Package ‘guideR’

January 8, 2026
Type Package
Title Miscellaneous Statistical Functions Used in 'guide-R’
Version 0.9.0

Description Companion package for the manual
'guide-R : Guide pour I’analyse de données d’enquétes avec R' available at
<https://larmarange.github.io/guide-R/>. 'guideR' implements miscellaneous
functions introduced in 'guide-R' to facilitate statistical analysis and
manipulation of survey data.

License GPL (>=3)

URL https://larmarange.github.io/guideR/,
https://github.com/larmarange/guideR

BugReports https://github.com/larmarange/guideR/issues
Depends R (>=4.2)

Imports cli, dplyr (>= 1.1.0), forcats, ggplot2, labelled, lifecycle,
pak, patchwork, purrr, renv, rlang, rstudioapi, scales, srvyr,
stats, stringr, tidyr, tidyselect, utils

Encoding UTF-8
RoxygenNote 7.3.3

Suggests broom, broom.helpers, cardx, DT, FactoMineR, ggupset,
ggstats, gt, gtsummary (>= 2.5.0), htmltools, htmlwidgets,
khroma, nnet, parameters, spelling, survey, survival, testthat
(>=3.0.0), TraMineR, vdiffr

Config/testthat/edition 3
Language en-US
NeedsCompilation no

Author Joseph Larmarange [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7097-700X>)

Maintainer Joseph Larmarange <joseph@larmarange.net>
Repository CRAN
Date/Publication 2026-01-08 19:10:03 UTC

https://larmarange.github.io/guide-R/
https://larmarange.github.io/guideR/
https://github.com/larmarange/guideR
https://github.com/larmarange/guideR/issues
https://orcid.org/0000-0001-7097-700X

2

add_interactions_by_step

Contents
add_interactions_by_Step e e e 2
Ccombine _aAnSWETS o v e e 3
cut_quartiles e 4
grouped_tbl_pivot_wider Lo 5
SEISUMMATY_teSt o o v it e e e e e 6
gtsummary_themes e 7
gtsummary_utilities L. 10
install_dependencies e 11
1s_differento s e 12
leading_zeros e 13
long_to_periods L. e e e 14
long to_seq e e e 15
mean_Sd L e e 17
median_iqro e e e e e e e e e 19
observed_vs_theoretical 21
periods_to_longo L e e e e 22
plot_categorical 23
PlOL_CONtINUOUS v o v v i e e i e e e e e e e e e e e e e 25
plot_inertia_from_treeo e 27
plot_means 28
plot_multiple_answers e e e e e e 30
PlOt_Proportions 34
PIOt_trajectories o i e e e e e e e e e e e e 39
PIOPOTLION L ot e e e e e e e e e e e 41
round_preserve_SUM v v vt i e e e e e e e e e e e e e 44
safe_pal e 45
step_with_na 47
SVYONEWAY + v v v v v v e 48
HEANIC o o e e e e e e e 49
UNFOWWISE . . . o v v v e i e i e e e e e e e e e e e e e e e e e e 50
view_dictionaryo e e e e e e e 50
Index 52

add_interactions_by_step

Add potential relevant interactions using step()

Description

[Experimental] Add potential relevant interactions to a model usind stats: :step(). The function
extract the formula of the model, identifies all potential interactions and pass them as the upper
component of the scope argument to stats: :step(). The current model formula is passed as the
lower component of scope.

combine_answers 3

Usage

add_interactions_by_step(model, ...)

Default S3 method:

add_interactions_by_step(model, ...)
Arguments
model A model object.

Additional parameters passed to stats: :step().

Value

The stepwise-selected model.

Examples

mod <- glm(as.factor(Survived) ~
mod |> add_interactions_by_step()

., data = titanic, family = binomial())

combine_answers Combine answers of a multiple answers question

Description

Considering a multiple answers question coded as several binary variables (one per item), create
a new variable (list column or character) combining all positive answers. If defined, use variable
labels (see examples).

Usage

combine_answers(data, answers, into, value = NULL, sep = NULL)

Arguments
data A data frame, data frame extension (e.g. a tibble), or a survey design object.
answers <tidy-select>
List of variables identifying the different answers of the question.
into Names of new variables to create as character vector.
value Value indicating a positive answer. By default, will use the maximum observed
value and will display a message.
sep An optional character string to separate the results and return a character. If
NULL, return a list column (see examples).
Note

If NA is observed for at least one item, return NA.

4 cut_quartiles

Examples

d <-
dplyr::tibble(
gla = sample(c("y", "n"), size = 200, replace = TRUE),
qlb = sample(c("y"”, "n", "n", NA), size = 200, replace = TRUE),
qlc = sample(c("y", "y", "n"), size = 200, replace = TRUE),
sample("n", size = 200, replace = TRUE)

qld =
)
d |> combine_answers(qgla:qld, into = "combined”)
d |> combine_answers(qla:qld, into = "combined”, sep = ", ", value = "y")
d |> combine_answers(qgla:qld, into = "combined”, sep = " | ", value = "n")

works with survey objects

d |>
srvyr::as_survey() |>
combine_answers(qla:qld, into = "combined”)
cut_quartiles Cut a continuous variable in quartiles
Description

Convenient function to quickly cut a numeric vector into quartiles, i.e. by applying cut(x, breaks
= fivenum(x)). Variable label is preserved by cut_quartiles().

Usage
cut_quartiles(x, include.lowest = TRUE, ...)
Arguments
X a numeric vector which is to be converted to a factor by cutting.

include.lowest logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right = FALSE)
‘breaks’ value should be included.

further arguments passed to base: :cut().

Examples

mtcars$mpg |> cut_quartiles() |> summary()

grouped_tbl_pivot_wider 5

grouped_tbl_pivot_wider
Helpers for grouped tables generated with gtsummary

Description

A series of helpers for grouped tables generated by gtsummary: : tbl_stack() or gtsummary: :tbl_regression()
in case of multinomial models, multi-components models or other grouped results. grouped_tb1l_pivot_wider()
allows to display results in a a wide format, with one set of columns per group. multinom_add_global_p_pivot_wider()
is a specific case for multinomial models, when displaying global p-values in a wide format: it

calls gtsummary: :add_global_p(), followed by grouped_tbl_pivot_wider(), and then keep

only the last column with p-values (see examples). Finally, as grouped regression tables doesn’t

have exactly the same structure as ungrouped tables, functions as gtsummary: :bold_labels() do

not always work properly. If the grouped table is kept in a long format, style_grouped_tbl()

could be use to improve the output by styling variable labels, levels and/or group names. TO BE

NOTED: to style group names, style_grouped_tbl() convert the table into a gt object with

gtsummary: :as_gt(). This function should therefore be used last. If the table is intended to be

exported to another format, do not use style_grouped_tbl().

Usage

grouped_tbl_pivot_wider(x)

multinom_add_global_p_pivot_wider(
X’
p_value_header = "xxLikelihood-ratio test*x"

)

style_grouped_tbl(
X,
bold_groups = TRUE,
uppercase_groups = TRUE,
bold_labels = FALSE,
italicize_labels = TRUE,
indent_labels = 4L,
bold_levels = FALSE,
italicize_levels = FALSE,
indent_levels = 8L

Arguments

X A grouped table generated with gtsummary: : tbl_stack() or gtsummary: :tbl_regression().
Additional arguments passed to gtsummary: :add_global_p().

p_value_header Header for the p-value column.

6 gtsummary_test

bold_groups Bold group group names?
uppercase_groups
Convert group names to upper case?

bold_labels Bold variable labels?
italicize_labels
Italicize variable labels?

indent_labels Number of spaces to indent variable labels.

bold_levels Bold levels?
italicize_levels
Italicize levels?

indent_levels Number of spaces to indent levels.

Value

A gtsummary or a gt table.

Examples

mod <- nnet::multinom(
grade ~ stage + marker + age,
data = gtsummary::trial,
trace = FALSE
)
tbl <- mod |> gtsummary::tbl_regression(exponentiate = TRUE)
tbl
tbl |> grouped_tbl_pivot_wider()

tbl |> multinom_add_global_p_pivot_wider() |> gtsummary::bold_labels()
tbl |> style_grouped_tbl()

t1 <- gtsummary::trial |>

gtsummary: :tbl_summary(include = grade, by = trt)
t2 <- gtsummary::trial [>
gtsummary: :tbl_summary(include = stage, by = trt)

gtsummary: :tbl_stack(list(t1, t2), group_header = c("Table 1", "Table 2")) |>
style_grouped_tbl()

gtsummary_test Additional tests for gtsummary

gtsummary_themes 7

Description

See gtsummary::tests for more details on how defining custom tests. fisher.simulate.p() im-
plements Fisher test with computation of p-values by Monte Carlo simulation in larger than 2x2
tables (see stats::fisher.test()). svyttest_oneway() is designed to compare means between
sub-groups for survey objects. It is based on survey: :svyttest() for comparing 2 means, and on
svyoneway () for comparing 3 means or more.

Usage
fisher.simulate.p(data, variable, by, ...)
svyttest_oneway(data, variable, by, ...)
Arguments
data A data set.
variable Name of the variable to test.
by Name of the by variable.
Unused.
Examples
library(gtsummary)
trial |>

tbl_summary(include = grade, by = trt) |>
add_p(test = all_categorical() ~ "fisher.simulate.p")

iris |>
srvyr::as_survey() |>
tbl_svysummary(
include = Petal.lLength,
by = Species
) 1>

add_p(test = all_continuous() ~ svyttest_oneway)

gtsummary_themes Themes for gtsummary

Description

Additional themes for tables generated with gtsummary.

8 gtsummary_themes

Usage

theme_gtsummary_prop_n(
prop_stat = "{p}% ({n})",
prop_digits =1,
mean_sd = FALSE,
cont_digits = 1,
missing_text = NULL,
overall_string = NULL,
set_theme = TRUE

)
theme_gtsummary_fisher_simulate_p(set_theme = TRUE)

theme_gtsummary_unweighted_n(
n_unweighted_prefix = "",
n_unweighted_suffix = " obs.",
prop_digits = 1,
mean_sd = FALSE,
cont_digits = 1,
missing_text = NULL,
overall_string = NULL,
set_theme = TRUE

)

theme_gtsummary_bold_labels(set_theme = TRUE)

Arguments
prop_stat (character)
Statistics to display for categorical variables (see gtsummary: : tbl_summary()).
prop_digits (non-negative integer)
Define the number of decimals to display for proportions.
mean_sd (scalar logical)

Also, set default summary statistics to mean and standard deviation in gtsummary: : tb1_summary().
Default is FALSE.

cont_digits (non-negative integer)
Define the number of decimals to display for continuous variables.

missing_text (character)
String indicating text shown on missing row.

overall_string (character)
Optional string to name the overall column.

set_theme (scalar logical)
Logical indicating whether to set the theme. Default is TRUE. When FALSE the
named list of theme elements is returned invisibly

n_unweighted_prefix, n_unweighted_suffix
(character)

gtsummary_themes 9

Prefix and suffix displayed before and after the unweighted number of observa-
tions.

Details

theme_gtsummary_prop_n() displays, by default, proportions before the number of observations

(between brackets). This function cannot be used simultaneously with gtsummary: : theme_gtsummary_mean_sd(),
but you can use the mean_sd = TRUE option of theme_gtsummary_prop_n(). theme_gtsummary_prop_n()

also modifies default method for gtsummary: :add_ci.tbl_summary() ("wilson” for categorical

variables, "t.test”, i.e. mean confidence interval, for continuous variables if mean_sd = TRUE,
"wilcox.test",i.e. confidence interval of the pseudomedian, for continuous variables if mean_sd

= FALSE). Finally, theme_gtsummary_prop_n() also modifies default tests for gtsummary: :add_p. tb1_summary ()
for continuous variables if mean_sd = TRUE ("t . test"” for comparing 2 groups, or "oneway . test”

for 3 groups or more). If mean_sd =FALSE, the default tests for continuous variables remain
"wilcox.test" (2 groups) or "kruskal.test"” (3 groups or more). For categorical variables,
"chisqg.test.no.correct” and "fisher.test" are used by default. See theme_gtsummary_fisher_simulate_p()
to change the default test for categorical variables.

theme_gtsummary_fisher_simulate_p() modify the default test used for categorical variables
by Fisher test, with computation of p-values by Monte Carlo simulation in larger than 2x2 tables.

theme_gtsummary_unweighted_n() modifies default values of tables returned by gtsummary: : tbl_svysummary ()
and displays the unweighted number of observations instead of the weighted n. theme_gtsummary_unweighted_n()
also modifies default method for gtsummary: :add_ci.tbl_svysummary() ("svyprop.logit" for

categorical variables, "svymean”, i.e. mean confidence interval, for continuous variables if mean_sd

= TRUE, "svymedian.mean”, i.e. confidence interval of the median, for continuous variables if

mean_sd = FALSE). Finally, theme_gtsummary_unweighted_n() also modifies default tests for gt summary: :add_p. th1l_sv
for continuous variables if mean_sd = TRUE (svyttest_oneway which calls survey: :svyttest()

for comparing 2 means and svyoneway () for comparing 3 means or more). If mean_sd = FALSE,

the default tests for continuous variables remain "svy.wilcox.test” which used a designed-based

Wilcoxon test (2 groups) or Kruskal-Wallis test (3 groups or more). For categorical variables,
"svy.chisq.test"is used by default.

theme_gtsummary_bold_labels() applies automatically gtsummary: :bold_labels() to all ta-
bles generated with gtsummary.

Examples

library(gtsummary)

trial |>
tbl_summary(include = c(grade, age), by = trt) [>
add_pQ)

theme_gtsummary_prop_n(mean_sd = TRUE)
theme_gtsummary_fisher_simulate_p()
theme_gtsummary_bold_labels()
trial |>
tbl_summary(include = c(grade, age), by = trt) |>
add_p(Q)

10 gtsummary_utilities

data("api”, package = "survey")

apistrat$both[1:5] <- NA

apistrat |>
srvyr::as_survey(strata = stype, weights = pw) |>
tbl_svysummary(include = c(stype, both), by = awards) |>
add_overall()

theme_gtsummary_unweighted_n()

apistrat |>
srvyr::as_survey(strata = stype, weights = pw) |>
tbl_svysummary(include = c(stype, both), by = awards) |>
add_overall()

gtsummary: :reset_gtsummary_theme()

gtsummary_utilities Utilities for gtsummary

Description

Utilities for tables generated with gtsummary.

Usage

bold_variable_group_headers(x)
italicize_variable_group_headers(x)
indent_levels(x, indent = 8L)

indent_labels(x, indent = 4L)

Arguments

X A gtsummary object.

indent An integer indicating how many space to indent text.
See Also

gtsummary: :modify_bold(), gtsummary: :modify_italic(), gtsummary: :modify_indent()

install_dependencies 11

Examples
library(gtsummary)
tbl <-

trial |>

tbl_summary(
include = c(stage, grade, age, trt, response, death)

) 1>
add_variable_group_header(
header = "Clinical situation at diagnosis”,
variables = c(stage, grade, age)
) 1>
add_variable_group_header(
header = "Treatment and outcome”,
variables = c(trt, response, death)
)
tbl
tbl |>

bold_variable_group_headers() |>
italicize_labels() [>
indent_levels(indent = 8L)

install_dependencies Install / Update project dependencies

Description

This function uses renv: :dependencies() to identify R package dependencies in a project and
then calls pak::pkg_install() to install / update these packages. If some packages are not
found, the function will install those available and returns a message indicated packages not in-
stalled/updated.

Usage

install_dependencies(dependencies = NULL, ask = TRUE)

Arguments

dependencies An optional list of dependencies. If NULL, will be determined with renv: : dependencies().
If equal to "old", will use the list returned by utils: :o0ld.packages().

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

12 is_different

Value

(Invisibly) A data frame with information about the installed package(s).

Examples

Not run:
install_dependencies()

End(Not run)

is_different Comparison tests considering NA as values to be compared

Description

is_different() and is_equal() performs comparison tests, considering NA values as legitimate
values (see examples).

Usage
is_different(x, y)
is_equal(x, y)
cumdifferent(x)

num_cycle(x)

Arguments

Y Vectors to be compared.

Details

cum_different() allows to identify groups of continuous rows that have the same value. num_cycle()
could be used to identify sub-groups that respect a certain condition (see examples).

is_equal(x, y) is equivalent to (x ==y & !is.na(x) & !is.na(y)) | (is.na(x) & is.na(y)),
and is_different(x, y) is equivalent to (x !=y & !is.na(x) & !is.na(y)) | xor(is.na(x),
is.na(y)).

Value

A vector of the same length as x.

leading_zeros 13
Examples

v <= c("a”, "b", NA)

is_different(v, "a")

is_different(v, NA)

is_equal(v, "a")

is_equal(v, NA)

d <_ dplyr::tibble(group = C("a”, ”a"’ IIbH’ Ilbll, ”all’ Hbll, ”C"’ Ilaﬁl))

d |>

dplyr: :mutate(
subgroup = cumdifferent(group),
sub_a = num_cycle(group == "a")
)
leading_zeros Add leading zeros

Description

Add leading zeros
Usage

leading_zeros(x, left_digits = NULL, digits = @, prefix = "", suffix = "", ...)
Arguments

X a numeric vector

left_digits
digits

prefix, suffix

Value

number of digits before decimal point, automatically computed if not provided
number of digits after decimal point
Symbols to display before and after value

additional parameters passed to base: : formatC(), asbig.mark or decimal.mark

A character vector of the same length as x.

See Also

base::formatC(), base: :sprintf()

Examples

v <= c(2, 103.24, 1042.147, 12.4566, NA)

leading_zeros(v)

leading_zeros(v, digits = 1)
leading_zeros(v, left_digits = 6, big.mark = " ")
leading_zeros(c(@, 6, 12, 18), prefix = "M")

14

long_to_periods

long_to_periods Transform a data frame from long format to period format

Description

Transform a data frame from long format to period format

Usage

long_to_periods(data, id, start, stop = NULL, by = NULL)

Arguments
data A data frame, or a data frame extension (e.g. a tibble).
id <tidy-select>
Column containing individual ids
start <tidy-select>
Time variable indicating the beginning of each row
stop <tidy-select>
Optional time variable indicating the end of each row. If not provided, it will be
derived from the dataset, considering that each row ends at the beginning of the
next one.
by <tidy-select>
Co-variables to consider (optional)
Value
A tibble.
See Also

periods_to_long()

Examples

d <- dplyr::tibble(
patient = c(1, 2, 3, 3, 4, 4, 4),
begin = c(0, 0, 0, 1, @, 36, 39),
end = c(50, 6, 1, 16, 36, 39, 45),

n n n n n

covar = c("no"”, "no", "no"”, "yes"”, "no
)
d
d |> long_to_periods(id = patient, start

d |> long_to_periods(id = patient, start

H+

If stop not provided, it is deduced.
However, it considers that observation

o

n

, ”yes” , ”yes”)

begin, stop
begin, stop

end)
end, by = covar)

ends at the last start time.

|> long_to_periods(id = patient, start = begin)

long_to_seq

15

long_to_seq

Transform a data frame from long format to a sequence obect

Description

Transform a data frame from long format to a sequence obect

Usage

long_to_seq(
data,
id,
time,
outcome,
alphabet =

"autO" ,

labels = "auto”,

cnames = "auto",

cpal = "auto”,
missing.color = "#BBBBBB",

Arguments

data
id

time

outcome

alphabet

labels

chames

A data frame or a data frame extension (e.g. a tibble).

<tidy-select>
Column containing individual ids

<tidy-select>
Time variable

<tidy-select>
Variable defining the status

Optional vector containing the alphabet (the list of all possible states). If alphabet
="auto"” will be automatically determined from outcome. If outcome is a la-
belled vector (haven_labelled class), it will be derived from the value labels
(using the values). If outcome is a factor, the factor will be transformed to
a numeric vector with as.integer() and the corresponding numeric values
will be used as the alphabet. In all other cases, will be equal to NULL (see
TraMineR: :seqdef ()).

An optional vector containing state labels used for graphics. If 1abels = "auto”
will be automatically determined from outcome. If outcome is a labelled vec-
tor (haven_labelled class), it will be derived from the value labels (using the
labels). If outcome is a factor, the levels of the factor will be used. In all other
cases, will be equal to NULL

An optional vector containing names of the different time points. If cnames =
"auto”, it will use the observed values from time.

16

long_to_seq

cpal An optional colour palette for representing the states in the graphics. If cpal =

"auto”, a palette will be generated with safe_pal().

missing.color Alternative colour for representing missing values inside the sequences.

Additional arguments passed to TraMineR: : seqdef ()

Value

An object of class stslist.

See Also

TraMineR: :seqdef ()

Examples

library(TraMineR)

generating a data frame in long format

data("biofam")
d <-
biofam |>

dplyr::mutate(id_ind = rownames(biofam)) |>

dplyr::select(id_ind,
tidyr::pivot_longer(

dplyr::starts_with("a"))

cols = dplyr::starts_with("a"),

" n

names_to = "age”,

names_prefix = "a",

values_to = "life_state”
) 1>

dplyr: :mutate(

age = as.integer(age),

life_state2 = dplyr
life_state == 0 ~
life_state == 1 ~
life_state ==
life_state ==
life_state ==
life_state ==
life_state ==
life_state ==

)

) 1>

~N o g w N
14

::case_when(
npn
e
Ve
"LM",
nen
"LC",
"LMC",
np

labelled: :set_value_labels(

life_state = c(
"Parent” = 0,
"Left" =1,
"Married” = 2,

"Left & Married” = 3,

"Child” = 4,

"Left & Child"” = 5,

"Left & Married &

Child” = 6,

|>

mean_sd 17

"Divorced” =7

),

life_state2 = c(
"Parent” = "P",
"Left” = "L”,
"Married” = "M",
"Left & Married” = "LM",
"Child" = "C",
"Left & Child" = "LC",
"Left & Married & Child"” = "LMC",
"Divorced” = "D"

)

) 1>

dplyr: :mutate(
life_state3 = labelled::to_factor(life_state),
life_state4 = unclass(life_state2)

)

d |> long_to_seq(id = id_ind, time = age, outcome = life_state) |> head(10)
d |> long_to_seq(id = id_ind, time = age, outcome = life_state2) |> head(10)
d |> long_to_seq(id = id_ind, time = age, outcome = life_state3) |> head(10)
d |> long_to_seq(id = id_ind, time = age, outcome = life_state4) |> head(10)

mean_sd Compute means, standard deviations and confidence intervals by sub-
groups

Description

mean_sd() lets you quickly compute mean and standard deviation by sub-groups. Use .conf.int
= TRUE to also return confidence intervals of the mean.

Usage

mean_sd(data, ...)

S3 method for class 'data.frame'

mean_sd(
data,
.by = NULL,
.drop = FALSE,

.drop_na_by = FALSE,
.conf.int = FALSE,
.conf.level = 0.95,
.options = NULL

18 mean_sd

S3 method for class 'survey.design'

mean_sd(
data,
.by = NULL,
.drop = FALSE,

.drop_na_by = FALSE,
.conf.int = FALSE,
.conf.level = 0.95,
.options = NULL

)
Default S3 method:
mean_sd(

data,

.drop = FALSE,

.conf.int = FALSE,
.conf.level = 0.95,
.options = NULL

)
Arguments
data A vector, a data frame, data frame extension (e.g. a tibble), or a survey design
object.
<data-masking> Variable(s) for which to compute mean and standard devia-
tion.
.by <tidy-select> Optional additional variables to group by (in addition to those
eventually previously declared using dplyr: :group_by()).
.drop If TRUE, will remove empty groups from the output.
.drop_na_by If TRUE, will remove any NA values observed in the .by variables (or variables
defined with dplyr: :group_by()).
.conf.int If TRUE, will estimate confidence intervals.
.conf.level Confidence level for the returned confidence intervals.
.options Additional arguments passed to stats: :t.test() or srvyr::survey_mean().
Value

A tibble. Column "n" reports the number of valid observations and "missing” the number of
missing (NA) observations, unweighted for survey objects.

A tibble with one row per group.

median_iqr 19

Examples

using a vector
iris$Petal.Length |> mean_sd()

one variable

iris |> mean_sd(Petal.Length)

iris |> mean_sd(Petal.Length, .conf.int = TRUE)
iris |> mean_sd(Petal.Length, .by = Species)
mtcars |> mean_sd(mpg, .by = c(cyl, gear))

two variables
iris |> mean_sd(Petal.Length, Petal.Width)
iris |> mean_sd(dplyr::pick(dplyr::starts_with("Petal”)), .by = Species)

missing values

d <- iris

d$Petal.Length[1:10] <- NA

d |> mean_sd(Petal.Length)

d |> mean_sd(Petal.Length, .by = Species)

N

ds <- srvyr::as_survey(iris)
ds |> mean_sd(Petal.Length, .by = Species, .conf.int = TRUE)

median_iqr Compute median, quartiles and interquartile range by sub-groups

Description

median_iqr() lets you quickly compute median, quartiles and interquartile range by sub-groups.
Use .outliers = TRUE to also return whiskers and outliers (see ggplot2::stat_boxplot()).

Usage

median_iqr(data, ...)

S3 method for class 'data.frame'
median_iqr(

data,

.by = NULL,

.drop = FALSE,

.drop_na_by = FALSE,
.outliers = FALSE

20 median_iqr

S3 method for class 'survey.design'
median_iqr(

data,
.by = NULL,
.drop = FALSE,

.drop_na_by = FALSE,
.outliers = FALSE

)
Default S3 method:
median_iqr(data, ..., .drop = FALSE, .outliers = FALSE)
Arguments
data A vector, a data frame, data frame extension (e.g. a tibble), or a survey design
object.

<data-masking> Variable(s) for which to compute median, quartiles and in-
terquartile range.

.by <tidy-select> Optional additional variables to group by (in addition to those
eventually previously declared using dplyr: :group_by()).
.drop If TRUE, will remove empty groups from the output.
.drop_na_by If TRUE, will remove any NA values observed in the .by variables (or variables
defined with dplyr: :group_by()).
.outliers If TRUE, will estimate whiskers and outliers.
Value

A tibble. Column "n" reports the number of valid observations and "missing” the number of
missing (NA) observations, unweighted for survey objects.

A tibble with one row per group.

Examples

using a vector
iris$Petal.Length |> median_iqr()

one variable

iris |> median_iqr(Petal.Length)

iris |> median_iqgr(Petal.Length, .outliers = TRUE)
iris |> median_iqr(Petal.Length, .by = Species)
mtcars |> median_iqr(mpg, .by = c(cyl, gear))

two variables
iris |> median_iqgr(Petal.Length, Petal.Width)
iris |> median_iqgr(dplyr::pick(dplyr::starts_with("Petal”)), .by = Species)

observed_vs_theoretical 21

missing values

d <- iris

d$Petal.Length[1:10] <- NA

d |> median_iqr(Petal.Length)

d |> median_igr(Petal.Length, .by = Species)

SURVEY DATA === mmmm oo oo oo o o o e e

ds <- srvyr::as_survey(iris)
ds |> median_iqr(Petal.Length, .by = Species, .outliers = TRUE)

observed_vs_theoretical
Plot observed vs predicted distribution of a fitted model

Description

Plot observed vs predicted distribution of a fitted model

Usage

observed_vs_theoretical (model)

Arguments

model A statistical model.

Details

Has been tested with stats::1m() and stats::glm() models. It may work with other types of
models, but without any warranty.

Value

A ggplot2 plot.

Examples

a linear model
mod <- 1m(Sepal.Length ~ Sepal.Width + Species, data = iris)
mod |> observed_vs_theoretical()

a logistic regression

mod <- glm(
as.factor(Survived) ~ Class + Sex,
data = titanic,
family = binomial()

)

mod |> observed_vs_theoretical()

22 periods_to_long

periods_to_long Transform a data frame from period format to long format

Description

Transform a data frame from period format to long format

Usage
periods_to_long(
data,
start,
stop,
time_step = 1,
time_name = "time",
keep = FALSE
)
Arguments
data A data frame, or a data frame extension (e.g. a tibble).
start <tidy-select>
Time variable indicating the beginning of each row
stop <tidy-select>
Optional time variable indicating the end of each row. If not provided, it will be
derived from the dataset, considering that each row ends at the beginning of the
next one.
time_step (numeric) Desired value for the time variable.
time_name (character) Name of the time variable.
keep (logical) Should start and stop variable be kept in the results?
Value
A tibble.
See Also

long_to_periods()

Examples

d <- dplyr::tibble(
patient = c(1, 2, 3, 3),
begin = c(0, 2, 0, 3),
end = c(6, 4, 2, 8),
covar = c("no", "yes",

n

no" , "yes”)

plot_categorical 23

)
d

d
d

|> periods_to_long(start = begin, stop = end)
|> periods_to_long(start = begin, stop = end, time_step = 5)

plot_categorical Plot a categorical variable by sub-groups

Description

Plot one or several categorical variables by sub-groups. See proportion() for more details on the
way proportions and confidence intervals are computed. Return a bar plot (see examples).

Usage

plot_categorical(

data,

outcome,

na.rm = TRUE,

by = NULL,

drop_na_by = FALSE,
convert_continuous = TRUE,

L

show_overall = TRUE,

overall_label = "Overall”,
show_pvalues = TRUE,
pvalues_test = c("fisher”, "chisq"),

pvalues_labeller = scales::label_pvalue(add_p = TRUE),
pvalues_size = 3.5,

pvalues_y = ifelse(flip, 1.05, 1),

show_labels = TRUE,

labels_labeller = scales::label_percent(1),
labels_size = 3.5,

labels_color = "auto",
facet_labeller = ggplot2::label_wrap_gen(width = 50, multi_line = TRUE),
flip = FALSE,

minimal = FALSE,
return_data = FALSE

)

Arguments
data A data frame, data frame extension (e.g. a tibble), or a survey design object.
outcome <tidy-select>

List of categorical variables to be plotted.

na.rm Should NA values be removed from the outcome?

24 plot_categorical

by <tidy-select>
List of variables to group by (comparison is done separately for each variable).

drop_na_by Remove NA values in by variables?

convert_continuous
Should continuous by variables (with 5 unique values or more) be converted to
quartiles (using cut_quartiles())?

Additional arguments passed to ggplot2: :geom_bar ().
show_overall Display "Overall" column?
overall_label Label for the overall column.
show_pvalues Display p-values in the top-left corner?

pvalues_test Test to compute p-values for data frames: "fisher” for stats::fisher.test()
(with simulate.p.value = TRUE) or "chisq” for stats: :chisq.test(). Has
no effect on survey objects for those survey: :svychisq() is used.

pvalues_labeller
Labeller function for p-values.

pvalues_size Text size for p-values.
pvalues_y Y position of p-values.

show_labels Display proportion labels?
labels_labeller
Labeller function for labels.

labels_size Size of labels.
labels_color Color of labels.

facet_labeller Labeller function for strip labels.

flip Flip x and y axis?
minimal Should a minimal theme be applied? (no y-axis, no grid)
return_data Return computed data instead of the plot?
Examples
titanic |>
plot_categorical(
Class,
by = c(Age, Sex)
)
titanic |[>
plot_categorical(
Class,

by = c(Age, Sex),
show_overall = FALSE,
flip = TRUE

)

titanic |>

plot_continuous 25

plot_categorical(
Class,
by = c(Age, Sex),
flip = TRUE,
minimal = TRUE

gtsummary::trial |>

plot_categorical(grade, by = c(age, stage, trt))
gtsummary: :trial |>

plot_categorical(grade, by = c(age, stage, trt), drop_na_by = TRUE)
gtsummary: :trial |>

plot_categorical(c(grade, stage), by = c(trt, response))

plot_continuous Plot a continuous variable by sub-groups

Description

Plot one or several continuous variables by sub-groups. See median_iqr() for more details on the
way statistics are computed. Return a box plot (see examples).

Usage

plot_continuous(
data,
outcome,
by = NULL,
drop_na_by = FALSE,
convert_continuous = TRUE,
show_overall = TRUE,
overall_label = "Overall”,
show_pvalues = TRUE,
pvalues_labeller = scales::label_pvalue(add_p = TRUE),
pvalues_size = 3.5,
facet_labeller = ggplot2::label_wrap_gen(width = 50, multi_line = TRUE),
flip = FALSE,
minimal = FALSE,
free_scale = FALSE,
return_data = FALSE

26 plot_continuous

Arguments
data A data frame, data frame extension (e.g. a tibble), or a survey design object.
outcome <tidy-select>
List of continuous variables to be plotted.
by <tidy-select>
List of variables to group by (comparison is done separately for each variable).
drop_na_by Remove NA values in by variables?

convert_continuous

Should continuous by variables (with 5 unique values or more) be converted to
quartiles (using cut_quartiles())?

Additional arguments passed to ggplot2: : geom_boxplot().
show_overall Display "Overall" column?
overall_label Label for the overall column.

show_pvalues Display p-values in the top-left corner? p-values are computed with stats: :kruskal. test()
for data frames, and with survey: :svyranktest() for survey objects.

pvalues_labeller
Labeller function for p-values.

pvalues_size Text size for p-values.

facet_labeller Labeller function for strip labels.

flip Flip x and y axis?
minimal Should a minimal theme be applied? (no y-axis, no grid)
free_scale Allow y axis to vary between conditions?
return_data Return computed data instead of the plot?
Examples
iris |>

plot_continuous(Petal.Length, by = Species)

iris |>
plot_continuous(
dplyr::starts_with("Petal”),
by = Species,
free_scale = TRUE,
fill = "lightblue”,
outlier.color = "red”

mtcars |>
plot_continuous(
mpg,
by = c(cyl, gear),
flip = TRUE,

plot_inertia_from_tree 27

mapping = ggplot2::aes(fill = by)

)
works with continuous by variables
mtcars |>
plot_continuous(
mpg,
by = c(disp, drat),
flip = TRUE,
minimal = TRUE
)

works with survey object
iris |>
srvyr::as_survey() [>
plot_continuous(
Petal.Length,
by = c(Species, Petal.Width),
flip = TRUE
)

plot_inertia_from_tree
Plot inertia, absolute loss and relative loss from a classification tree

Description

Plot inertia, absolute loss and relative loss from a classification tree

Usage

plot_inertia_from_tree(tree, k_max = 15)

get_inertia_from_tree(tree, k_max = 15)

Arguments
tree A dendrogram, i.e. an stats::hclust object, an FactoMineR::HCPC object or an
object that can be converted to an stats::hclust object with stats: :as.hclust().
k_max Maximum number of clusters to return / plot.
Value

A ggplot2 plot or a tibble.

28

Examples

hc <- hclust(dist(USArrests))
get_inertia_from_tree(hc)
plot_inertia_from_tree(hc)

plot_means

plot_means Plot means by sub-groups

Description

Plot one or several means by sub-groups. See mean_sd() for more details on the way means and
confidence intervals are computed. By default, return a point plot, but other geometries could be
used (see examples).

Usage

plot_means(

data,

outcome,

by = NULL,

drop_na_by = FALSE,
convert_continuous = TRUE,
geom = "point”,
show_overall = TRUE,
overall_label = "Overall”,
show_ci = TRUE,

conf_level = 0.95,
ci_color = "black”,
show_pvalues = TRUE,

pvalues_labeller = scales::label_pvalue(add_p = TRUE),

pvalues_size = 3.5,

show_labels = TRUE,

label_y = NULL,

labels_labeller = scales::label_number(0.1),
labels_size = 3.5,

labels_color = "black”,

show_overall_line = FALSE,

overall_line_type = "dashed”,
overall_line_color = "black”,
overall_line_width = 0.5,

facet_labeller = ggplot2::label_wrap_gen(width = 50, multi_line

flip = FALSE,
minimal = FALSE,
free_scale = FALSE,
return_data = FALSE

TRUE),

plot_means 29

Arguments
data A data frame, data frame extension (e.g. a tibble), or a survey design object.
outcome <tidy-select>
List of continuous variables to be plotted.
by <tidy-select>
List of variables to group by (comparison is done separately for each variable).
drop_na_by Remove NA values in by variables?

convert_continuous
Should continuous by variables (with 5 unique values or more) be converted to
quartiles (using cut_quartiles())?

geom Geometry to use for plotting means ("point” by default).
Additional arguments passed to the geom defined by geom.
show_overall Display "Overall" column?

overall_label Label for the overall column.

show_ci Display confidence intervals?
conf_level Confidence level for the confidence intervals.
ci_color Color of the error bars representing confidence intervals.

show_pvalues Display p-values in the top-left corner? p-values are computed with stats: :oneway.test()
for data frames, and with survey: :svyttest() (2 groups) or svyoneway() (3
groups or more) for survey objects.

pvalues_labeller
Labeller function for p-values.

pvalues_size Text size for p-values.
show_labels Display mean labels?

label_y Y position of labels. If NULL, will be auto-determined.
labels_labeller
Labeller function for labels.
labels_size Size of labels.
labels_color Color of labels.
show_overall_line

Add an overall line?
overall_line_type

Line type of the overall line.
overall_line_color

Color of the overall line.
overall_line_width

Line width of the overall line.

facet_labeller Labeller function for strip labels.

flip Flip x and y axis?
minimal Should a minimal theme be applied? (no y-axis, no grid)
free_scale Allow y axis to vary between conditions?

return_data Return computed data instead of the plot?

30 plot_multiple_answers

Examples
iris |>
plot_means(Petal.Length, by = Species)

iris |>
plot_means(
dplyr::starts_with("Petal”),
by = Species,
geom = "bar",
fill = "lightblue”,
show_overall_line = TRUE

)
mtcars |>
plot_means(
mpg,
by = c(cyl, gear),
size = 3,
colour = "plum”,
flip = TRUE
)
works with continuous by variables
mtcars |>
plot_means(
mpg,
by = c(disp, drat),
fill = "plum”,
geom = "bar",
flip = TRUE,
minimal = TRUE
)

works with survey object
iris |>
srvyr::as_survey() |>
plot_means(
Petal.Length,
by = c(Species, Petal.Width),

label_y = -1,

size = 3,

mapping = ggplot2::aes(colour = by),
flip = TRUE

plot_multiple_answers Plot a multiple answers question

plot_multiple_answers 31

Description

Considering a multiple answers question coded as several binary variables (one per answer), plot
the proportion of positive answers. If combine_answers = FALSE, plot the proportion of positive
answers of each item, separately. If combine_answers = FALSE, combine the different answers
(see combine_answers()) and plot the proportion of each combination (ggupset package required
when flip = FALSE). See proportion() for more details on the way proportions and confidence
intervals are computed. By default, return a bar plot, but other geometries could be used (see
examples). If defined, use variable labels (see examples).

Usage
plot_multiple_answers(
data,
answers = dplyr::everything(),
value = NULL,
by = NULL,

combine_answers = FALSE,

combine_sep = " | ",

missing_label = " missing”,

none_label = "none”,

drop_na = FALSE,

drop_na_by = FALSE,

sort = c("none”, "ascending”, "descending”, "degrees"),
geom = "bar”,

show_ci = TRUE,

conf_level = 0.95,

ci_color = "black”,

show_labels = TRUE,

labels_labeller = scales::label_percent(1),
labels_size = 3.5,

labels_color = "black”,
flip = FALSE,
return_data = FALSE
)
plot_multiple_answers_dodge(
data,
answers = dplyr::everything(),
value = NULL,
by,

combine_answers = FALSE,
combine_sep = " | ",

missing_label = " missing”,

none_label = "none”,

drop_na = FALSE,

drop_na_by = FALSE,

sort = c("none”, "ascending”, "descending”, "degrees"),

32 plot_multiple_answers

geom = c("bar”, "point"),
width = 0.75,

show_ci = TRUE,

conf_level = 0.95,

ci_color = "black”,

show_labels = TRUE,

labels_labeller = scales::label_percent(1),
labels_size = 3.5,

labels_color = "black”,

flip = FALSE
)
Arguments

data A data frame, data frame extension (e.g. a tibble), or a survey design object.

answers <tidy-select>
List of variables identifying the different answers of the question.

value Value indicating a positive answer. By default, will use the maximum observed
value and will display a message.

by <tidy-select>

Optional list of variables to compare (using facets).
combine_answers
Should answers be combined? (see examples)

combine_sep Character string to separate combined answers.

missing_label When combining answers and drop_na = FALSE, label for missing values.

none_label When combining answers and flip = TRUE, label when no item is selected.

drop_na Should any observation with a least one NA value be dropped?

drop_na_by If TRUE, will remove any NA values observed in the by variables

sort Should answers be sorted according to their proportion? They could also be
sorted by degrees (number of elements) when combining answers.

geom Geometry to use for plotting proportions ("bar" by default).
Additional arguments passed to the geom defined by geom.

show_ci Display confidence intervals?

conf_level Confidence level for the confidence intervals.

ci_color Color of the error bars representing confidence intervals.

show_labels Display proportion labels?

labels_labeller
Labeller function for proportion labels.

labels_size Size of proportion labels.

labels_color Color of proportion labels.

flip Flip x and y axis?

return_data Return computed data instead of the plot?
width Dodging width.

plot_multiple_answers 33

Note

If drop_na = TRUE, any observation with at least one NA value for one item will be dropped. If
drop_na = FALSE and combine_answers = FALSE, NA values for a specific answer are excluded the
denominator when computing proportions. Therefore, all proportions may be computed on different
population sizes. If drop_na = FALSE and combine_answers = TRUE, any observation with at least
one NA value will be labeled with missing_label.

Examples

d <-
dplyr::tibble(
gla = sample(c("y", "n"), size = 200, replace = TRUE),
qlb = sample(c("y", "n", "n", NA), size = 200, replace = TRUE),
qlc = sample(c("y", "y", "n"), size = 200, replace = TRUE),
qld = sample(”"n", size = 200, replace = TRUE)
)

d |> plot_multiple_answers(qla:qlc)

d |>
labelled: :set_variable_labels(
qla = "apple”,
qlb = "banana”,
qlc = "chocolate”,
qld = "Dijon mustard”
) 1>
plot_multiple_answers(
value = "y",
drop_na = TRUE,
sort = "desc”,
fill = "lightblue”,
flip = TRUE
)
d |>

plot_multiple_answers(
combine_answers = TRUE,
value = "y",
fill = "#DDCC77",
drop_na = TRUE

)

d |>

plot_multiple_answers(
combine_answers = TRUE,
value = "y",
flip = TRUE,
mapping = ggplot2::aes(fill = prop),
show. legend = FALSE

) +

ggplot2::scale_fill_distiller(palette = "Spectral”)

34 plot_proportions

d$group <- sample(c("group A", "group B"), size = 200, replace = TRUE)
d |>
plot_multiple_answers(
answers = qla:qld,
by = group,
combine_answers = TRUE,
sort = "degrees”,
value = "y",
fill = "grey80”
)

d |>
plot_multiple_answers_dodge(qla:qld, by = group)
d |>
plot_multiple_answers_dodge(qla:qld, by = group, flip = TRUE)
d |>
plot_multiple_answers_dodge(qla:qld, by = group, combine_answers = TRUE)

plot_proportions Plot proportions by sub-groups

Description

Plot one or several proportions (defined by logical conditions) by sub-groups. See proportion()
for more details on the way proportions and confidence intervals are computed. By default, return
a bar plot, but other geometries could be used (see examples). stratified_by() is an helper
function facilitating a stratified analyses (i.e. proportions by groups stratified according to a third
variable, see examples). dummy_proportions() is an helper to easily convert a categorical variable
into dummy variables and therefore showing the proportion of each level of the original variable
(see examples).

Usage

plot_proportions(
data,
condition,
by = NULL,
drop_na_by = FALSE,
convert_continuous = TRUE,
geom = "bar”,
show_overall = TRUE,
overall_label = "Overall”,
show_ci = TRUE,

plot_proportions 35

conf_level = 0.95,

ci_color = "black”,
show_pvalues = TRUE,
pvalues_test = c("fisher”, "chisq"),

pvalues_labeller = scales::label_pvalue(add_p = TRUE),
pvalues_size = 3.5,

show_labels = TRUE,

label_y = NULL,

labels_labeller = scales::label_percent(1),
labels_size = 3.5,

labels_color = "black”,

show_overall_line = FALSE,

overall_line_type = "dashed”,

overall_line_color = "black”,

overall_line_width = 0.5,

facet_labeller = ggplot2::label_wrap_gen(width = 50, multi_line = TRUE),
flip = FALSE,

minimal = FALSE,

free_scale = FALSE,

return_data = FALSE

)
stratified_by(condition, strata)
dummy_proportions(variable)
Arguments
data A data frame, data frame extension (e.g. a tibble), or a survey design object.
condition <data-masking>
A condition defining a proportion, or a dplyr::tibble() defining several pro-
portions (see examples).
by <tidy-select>
List of variables to group by (comparison is done separately for each variable).
drop_na_by Remove NA values in by variables?
convert_continuous

ge

sh
ov
sh
co

ci

Should continuous by variables (with 5 unique values or more) be converted to
quartiles (using cut_quartiles())?

om Geometry to use for plotting proportions ("bar” by default).
Additional arguments passed to the geom defined by geom.

ow_overall Display "Overall" column?

erall_label Label for the overall column.

ow_ci Display confidence intervals?

nf_level Confidence level for the confidence intervals.

_color Color of the error bars representing confidence intervals.

36 plot_proportions

show_pvalues Display p-values in the top-left corner?

pvalues_test Testtocompute p-values for data frames: "fisher"” for stats: :fisher.test()
(with simulate.p.value = TRUE) or "chisq” for stats::chisq.test(). Has
no effect on survey objects for those survey: :svychisq() is used.
pvalues_labeller
Labeller function for p-values.

pvalues_size Text size for p-values.
show_labels Display proportion labels?

label_y Y position of labels. If NULL, will be auto-determined.
labels_labeller
Labeller function for labels.

labels_size Size of labels.

labels_color Color of labels.
show_overall_line

Add an overall line?
overall_line_type

Line type of the overall line.
overall_line_color

Color of the overall line.
overall_line_width

Line width of the overall line.

facet_labeller Labeller function for strip labels.

flip Flip x and y axis?
minimal Should a minimal theme be applied? (no y-axis, no grid)
free_scale Allow y axis to vary between conditions?
return_data Return computed data instead of the plot?
strata Stratification variable
variable Variable to be converted into dummy variables.
Examples
titanic |>
plot_proportions(
Survived == "Yes",
overall_label = "All",
labels_color = "white”
)

titanic |>
plot_proportions(
Survived == "Yes",
by = c(Class, Sex),
fill = "lightblue”

plot_proportions

)

titanic |>
plot_proportions(
Survived == "Yes",
by = c(Class, Sex),
fill = "lightblue”,
flip = TRUE
)

titanic |>
plot_proportions(
Survived == "Yes",
by = c(Class, Sex),
fill = "lightblue”,
minimal = TRUE

titanic |>

plot_proportions(
Survived == "Yes",
by = c(Class, Sex),
geom = "point”,
color = "red”,
size = 3,
show_labels = FALSE

)

titanic |>
plot_proportions(
Survived == "Yes",
by = c(Class, Sex),
geom = "area",
fill = "lightgreen”,
show_overall = FALSE
)

titanic |>
plot_proportions(

Survived == "Yes",
by = c(Class, Sex),
geom = "line",
color = "purple”,
ci_color = "darkblue”,
show_overall = FALSE

titanic |>
plot_proportions(
Survived == "Yes",
by = -Survived,
mapping = ggplot2::aes(fill = by),
color = "black”,

38

show.legend = FALSE,
show_overall_line = TRUE,
show_pvalues = FALSE

)

defining several proportions

titanic |>
plot_proportions(
dplyr::tibble(
Survived = Survived == "Yes",
Male = Sex == "Male"
),
by = c(Class),
mapping = ggplot2::aes(fill = condition)
)

titanic |>
plot_proportions(
dplyr::tibble(
Survived = Survived == "Yes",
Male = Sex == "Male"
),
by = c(Class),
mapping = ggplot2::aes(fill = condition),
free_scale = TRUE
)

iris |>
plot_proportions(
dplyr::tibble(
"Long sepal” = Sepal.Length > 6,
"Short petal” = Petal.Width < 1

),
by = Species,
fill = "palegreen”
)
iris |>

plot_proportions(

dplyr::tibble(
"Long sepal” = Sepal.Length > 6,
"Short petal” = Petal.Width < 1

)!

by = Species,

fill = "palegreen”,
flip = TRUE

)

works with continuous by variables
iris |>
labelled: :set_variable_labels(
Sepal.Length = "Length of the sepal”

plot_proportions

plot_trajectories 39

) 1>
plot_proportions(
Species == "versicolor”,
by = dplyr::contains("”leng"),
fill = "plum”,
colour = "plum4”

)

works with survey object
titanic |>
srvyr::as_survey() |>
plot_proportions(
Survived == "Yes",
by = c(Class, Sex),
fill = "darksalmon”,
color = "black"”,
show_overall_line = TRUE,
labels_labeller = scales::label_percent(.1)

stratified analysis

titanic |>
plot_proportions(
(Survived == "Yes") |> stratified_by(Sex),
by = Class,
mapping = ggplot2::aes(fill = condition)
) +

ggplot2::theme(legend.position = "bottom”) +
ggplot2::1labs(fill = NULL)

Convert Class into dummy variables
titanic |>
plot_proportions(
dummy_proportions(Class),

by = Sex,
mapping = ggplot2::aes(fill = level)
)
plot_trajectories Plot trajectories
Description

Create a trajectory index plot (similar to sequence index plot) from a data frame in long or period
format.

Usage

plot_trajectories(

40

data,

id,

time,
fill,

by = NULL,

plot_trajectories

sort_by = NULL,
nudge_x = NULL,

hide_y_labels

= NULL,

facet_labeller = ggplot2::label_wrap_gen(width = 50, multi_line = TRUE),

)

plot_periods(
data,
id,
start,
stop,
fill,
by = NULL,

sort_by = NULL,

nudge_x = NULL,

hide_y_labels = NULL,

facet_labeller = ggplot2::label_wrap_gen(width = 50, multi_line = TRUE),

Arguments

data
id

time

fill

by

sort_by

nudge_x
hide_y_labels
facet_labeller

start, stop

A data frame, a data frame extension (e.g. a tibble), or a survey design object.

<tidy-select>
Column containing individual ids.

<tidy-select>
Time variable.

<tidy-select>
Variable mapped to fill aesthetic.

<tidy-select>
Optional variables to group by.

<tidy-select>
Optional variables to sort trajectories.

Optional amount of horizontal distance to move.

Hide y labels? If NULL, hide them when more than 20 trajectories are displayed.
Labeller function for strip labels.

Additional arguments passed to ggplot2: :geom_tile()

<tidy-select> Start and stop variables of the periods.

proportion

Note

41

plot_trajectories() assumes that data are stored in a long format (i.e. one row per unit of
time). You can use tidyr::pivot_longer() or periods_to_long() to transform your data in
such format. By default, tiles are centered on the value of time. You can adjust horizontal position
with nudge_x. By default, each row is assumed to represent one unit of time and represented with

a width of 1. You can adjust tiles” width with width.

plot_periods() is adapted for period format with a start and a stop variable. You can use long_to_periods()
to transform your data in such format. Beginning and ending of each tile is determined by start

and stop arguments.

For survey design objects, weights are not taken into account. Each individual trajectory as the

same height.

Examples

d <- dplyr::tibble(

id=c(1, 1, 1,1, 2, 2, 2, 3, 3, 3, 3, 3),

time = c(0:3, 0:2, 0:4),

status = c(”a”, "a”, "b", "b", "b", "b", "a", "b",
group = C("f!l’ ”f”’ H.F"} Hf’”, ”.F", "f!l’ ”f”’ Hm"}

)

d |> plot_trajectories(id = id, time = time, fill =

d |> plot_trajectories(id = id, time = time, fill =

d |> plot_trajectories(id = id, time = time, fill =

d2 <-d |>
dplyr::mutate(end = time + 1) |>

npn o mpn ompn o nan
b ’ b ’ b ’ a) ’
nenm o onn

m", m", nmu’ nmu)

status, colour = "black")
status, nudge_x = .5)
status, by = group)

long_to_periods(id = id, start = time, stop = end, by = status)

d2

d2 |> plot_periods(
id = id,
start = time,
stop = end,
fill = status,
colour = "black”,
height = 0.8

proportion Compute proportions

Description

proportion() lets you quickly count observations (like dplyr::count()) and compute relative
proportions. Proportions are computed separately by group (see examples).

42

Usage

proportion(data, ...)

S3 method for class

proportion(

)

S3 method for class 'survey.design'

data,

.by = NULL,
.na.rm = FALSE,
.weight = NULL,

.scale = 100,
.sort = FALSE,
.drop = FALSE,

.drop_na_by = FALSE,

.conf.int = FALSE,
.conf.level = 0.95,

'data.frame'

.options = list(correct =

proportion(

)

data,

.by = NULL,
.na.rm = FALSE,
.scale = 100,
.sort = FALSE,

.drop_na_by = FALSE,

.conf.int = FALSE,
.conf.level = 0.95,
.options = NULL

Default S3 method:
proportion(

data,

’

.na.rm = FALSE,

.scale = 100,
.sort = FALSE,
.drop = FALSE,

.conf.int = FALSE,
.conf.level = 0.95,

.options = list(correct =

TRUE)

TRUE)

proportion

proportion 43

Arguments

data A vector, a data frame, data frame extension (e.g. a tibble), or a survey design
object.
<data-masking>
Variable(s) for those computing proportions.

.by <tidy-select>
Optional additional variables to group by (in addition to those eventually previ-
ously declared using dplyr: :group_by()).

.na.rm Should NA values be removed (from variables declared in . . .)?

.weight <data-masking>
Frequency weights. Can be NULL or a variable.

.scale A scaling factor applied to proportion. Use 1 for keeping proportions unchanged.

.sort If TRUE, will show the highest proportions at the top.

.drop If TRUE, will remove empty groups from the output.

.drop_na_by If TRUE, will remove any NA values observed in the .by variables (or variables
defined with dplyr: :group_by()).

.conf.int If TRUE, will estimate confidence intervals.

.conf.level Confidence level for the returned confidence intervals.

.options Additional arguments passed to stats: :prop.test() orsrvyr::survey_prop().

Value
A tibble.

A tibble with one row per group.

Examples

using a vector
titanic$Class |> proportion()

univariable table

titanic |> proportion(Class)

titanic |> proportion(Class, .sort = TRUE)

titanic |> proportion(Class, .conf.int = TRUE)

titanic |> proportion(Class, .conf.int = TRUE, .scale = 1)

bivariable table
titanic |> proportion(Class, Survived) # proportions of the total
titanic |> proportion(Survived, .by = Class) # row proportions
titanic |> # equivalent syntax

dplyr::group_by(Class) |>

proportion(Survived)

combining 3 variables or more
titanic |> proportion(Class, Sex, Survived)
titanic |> proportion(Sex, Survived, .by = Class)

44 round_preserve_sum

titanic |> proportion(Survived, .by = c(Class, Sex))

missing values

dna <- titanic

dna$Survived[c(1:20, 500:530)] <- NA

dna |> proportion(Survived)

dna |> proportion(Survived, .na.rm = TRUE)

SURVEY DATA —mm oo oo oo oo oo oo oo
ds <- srvyr::as_survey(titanic)

univariable table

ds |> proportion(Class)

ds |> proportion(Class, .sort = TRUE)

ds |> proportion(Class, .conf.int = TRUE)

ds |> proportion(Class, .conf.int = TRUE, .scale = 1)

bivariable table

ds |> proportion(Class, Survived) # proportions of the total
ds |> proportion(Survived, .by = Class) # row proportions

ds |> dplyr::group_by(Class) |> proportion(Survived)

combining 3 variables or more

ds |> proportion(Class, Sex, Survived)

ds |> proportion(Sex, Survived, .by = Class)

ds |> proportion(Survived, .by = c(Class, Sex))

missing values

dsna <- srvyr::as_survey(dna)

dsna |> proportion(Survived)

dsna |> proportion(Survived, .na.rm = TRUE)

round_preserve_sum Round values while preserve their rounded sum in R

Description
Sometimes, the sum of rounded numbers (e.g., using base: :round()) is not the same as their
rounded sum.

Usage

round_preserve_sum(x, digits = 0)

Arguments

X Numerical vector to sum.

digits Number of decimals for rounding.

safe_pal 45

Details
This solution applies the following algorithm
* Round down to the specified number of decimal places

* Order numbers by their remainder values

¢ Increment the specified decimal place of values with k largest remainders, where k is the
number of values that must be incremented to preserve their rounded sum
Value

A numerical vector of same length as x.

Source

https://biostatmatt.com/archives/2902

Examples

sum(c(0.333, 0.333, 0.334))

round(c(@.333, 0.333, 0.334), 2)
sum(round(c(@.333, ©.333, 0.334), 2))
round_preserve_sum(c(@.333, 0.333, 0.334), 2)
sum(round_preserve_sum(c(@.333, 0.333, 0.334), 2))

safe_pal A safe discrete colour palette

Description

Provides a safe colour palette for categorical variable. It is based on Paul Tol’s colour schemes
designed to be distinct for all people, including colour-blind readers, distinct from black and white,
distinct on screen and paper, and matching well together. It is primarily based on the bright colour
scheme implemented in khroma: :scale_fill_bright(). This colour scheme include 7 colours,
including a grey reserved for NA values. Therefore, scale_fill_safe() use the bright scheme only
if 6 or less colours are needed (keeping the grey for any NA value). If 7 to 9 colours are needed, the
muted scheme (cf. khroma: :scale_fill_muted()) is used instead. Finally, if 10 or more colours
are requested, the rainbow scheme is used (cf. khroma: :scale_fill_discreterainbow()). This
is a sequential colour scheme. Here, colour are randomly reordered to provide more contrasts
between modalities.

Usage

safe_pal(reverse = FALSE)

scale_fill_safe(
name = ggplot2::waiver(),

L

https://biostatmatt.com/archives/2902

46
reverse = FALSE,
aesthetics = "fill",
na.value = "#BBBBBB"
)

scale_colour_safe(
name = ggplot2::waiver(),
reverse = FALSE,
aesthetics = "colour”,
na.value = "#BBBBBB"

scale_color_safe(
name = ggplot2::waiver(),

L

reverse = FALSE,

safe_pal

aesthetics = "colour”,
na.value = "#BBBBBB"
)
Arguments
reverse A logical scalar: should the resulting vector of colours be reversed?
name The name of the scale. Used as the axis or legend title. If ggplot2: :waiver(),
the default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.
Other arguments passed on to discrete_scale() to control name, limits, breaks,
labels and so forth.
aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics
=c("colour”, "fill").
na.value Colour to be used for NA values (if any).
Value

A palette function.

Examples

scales:
scales:
scales:
scales:

:show_col (safe_pal()(6))
:show_col (safe_pal(reverse = TRUE) (6))
:show_col(safe_pal()(9))
:show_col(safe_pal()(16))

ggplot2::ggplot(titanic) +
ggplot2::aes(x = Age, fill = Class) +

step_with_na 47

ggplot2::geom_bar() +
scale_fill_safe()

ggplot2::ggplot(iris) +
ggplot2::aes(x = Petal.Length, y = Petal.Width, colour = Species) +
ggplot2::geom_point(size = 3) +
scale_colour_safe()

step_with_na Apply step(), taking into account missing values

Description

When your data contains missing values, concerned observations are removed from a model. How-
ever, then at a later stage, you try to apply a descending stepwise approach to reduce your model by
minimization of AIC, you may encounter an error because the number of rows has changed.

Usage

step_with_na(model, ...)

Default S3 method:
step_with_na(model, ..., full_data = eval(model$call$data))

S3 method for class 'svyglm'

step_with_na(model, ..., design)
Arguments
model A model object.
e Additional parameters passed to stats: :step().
full_data Full data frame used for the model, including missing data.
design Survey design previously passed to survey: :svyglm().
Details

step_with_na() applies the following strategy:

» recomputes the models using only complete cases;

* applies stats::step();

* recomputes the reduced model using the full original dataset.
step_with_na() has been tested with stats: :1Im(), stats: :gIm(), nnet: :multinom(), survey: :svyglm()
and survival: :coxph(). It may be working with other types of models, but with no warranty.
In some cases, it may be necessary to provide the full dataset initially used to estimate the model.

step_with_na() may not work inside other functions. In that case, you may try to pass full_data
to the function.

48 svyoneway

Value

The stepwise-selected model.

Examples

set.seed(42)
d <- titanic [>
dplyr: :mutate(
Group = sample(
c("a", "b", NA),
dplyr::n(),
replace = TRUE
)
)
mod <- glm(as.factor(Survived) ~ ., data = d, family = binomial())
step(mod) should produce an error
mod2 <- step_with_na(mod, full_data = d)
mod2

WITH SURVEY === mmmmmmmmmmmmmmmmmm oo

library(survey)
ds <-d [|>
dplyr::mutate(Survived = as.factor(Survived)) |>
srvyr::as_survey()
mods <- survey::svyglm(
Survived ~ Class + Group + Sex,
design = ds,
family = quasibinomial()

)
mod2s <- step_with_na(mods, design = ds)
mod2s
svyoneway Test for Equal Means for survey design object
Description

This function allows to compare several means using survey: :svyglm(). More precisely, this
is a wrapper for survey: :regTermTest(m, "group”) where m <- survey: :svyglm(x ~ group,
design).

Usage

svyoneway(formula, design, ...)

titanic 49
Arguments
formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the
corresponding groups
design a survey design object
additional parameters passed to survey: :regTermTest()
Value

an object of class "htest”

See Also

stats: :oneway. test() for classic data frames

Examples

svyoneway (
Petal.Length ~ Species,
design = srvyr::as_survey(iris)

)

titanic Titanic data set in long format

Description

This titanic datasetis equivalent to datasets::Titanic |> dplyr

Usage

titanic

Format

::as_tibble() |> tidyr: :uncount(n).

An object of class tbl_df (inherits from tbl, data. frame) with 2201 rows and 4 columns.

See Also

datasets::Titanic

50 view_dictionary

unrowwise Remove row-wise grouping

Description

Remove row-wise grouping created with dplyr: :rowwise() while preserving any other grouping
declared with dplyr: :group_by().

Usage

unrowwise(data)

Arguments

data A tibble.

Value

A tibble.

Examples

titanic |> dplyr::rowwise()
titanic |> dplyr::rowwise() |> unrowwise()

titanic |> dplyr::group_by(Sex, Class) |> dplyr::rowwise()
titanic |> dplyr::group_by(Sex, Class) |> dplyr::rowwise() |> unrowwise()

view_dictionary Display the variable dictionary of a data frame in the RStudio viewer

Description

Generates an interactive variable dictionary based on 1abelled: : look_for (). Accepts data frames,
tibbles, and also survey objects.

Usage

view_dictionary(data = NULL, details = c("basic"”, "none"”, "full"))
view_detailed_dictionary(data = NULL)

to_DT(
X,
caption = NULL,
column_labels = 1list(pos = "#", variable = "Variable"”, col_type = "Type”, label =

view_dictionary 51

"Variable label”, values = "Values”, missing = "Missing values”, unique_values =
"Unique values"”, na_values = "User-defined missings (values)"”, na_range =
"User-defined missings (range)")

)
Arguments

data a data frame, a tibble or a survey object (if NULL, will use the text you currently
select in RStudio, useful if the function is called through the corresponding
addin)

details add details about each variable (see labelled: :1look_for())

X a tibble returned by look_for ()

caption an optional caption for the table

column_labels Optional column labels

Details

view_dictionary() calls labelled: : look_for () and applies to_DT() to the result to produce an
HTML version of the variable dictionary. If you are using RStudio, it will be displayed by default
in the Viewer pane, allowing to have the dictionary close to your code.

view_detailed_dictionary() is similarto view_dictionary() with the option details = "full"”.

These two functions are also available through dedicated addins in RStudio. To use them, select
the name of a data frame, then choose View variable dictionary in the Addins menu.

Note

to_DT() is an utility to convert the result of labelled: :look_for() into a DT: :datatable().

Examples

iris |> view_dictionary()

iris |> labelled::look_for(details = TRUE) [|> to_DT()

Index

+ datasets
titanic, 49

* hplot
plot_categorical, 23
plot_continuous, 25
plot_means, 28
plot_multiple_answers, 30
plot_proportions, 34
plot_trajectories, 39
safe_pal, 45

* htest
gtsummary_test, 6
svyoneway, 48

x logic
is_different, 12

* manip
combine_answers, 3
cut_quartiles, 4
long_to_periods, 14
long_to_seq, 15
periods_to_long, 22
unrowwise, 50

+ models
add_interactions_by_step, 2
grouped_tbl_pivot_wider, 5
observed_vs_theoretical, 21
step_with_na, 47

* tree
plot_inertia_from_tree, 27

* univar
mean_sd, 17
median_iqr, 19
proportion, 41
round_preserve_sum, 44

x utilities
gtsummary_themes, 7
gtsummary_utilities, 10
install_dependencies, 11
leading_zeros, 13

52

view_dictionary, 50

add_interactions_by_step, 2
as.integer(), 15

base::cut(), 4

base::formatC(), 13

base: :round(), 44

base: :sprintf(), I3

bold_variable_group_headers
(gtsummary_utilities), 10

combine_answers, 3
combine_answers(), 31/
cumdifferent (is_different), 12
cut_quartiles, 4

datasets::Titanic, 49

dplyr::count(), 41
dplyr::group_by(), 18, 20, 43, 50
dplyr::rowwise(), 50
dplyr::tibble(), 35

DT::datatable(), 51

dummy_proportions (plot_proportions), 34

FactoMineR: :HCPC, 27
fisher.simulate.p (gtsummary_test), 6

get_inertia_from_tree
(plot_inertia_from_tree), 27

ggplot2: :geom_bar(), 24

ggplot2: :geom_boxplot(), 26

ggplot2::geom_tile(), 40

ggplot2: :stat_boxplot(), 19

ggplot2: :waiver(), 46

ggupset, 31/

grouped_tbl_pivot_wider, 5

gtsummary, 10

gtsummary::add_ci.tbl_summary(), 9

gtsummary::add_ci.tbl_svysummary(), 9

gtsummary::add_global_p(), 5

INDEX

gtsummary: :add_p.tbl_summary(), 9
gtsummary: :add_p.tbl_svysummary(), 9
gtsummary::as_gt(), 5

gtsummary: :bold_labels(), 5,9
gtsummary: :modify_bold(), 10
gtsummary: :modify_indent(), 10
gtsummary: :modify_italic(), 10
gtsummary::tbl_regression(), 5
gtsummary::tbl_stack(), 5
gtsummary: :tbl_summary(), 8
gtsummary: : tbl_svysummary(), 9
gtsummary: :tests, 7

gtsummary: : theme_gtsummary_mean_sd(),

9
gtsummary_test, 6
gtsummary_themes, 7
gtsummary_utilities, 10

indent_labels (gtsummary_utilities), 10
indent_levels (gtsummary_utilities), 10

install_dependencies, 11

is_different, 12

is_equal (is_different), 12

italicize_variable_group_headers
(gtsummary_utilities), 10

khroma: :scale_fill_bright(), 45

khroma: :scale_fill_discreterainbow(),

45
khroma: :scale_fill_muted(), 45

labelled: :look_for(), 50, 51
leading_zeros, 13
long_to_periods, 14
long_to_periods(), 22, 41
long_to_seq, 15

mean_sd, 17

mean_sd(), 28

median_iqr, 19

median_iqr(), 25

multinom_add_global_p_pivot_wider
(grouped_tbl_pivot_wider), 5

nnet::multinom(), 47
num_cycle (is_different), 12

observed_vs_theoretical, 21

pak::pkg_install(), 11

periods_to_long, 22
periods_to_long(), 14, 41
plot_categorical, 23
plot_continuous, 25
plot_inertia_from_tree, 27
plot_means, 28
plot_multiple_answers, 30
plot_multiple_answers_dodge
(plot_multiple_answers), 30
plot_periods (plot_trajectories), 39
plot_proportions, 34
plot_trajectories, 39
proportion, 41
proportion(), 23, 31, 34

renv: :dependencies(), 11
round_preserve_sum, 44

safe_pal, 45
safe_pal(), 16
scale_color_safe (safe_pal), 45
scale_colour_safe (safe_pal), 45
scale_fill_safe (safe_pal), 45
srvyr::survey_mean(), I8
srvyr::survey_prop(), 43
stats::as.hclust(), 27
stats::chisq.test(), 24, 36
stats::fisher.test(), 7, 24, 36
stats::glm(), 21,47
stats: :hclust, 27
stats: :kruskal.test(), 26
stats::1m(), 21,47
stats: :oneway. test(), 29, 49
stats::prop.test(), 43
stats::step(), 2, 3,47
stats::t.test(), I8
step_with_na, 47
stratified_by (plot_proportions), 34
style_grouped_tbl
(grouped_tbl_pivot_wider), 5
survey: :regTermTest (), 49
survey: :svychisq(), 24, 36
survey: :svyglm(), 47, 48
survey: :svyranktest(), 26
survey: :svyttest(), 7, 9, 29
survival::coxph(), 47
svyoneway, 48
svyoneway(), 7, 9, 29
svyttest_oneway (gtsummary_test), 6

54 INDEX

theme_gtsummary_bold_labels
(gtsummary_themes), 7
theme_gtsummary_fisher_simulate_p
(gtsummary_themes), 7
theme_gtsummary_prop_n
(gtsummary_themes), 7
theme_gtsummary_unweighted_n
(gtsummary_themes), 7
tidyr::pivot_longer(), 41
titanic, 49
to_DT (view_dictionary), 50
TraMineR: :seqdef (), 15, 16

unrowwise, 50
utils::old.packages(), /1

view_detailed_dictionary
(view_dictionary), 50
view_dictionary, 50

	add_interactions_by_step
	combine_answers
	cut_quartiles
	grouped_tbl_pivot_wider
	gtsummary_test
	gtsummary_themes
	gtsummary_utilities
	install_dependencies
	is_different
	leading_zeros
	long_to_periods
	long_to_seq
	mean_sd
	median_iqr
	observed_vs_theoretical
	periods_to_long
	plot_categorical
	plot_continuous
	plot_inertia_from_tree
	plot_means
	plot_multiple_answers
	plot_proportions
	plot_trajectories
	proportion
	round_preserve_sum
	safe_pal
	step_with_na
	svyoneway
	titanic
	unrowwise
	view_dictionary
	Index

