_par, gamma_par, delta_par)
p_recalc <- pbkw(g_calc, alpha_par, beta_par, gamma_par, delta_par)
print(paste(”Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE

# Boundary conditions
print(gbkw(c(@, 1), alpha_par, beta_par, gamma_par, delta_par)) # Should be 0, 1
print(gbkw(c(-Inf, @), alpha_par, beta_par, gamma_par, delta_par, log.p = TRUE)) # Should be 0, 1

gekw Quantile Function of the Exponentiated Kumaraswamy (EKw) Distri-
bution

Description

Computes the quantile function (inverse CDF) for the Exponentiated Kumaraswamy (EKw) dis-
tribution with parameters alpha («), beta (8), and lambda (A). It finds the value g such that
P(X < q) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw)
distribution where v = 1 and 6 = 0.

Usage
gekw(p, alpha = 1, beta = 1, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments
p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
lambda Shape parameter lambda > 0 (exponent parameter). Can be a scalar or a vector.

Default: 1.0.
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lower.tail Logical; if TRUE (default), probabilities are p = P(X < q), otherwise, proba-
bilities are p = P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The quantile function Q(p) is the inverse of the CDF F'(¢). The CDF for the EKw (y = 1,6 = 0)
distribution is F'(¢q) = [1 — (1 — ¢®)”]* (see pekw). Inverting this equation for ¢ yields the quantile

function:
1/8 1/a
aw ={1-[1-»""}

The function uses this closed-form expression and correctly handles the lower.tail and log.p
arguments by transforming p appropriately before applying the formula. This is equivalent to the
general GKw quantile function (qgkw) evaluated with v = 1, = 0.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta, lambda). Returns:

e Qforp=0 (or p=-Infiflog.p=TRUE, when lower.tail = TRUE).
e 1forp=1(orp=0if log.p = TRUE, when lower.tail = TRUE).
* NaN for p <@ or p > 1 (or corresponding log scale).

* NaN for invalid parameters (e.g., alpha <= 9, beta <= 9, lambda <= 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

ggkw (parent distribution quantile function), dekw, pekw, rekw (other EKw functions), qunif
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Examples

# Example values

p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0

beta_par <- 3.0

lambda_par <- 1.5

# Calculate quantiles
quantiles <- gekw(p_vals, alpha_par, beta_par, lambda_par)
print(quantiles)

# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qgekw(p_vals, alpha_par, beta_par, lambda_par,
lower.tail = FALSE

)
print(quantiles_upper)
# Check: gekw(p, ..., 1t=F) == qgekw(1-p, ..., 1t=T)

print(qekw(1 - p_vals, alpha_par, beta_par, lambda_par))

# Calculate quantiles from log probabilities

log.p_vals <- log(p_vals)

quantiles_logp <- gekw(log.p_vals, alpha_par, beta_par, lambda_par,
log.p = TRUE

)

print(quantiles_logp)

# Check: should match original quantiles

print(quantiles)

# Compare with qgkw setting gamma = 1, delta = @
quantiles_gkw <- qggkw(p_vals,

alpha = alpha_par, beta = beta_par,

gamma = 1.0, delta = 0.0, lambda = lambda_par
)

print(paste("Max difference:"”, max(abs(quantiles - quantiles_gkw)))) # Should be near zero

# Verify inverse relationship with pekw

p_check <- 0.75

g_calc <- qgekw(p_check, alpha_par, beta_par, lambda_par)

p_recalc <- pekw(g_calc, alpha_par, beta_par, lambda_par)
print(paste("Original p:"”, p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE

# Boundary conditions
print(qekw(c(@, 1), alpha_par, beta_par, lambda_par)) # Should be 0, 1
print(qgekw(c(-Inf, @), alpha_par, beta_par, lambda_par, log.p = TRUE)) # Should be 0, 1

ggkw Generalized Kumaraswamy Distribution Quantile Function
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Description

Computes the quantile function (inverse CDF) for the five-parameter Generalized Kumaraswamy
(GKw) distribution. Finds the value x such that P(X < z) = p, where X follows the GKw

distribution.
Usage
agkw(
P,
alpha = 1,
beta = 1,
gamma = 1,
delta = 0,
lambda = 1,
lower.tail = TRUE,
log.p = FALSE
)
Arguments
p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are P(X < z), otherwise, P(X > z).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The quantile function Q(p) is the inverse of the CDF F'(x). Given F(z) = I, (5)(7,0 + 1) where
y(z) = [1 — (1 — 2%)5]*, the quantile function is:

Q(p) == {1 _ [1 _ (117—1(7’5_’_ 1))1”\} 1/5}1/04

where I, (a, b) is the inverse of the regularized incomplete beta function, which corresponds to the
quantile function of the Beta distribution, gbeta.

The computation proceeds as follows:

1. Calculate y = stats: :qbeta(p, shapel = gamma, shape2 =delta+ 1, lower.tail = lower.tail,
log.p=1log.p).

2. Calculate v = y*/*.

3. Calculate w = (1 — v)/#. Note: Requires v < 1.

4. Calculate ¢ = (1 — w)*/*. Note: Requires w < 1.

Numerical stability is maintained by handling boundary cases (p = @, p = 1) directly and checking
intermediate results (e.g., ensuring arguments to powers are non-negative).
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Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is de-
termined by the recycling rule applied to the arguments (p, alpha, beta, gamma, delta, lambda).
Returns:

e @ for p=0 (or p=-Infif log.p = TRUE).
e Tforp=1(orp=0iflog.p=TRUE).
* NaN for p<®@or p>1 (or corresponding log scale).

* NaN for invalid parameters (e.g., alpha <= @, beta <= 9, gamma <= 0, delta < @, lambda <= ).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

dgkw, pgkw, rgkw, gbeta

Examples

# Basic quantile calculation (median)
median_val <- ggkw(@.5, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1)
print(median_val)

# Computing multiple quantiles

probs <- c(0.01, 0.1, ©.25, 0.5, 0.75, 0.9, 0.99)

quantiles <- ggkw(probs, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1)
print(quantiles)

# Upper tail quantile (e.g., find x such that P(X > x) = 0.1, which is 90th percentile)
q90 <- qgkw(0.1,
alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1,
lower.tail = FALSE
)
print(q90)
# Check: should match quantile for p = 0.9 with lower.tail = TRUE
print(qgkw(@.9, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1))

# Log probabilities

median_logp <- qgkw(log(@.5),
alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1,
log.p = TRUE

)
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print(median_logp) # Should match median_val

# Vectorized parameters

alphas_vec <- c(0.5, 1.0, 2.0)

betas_vec <- c(1.0, 2.0, 3.0)

# Get median for 3 different GKw distributions

medians_vec <- qgkw(@.5, alpha = alphas_vec, beta = betas_vec, gamma = 1, delta = 0, lambda = 1)
print(medians_vec)

# Verify inverse relationship with pgkw

p_val <- 0.75

x_val <- ggkw(p_val, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1)
p_check <- pgkw(x_val, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1)
print(paste(”Calculated p:", p_check, " (Expected:"”, p_val, ")"))

gkkw Quantile Function of the Kumaraswamy-Kumaraswamy (kkw) Distri-
bution

Description

Computes the quantile function (inverse CDF) for the Kumaraswamy-Kumaraswamy (kkw) distri-
bution with parameters alpha («), beta (3), delta (), and lambda (). It finds the value q such
that P(X < ¢) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw)
distribution where the parameter v = 1.

Usage
gkkw(
P,
alpha = 1,
beta = 1,
delta = 0,
lambda = 1,
lower.tail = TRUE,
log.p = FALSE
)
Arguments
p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are p = P(X < ¢), otherwise, proba-

bilities are p = P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
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Details

The quantile function Q(p) is the inverse of the CDF F'(q). The CDF for the kkw (7 = 1) distribu-
tion is (see pkkw):

Flg)=1—{1—[1—(1—¢%* """

Inverting this equation for ¢ yields the quantile function:

Qlp) = [1 - {1 _ [1 _a p)l/(6+1)]1/>\}1/5‘|

The function uses this closed-form expression and correctly handles the lower.tail and log.p
arguments by transforming p appropriately before applying the formula.

1/a

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta, delta, lambda). Returns:

e @ for p=0 (or p=-Infif log.p = TRUE, when lower.tail = TRUE).

e Tforp=1(orp=0if log.p =TRUE, when lower.tail = TRUE).

* NaN for p <@ or p > 1 (or corresponding log scale).

* NaN for invalid parameters (e.g., alpha <= @, beta <= 0, delta < @, lambda <= ).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

ggkw (parent distribution quantile function), dkkw, pkkw, rkkw, gbeta

Examples

# Example values

p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0

beta_par <- 3.0

delta_par <- 0.5
lambda_par <- 1.5



198 gkw

# Calculate quantiles
quantiles <- gkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par)
print(quantiles)

# Calculate quantiles for upper tail probabilities P(X > q) = p

# e.g., for p=0.1, find q such that P(X > q) = 0.1 (90th percentile)

quantiles_upper <- gkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par,
lower.tail = FALSE

)
print(quantiles_upper)
# Check: gkkw(p, ..., 1t=F) == gkkw(1-p, ..., 1t=T)

print(gkkw(1 - p_vals, alpha_par, beta_par, delta_par, lambda_par))

# Calculate quantiles from log probabilities

log.p_vals <- log(p_vals)

quantiles_logp <- gkkw(log.p_vals, alpha_par, beta_par, delta_par, lambda_par,
log.p = TRUE

)

print(quantiles_logp)

# Check: should match original quantiles

print(quantiles)

# Compare with qgkw setting gamma = 1
quantiles_gkw <- qgkw(p_vals, alpha_par, beta_par,
gamma = 1.0,
delta_par, lambda_par
)

print(paste("Max difference:"”, max(abs(quantiles - quantiles_gkw)))) # Should be near zero

# Verify inverse relationship with pkkw

p_check <- 0.75

g_calc <- gkkw(p_check, alpha_par, beta_par, delta_par, lambda_par)
p_recalc <- pkkw(g_calc, alpha_par, beta_par, delta_par, lambda_par)
print(paste("Original p:"”, p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE

# Boundary conditions
print(gkkw(c(@, 1), alpha_par, beta_par, delta_par, lambda_par)) # Should be 0, 1
print(gkkw(c(-Inf, @), alpha_par, beta_par, delta_par, lambda_par, log.p = TRUE)) # Should be 0, 1

gkw Quantile Function of the Kumaraswamy (Kw) Distribution

Description

Computes the quantile function (inverse CDF) for the two-parameter Kumaraswamy (Kw) distribu-
tion with shape parameters alpha («) and beta (). It finds the value q such that P(X < q) = p.
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Usage

gkw(p, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)

Arguments
p Vector of probabilities (values between 0 and 1).
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are p = P(X < gq), otherwise, proba-
bilities are p = P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The quantile function Q(p) is the inverse of the CDF F'(¢q). The CDF for the Kumaraswamy dis-
tribution is F(q) = 1 — (1 — ¢*)? (see pkw). Inverting this equation for ¢ yields the quantile
function:

QW ={1-a-pv} "

The function uses this closed-form expression and correctly handles the lower.tail and log.p
arguments by transforming p appropriately before applying the formula. This is equivalent to the
general GKw quantile function (qgkw) evaluated with v =1, = 0, A = 1.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, alpha, beta). Returns:

e @ for p=0 (or p=-Infif log.p = TRUE, when lower.tail = TRUE).
e Tforp=1(orp=0if log.p =TRUE, when lower.tail = TRUE).
* NaN for p <@ or p > 1 (or corresponding log scale).

* NaN for invalid parameters (e.g., alpha <= 9, beta <= 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.

Author(s)

Lopes, J. E.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.
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See Also

ggkw (parent distribution quantile function), dkw, pkw, rkw (other Kw functions), gbeta, qunif

Examples

# Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 3.0

# Calculate quantiles using gkw
quantiles <- gkw(p_vals, alpha_par, beta_par)
print(quantiles)

# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- gkw(p_vals, alpha_par, beta_par, lower.tail = FALSE)
print(quantiles_upper)

# Calculate quantiles from log probabilities

log.p_vals <- log(p_vals)

quantiles_logp <- gkw(log.p_vals, alpha_par, beta_par, log.p = TRUE)
print(quantiles_logp)

# Check: should match original quantiles

print(quantiles)

# Compare with ggkw setting gamma = 1, delta = @, lambda = 1
quantiles_gkw <- ggkw(p_vals,

alpha = alpha_par, beta = beta_par,

gamma = 1.0, delta = 0.0, lambda = 1.0
)

print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero

# Verify inverse relationship with pkw

p_check <- 0.75

g_calc <- gkw(p_check, alpha_par, beta_par)

p_recalc <- pkw(g_calc, alpha_par, beta_par)

print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE

# Boundary conditions
print(gkw(c(@, 1), alpha_par, beta_par)) # Should be 0, 1
print(gkw(c(-Inf, @), alpha_par, beta_par, log.p = TRUE)) # Should be 0, 1

gmc Quantile Function of the McDonald (Mc)/Beta Power Distribution
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Description

Computes the quantile function (inverse CDF) for the McDonald (Mc) distribution (also known
as Beta Power) with parameters gamma (), delta (d), and lambda (A). It finds the value q such
that P(X < ¢) = p. This distribution is a special case of the Generalized Kumaraswamy (GKw)
distribution where o = 1 and 8 = 1.

Usage

gmc(p, gamma = 1, delta = @, lambda = 1, lower.tail = TRUE, log.p = FALSE)

Arguments
p Vector of probabilities (values between 0 and 1).
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter lambda > 0. Can be a scalar or a vector. Default: 1.0.
lower.tail Logical; if TRUE (default), probabilities are p = P(X < ¢), otherwise, proba-
bilities are p = P(X > q).
log.p Logical; if TRUE, probabilities p are given as log(p). Default: FALSE.
Details

The quantile function Q(p) is the inverse of the CDF F'(q). The CDF for the Mc (aw = 1,8 = 1)
distribution is F'(q) = I,x (7,6 + 1), where I (a, b) is the regularized incomplete beta function (see

pmc).
To find the quantile ¢, we first invert the Beta function part: let y = I,7" (v, 4 1), where I"! (a, b)
is the inverse computed via gbeta. We then solve ¢* = ¥ for ¢, yielding the quantile function:

Q) = [, (v, + 1]

The function uses this formula, calculating I;l(’y, 0 + 1) via gbeta(p, gamma, delta+1, ...)
while respecting the lower.tail and log.p arguments. This is equivalent to the general GKw
quantile function (qgkw) evaluated with « = 1, 5 = 1.

Value

A vector of quantiles corresponding to the given probabilities p. The length of the result is deter-
mined by the recycling rule applied to the arguments (p, gamma, delta, lambda). Returns:

e @ for p=0 (or p=-Infif log.p = TRUE, when lower.tail = TRUE).
e Tforp=1(orp=0if log.p =TRUE, when lower.tail = TRUE).
* NaN for p <@ or p > 1 (or corresponding log scale).

* NaN for invalid parameters (e.g., gamma <= 0, delta < @, lambda <= 0).

Boundary return values are adjusted accordingly for lower.tail = FALSE.
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Author(s)
Lopes, J. E.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-
metrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

ggkw (parent distribution quantile function), dmc, pmc, rmc (other Mc functions), gbeta

Examples

# Example values

p_vals <- c(0.1, 0.5, 0.9)

gamma_par <- 2.0

delta_par <- 1.5

lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)

# Calculate quantiles using gmc

quantiles <- gmc(p_vals, gamma_par, delta_par, lambda_par)
print(quantiles)

# Compare with Beta quantiles

print(stats::gbeta(p_vals, shapel = gamma_par, shape2 = delta_par + 1))

# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- gmc(p_vals, gamma_par, delta_par, lambda_par,
lower.tail = FALSE

)
print(quantiles_upper)
# Check: gmc(p, ..., 1t=F) == gmc(1-p, ..., 1t=T)

print(gmc(1 - p_vals, gamma_par, delta_par, lambda_par))

# Calculate quantiles from log probabilities

log.p_vals <- log(p_vals)

quantiles_logp <- gmc(log.p_vals, gamma_par, delta_par, lambda_par, log.p = TRUE)
print(quantiles_logp)

# Check: should match original quantiles

print(quantiles)

# Compare with ggkw setting alpha = 1, beta =1
quantiles_gkw <- qggkw(p_vals,
alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par
)

print(paste(”Max difference:"”, max(abs(quantiles - quantiles_gkw)))) # Should be near zero
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# Verify inverse relationship with pmc

p_check <- 0.75

g_calc <- gmc(p_check, gamma_par, delta_par, lambda_par) # Use lambda != 1
p_recalc <- pmc(g_calc, gamma_par, delta_par, lambda_par)
print(paste(”Original p:", p_check, " Recalculated p:", p_recalc))

# abs(p_check - p_recalc) < 1e-9 # Should be TRUE

# Boundary conditions
print(gmc(c(@, 1), gamma_par, delta_par, lambda_par)) # Should be 0, 1
print(gmc(c(-Inf, @), gamma_par, delta_par, lambda_par, log.p = TRUE)) # Should be 0, 1

rbeta_ Random Generation for the Beta Distribution (gamma, delta+1 Pa-
rameterization)

Description

Generates random deviates from the standard Beta distribution, using a parameterization common
in generalized distribution families. The distribution is parameterized by gamma (vy) and delta (9),
corresponding to the standard Beta distribution with shape parameters shape1 = gamma and shape2
=delta+ 1. This is a special case of the Generalized Kumaraswamy (GKw) distribution where
a=1,=1,and A = 1.

Usage

rbeta_(n, gamma = 1, delta = 0)

Arguments
n Number of observations. If 1length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.
gamma First shape parameter (shapel), v > 0. Can be a scalar or a vector. Default:
1.0.
delta Second shape parameter is delta + 1 (shape2), requires § > 0 so that shape?2
>=1. Can be a scalar or a vector. Default: 0.0 (leading to shape2 =1, i.e.,
Uniform).
Details

This function generates samples from a Beta distribution with parameters shapel = gamma and
shape2 = delta + 1. Itis equivalent to calling stats: :rbeta(n, shapel = gamma, shape2 = delta
+1).

This distribution arises as a special case of the five-parameter Generalized Kumaraswamy (GKw)
distribution (rgkw) obtained by setting & = 1, § = 1, and A = 1. It is therefore also equivalent to
the McDonald (Mc)/Beta Power distribution (rmc) with A = 1.
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The function likely calls R’s underlying rbeta function but ensures consistent parameter recycling
and handling within the C++ environment, matching the style of other functions in the related
families.

Value

A numeric vector of length n containing random deviates from the Beta(y, § + 1) distribution, with
values in (0, 1). The length of the result is determined by n and the recycling rule applied to the
parameters (gamma, delta). Returns NaN if parameters are invalid (e.g., gamma <= @, delta < 9).

Author(s)
Lopes, J. E.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume
2 (2nd ed.). Wiley.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag.

See Also

rbeta (standard R implementation), rgkw (parent distribution random generation), rmc (McDon-
ald/Beta Power random generation), dbeta_, pbeta_, gbeta_ (other functions for this parameteri-
zation, if they exist).

Examples

set.seed(2030) # for reproducibility

# Generate 1000 samples using rbeta_
gamma_par <- 2.0 # Corresponds to shapel
delta_par <- 3.0 # Corresponds to shape2 - 1
shapel <- gamma_par

shape2 <- delta_par + 1

x_sample <- rbeta_(1000, gamma = gamma_par, delta = delta_par)
summary (x_sample)

# Compare with stats::rbeta

x_sample_stats <- stats::rbeta(1000, shapel = shapel, shape2 = shape2)

# Visually compare histograms or QQ-plots

hist(x_sample, main = "rbeta_ Sample”, freq = FALSE, breaks = 30)
curve(dbeta_(x, gamma_par, delta_par), add = TRUE, col = "red”, lwd = 2)
hist(x_sample_stats, main = "stats::rbeta Sample”, freq = FALSE, breaks = 30)
curve(stats::dbeta(x, shapel, shape2), add = TRUE, col = "blue”, lwd = 2)

# Compare summary stats (should be similar due to randomness)
print(summary(x_sample))

print(summary(x_sample_stats))
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# Compare summary stats with rgkw(alpha=1, beta=1, lambda=1)
x_sample_gkw <- rgkw(1000,

alpha = 1.0, beta = 1.0, gamma = gamma_par,

delta = delta_par, lambda = 1.0
)
print(”"Summary stats for rgkw(a=1,b=1,1=1) sample:")
print(summary(x_sample_gkw))

# Compare summary stats with rmc(lambda=1)

x_sample_mc <- rmc(1000, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print(”"Summary stats for rmc(l=1) sample:")

print(summary(x_sample_mc))

rbkw Random Number Generation for the Beta-Kumaraswamy (BKw) Dis-
tribution

Description

Generates random deviates from the Beta-Kumaraswamy (BKw) distribution with parameters alpha
(a), beta (), gamma (), and delta (§). This distribution is a special case of the Generalized Ku-
maraswamy (GKw) distribution where the parameter A\ = 1.

Usage
rbkw(n, alpha = 1, beta = 1, gamma = 1, delta = 0)

Arguments
n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
Details

The generation method uses the relationship between the GKw distribution and the Beta distribu-
tion. The general procedure for GKw (rgkw) is: If W ~ Beta(v,d + 1), then X = {1 — [1 —
W/AL/BY/e follows the GKw(a, 3,7, 6, \) distribution.

For the BKw distribution, A = 1. Therefore, the algorithm simplifies to:

1. Generate V' ~ Beta(y,d + 1) using rbeta.
2. Compute the BKw variate X = {1 — (1 — V)'/8}1/e,

This procedure is implemented efficiently, handling parameter recycling as needed.
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Value

A vector of length n containing random deviates from the BKw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, gamma, delta).
Returns NaN if parameters are invalid (e.g., alpha <= @, beta <= 0, gamma <= @, delta < 0).

Author(s)
Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

See Also

rgkw (parent distribution random generation), dbkw, pbkw, gbkw (other BKw functions), rbeta

Examples

set.seed(2026) # for reproducibility

# Generate 1000 random values from a specific BKw distribution
alpha_par <- 2.0
beta_par <- 1.5
gamma_par <- 1.0
delta_par <- 0.5

x_sample_bkw <- rbkw(1000,
alpha = alpha_par, beta = beta_par,
gamma = gamma_par, delta = delta_par

)

summary (x_sample_bkw)

# Histogram of generated values compared to theoretical density
hist(x_sample_bkw,
breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of BKw Sample”, xlab = "x", ylim = c(0, 2.5)
)
curve(
dbkw(x,
alpha = alpha_par, beta = beta_par, gamma = gamma_par,
delta = delta_par
),
add = TRUE, col = "red”, lwd = 2, n = 201
)
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legend("topright”, legend = "Theoretical PDF", col = "red”, lwd = 2, bty = "n")

# Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, .99, by = 0.01)
theo_quantiles <- gbkw(prob_points,
alpha = alpha_par, beta = beta_par,
gamma = gamma_par, delta = delta_par
)

emp_quantiles <- quantile(x_sample_bkw, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for BKw Distribution”,
xlab = "Theoretical Quantiles”, ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b =1, col = "blue", 1ty

2)

# Compare summary stats with rgkw(..., lambda=1, ...)
# Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,
alpha = alpha_par, beta = beta_par, gamma = gamma_par,
delta = delta_par, lambda = 1.0
)
print(”"Summary stats for rbkw sample:")
print(summary(x_sample_bkw))
print("Summary stats for rgkw(lambda=1) sample:")
print(summary(x_sample_gkw)) # Should be similar

rekw Random Number Generation for the Exponentiated Kumaraswamy
(EKw) Distribution

Description

Generates random deviates from the Exponentiated Kumaraswamy (EKw) distribution with param-
eters alpha («), beta (3), and lambda (A). This distribution is a special case of the Generalized
Kumaraswamy (GKw) distribution where v = 1 and § = 0.

Usage

rekw(n, alpha = 1, beta = 1, lambda = 1)

Arguments

n Number of observations. If 1length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.

alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
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beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
lambda Shape parameter 1ambda > 0 (exponent parameter). Can be a scalar or a vector.
Default: 1.0.
Details

The generation method uses the inverse transform (quantile) method. That is, if U is a random
variable following a standard Uniform distribution on (0, 1), then X = Q(U) follows the EKw
distribution, where ()(u) is the EKw quantile function (qekw):

Q(u) = {1 - [1 _uw} 1/5}1/a

This is computationally equivalent to the general GKw generation method (rgkw) when specialized
for v = 1,0 = 0, as the required Beta(1, 1) random variate is equivalent to a standard Uniform(0,
1) variate. The implementation generates U using runif and applies the transformation above.

Value

A vector of length n containing random deviates from the EKw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, lambda). Returns
NaN if parameters are invalid (e.g., alpha <= 0, beta <= @, lambda <= 0).

Author(s)
Lopes, J. E.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distri-
bution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

See Also

rgkw (parent distribution random generation), dekw, pekw, gekw (other EKw functions), runif

Examples
set.seed(2027) # for reproducibility
# Generate 1000 random values from a specific EKw distribution

alpha_par <- 2.0
beta_par <- 3.0
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lambda_par <- 1.5

x_sample_ekw <- rekw(1000, alpha = alpha_par, beta = beta_par, lambda = lambda_par)
summary (x_sample_ekw)

# Histogram of generated values compared to theoretical density
hist(x_sample_ekw,
breaks = 30, freq = FALSE, # freg=FALSE for density
main = "Histogram of EKw Sample”, xlab = "x", ylim = c(0, 3.0)
)
curve(dekw(x, alpha = alpha_par, beta = beta_par, lambda = lambda_par),
add = TRUE, col = "red”, lwd = 2, n = 201
)
legend("topright”, legend = "Theoretical PDF", col = "red”, lwd = 2, bty = "n")

# Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- gekw(prob_points,
alpha = alpha_par, beta = beta_par,
lambda = lambda_par
)

emp_quantiles <- quantile(x_sample_ekw, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for EKw Distribution”,
xlab = "Theoretical Quantiles”, ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b =1, col = "blue”, 1ty = 2)

# Compare summary stats with rgkw(..., gamma=1, delta=0, ...)
# Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = alpha_par, beta = beta_par, gamma = 1.0,

delta = 0.0, lambda = lambda_par
)
print(”"Summary stats for rekw sample:")
print(summary(x_sample_ekw))
print("Summary stats for rgkw(gamma=1, delta=0) sample:")
print(summary(x_sample_gkw)) # Should be similar

rgkw Generalized Kumaraswamy Distribution Random Generation

Description

Generates random deviates from the five-parameter Generalized Kumaraswamy (GKw) distribution
defined on the interval (0, 1).
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Usage

rgkw(n, alpha = 1, beta = 1, gamma = 1, delta = @, lambda = 1)

Arguments
n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.
Details

The generation method relies on the transformation property: if V' ~ Beta(y,d + 1), then the

random variable X defined as
/) Ve
X{l 1=V }

follows the GKw(«, 3,, d, A) distribution.

The algorithm proceeds as follows:

1. Generate V from stats::rbeta(n, shapel = gamma, shape2 =delta+1).
2. Calculate v = V1/2,

3. Calculate w = (1 — v)'/7.

4. Calculate z = (1 — w)'/e.

Parameters (alpha, beta, gamma, delta, lambda) are recycled to match the length required by n.
Numerical stability is maintained by handling potential edge cases during the transformations.

Value

A vector of length n containing random deviates from the GKw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, gamma, delta,
lambda). Returns NaN if parameters are invalid (e.g., alpha <= @, beta <= 9, gamma <= @, delta <
0, lambda <= 0).

Author(s)
Lopes, J. E.

References
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.
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See Also

dgkw, pgkw, qgkw, rbeta, set.seed

Examples
set.seed(1234) # for reproducibility
# Generate 1000 random values from a specific GKw distribution (Kw case)

x_sample <- rgkw(1000, alpha = 2, beta = 3, gamma = 1, delta = @, lambda
summary (x_sample)

D)

# Histogram of generated values compared to theoretical density
hist(x_sample,
breaks = 30, freq = FALSE, # freg=FALSE for density scale
main = "Histogram of GKw(2,3,1,0,1) Sample”, xlab = "x",
)
curve(dgkw(x, alpha = 2, beta = 3, gamma = 1, delta = @, lambda = 1),
add = TRUE, col = "red”, lwd = 2, n = 201
)
legend("topright”, legend = "Theoretical PDF", col = "red”, lwd = 2, bty = "n")

ylim = c(@, 2.5)

# Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, .99, by = 0.01)
theo_quantiles <- qgkw(prob_points, alpha = 2, beta
emp_quantiles <- quantile(x_sample, prob_points)

3, gamma = 1, delta = @, lambda = 1)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for GKw(2,3,1,0,1)",
xlab = "Theoretical Quantiles”, ylab = "Empirical Quantiles (n=1000)"

)
abline(a = @, b = 1, col = "blue", 1ty = 2)

# Using vectorized parameters: generate 1 value for each alpha

alphas_vec <- c(0.5, 1.0, 2.0)

n_param <- length(alphas_vec)

samples_vec <- rgkw(n_param, alpha = alphas_vec, beta = 2, gamma = 1, delta = @, lambda = 1)
print(samples_vec) # One sample for each alpha value

# Result length matches n=3, parameters alpha recycled accordingly

rkkw Random Number Generation for the kkw Distribution

Description

Generates random deviates from the Kumaraswamy-Kumaraswamy (kkw) distribution with param-
eters alpha (a), beta (8), delta (4), and lambda ()\). This distribution is a special case of the
Generalized Kumaraswamy (GKw) distribution where the parameter v = 1.



212 rkkw

Usage
rkkw(n, alpha = 1, beta = 1, delta = @, lambda = 1)

Arguments
n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter 1lambda > 0. Can be a scalar or a vector. Default: 1.0.
Details

The generation method uses the inverse transform method based on the quantile function (gkkw).
The kkw quantile function is:

Q(p) = |} — {1 — [1 .yl _p)l/(5+1)]1/,\}1/ﬁ‘| 1/a

Random deviates are generated by evaluating ()(p) where p is a random variable following the
standard Uniform distribution on (0, 1) (runif).

This is equivalent to the general method for the GKw distribution (rgkw) specialized for v = 1.
The GKw method generates W ~ Beta(v,d + 1) and then applies transformations. When v = 1,
W ~ Beta(1,d + 1), which can be generated via W = 1 — V1) where V' ~ Unif(0, 1).
Substituting this W into the GKw transformation yields the same result as evaluating Q(1 — V)
above (noting p = 1 — V is also Uniform).

Value

A vector of length n containing random deviates from the kkw distribution. The length of the result
is determined by n and the recycling rule applied to the parameters (alpha, beta, delta, lambda).
Returns NaN if parameters are invalid (e.g., alpha <= @, beta <= 0, delta < @, lambda <= 0).

Author(s)
Lopes, J. E.

References
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).



rkkw 213

See Also

rgkw (parent distribution random generation), dkkw, pkkw, gkkw, runif, rbeta

Examples

set.seed(2025) # for reproducibility

# Generate 1000 random values from a specific kkw distribution
alpha_par <- 2.0

beta_par <- 3.0

delta_par <- 0.5

lambda_par <- 1.5

x_sample_kkw <- rkkw(1000,
alpha = alpha_par, beta = beta_par,
delta = delta_par, lambda = lambda_par
)

summary (x_sample_kkw)

# Histogram of generated values compared to theoretical density
hist(x_sample_kkw,

breaks = 30, freq = FALSE, # freq=FALSE for density

main = "Histogram of kkw Sample”, xlab = "x", ylim = c(@, 3.5)

)
curve(
dkkw(x,
alpha = alpha_par, beta = beta_par, delta = delta_par,
lambda = lambda_par
),
add = TRUE, col = "red”, lwd = 2, n = 201
)

legend("topright”, legend = "Theoretical PDF", col = "red”, lwd = 2, bty = "n")

# Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- gkkw(prob_points,
alpha = alpha_par, beta = beta_par,
delta = delta_par, lambda = lambda_par
)
emp_quantiles <- quantile(x_sample_kkw, prob_points, type = 7) # type 7 is default

plot(theo_quantiles, emp_guantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for kkw Distribution”,
xlab = "Theoretical Quantiles”, ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", 1ty = 2)

# Compare summary stats with rgkw(..., gamma=1, ...)
# Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = alpha_par, beta = beta_par, gamma = 1.0,
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delta = delta_par, lambda = lambda_par
)
print(”"Summary stats for rkkw sample:")
print(summary(x_sample_kkw))
print(”"Summary stats for rgkw(gamma=1) sample:")
print(summary(x_sample_gkw)) # Should be similar

rkw Random Number Generation for the Kumaraswamy (Kw) Distribution

Description

Generates random deviates from the two-parameter Kumaraswamy (Kw) distribution with shape
parameters alpha («) and beta (3).

Usage
rkw(n, alpha = 1, beta = 1)

Arguments
n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.
alpha Shape parameter alpha > 0. Can be a scalar or a vector. Default: 1.0.
beta Shape parameter beta > 0. Can be a scalar or a vector. Default: 1.0.
Details

The generation method uses the inverse transform (quantile) method. That is, if U is a random
variable following a standard Uniform distribution on (0, 1), then X = Q(U) follows the Kw
distribution, where Q(p) is the Kw quantile function (gkw):

1/«

Q) = {1-(1-p"?}
The implementation generates U using runif and applies this transformation. This is equivalent to
the general GKw generation method (rgkw) evaluated aty = 1,6 = 0, A = 1.
Value

A vector of length n containing random deviates from the Kw distribution, with values in (0, 1).
The length of the result is determined by n and the recycling rule applied to the parameters (alpha,
beta). Returns NaN if parameters are invalid (e.g., alpha <= 0, beta <= 9).

Author(s)
Lopes, J. E.
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References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods
for random variate generation).

See Also

rgkw (parent distribution random generation), dkw, pkw, gkw (other Kw functions), runif

Examples

set.seed(2029) # for reproducibility

# Generate 1000 random values from a specific Kw distribution
alpha_par <- 2.0
beta_par <- 3.0

x_sample_kw <- rkw(1000, alpha = alpha_par, beta = beta_par)
summary (x_sample_kw)

# Histogram of generated values compared to theoretical density
hist(x_sample_kw,
breaks = 30, freq = FALSE, # freg=FALSE for density
main = "Histogram of Kw Sample”, xlab = "x", ylim = c(0, 2.5)
)
curve(dkw(x, alpha = alpha_par, beta = beta_par),
add = TRUE, col = "red”, lwd = 2, n = 201
)
legend("top"”, legend = "Theoretical PDF", col = "red”, lwd = 2, bty = "n")

# Comparing empirical and theoretical quantiles (Q-Q plot)

prob_points <- seq(0.01, 0.99, by = 0.01)

theo_quantiles <- gkw(prob_points, alpha = alpha_par, beta = beta_par)
emp_quantiles <- quantile(x_sample_kw, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for Kw Distribution”,
xlab = "Theoretical Quantiles”, ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b = 1, col = "blue", 1ty = 2)

# Compare summary stats with rgkw(..., gamma=1, delta=0, lambda=1)

# Note: individual values will differ due to randomness

x_sample_gkw <- rgkw(1000,
alpha = alpha_par, beta

= beta_par, gamma = 1.0,
delta = 0.0, lambda = 1.0
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rmc
print(”Summary stats for rkw sample:")
print(summary(x_sample_kw))
print(”"Summary stats for rgkw(gamma=1, delta=0, lambda=1) sample:")
print(summary(x_sample_gkw)) # Should be similar
rmc Random Number Generation for the McDonald (Mc)/Beta Power Dis-

tribution

Description

Generates random deviates from the McDonald (Mc) distribution (also known as Beta Power) with
parameters gamma (7), delta (4), and lambda (). This distribution is a special case of the Gener-
alized Kumaraswamy (GKw) distribution where &« = 1 and g = 1.

Usage

rmc(n, gamma = 1, delta = @, lambda = 1)

Arguments
n Number of observations. If length(n) > 1, the length is taken to be the number
required. Must be a non-negative integer.
gamma Shape parameter gamma > 0. Can be a scalar or a vector. Default: 1.0.
delta Shape parameter delta >= 0. Can be a scalar or a vector. Default: 0.0.
lambda Shape parameter 1ambda > 0. Can be a scalar or a vector. Default: 1.0.
Details

The generation method uses the relationship between the GKw distribution and the Beta distribu-
tion. The general procedure for GKw (rgkw) is: If W ~ Beta(v,d + 1), then X = {1 — [1 —
W/ By follows the GKw(v, 3, 7, 6, \) distribution.

For the Mc distribution, « = 1 and 8 = 1. Therefore, the algorithm simplifies significantly:

1. Generate U ~ Beta(v,d + 1) using rbeta.
2. Compute the Mc variate X = U/,

This procedure is implemented efficiently, handling parameter recycling as needed.

Value

A vector of length n containing random deviates from the Mc distribution, with values in (0, 1).
The length of the result is determined by n and the recycling rule applied to the parameters (gamma,
delta, lambda). Returns NaN if parameters are invalid (e.g., gamma <= @, delta < @, lambda <= 0).
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See Also

rgkw (parent distribution random generation), dmc, pmc, gmc (other Mc functions), rbeta

Examples

set.seed(2028) # for reproducibility

# Generate 1000 random values from a specific Mc distribution
gamma_par <- 2.0

delta_par <- 1.5

lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)

x_sample_mc <- rmc(1000,
gamma = gamma_par, delta = delta_par,
lambda = lambda_par

)

summary (x_sample_mc)

# Histogram of generated values compared to theoretical density
hist(x_sample_mc,
breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of Mc Sample (Beta Case)"”, xlab = "x"
)
curve(dmc(x, gamma = gamma_par, delta = delta_par, lambda = lambda_par),
add = TRUE, col = "red”, 1lwd = 2, n = 201
)
curve(stats: :dbeta(x, gamma_par, delta_par + 1), add = TRUE, col = "blue”, 1ty = 2)
legend("topright”,
legend = c("Theoretical Mc PDF", "Theoretical Beta PDF"),
col = c("red”, "blue"), 1lwd = c(2, 1), 1ty = c(1, 2), bty = "n"
)

# Comparing empirical and theoretical quantiles (Q-Q plot)
lambda_par_qgq <- 0.7 # Use lambda != 1 for non-Beta case
x_sample_mc_qq <- rmc(1000,
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gamma = gamma_par, delta = delta_par,
lambda = lambda_par_qq
)
prob_points <- seq(0.01, .99, by = 0.01)
theo_quantiles <- gmc(prob_points,
gamma = gamma_par, delta = delta_par,
lambda = lambda_par_qq
)

emp_quantiles <- quantile(x_sample_mc_qq, prob_points, type = 7)

plot(theo_quantiles, emp_quantiles,
pch = 16, cex = 0.8,
main = "Q-Q Plot for Mc Distribution”,
xlab = "Theoretical Quantiles”, ylab = "Empirical Quantiles (n=1000)"

)
abline(a = 0, b =1, col = "blue”", 1ty

2)

# Compare summary stats with rgkw(..., alpha=1, beta=1, ...)
# Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000,

alpha = 1.0, beta = 1.0, gamma = gamma_par,

delta = delta_par, lambda = lambda_par_qq
)
print("Summary stats for rmc sample:")
print(summary(x_sample_mc_qq))
print("Summary stats for rgkw(alpha=1, beta=1) sample:")
print(summary(x_sample_gkw)) # Should be similar
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* beta
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grbeta, 19
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grekw, 30
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digamma, 20, 25, 37, 38, 53, 54 pkkw, 12, 146, 179, 182, 183, 197,213
dkkw, 11, 14, 44,91, 146, 181, 197, 213 pkw, 14, 155, 182, 199, 200, 215
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