
Package ‘happign’
January 8, 2026

Title R Interface to 'IGN' Web Services

Version 0.3.7

Maintainer Paul Carteron <carteronpaul@gmail.com>

Description Automatic open data acquisition from resources of IGN
('Institut National de Information Geographique et forestiere')
(<https://www.ign.fr/>). Available datasets include various types of
raster and vector data, such as digital elevation models, state
borders, spatial databases, cadastral parcels, and more. 'happign' also
provide access to API Carto (<https://apicarto.ign.fr/api/doc/>).

License GPL (>= 3)

URL https://github.com/paul-carteron,

https://paul-carteron.github.io/happign/

BugReports https://github.com/paul-carteron/happign/issues

Depends R (>= 4.1.0)

Imports jsonlite, httr2 (>= 1.1.0), sf (>= 1.0-7), terra, xml2

Suggests covr, ggplot2, httptest2, tibble, knitr, rmarkdown, testthat
(>= 3.0.0), tmap (>= 4.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

LazyData true

NeedsCompilation no

Encoding UTF-8

RoxygenNote 7.3.3

Config/Needs/website rmarkdown

Author Paul Carteron [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6942-6662>)

Repository CRAN

Date/Publication 2026-01-08 16:40:03 UTC

1

https://www.ign.fr/
https://apicarto.ign.fr/api/doc/
https://github.com/paul-carteron
https://paul-carteron.github.io/happign/
https://github.com/paul-carteron/happign/issues
https://orcid.org/0000-0002-6942-6662

2 are_queryable

Contents
are_queryable . 2
build_iso_query . 3
com_2025 . 4
dep_2025 . 5
get_apicarto_cadastre . 5
get_apicarto_codes_postaux . 8
get_apicarto_gpu . 9
get_apikeys . 11
get_gpu_layers . 11
get_iso . 12
get_last_news . 14
get_layers_metadata . 15
get_location_info . 16
get_wfs . 17
get_wfs_attributes . 19
get_wms_raster . 20
get_wmts . 22
reg_2025 . 23
spatial_predicates . 24

Index 26

are_queryable are_queryable

Description

Check if a wms layer is queryable with GetFeatureInfo.

Usage

are_queryable(apikey)

Arguments

apikey API key from get_apikeys() or directly from the IGN website

Value

character containing the name of the queryable layers

See Also

get_location_info()

https://geoservices.ign.fr/services-web-experts

build_iso_query 3

build_iso_query build_iso_query

Description

build query for isochrone-dist API

Usage

build_iso_query(
point,
source,
value,
type,
profile,
direction,
constraints,
distance_unit,
time_unit

)

Arguments

point character; point formated with x_to_iso.
source character; This parameter specifies which source will be used for the calcula-

tion. Currently, "valhalla" and "pgr" sources are available (default "pgr"). See
section SOURCE for further information.

value numeric; A quantity of time or distance.
type character; Specifies the type of calculation performed: "time" for isochrone or

"distance" for isodistance (isochrone by default).
profile character; Type of cost used for calculation: "pedestrian" for #’ pedestrians

and "car" for cars. and "car" for cars ("pedestrian" by default).
direction character; Direction of travel. Either define a "departure" point and obtain

the potential arrival points. Or define an "arrival" point and obtain the potential
points ("departure" by default).

constraints Used to express constraints on the characteristics to calculate isochrones/isodistances.
See section CONSTRAINTS.

distance_unit character; Allows you to specify the unit in which distances are expressed in
the answer: "meter" or "kilometer" (meter by default).

time_unit character; Allows you to specify the unit in which times are expressed in the
answer: "hour", "minute" or "second" (minutes by default).

Value

httr2_request object

4 com_2025

com_2025 French Communes Table (2025)

Description

Data for French communes from the INSEE file "v_commune_2025.csv".

Usage

com_2025

Format

A data frame with one row per commune and the following columns:

TYPECOM (chr) Type of commune (4 characters)

COM (chr) Commune code (5 characters)

REG (int) Region code (2 characters)

DEP (chr) Department code (3 characters)

CTCD (chr) Code of the territorial collectivity with departmental powers (4 characters)

ARR (chr) District (arrondissement) code (4 characters)

TNCC_COM (int) Name type indicator (1 character)

NCC_COM (chr) Official name in uppercase (200 characters)

NCCENR_COM (chr) Official name with proper typography (200 characters)

LIBELLE_COM (chr) Official name with article and proper typography (200 characters)

CAN (chr) Canton code (5 characters). For “multi-canton” communes, code ranges from 99 to 90
(pseudo-canton) or 89 to 80 (new communes)

COMPARENT (int) Parent commune code for municipal districts and associated or delegated
communes (5 characters)

Source

https://www.insee.fr/fr/statistiques/fichier/8377162/cog_ensemble_2025_csv.zip

https://www.insee.fr/fr/statistiques/fichier/8377162/cog_ensemble_2025_csv.zip

dep_2025 5

dep_2025 French Departments Table (2025)

Description

Data for French departments from the INSEE file "Départements".

Usage

dep_2025

Format

A data frame with one row per department and the following columns:

DEP (chr) Department code (3 characters)

REG (int) Region code (2 characters)

CHEFLIEU_DEP (chr) Commune code of the departmental capital (5 characters)

TNCC_DEP (int) Name type indicator (1 character)

NCC_DEP (chr) Official name in uppercase (200 characters)

NCCENR_DEP (chr) Official name with proper typography (200 characters)

LIBELLE_DEP (chr) Official name with article and proper typography (200 characters)

Source

https://www.insee.fr/fr/statistiques/fichier/8377162/cog_ensemble_2025_csv.zip

get_apicarto_cadastre Apicarto Cadastre

Description

Implementation of the cadastre module from the IGN’s apicarto

Usage

get_apicarto_cadastre(x,
type = "commune",
section = NULL,
numero = NULL,
code_abs = NULL,
source = "pci",
progress = TRUE)

https://www.insee.fr/fr/statistiques/fichier/8377162/cog_ensemble_2025_csv.zip
https://apicarto.ign.fr/api/doc/cadastre

6 get_apicarto_cadastre

Arguments

x sf, sfc, character or numeric :

• Shape : must be an object of class sf or sfc.
• Code insee : must be a character of length 5 (see com_2025)
• Code departement : must be a character of length 2 or 3 (DOM-TOM)

(see dep_2025)

type character : type of data needed, default to "commune". One of "commune",
"parcelle", "section", "localisant".

section character : corresponding to section of a city.

numero character : corresponding to numero of cadastral parcels.

code_abs character : corresponding to the code of absorbed commune. This prefix is
useful to differentiate between communes that have merged

source character : "bdp" for BD Parcellaire or "pci" for Parcellaire express. Default
to "pci". See detail for more info.

progress Display a progress bar? Use TRUE to turn on a basic progress bar, use a string
to give it a name. See httr2::req_perform_iterative().

Details

Vectorisation:

Arguments x, section, numero, and code_abs are vectorized if only one argument has length > 1
(Cartesian product)

x = 29158; section = c("A", "B")
→ (29158, "A"), (29158, "B")

x = 29158, section = "A", numero = 1:3
→ (29158, "A", 1); (29158, "A", 2); (29158, "A", 3)

In case all vectorised arguments have the same length Pairwise matching is used

x = c(29158, 29158); section = c("A", "B"); numero = 1:2
→ (29158, "A", 1), (29158, "B", 2)

Ambiguous vectorisation:

If more than one argument has length > 1 but lengths differ, it is unclear whether to combine them
pairwise or via cartesian product. This is rejected with an error to avoid unintended queries.

x = 29158, section = c("A", "B"), numero = 1:2
Possible interpretations:
1. Pairwise: (29158, "A", 1), (29158, "B", 2)
2. Cartesian: (29158, "A", 1), (29158, "A", 2), (29158, "B", 1), (29158, "B", 2)

Source:

BD Parcellaire ("bdp") is no longer updated and its use is discouraged. PCI Express ("pci") is
strongly recommended and will become mandatory. See IGN’s product comparison table.

https://geoservices.ign.fr/sites/default/files/2021-07/Comparatif_PEPCI_BDPARCELLAIRE.pdf

get_apicarto_cadastre 7

Value

Object of class sf

Examples

Not run:
library(sf)
library(tmap)

shape from the town of penmarch
penmarch <- read_sf(system.file("extdata/penmarch.shp", package = "happign"))

get commune borders
from shape
penmarch_borders <- get_apicarto_cadastre(penmarch, type = "commune")
qtm(penmarch_borders)+qtm(penmarch, fill = "red")

from insee_code
border <- get_apicarto_cadastre("29158", type = "commune")
borders <- get_apicarto_cadastre(c("29158", "29135"), type = "commune")
qtm(borders, fill="nom_com")

get cadastral parcels
from shape
parcels <- get_apicarto_cadastre(penmarch, type = "parcelle")
qtm(parcels, fill="section")

from insee code
parcels <- get_apicarto_cadastre("29158", type = "parcelle")
qtm(parcels, fill="section")

Use parameter recycling
get sections "AW" parcels from multiple insee_code
parcels <- get_apicarto_cadastre(

c("29158", "29135"),
section = "AW",
type = "parcelle"
)

qtm(borders, fill = NA)+qtm(parcels)

if multiple args with length > 1 result is ambigous
parcels <- get_apicarto_cadastre(

x = c("29158", "29135"),
section = c("AW", "AB"),
numero = 1,
type = "parcelle"

)

get parcels numbered "0001", "0010" of section "AW" and "BR"
insee <- rep("29158", 2)
section <- c("AW", "BR")
numero <- c("0001", "0010")

8 get_apicarto_codes_postaux

parcels <- get_apicarto_cadastre(insee, section = section, numero = numero, type = "parcelle")
qtm(penmarch_borders, fill = NA)+qtm(parcels)

Arrondissement insee code should be used for paris, lyon, marseille
error <- get_apicarto_cadastre(c(75056, 69123, 13055))
paris_arr123 <- get_apicarto_cadastre(c(75101, 75102, 75103))
qtm(paris_arr123, fill = "code_insee")

End(Not run)

get_apicarto_codes_postaux

Apicarto Codes Postaux

Description

Implementation of the "Codes Postaux" module from the IGN’s apicarto. This API give information
about commune from postal code.

Usage

get_apicarto_codes_postaux(code_post)

Arguments

code_post character corresponding to the postal code of a commune

Value

Object of class data.frame

Examples

Not run:

info_commune <- get_apicarto_codes_postaux("29760")

code_post <- c("29760", "08170")
info_communes <- get_apicarto_codes_postaux(code_post)

code_post <- c("12345")
info_communes <- get_apicarto_codes_postaux(code_post)

code_post <- c("12345", "08170")
info_communes <- get_apicarto_codes_postaux(code_post)

End(Not run)

https://apicarto.ign.fr/api/doc/codes-postaux

get_apicarto_gpu 9

get_apicarto_gpu Apicarto module Geoportail de l’urbanisme

Description

Apicarto module Geoportail de l’urbanisme

Usage

get_apicarto_gpu(x, layer, category = NULL)

Arguments

x sf, sfc or character :

• Shape : must be an object of class sf or sfc.
• Code insee (layer = "municipality") : must be a character of length 5

(see com_2025)
• Partition : must be a valid partition character for checking and Geoportail

for documentation

layer character; Layer name from get_gpu_layers()

category public utility easement according to the national nomenclature

Details

/!\ API cannot returned more than 5000 features.
All existing parameters for layer :

• "municipality" : information on the communes (commune with RNU, merged commune)

• "document" : information on urban planning documents (POS, PLU, PLUi, CC, PSMV,
SCoT)

• "zone-urba" : zoning of urban planning documents,

• "secteur-cc" : communal map sectors

• "prescription-surf", "prescription-lin", "prescription-pct" : its’s a constraint or
a possibility indicated in an urban planning document (PLU, PLUi, ...)

• "info-surf", "info-lin", "info-pct" : its’s an information indicated in an urban planning
document (PLU, PLUi, ...)

• "acte-sup" : act establishing the SUP

• "generateur-sup-s", "generateur-sup-l", "generateur-sup-p" : an entity (site or mon-
ument, watercourse, water catchment, electricity or gas distribution of electricity or gas, etc.)
which generates on the surrounding SUP (of passage, alignment, protection, land reservation,
etc.)

• "assiette-sup-s", "assiette-sup-l", "assiette-sup-p" : spatial area to which SUP it
applies.

https://www.geoportail-urbanisme.gouv.fr/image/UtilisationAPI_GPU_1-0.pdf
https://www.geoportail-urbanisme.gouv.fr/infos_sup/

10 get_apicarto_gpu

Value

sf

Examples

Not run:
library(sf)
library(tmap)

Find if commune is under the RNU (national urbanism regulation)
If no RNU it means communes probably have a PLU
rnu <- get_apicarto_gpu("29158", "municipality")
rnu$is_rnu

Get urbanism document
Rq : when using geometry, multiple documents can be returned due to intersection
x <- get_apicarto_cadastre("29158", "commune")
document <- get_apicarto_gpu(x, "document")
document$partition
penmarch <- document$partition[2]

get gpu features
from shape
gpu <- get_apicarto_gpu(x, "zone-urba")
qtm(gpu, fill="typezone")

from partition
gpu <- get_apicarto_gpu(penmarch, "zone-urba")
qtm(gpu, fill="typezone")

example : all prescription
layers <- names(get_gpu_layers("prescription"))
prescriptions <- lapply(layers, \(x) get_apicarto_gpu(penmarch, x)) |>

setNames(layers)

qtm(prescriptions$`prescription-pct`, fill = "libelle")+
qtm(prescriptions$`prescription-lin`, col = "libelle")+
qtm(prescriptions$`prescription-surf`, fill = "libelle")

When using SUP, category can be used for filtering
AC1 : Monuments historiques
penmarch <- get_apicarto_cadastre(29158)
mh <- get_apicarto_gpu(penmarch, "assiette-sup-s", category = "AC1")

example : public utility servitude (SUP) generateur
/!\ a generator can justify several assiette
gen_mh <- get_apicarto_gpu(penmarch, "generateur-sup-s", "AC1")

qtm(mh, fill = "lightblue")+qtm(gen_mh, fill = "red")

End(Not run)

get_apikeys 11

get_apikeys List of all API keys from IGN

Description

All API keys are manually extract from this table provided by IGN.

Usage

get_apikeys()

Value

character

Examples

Not run:
One API key
get_apikeys()[1]

All API keys
get_apikeys()

End(Not run)

get_gpu_layers Available GPU layers

Description

Helpers that return available GPU layers and their type.

Usage

get_gpu_layers(type = NULL)

Arguments

type character One of "commune", "du", "prescription", "acte-sup", "assiette",
"generateur". If NULL, all layers are retuned. NULL by default

Details

"du": "Document d’urbanisme" "sup": "Servitude d’utilité publique"

https://geoservices.ign.fr/documentation/services/tableau_ressources

12 get_iso

Value

list

Examples

All layers
names(get_gpu_layers())

All sup layers
names(get_gpu_layers("generateur"))

All sup and du layers
names(get_gpu_layers(c("generateur", "prescription")))

get_iso isochronous/isodistance calculations

Description

Calculates isochrones or isodistances in France from an sf object using the IGN API on the Géopor-
tail platform. The reference data comes from the IGN BD TOPO® database. For further information
see IGN documentation.

Usage

get_iso(x,
value,
type = "time",
profile = "pedestrian",
time_unit = "minute",
distance_unit = "meter",
direction = "departure",
source = "pgr",
constraints = NULL)

get_isodistance(x,
dist,
unit = "meter",
source = "pgr",
profile = "car",
direction = "departure",
constraints = NULL)

get_isochrone(x,
time,
unit = "minute",

https://geoservices.ign.fr/documentation/services/api-et-services-ogc/isochrone/api

get_iso 13

source = "pgr",
profile = "car",
direction = "departure",
constraints = NULL)

Arguments

x Object of class sf or sfc with POINT geometry. There may be several points in
the object. In this case, the output will contain as many polygons as points.

value numeric; A quantity of time or distance.

type character; Specifies the type of calculation performed: "time" for isochrone or
"distance" for isodistance (isochrone by default).

profile character; Type of cost used for calculation: "pedestrian" for #’ pedestrians
and "car" for cars. and "car" for cars ("pedestrian" by default).

time_unit character; Allows you to specify the unit in which times are expressed in the
answer: "hour", "minute" or "second" (minutes by default).

distance_unit character; Allows you to specify the unit in which distances are expressed in
the answer: "meter" or "kilometer" (meter by default).

direction character; Direction of travel. Either define a "departure" point and obtain
the potential arrival points. Or define an "arrival" point and obtain the potential
points ("departure" by default).

source character; This parameter specifies which source will be used for the calcula-
tion. Currently, "valhalla" and "pgr" sources are available (default "pgr"). See
section SOURCE for further information.

constraints Used to express constraints on the characteristics to calculate isochrones/isodistances.
See section CONSTRAINTS.

dist numeric; A quantity of time.

unit see time_unit and distance_unit param.

time numeric; A quantity of time.

Value

object of class sf with POLYGON geometry

Functions

• get_isodistance(): Wrapper function to calculate isodistance from get_iso.

• get_isochrone(): Wrapper function to calculate isochrone from get_iso.

SOURCE

Isochrones are calculated using the same resources as for route calculation. PGR" and "VAL-
HALLA" resources are used, namely "bdtopo-valhalla" and "bdtopo-pgr".

• bdtopo-valhalla" : To-Do

14 get_last_news

• bdtopo-iso" is based on the old services over a certain distance, to solve performance prob-
lems. We recommend its use for large isochrones.

PGR resources are resources that use the PGRouting engine to calculate isochrones. ISO resources
are more generic. The engine used for calculations varies according to several parameters. At
present, the parameter concerned is cost_value, i.e. the requested time or distance.

See Also

get_isodistance, get_isochrone

Examples

Not run:
library(sf)
library(tmap)

All area i can acces in less than 5 minute from penmarch centroid
penmarch <- get_apicarto_cadastre("29158")
penmarch_centroid <- st_centroid(penmarch)
isochrone <- get_isochrone(penmarch_centroid, 5)

qtm(penmarch, col = "red")+qtm(isochrone, col = "blue")+qtm(penmarch_centroid, fill = "red")

All area i can acces as pedestrian in less than 1km
isodistance <- get_isodistance(penmarch_centroid, 1, unit = "kilometer", profile = "pedestrian")

qtm(penmarch, col = "red")+qtm(isodistance, col = "blue")+qtm(penmarch_centroid, fill = "red")

In case of multiple point provided, the output will contain as many polygons as points.
code_insee <- c("29158", "29072", "29171")
communes_centroid <- get_apicarto_cadastre(code_insee) |> st_centroid()
isochrones <- get_isochrone(communes_centroid, 8)
isochrones$code_insee <- code_insee
qtm(isochrones, fill = "code_insee")

Find area where i can acces all communes centroid in less than 8 minutes
area <- st_intersection(isochrones)
qtm(communes_centroid, fill = "red")+ qtm(area[area$origins == "1:3",])

End(Not run)

get_last_news Print latest news from geoservice website

Description

This function is a wrapper around the RSS feed of the geoservice site to get the latest information.

get_layers_metadata 15

Usage

get_last_news()

Value

message or error

Examples

Not run:
get_last_news()

End(Not run)

get_layers_metadata Metadata for one couple of apikey and data_type

Description

Metadata are retrieved using the IGN APIs. The execution time can be long depending on the size
of the metadata associated with the API key and the overload of the IGN servers.

Usage

get_layers_metadata(data_type, apikey = NULL)

Arguments

data_type Should be "wfs", "wms-r" or "wmts". See details for more information about
these Web services formats.

apikey API key from get_apikeys() or directly from the IGN website

Details

• "wfs" : Web Feature Service designed to return data in vector format (line, point, polygon,
...) ;

• "wms-r" : Web Map Service focuses on raster data ;

• "wmts" : Web Map Tile Service is similar to WMS, but instead of serving maps as single
images, WMTS serves maps by dividing the map into a pyramid of tiles at multiple scales.

Value

data.frame

See Also

get_apikeys()

https://geoservices.ign.fr/services-web-experts

16 get_location_info

Examples

Not run:
Get all metadata for a datatype
metadata_table <- get_layers_metadata("wms-r")

Get all "administratif" wms layers
apikey <- get_apikeys()[1] #administratif
admin_layers <- get_layers_metadata("wms-r", apikey)

End(Not run)

get_location_info Retrieve additional information for wms layer

Description

For some wms layer more information can be found with GetFeatureInfo request. This function
first check if info are available. If not, available layers are returned.

Usage

get_location_info(x,
apikey = "ortho",
layer = "ORTHOIMAGERY.ORTHOPHOTOS",
read_sf = TRUE,
version = "1.3.0")

Arguments

x Object of class sf or sfc. Only single point are supported for now. Needs to be
located in France.

apikey character; API key from get_apikeys() or directly from the IGN website

layer character; layer name obtained from get_layers_metadata("wms-r") or the
IGN website.

read_sf logical; if TRUE an sf object is returned but response times may be higher.

version character; old param

Value

character or sf containing additional information about the layer

https://geoservices.ign.fr/services-web-experts

get_wfs 17

Examples

Not run:
library(sf)
library(tmap)

From single point
x <- st_centroid(read_sf(system.file("extdata/penmarch.shp", package = "happign")))
location_info <- get_location_info(x, "ortho", "ORTHOIMAGERY.ORTHOPHOTOS", read_sf = F)
location_info$date_vol

From multiple point
x1 <- st_sfc(st_point(c(-3.549957, 47.83396)), crs = 4326) # Carnoet forest
x2 <- st_sfc(st_point(c(-3.745995, 47.99296)), crs = 4326) # Coatloch forest

forests <- lapply(list(x1, x2),
get_location_info,
apikey = "environnement",
layer = "FORETS.PUBLIQUES",
read_sf = T)

qtm(forests[[1]]) + qtm(forests[[2]])

Find all queryable layers
queryable_layers <- lapply(get_apikeys(), are_queryable) |> unlist()

End(Not run)

get_wfs Download data from IGN WFS layer

Description

Download features from the IGN Web Feature Service (WFS) using a spatial predicate, an ECQL
attribute query, or both.

Usage

get_wfs(
x = NULL,
layer = NULL,
predicate = bbox(),
query = NULL,
verbose = TRUE

)

Arguments

x sf, sfc or NULL. If NULL, no spatial filter is applied and query must be provided.

18 get_wfs

layer character; name of the WFS layer. Must correspond to a layer available on the
IGN WFS service (see get_layers_metadata()).

predicate list; a spatial predicate definition created with helper such as bbox(), intersects(),
within(), contains(), touches(), crosses(), overlaps(), equals(), dwithin(),
beyond() or relate(). See spatial_predicates for more info.

query character; an ECQL attribute query. When both x and query are provided, the
spatial predicate and the attribute query are combined.

verbose logical; if TRUE, display progress information and other informative message.

Details

• get_wfs use ECQL language : a query language created by the OpenGeospatial Consortium.
More info about ECQL language can be found here.

Value

An object of class sf.

See Also

get_layers_metadata()

Examples

Not run:
library(sf)

Load a geometry
x <- read_sf(system.file("extdata/penmarch.shp", package = "happign"))

Retrieve commune boundaries intersecting x
commune <- get_wfs(

x = x,
layer = "LIMITES_ADMINISTRATIVES_EXPRESS.LATEST:commune"

)

plot(st_geometry(commune), border = "firebrick")

Attribute-only query (no spatial filter)

If unknown, available attributes can be retrieved using `get_wfs_attributes()`
attrs <- get_wfs_attributes("LIMITES_ADMINISTRATIVES_EXPRESS.LATEST:commune")
print(attrs)

plou_communes <- get_wfs(
x = NULL,
layer = "LIMITES_ADMINISTRATIVES_EXPRESS.LATEST:commune",
query = "nom_officiel ILIKE 'PLOU%'"

)
plot(st_geometry(plou_communes))

https://docs.geoserver.org/latest/en/user/filter/ecql_reference.html

get_wfs_attributes 19

Multiple Attribute-only query (no spatial filter)
plou_inf_2000 <- get_wfs(

x = NULL,
layer = "LIMITES_ADMINISTRATIVES_EXPRESS.LATEST:commune",
query = "nom_officiel ILIKE 'PLOU%' AND population < 2000"

)
plot(st_geometry(plou_communes))
plot(st_geometry(plou_inf_2000), col = "firebrick", add = TRUE)

Spatial predicate usage

layer <- "BDCARTO_V5:rond_point"

bbox_feat <- get_wfs(commune, layer, predicate = bbox())
plot(st_geometry(bbox_feat), col = "red")
plot(st_geometry(commune), add = TRUE)

intersects_feat <- get_wfs(commune, layer, predicate = intersects())
plot(st_geometry(intersects_feat), col = "red")
plot(st_geometry(commune), add = TRUE)

dwithin_feat <- get_wfs(commune, layer, predicate = dwithin(5, "kilometers"))
plot(st_geometry(dwithin_feat), col = "red")
plot(st_geometry(commune), add = TRUE)

End(Not run)

get_wfs_attributes get_wfs_attributes

Description

Helper to write ecql filter. Retrieve all attributes from a layer.

Usage

get_wfs_attributes(layer = NULL)

Arguments

layer character; name of the WFS layer. Must correspond to a layer available on the
IGN WFS service (see get_layers_metadata()).

Value

charactervector with layer attributes

20 get_wms_raster

Examples

Not run:

get_wfs_attributes("LIMITES_ADMINISTRATIVES_EXPRESS.LATEST:commune")

End(Not run)

get_wms_raster Download WMS raster layer

Description

Download a raster layer from the IGN Web Mapping Services (WMS). Specify a location using a
shape and provide the layer name.

Usage

get_wms_raster(x,
layer = "ORTHOIMAGERY.ORTHOPHOTOS",
res = 10,
crs = 2154,
rgb = TRUE,
filename = NULL,
overwrite = FALSE,
verbose = TRUE,
interactive = FALSE)

Arguments

x Object of class sf or sfc, located in France.

layer character; layer name obtained from get_layers_metadata("wms-r") or the
IGN website.

res numeric; resolution specified in the units of the coordinate system (e.g., meters
for EPSG:2154, degrees for EPSG:4326). See details for more information.

crs numeric, character, or object of class sf or sfc; defaults to EPSG:2154. See
sf::st_crs() for more details.

rgb boolean; if set to TRUE, downloads an RGB image. If set to FALSE, downloads
a single band with floating point values. See details for more information.

filename character or NULL; specifies the filename or an open connection for writing
(e.g., "test.tif" or "~/test.tif"). The default format is ".tif" but all GDAL drivers
are supported. When a filename is provided, the function uses it as a cache: if
the file already exists and overwrite is set to FALSE, the function will directly
load the raster from that file instead of re-downloading it.

overwrite boolean; if TRUE, the existing raster will be overwritten.

https://geoservices.ign.fr/services-web-experts
https://gdal.org/en/latest/drivers/raster/index.html

get_wms_raster 21

verbose boolean; if TRUE, message are added.

interactive logical; if TRUE, an interactive menu prompts for apikey and layer argu-
ment.

Details

• res: Note that setting res higher than the default resolution of the layer will increase the
number of pixels but not the precision of the image. For instance, downloading the BD Alti
layer from IGN is optimal at a resolution of 25m.

• rgb: Rasters are commonly used to download images such as orthophotos. In specific cases
like DEMs, however, a value per pixel is essential. See examples below.

Value

SpatRaster object from terra package.

See Also

get_layers_metadata()

Examples

Not run:
library(sf)
library(tmap)

Shape from the best town in France
penmarch <- read_sf(system.file("extdata/penmarch.shp", package = "happign"))

For quick testing use interactive = TRUE
raster <- get_wms_raster(x = penmarch, res = 25, interactive = TRUE)

For specific data, choose apikey with get_apikey() and layer with get_layers_metadata()
apikey <- get_apikeys()[4] # altimetrie
metadata_table <- get_layers_metadata("wms-r", apikey) # all layers for altimetrie wms
layer <- metadata_table[2,1] # ELEVATION.ELEVATIONGRIDCOVERAGE

Downloading digital elevation model values not image
mnt_2154 <- get_wms_raster(penmarch, layer, res = 1, crs = 2154, rgb = FALSE)

If crs is set to 4326, res is in degrees
mnt_4326 <- get_wms_raster(penmarch, layer, res = 0.0001, crs = 4326, rgb = FALSE)

Plotting result
tm_shape(mnt_4326)+

tm_raster()+
tm_shape(penmarch)+

tm_borders(col = "blue", lwd = 3)

End(Not run)

22 get_wmts

get_wmts Download WMTS raster tiles

Description

Download an RGB raster layer from IGN Web Map Tile Services (WMTS). WMTS focuses on
performance and can only query pre-calculated tiles.

Usage

get_wmts(x,
layer = "ORTHOIMAGERY.ORTHOPHOTOS",
zoom = 10L,
crs = 2154,
filename = tempfile(fileext = ".tif"),
verbose = FALSE,
overwrite = FALSE,
interactive = FALSE)

Arguments

x Object of class sf or sfc. Needs to be located in France.

layer character; layer name from get_layers_metadata(apikey, "wms") or di-
rectly from IGN website.

zoom integer between 0 and 21; at low zoom levels, a small set of map tiles covers
a large geographical area. In other words, the smaller the zoom level, the less
precise the resolution. For conversion between zoom level and resolution see
WMTS IGN Documentation

crs numeric, character, or object of class sf or sfc. It is set to EPSG:2154 by
default. See sf::st_crs() for more detail.

filename character or NULL; filename or a open connection for writing. (ex : "test.tif" or
"~/test.tif"). If NULL, layer is used as filename. Default drivers is ".tif" but all
gdal drivers are supported, see details for more info.

verbose boolean; if TRUE, message are added.

overwrite If TRUE, output raster is overwrite.

interactive logical; If TRUE, interactive menu ask for apikey and layer.

Value

SpatRaster object from terra package.

See Also

get_apikeys(), get_layers_metadata()

https://geoservices.ign.fr/services-web-experts
https://geoservices.ign.fr/documentation/services/services-geoplateforme/diffusion#70062

reg_2025 23

Examples

Not run:
library(sf)
library(tmap)

penmarch <- read_sf(system.file("extdata/penmarch.shp", package = "happign"))

Get orthophoto
layers <- get_layers_metadata("wmts", "ortho")$Identifier
ortho <- get_wmts(penmarch, layer = layers[1], zoom = 21)
plotRGB(ortho)

Get all available irc images
layers <- get_layers_metadata("wmts", "orthohisto")$Identifier
irc_names <- grep("irc", layers, value = TRUE, ignore.case = TRUE)

irc <- lapply(irc_names, function(x) get_wmts(penmarch, layer = x, zoom = 18)) |>
setNames(irc_names)

remove empty layer (e.g. only NA)
irc <- Filter(function(x) !all(is.na(values(x))), irc)

plot
all_plots <- lapply(irc, plotRGB)

End(Not run)

reg_2025 French Regions Table (2025)

Description

Data for French regions from the INSEE file "Régions".

Usage

reg_2025

Format

A data frame with one row per region and the following columns:

REG (int) Region code (2 characters)
CHEFLIEU_REG (chr) Commune code of the regional capital (5 characters)
TNCC_REG (int) Name type indicator (1 character)
NCC_REG (chr) Official name in uppercase (200 characters)
NCCENR_REG (chr) Official name with proper typography (200 characters)
LIBELLE_REG (chr) Official name with article and proper typography (200 characters)

24 spatial_predicates

Source

https://www.insee.fr/fr/statistiques/fichier/8377162/cog_ensemble_2025_csv.zip

spatial_predicates Spatial predicate constructors

Description

These functions create spatial predicates used by get_wfs() to filter features based on their spatial
relationship with a reference geometry.

Usage

intersects()

within()

disjoint()

contains()

touches()

crosses()

overlaps()

equals()

bbox()

dwithin(distance, units = "meters")

beyond(distance, units = "meters")

relate(pattern)

Arguments

distance Numeric distance value (single value).

units Distance units supported by the WFS server (e.g. "meters", "kilometers").

pattern A 9-character DE-9IM pattern string.

https://www.insee.fr/fr/statistiques/fichier/8377162/cog_ensemble_2025_csv.zip

spatial_predicates 25

Details

Predicates describe how geometries should be compared (e.g. intersection, containment, distance-
based relations). Users should not construct predicates manually; instead, use the helper functions
listed below.

• bbox(): Select features intersecting the bounding box of the reference geometry.

• intersects(): Select features whose geometry intersects the reference geometry.

• disjoint(): Select features whose geometry intersects the reference geometry.

• contains(): Select features that completely contain the reference geometry.

• within(): Select features completely within the reference geometry.

• touches(): Select features that touch the reference geometry at the boundary.

• crosses(): Select features that cross the reference geometry.

• overlaps(): Select features that partially overlap the reference geometry.

• equals(): Select features geometrically equal to the reference geometry.

• dwithin(distance, units): Select features within a given distance of the reference geome-
try.

• beyond(distance, units): Select features farther than a given distance from the reference
geometry.

• relate(pattern): Select features matching a DE-9IM spatial relationship pattern.

Value

A spatial predicate object (used internally by get_wfs()).

See Also

get_wfs()

Examples

intersects()
bbox()
dwithin(50, "meters")
beyond(100, "meters")
relate("T*F**F***")

Index

∗ datasets
com_2025, 4
dep_2025, 5
reg_2025, 23

are_queryable, 2

bbox (spatial_predicates), 24
beyond (spatial_predicates), 24
build_iso_query, 3

com_2025, 4, 6, 9
contains (spatial_predicates), 24
crosses (spatial_predicates), 24

dep_2025, 5, 6
disjoint (spatial_predicates), 24
dwithin (spatial_predicates), 24

equals (spatial_predicates), 24

get_apicarto_cadastre, 5
get_apicarto_codes_postaux, 8
get_apicarto_gpu, 9
get_apikeys, 11
get_apikeys(), 15, 22
get_gpu_layers, 11
get_gpu_layers(), 9
get_iso, 12, 13
get_isochrone, 14
get_isochrone (get_iso), 12
get_isodistance, 14
get_isodistance (get_iso), 12
get_last_news, 14
get_layers_metadata, 15
get_layers_metadata(), 18, 19, 21, 22
get_location_info, 16
get_location_info(), 2
get_wfs, 17
get_wfs(), 24, 25
get_wfs_attributes, 19

get_wms_raster, 20
get_wmts, 22

httr2::req_perform_iterative(), 6

intersects (spatial_predicates), 24

overlaps (spatial_predicates), 24

reg_2025, 23
relate (spatial_predicates), 24

sf::st_crs(), 20, 22
spatial_predicates, 18, 24

touches (spatial_predicates), 24

within (spatial_predicates), 24

26

	are_queryable
	build_iso_query
	com_2025
	dep_2025
	get_apicarto_cadastre
	get_apicarto_codes_postaux
	get_apicarto_gpu
	get_apikeys
	get_gpu_layers
	get_iso
	get_last_news
	get_layers_metadata
	get_location_info
	get_wfs
	get_wfs_attributes
	get_wms_raster
	get_wmts
	reg_2025
	spatial_predicates
	Index

