
Package ‘ieegio’
January 11, 2026

Title File IO for Intracranial Electroencephalography

Version 0.0.8

Language en-US

Encoding UTF-8

Description Integrated toolbox supporting common file formats used for intracranial
Electroencephalography (iEEG) and deep-brain stimulation (DBS) study.

URL http://dipterix.org/ieegio/

BugReports https://github.com/dipterix/ieegio/issues

License MIT + file LICENSE

RoxygenNote 7.3.3

Imports data.table (>= 1.16.0), digest, fastmap, filearray (>= 0.1.8),
freesurferformats, fs, fst (>= 0.9.0), gifti (>= 0.8.0),
grDevices, hdf5r, jsonlite, oro.nifti, R.matlab (>= 3.7.0), R6,
readNSx (>= 0.0.5), rpyANTs (>= 0.0.3), stringr, utils, yaml

Suggests reticulate, ravetools, rgl, RNifti (>= 1.7.0), rpymat (>=
0.1.7), xml2, knitr, r3js, rmarkdown, tools, testthat (>=
3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Zhengjia Wang [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5629-1116>)

Maintainer Zhengjia Wang <dipterix.wang@gmail.com>

Repository CRAN

Date/Publication 2026-01-11 10:30:10 UTC

1

http://dipterix.org/ieegio/
https://github.com/dipterix/ieegio/issues
https://orcid.org/0000-0001-5629-1116

2 Contents

Contents

as_ieegio_surface . 3
as_ieegio_transform . 6
as_ieegio_volume . 7
as_nifti_header . 9
burn_volume . 10
convert-fst . 11
ieegio_sample_data . 12
imaging-streamlines . 13
imaging-surface . 15
imaging-volume . 17
io-trk . 21
io-tt . 23
io-vtk-streamlines . 24
io_h5_valid . 25
io_read_ants_transform . 26
io_read_flirt_transform . 28
io_read_fstarray_or_h5 . 30
io_read_h5 . 31
io_write_h5 . 32
LazyFST . 33
LazyH5 . 35
low-level-read-write . 38
merge.ieegio_surface . 41
merge.ieegio_volume . 44
new_space . 45
NWBHDF5IO . 47
plot.ieegio_surface . 50
plot.ieegio_volume . 52
pynwb_module . 55
read_bci2000 . 56
read_brainvis . 57
read_edf . 58
read_nsx . 59
read_nwb . 60
resample_volume . 63
SignalDataCache . 65
surface_to_surface . 66
transform_flirt2ras . 68
transform_orientation . 70
volume_to_surface . 72
write_edf . 73

Index 76

as_ieegio_surface 3

as_ieegio_surface Convert other surface formats to ieegio surface

Description

Convert other surface formats to ieegio surface

Usage

as_ieegio_surface(x, ...)

Default S3 method:
as_ieegio_surface(
x,
vertices = x,
faces = NULL,
face_start = NA,
transform = NULL,
vertex_colors = NULL,
annotation_labels = NULL,
annotation_values = NULL,
measurements = NULL,
time_series_slice_duration = NULL,
time_series_value = NULL,
name = NULL,
...

)

S3 method for class 'character'
as_ieegio_surface(x, ...)

S3 method for class 'ieegio_surface'
as_ieegio_surface(x, ...)

S3 method for class 'mesh3d'
as_ieegio_surface(x, ...)

S3 method for class 'fs.surface'
as_ieegio_surface(x, ...)

Arguments

x R object or file path

... passed to default method

vertices n by 3 matrix, each row is a vertex node position

4 as_ieegio_surface

faces (optional) face index, either zero or one-indexed (Matlab and R start counting
from 1 while C and Python start indices from 0); one-index face order is recom-
mended

face_start (optional) either 0 or 1, indicating whether faces is zero or one-indexed; default
is NA, which will check whether the minimum value of faces is 0. If so, then
faces will be bumped by 1 internally

transform (optional) a 4 by 4 matrix indicating the vertex position to scanner RAS trans-
form. Default is missing (identity matrix), i.e. the vertex positions are already
in the scanner RAS coordinate system.

vertex_colors (optional) integer or color (hex) vector indicating the vertex colors
annotation_labels

(optional) a data frame containing at the following columns. Though optional,
annotation_labels must be provided when annotation_values is provided

"Key" unique integers to appear in annotation_values, indicating the key of
the annotation label

"Label" a character vector (strings) of human-readable labels of the corre-
sponding key

"Color" hex string indicating the color of the key/label
annotation_values

(optional) an integer table where each column is a vector of annotation key (for
example, ’FreeSurfer’ segmentation key) and each row corresponds to a vertex
node

measurements (optional) a numeric table where each column represents a variable (for exam-
ple, curvature) and each row corresponds to a vertex node. Unlike annotations,
which is for discrete node values, measurements is for continuous values

time_series_slice_duration

(optional) a numeric vector indicating the duration of each slice; default is NA
time_series_value

(optional) a numeric matrix (n by m) where n is the number of vertices and m is
the number of time points, hence each column is a time slice and each row is a
vertex node.

name (optional) name of the geometry

Value

An ieeg_surface object; see read_surface or ’Examples’.

Examples

---- Simple usage
vertices only
dodecahedron_vert <- matrix(

ncol = 3, byrow = TRUE,
c(-0.62, -0.62, -0.62, 0.62, -0.62, -0.62, -0.62, 0.62, -0.62,
0.62, 0.62, -0.62, -0.62, -0.62, 0.62, 0.62, -0.62, 0.62,

as_ieegio_surface 5

-0.62, 0.62, 0.62, 0.62, 0.62, 0.62, 0.00, -0.38, 1.00,
0.00, 0.38, 1.00, 0.00, -0.38, -1.00, 0.00, 0.38, -1.00,
-0.38, 1.00, 0.00, 0.38, 1.00, 0.00, -0.38, -1.00, 0.00,
0.38, -1.00, 0.00, 1.00, 0.00, -0.38, 1.00, 0.00, 0.38,
-1.00, 0.00, -0.38, -1.00, 0.00, 0.38)

)

point_cloud <- as_ieegio_surface(dodecahedron_vert)
plot(point_cloud, col = "red")

with face index
dodecahedron_face <- matrix(

ncol = 3L, byrow = TRUE,
c(1, 11, 2, 1, 2, 16, 1, 16, 15, 1, 15, 5, 1, 5, 20, 1, 20, 19,
1, 19, 3, 1, 3, 12, 1, 12, 11, 2, 11, 12, 2, 12, 4, 2, 4, 17,
2, 17, 18, 2, 18, 6, 2, 6, 16, 3, 13, 14, 3, 14, 4, 3, 4, 12,
3, 19, 20, 3, 20, 7, 3, 7, 13, 4, 14, 8, 4, 8, 18, 4, 18, 17,
5, 9, 10, 5, 10, 7, 5, 7, 20, 5, 15, 16, 5, 16, 6, 5, 6, 9,
6, 18, 8, 6, 8, 10, 6, 10, 9, 7, 10, 8, 7, 8, 14, 7, 14, 13)

)
mesh <- as_ieegio_surface(dodecahedron_vert,

faces = dodecahedron_face)
plot(mesh)

with vertex colors
mesh <- as_ieegio_surface(dodecahedron_vert,

faces = dodecahedron_face,
vertex_colors = sample(20))

plot(mesh, name = "color")

with annotations
mesh <- as_ieegio_surface(

dodecahedron_vert,
faces = dodecahedron_face,
annotation_labels = data.frame(
Key = 1:3,
Label = c("A", "B", "C"),
Color = c("red", "green", "blue")

),
annotation_values = data.frame(

MyVariable = c(rep(1, 7), rep(2, 7), rep(3, 6))
)

)
plot(mesh, name = "annotations")

with measurements
mesh <- as_ieegio_surface(

dodecahedron_vert,
faces = dodecahedron_face,
measurements = data.frame(

MyVariable = dodecahedron_vert[, 1]
)

)

6 as_ieegio_transform

plot(mesh, name = "measurements",
col = c("blue", "gray", "red"))

as_ieegio_transform Convert to ieegio transform

Description

Generic function to convert various objects into ieegio_transforms.

Usage

as_ieegio_transform(x, ...)

S3 method for class '`NULL`'
as_ieegio_transform(x, space_from = "", space_to = "", ...)

S3 method for class 'character'
as_ieegio_transform(x, format = c("ants", "flirt"), ...)

S3 method for class 'matrix'
as_ieegio_transform(x, space_from = "", space_to = "", ...)

S3 method for class 'array'
as_ieegio_transform(x, space_from = "", space_to = "", ...)

S3 method for class 'list'
as_ieegio_transform(x, ...)

S3 method for class 'ieegio_transforms'
as_ieegio_transform(x, ...)

Arguments

x object to convert (character path, matrix, array, list, or existing transform)

... additional arguments passed to methods

space_from source space for matrix/array methods. Default "" is a wildcard for arbitrary
space name.

space_to target space for matrix/array methods. Default "" is a wildcard for arbitrary
space name.

format character string specifying the file format for character paths. Supports "ants"
(default) for ANTs format and "flirt" for FSL FLIRT format. Only used for
character method.

as_ieegio_volume 7

Details

Methods available:

• character: Reads transform from file (uses io_read_ants_transform or io_read_flirt_transform
depending on format)

• matrix: Creates transform from matrix

• array: Creates transform from 2D array

• list: Creates transform chain from list of transforms

• ieegio_transforms: Returns input unchanged

Value

An ieegio_transforms object

as_ieegio_volume Convert objects to ’ieegio’ image volumes

Description

Convert array, path, or ’NIfTI’ images in other formats to 'ieegio' image volume instance

Usage

as_ieegio_volume(x, ...)

S3 method for class 'character'
as_ieegio_volume(x, ...)

S3 method for class 'ieegio_volume'
as_ieegio_volume(x, ...)

S3 method for class 'array'
as_ieegio_volume(x, vox2ras = NULL, as_color = is.character(x), ...)

S3 method for class 'niftiImage'
as_ieegio_volume(x, ...)

S3 method for class 'nifti'
as_ieegio_volume(x, ...)

S3 method for class 'ants.core.ants_image.ANTsImage'
as_ieegio_volume(x, ...)

8 as_ieegio_volume

Arguments

x R object such as array, image path, or objects such as 'RNifti' or 'oro.nifti'
image instances

... passed to other methods

vox2ras a 4x4 ’affine’ matrix representing the transform from ’voxel’ index (column-
row-slice) to ’RAS’ (right-anterior-superior) coordinate. This transform is often
called 'xform', 'sform', 'qform' in ’NIfTI’ terms, or 'Norig' in ’FreeSurfer’

as_color for converting arrays to volume, whether to treat x as array of colors; default is
true when x is a raster matrix (matrix of color strings) and false when x is not a
character array.

Value

An ieegio volume object; see imaging-volume

Examples

shape <- c(50, 50, 50)
vox2ras <- matrix(

c(-1, 0, 0, 25,
0, 0, 1, -25,
0, -1, 0, 25,
0, 0, 0, 1),

nrow = 4, byrow = TRUE
)

continuous
x <- array(rnorm(125000), shape)

volume <- as_ieegio_volume(x, vox2ras = vox2ras)
plot(volume, zoom = 3, pixel_width = 0.5)

color rgb(a)
x <- array(

sample(c("red","blue", "green", "cyan", "yellow"),
12500, replace = TRUE),

shape
)
rgb <- as_ieegio_volume(x, vox2ras = vox2ras)
plot(rgb, zoom = 3, pixel_width = 0.5)

---- When RNifti package is not available ---------------------------

Emulate WebAssemply when RNifti is unavailable, using oro.nifti instead
old_opt <- options("ieegio.debug.emscripten" = TRUE)
on.exit({ options(old_opt) }, add = TRUE)

as_nifti_header 9

shape <- c(50, 50, 50)
vox2ras <- matrix(

c(-1, 0, 0, 25,
0, 0, 1, -25,
0, -1, 0, 25,
0, 0, 0, 1),

nrow = 4, byrow = TRUE
)

continuous
x <- array(rnorm(125000), shape)

In WebAssemply, RNifti is not available, using oro.nifti instead
volume <- as_ieegio_volume(x, vox2ras = vox2ras)

stopifnot(volume$type[[1]] == "oro")

plot(volume, zoom = 3, pixel_width = 0.5)

Cleanup: make sure the options are reset
options(old_opt)

as_nifti_header Internal method to extract header information from a ’NIfTI’ file

Description

Internal method to extract header information from a ’NIfTI’ file

Usage

as_nifti_header(x)

Arguments

x file path or an R object

Value

A list containing the file header information

10 burn_volume

burn_volume Burn image at given positions

Description

Burn image at given positions with given color and radius.

Usage

burn_volume(
image,
ras_position,
col = "red",
radius = 1,
reshape = FALSE,
alpha = FALSE,
blank_underlay = FALSE,
...,
preview = NULL

)

Arguments

image volume

ras_position image-defined right-anterior-posterior positions, an nx3 matrix, each row is an
’RAS’ coordinate

col vector of integer or characters, color of each contact

radius vector of positive number indicating the burning radius

reshape whether to reshape the image at a different resolution; default is false; can be
TRUE (image resolution will be doubled), a single number (size of isotropic vol-
ume along one side), or a length of three defining the new shape.

alpha whether to include alpha (transparent) channel. Default is false for compatibility
concerns (legacy software might not support reading alpha channel). In this
case, the background will be black. If alpha=TRUE is set, then the background
will be fully transparent.

blank_underlay whether to use blank image or the input image as underlay; default is FALSE (us-
ing image as underlay); alternative is TRUE, and use black or transparent back-
ground

... passed to as_ieegio_volume, useful if image is an array

preview indices (integer) of the position to visualize; default is NULL (no preview)

Value

Color image that is burnt; see imaging-volume.

convert-fst 11

Examples

if(interactive()) {

dim <- c(6, 6, 6)
image <- as_ieegio_volume(

array(rnorm(prod(dim)), dim),
vox2ras = rbind(cbind(diag(1, 3), -dim / 2),

c(0, 0, 0, 1))
)

ras_positions <- rbind(c(1, -1, 1.5), c(-2.25, -1, -0.75))

burned <- burn_volume(
image,
ras_positions,
col = c("red", "green"),
radius = 0.5,
reshape = c(24, 24, 24)

)

plot(
burned,
position = ras_positions[1,],
zoom = 15,
pixel_width = 0.25

)

}

convert-fst Convert ’FST’ files to other formats

Description

’HDF5’, ’CSV’ are common file formats that can be read into ’Matlab’ or ’Python’

Usage

convert_fst_to_hdf5(fst_path, hdf5_path, exclude_names = NULL)

convert_fst_to_csv(fst_path, csv_path, exclude_names = NULL)

Arguments

fst_path path to ’FST’ file

hdf5_path path to ’HDF5’ file; if file exists before the conversion, the file will be erased
first. Please make sure the files are backed up.

12 ieegio_sample_data

exclude_names table names to exclude

csv_path path to ’CSV’ file; if file exists before the conversion, the file will be erased first.
Please make sure the files are backed up.

Value

convert_fst_to_hdf5 will return a list of data saved to ’HDF5’; convert_fst_to_csv returns
the normalized ’CSV’ path.

ieegio_sample_data Download sample files

Description

Download sample files

Usage

ieegio_sample_data(file, test = FALSE, cache_ok = TRUE)

Arguments

file file to download; set to NULL to view all possible files

test test whether the sample file exists instead of downloading them; default is FALSE

cache_ok whether to use cache

Value

When test is false, returns downloaded file path (character); when test is true, returns whether
the expected sample exists (logical).

Examples

list available files
ieegio_sample_data()

check if file edfPlusD.edf exists
ieegio_sample_data("edfPlusD.edf", test = TRUE)

Not run:

ieegio_sample_data("edfPlusD.edf")

End(Not run)

imaging-streamlines 13

imaging-streamlines Read and write streamlines

Description

High-level functions to read and write streamlines, supporting 'TCK', 'TRK', 'TT' (read-only),
'VTK' poly-data (including legacy '.vtk', ’XML’-based '.vtp', ’HDF5’-based '.vtpb')

Usage

read_streamlines(file, ...)

write_streamlines(
x,
con,
format = c("auto", "tck", "trk", "vtk", "vtp", "vtpb"),
...

)

as_ieegio_streamlines(x, ...)

Default S3 method:
as_ieegio_streamlines(x, vox2ras = NULL, ..., class = NULL)

Arguments

file, con path to the streamline data

... passed to low-level functions accordingly

x R object that can be converted into an ieegio streamlines instance

format format to write to file, the file extensions must match with the format

vox2ras volume index to ’RAS’ coordinate transform matrix; default is identity matrix
and used by 'TRK' format

class additional class to be added to the instance

Value

read_streamlines and as_ieegio_streamlines returns a streamlines instance.

Examples

toy example
curve <- function(t) {

x <- sin(4 * t + sample(300, 1) / 100) + t + sample(seq_along(t)) / length(t) / 10
y <- cos(sin(t) + 5 * t) + sample(seq_along(t)) / length(t) / 10
z <- t * 3

14 imaging-streamlines

cbind(x, y, z)
}

10 lines, each line is represented by nx3 matrix
tracts <- lapply(seq(100, 109), function(n) {

curve(seq_len(n) / 100)
})

convert to streamline
x <- as_ieegio_streamlines(tracts)

Display
print(x)
plot(x, col = 1:10)

if(system.file(package = "r3js") != '') {
plot(x, method = "r3js")

}

Subset the first line (transformed)
coords <- x[[1]]$coords
head(coords)

Save different formats
tdir <- tempfile()
dir.create(tdir, showWarnings = FALSE, recursive = TRUE)

write_streamlines(x, file.path(tdir, "sample.tck"))
write_streamlines(x, file.path(tdir, "sample.trk"))
write_streamlines(x, file.path(tdir, "sample.trk.gz"))

Not run:

Require Python
write_streamlines(x, file.path(tdir, "sample.vtk"))
write_streamlines(x, file.path(tdir, "sample.vtp"))
write_streamlines(x, file.path(tdir, "sample.vtpb"))

End(Not run)

Read formats
y <- read_streamlines(file.path(tdir, "sample.trk"))

Compare x and y
diffs <- mapply(

x = as.vector(x),
y = as.vector(y),
function(x, y) {

range(x$coords - y$coords)
}

)

imaging-surface 15

Should be floating errors
max(abs(diffs))

unlink(tdir, recursive = TRUE)

imaging-surface Read and write surface files

Description

Supports surface geometry, annotation, measurement, and time-series data. Please use the high-
level function read_surface, which calls other low-level functions internally.

Usage

read_surface(file, format = "auto", type = NULL, ...)

write_surface(
x,
con,
format = c("gifti", "freesurfer"),
type = c("geometry", "annotations", "measurements", "color", "time_series"),
...,
name = 1

)

io_read_fs(
file,
type = c("geometry", "annotations", "measurements"),
format = "auto",
name = basename(file),
...

)

io_read_gii(file)

io_write_gii(x, con, ...)

Arguments

file, con path the file

format format of the file, for write_surface, this is either 'gifti' or 'freesurfer';
for read_surface, see ’Arguments’ section in read.fs.surface (when file
type is 'geometry') and read.fs.curv (when file type is 'measurements')

type type of the data; ignored if the file format is ’GIfTI’. For ’FreeSurfer’ files,
supported types are

16 imaging-surface

’geometry’ contains positions of mesh vertex nodes and face indices;
’annotations’ annotation file (usually with file extension 'annot') contain-

ing a color look-up table and an array of color keys. These files are used to
display discrete values on the surface such as brain atlas;

’measurements’ measurement file such as 'sulc' and 'curv' files, contain-
ing numerical values (often with continuous domain) for each vertex node

... for read_surface, the arguments will be passed to io_read_fs if the file is a
’FreeSurfer’ file.

x surface (geometry, annotation, measurement) data

name name of the data; for io_read_fs, this argument must be a character, and de-
fault is the file name; for write_surface, this argument can be an integer or a
character, representing the index or name of the corresponding measurement or
annotation column.

Value

A surface object container for read_surface, and the file path for write_surface

Examples

library(ieegio)

geometry
geom_file <- "gifti/GzipBase64/sujet01_Lwhite.surf.gii"

measurements
shape_file <- "gifti/GzipBase64/sujet01_Lwhite.shape.gii"

time series
ts_file <- "gifti/GzipBase64/fmri_sujet01_Lwhite_projection.time.gii"

if(ieegio_sample_data(geom_file, test = TRUE)) {

geometry <- read_surface(ieegio_sample_data(geom_file))
print(geometry)

measurement <- read_surface(ieegio_sample_data(shape_file))
print(measurement)

time_series <- read_surface(ieegio_sample_data(ts_file))
print(time_series)

merge measurement & time_series into geometry
merged <- merge(geometry, measurement, time_series)
print(merged)

make sure you install `rgl` package
plot(merged, name = c("measurements", "Shape001"))

imaging-volume 17

plot(merged, name = "time_series",
slice_index = c(1, 11, 21, 31))

}

imaging-volume Read and write volume data

Description

Read and write volume data (’MRI’, ’CT’, etc.) in ’NIfTI’ or ’MGH’ formats. Please use read_volume
and write_volume for high-level function. These functions will call other low-level functions in-
ternally.

Usage

read_volume(file, header_only = FALSE, format = c("auto", "nifti", "mgh"), ...)

write_volume(x, con, format = c("auto", "nifti", "mgh"), ...)

io_read_mgz(file, header_only = FALSE)

io_write_mgz(x, con, ...)

S3 method for class 'ieegio_volume'
io_write_mgz(x, con, ...)

S3 method for class 'ieegio_mgh'
io_write_mgz(x, con, ...)

S3 method for class 'nifti'
io_write_mgz(x, con, ...)

S3 method for class 'niftiImage'
io_write_mgz(x, con, ...)

S3 method for class 'ants.core.ants_image.ANTsImage'
io_write_mgz(x, con, ...)

S3 method for class 'array'
io_write_mgz(x, con, vox2ras = NULL, ...)

io_read_nii(
file,
method = c("rnifti", "oro", "ants"),

18 imaging-volume

header_only = FALSE,
...

)

io_write_nii(x, con, ...)

S3 method for class 'ieegio_nifti'
io_write_nii(x, con, ...)

S3 method for class 'ants.core.ants_image.ANTsImage'
io_write_nii(x, con, ...)

S3 method for class 'niftiImage'
io_write_nii(x, con, ...)

S3 method for class 'nifti'
io_write_nii(x, con, gzipped = NA, ...)

S3 method for class 'ieegio_mgh'
io_write_nii(x, con, ...)

S3 method for class 'array'
io_write_nii(
x,
con,
vox2ras = NULL,
datatype_code = NULL,
xyzt_units = c("NIFTI_UNITS_MM", "NIFTI_UNITS_SEC"),
intent_code = "NIFTI_INTENT_NONE",
...,
gzipped = NA

)

Arguments

file file path to read volume data

header_only whether to read header data only; default is FALSE

format format of the file to be written; choices are 'auto', 'nifti' or 'mgh'; default
is to 'auto' detect the format based on file names, which will save as a ’MGH’
file when file extension is 'mgz' or 'mgh', otherwise ’NIfTI’ format. We rec-
ommend explicitly setting this argument

... passed to other methods

x volume data (such as ’NIfTI’ image, array, or ’MGH’) to be saved

con file path to store image

vox2ras a 4x4 transform matrix from voxel indexing (column, row, slice) to scanner
(often ’T1-weighted’ image) ’RAS’ (right-anterior-superior) coordinate

imaging-volume 19

method method to read the file; choices are 'oro' (using readNIfTI), 'rnifti' (using
readNifti), and 'ants' (using as_ANTsImage).

gzipped for writing 'nii' data: whether the file needs to be compressed; default is in-
ferred from the file name. When the file ends with 'nii', then no compression
is used; otherwise the file will be compressed. If the file name does not end with
'nii' nor 'nii.gz', then the file extension will be added automatically.

datatype_code, xyzt_units, intent_code
additional flags for ’NIfTI’ headers, for advanced users

Format

format of the file; default is auto-detection, other choices are 'nifti' and 'mgh';

Value

Imaging readers return ieegio_volume objects. The writers return the file path to where the file is
saved to.

Examples

library(ieegio)

nifti_file <- "brain.demosubject.nii.gz"

Use `ieegio_sample_data(nifti_file)`
to download sample data

if(ieegio_sample_data(nifti_file, test = TRUE)) {

---- NIfTI examples ---

file <- ieegio_sample_data(nifti_file)

basic read
vol <- read_volume(file)

voxel to scanner RAS
vol$transforms$vox2ras

to freesurfer surface
vol$transforms$vox2ras_tkr

to FSL
vol$transforms$vox2fsl

plot(vol, position = c(10, 0, 30))

---- using other methods --------------------------------------
default

20 imaging-volume

vol <- read_volume(file, method = "rnifti", format = "nifti")
vol$header

lazy-load nifti
vol2 <- read_volume(file, method = "oro", format = "nifti")
vol2$header

Not run:
requires additional python environment

Using ANTsPyx
vol3 <- read_volume(file, method = "ants", format = "nifti")
vol3$header

End(Not run)

---- write --

write as NIfTI
f <- tempfile(fileext = ".nii.gz")

write_volume(vol, f, format = "nifti")

alternative method
write_volume(vol$header, f, format = "nifti")

write to mgz/mgh
f2 <- tempfile(fileext = ".mgz")

write_volume(vol, f, format = "mgh")

clean up
unlink(f)
unlink(f2)

---- Special case in WebAsssembly --------------------------------
oro.nifti backend is always used

Emulate WebAssemply when RNifti is unavailable, using oro.nifti instead
old_opt <- options("ieegio.debug.emscripten" = TRUE)
on.exit({ options(old_opt) }, add = TRUE)

In WebAssemply, RNifti is not available, using oro.nifti instead
vol <- read_volume(file)

stopifnot(vol$type[[1]] == "oro")

Cleanup: make sure the options are reset
options(old_opt)

}

io-trk 21

io-trk Read or write ’TCK’ streamlines

Description

Low-level functions; for high-level functions, please use read_streamlines or as_ieegio_streamlines
instead.

Low-level functions, supports compressed files; for high-level functions, please use read_streamlines
or as_ieegio_streamlines instead.

Usage

io_read_tck(file)

io_write_tck(
x,
con,
datatype = c("Float32LE", "Float32BE", "Float64LE", "Float64BE")

)

io_read_trk(file, half_voxel_offset = TRUE)

io_write_trk(x, con, half_voxel_offset = NA)

Arguments

file, con file path to the streamline file

x imaging-streamlines instance

datatype data storage type to write, default is 'Float32LE', 4-byte little ’endian’ float;
other choices are 'Float32BE', 'Float64LE', and 'Float64BE'

half_voxel_offset

whether to add 0.5 millimeter shift on each side, default is TRUE. See ’Details’
for explanation.

Details

'TRK' gains popularity due to its ability to store streamline attributes. However, this file format
suffer from ambiguous definition in the initial 'TrackVis' implementation. Typically in a medical
image file, there might exists a 4-by-4 matrix that maps the volume indices to the corresponding
anatomical right-anterior-superior 'RAS' locations. However, the original definition of 'TRK' does
not have this. Since version 2, 'TRK' introduced such matrix, but it was interpreted differently.
Instead of the volume index space, the source space is conformed 1 millimeter space, with the
origin at the first ’voxel’ corner instead of the center. Therefore there is a 0.5 mm shift at each
direction, and half_voxel_offset is designed to offset this shift.

22 io-trk

What has made this issue complicated was that some software, such as 'DSI-studio', seemed
to ignore that offset when converting from their own format to the 'TRK' format. If the file is
generated in such way, please set half_voxel_offset=FALSE to turn off the offset correction. We
always recommend that user store data in 'TCK' format.

Value

io_read_tck returns a ieegio streamline object, io_write_tck returns the connection or file path.

io_read_trk returns an imaging-streamlines instance.

Examples

run `ieegio_sample_data("streamlines/CNVII_R.tck")` to
download sample data

if(ieegio_sample_data("streamlines/CNVII_R.tck", test = TRUE)) {

path <- ieegio_sample_data("streamlines/CNVII_R.tck")

Read
streamlines <- io_read_tck(path)

plot(streamlines)

write
tfile <- tempfile(fileext = ".tck")
io_write_tck(streamlines, tfile, datatype = streamlines$header$datatype)

verify two files are identical
digest::digest(file = tfile) == digest::digest(file = path)

unlink(tfile)

}

This example uses sample data, run
`ieegio_sample_data("streamlines/CNVII_R.trk")` to download

if(ieegio_sample_data("streamlines/CNVII_R.trk", test = TRUE)) {

path <- ieegio_sample_data("streamlines/CNVII_R.trk")
tfile <- tempfile(fileext = ".trk")

read
x <- io_read_trk(path)

io-tt 23

write
io_write_trk(x, tfile)

compare two files
file.size(path) == file.size(tfile)

src_raw <- readBin(path, "raw", n = file.size(path))
dst_raw <- readBin(tfile, "raw", n = file.size(tfile))

equal_raw <- src_raw == dst_raw

Some reserved information are removed
all(equal_raw[-c(945:947)])

unlink(tfile)

}

io-tt Read ’TT’ streamline file

Description

Writer is not implemented yet. Please save as a 'TCK' file.

Usage

io_read_tt(file)

Arguments

file path to the streamline file

Value

An imaging-streamlines instance.

Examples

This example uses sample data, run
`ieegio_sample_data("streamlines/CNVII_R.trk")` to download

if(ieegio_sample_data("streamlines/CNVII_R.tt.gz", test = TRUE)) {

path <- ieegio_sample_data("streamlines/CNVII_R.tt.gz")

24 io-vtk-streamlines

read
x <- io_read_tt(path)

plot(x)

}

io-vtk-streamlines Read or write streamline data in ’VTK’ format

Description

This reader uses ’Python’ 'vtk' package, supports '.vtk', '.vtp', '.pvtp', '.vtpb' formats.

Usage

io_read_vtk_streamlines(file)

io_write_vtk_streamlines(x, con, binary = TRUE)

Arguments

file, con file path to the 'VTK' file, the format will be inferred from the file extension
(with default '.vtk')

x An imaging-streamlines object

binary for legacy '.vtk' file only, whether to store the data as binary file or ’ASCII’
plain text; default is true (binary).

Value

io_read_vtk_streamlines returns an imaging-streamlines object, while io_write_vtk_streamlines
writes the data to file

Examples

This example shows how to convert tck to vtk

run `ieegio_sample_data("streamlines/CNVII_R.tck")` to
download sample data

if(ieegio_sample_data("streamlines/CNVII_R.tck", test = TRUE)) {

path <- ieegio_sample_data("streamlines/CNVII_R.tck")

streamlines <- as_ieegio_streamlines(path)

write to vtk
tfile <- tempfile(fileext = ".vtk")

io_h5_valid 25

io_write_vtk_streamlines(streamlines, con = tfile)

read
vtk_streamlines <- io_read_vtk_streamlines(tfile)

compare
plot(streamlines)
plot(vtk_streamlines)

0 0
range(streamlines[[1]]$coords - vtk_streamlines[[1]]$coords)

}

io_h5_valid Check whether a ’HDF5’ file can be opened for read/write

Description

Check whether a ’HDF5’ file can be opened for read/write

Usage

io_h5_valid(file, mode = c("r", "w"), close_all = FALSE)

io_h5_names(file)

Arguments

file path to file

mode 'r' for read access and 'w' for write access

close_all whether to close all connections or just close current connection; default is false.
Set this to TRUE if you want to close all other connections to the file

Value

io_h5_valid returns a logical value indicating whether the file can be opened. io_h5_names re-
turns a character vector of dataset names.

Examples

x <- array(1:27, c(3,3,3))
f <- tempfile()

No data written to the file, hence invalid
io_h5_valid(f, 'r')

26 io_read_ants_transform

io_write_h5(x, f, 'dset')
io_h5_valid(f, 'w')

Open the file and hold a connection
ptr <- hdf5r::H5File$new(filename = f, mode = 'w')

Can read, but cannot write
io_h5_valid(f, 'r') # TRUE
io_h5_valid(f, 'w') # FALSE

However, this can be reset via `close_all=TRUE`
io_h5_valid(f, 'r', close_all = TRUE)
io_h5_valid(f, 'w') # TRUE

Now the connection is no longer valid
ptr

clean up
unlink(f)

io_read_ants_transform

Read ANTs transform file

Description

Reads spatial transformation files in ANTs (Advanced Normalization Tools) format, including affine
matrices (.mat) and deformation fields (.h5, .nii.gz).

Usage

io_read_ants_transform(
file,
space_from,
space_to,
interpretation = c("passive", "active")

)

Arguments

file character string specifying the path to the transform file. Supported formats
include:

• .mat: ITK/ANTs affine transform (4x4 matrix)
• .h5: HDF5 composite transform (may contain affine and/or deformation

components)
• .nii, .nii.gz: Deformation field images

io_read_ants_transform 27

space_from character string or ieegio_space object identifying the source space. If miss-
ing, will be inferred from the filename using BIDS-style from-<space> entity
(e.g., "sub-01_from-T1w_to-MNI_xfm.h5" yields "T1w").

space_to character string or ieegio_space object identifying the target space. If missing,
will be inferred from the filename using BIDS-style to-<space> entity.

interpretation character string specifying how to interpret the transform:

• "passive" (default): Axis/coordinate frame transform. Represents how
coordinate systems relate to each other. This is the typical interpretation for
brain imaging registration transforms.

• "active": Point transform. Directly transforms point coordinates from
source to target space.

Details

ANTs transforms operate in LPS (Left-Posterior-Superior) coordinate convention. The returned
transform object automatically sets orientation to "LPS" for both source and target spaces.

For composite transforms (e.g., .h5 files containing both affine and deformation components), the
function returns a single transform object. Use as_ieegio_transform with a list to combine mul-
tiple transforms.

This function requires the rpyANTs package and a configured Python environment.

Value

An ieegio_transforms object with:

data List containing the transform data (matrix for affine, ANTsTransform object for deformation)

type "affine" or "deformation"

interpretation "active" or "passive"

space_from Source space (with "LPS" orientation for ANTs)

space_to Target space (with "LPS" orientation for ANTs)

dimension Spatial dimension (typically 3)

BIDS Support

The function can automatically infer space names from BIDS-compliant file names:

• from-<source>: Source space identifier

• to-<target>: Target space identifier

Example: "sub-01_from-T1w_to-MNI152NLin2009cAsym_mode-image_xfm.h5"

See Also

as_ieegio_transform for converting objects to transforms and chaining transform_orientation
for orientation conversion transforms

28 io_read_flirt_transform

Examples

Not run:
Read an affine transform
xfm <- io_read_ants_transform("sub-01_from-T1w_to-MNI_xfm.mat")

Explicitly specify spaces
xfm <- io_read_ants_transform(

"transform.h5",
space_from = "native",
space_to = "MNI152"

)

Read as active (point) transform
xfm <- io_read_ants_transform(

"transform.mat",
interpretation = "active"

)

Chain multiple transforms
xfm1 <- io_read_ants_transform("from-T1w_to-T2w_xfm.mat")
xfm2 <- io_read_ants_transform("from-T2w_to-MNI_xfm.h5")
combined <- as_ieegio_transform(list(xfm1, xfm2))

End(Not run)

io_read_flirt_transform

Read FSL FLIRT transformation matrix

Description

Reads a 4x4 affine transformation matrix from an FSL FLIRT output file. FLIRT matrices operate
in FSL scaled-voxel coordinate system and require source and reference images to convert to world
(RAS) coordinates.

Usage

io_read_flirt_transform(file, space_from, space_to)

Arguments

file character string specifying the path to the FLIRT matrix file. This is a plain text
file containing a 4x4 affine matrix.

space_from character string or ieegio_space object identifying the source (moving) space.
If missing, will be inferred from the filename using BIDS-style from-<space>
entity.

io_read_flirt_transform 29

space_to character string or ieegio_space object identifying the target (reference) space.
If missing, will be inferred from the filename using BIDS-style to-<space>
entity.

Details

FLIRT matrices operate in FSL scaled-voxel coordinate system, which is:

• Voxel indices multiplied by voxel sizes (pixdim)

• X-axis inverted if the image has positive sform determinant (neurological convention)

The returned transform has "FSL" orientation for both source and target spaces. To convert to world
(RAS) coordinates, use transform_flirt2ras with the source and/or reference images.

FLIRT matrices are active transforms: they map point coordinates from the source (moving) image
space to the reference (fixed) image space.

Value

An ieegio_transforms object with:

data List containing the 4x4 FLIRT matrix

type "affine"

interpretation "active" (FLIRT matrices are point transforms)

space_from Source space (with "FSL" orientation)

space_to Target space (with "FSL" orientation)

dimension 3

BIDS Support

The function can automatically infer space names from BIDS-compliant file names:

• from-<source>: Source space identifier

• to-<target>: Target space identifier

See Also

transform_flirt2ras for converting to world coordinates io_read_ants_transform for reading
ANTs format transforms as_ieegio_transform for converting objects to transforms

Examples

Not run:
Read a FLIRT matrix
xfm <- io_read_flirt_transform("source_to_reference.mat")

Convert to RAS coordinates (requires source and reference images)
xfm_ras <- transform_flirt2ras(xfm, source = "source.nii.gz",

reference = "reference.nii.gz")

30 io_read_fstarray_or_h5

Explicitly specify spaces
xfm <- io_read_flirt_transform(

"transform.mat",
space_from = "T1w",
space_to = "MNI152"

)

End(Not run)

io_read_fstarray_or_h5

Function try to load ’FST’ arrays, if not found, read ’HDF5’ arrays

Description

Experimental function; use with caution.

Usage

io_read_fstarray_or_h5(
fst_path,
h5_path,
h5_name,
fst_need_transpose = FALSE,
fst_need_drop = FALSE,
ram = FALSE

)

Arguments

fst_path ’FST’ file cache path

h5_path alternative ’HDF5’ file path

h5_name ’HDF5’ data name
fst_need_transpose

does ’FST’ data need transpose?

fst_need_drop drop dimensions

ram whether to load to memory directly or perform lazy loading

Details

RAVE stores data with redundancy. One electrode data is usually saved with two copies in different
formats: ’HDF5’ and ’FST’, where ’HDF5’ is cross-platform and supported by multiple languages
such as Matlab, Python, etc, while ’FST’ format is supported by R only, with super high read/write
speed. load_fst_or_h5 checks whether the presence of ’FST’ file, if failed, then it reads data from
persistent ’HDF5’ file.

io_read_h5 31

Value

If ’FST’ cache file exists, returns LazyFST object, otherwise returns LazyH5 instance

io_read_h5 Lazy Load ’HDF5’ File via hdf5r-package

Description

Wrapper for class LazyH5, which load data with "lazy" mode - only read part of dataset when
needed.

Usage

io_read_h5(file, name, read_only = TRUE, ram = FALSE, quiet = FALSE)

Arguments

file ’HDF5’ file

name group/data_name path to dataset (H5D data)

read_only only used if ram=FALSE, whether the returned LazyH5 instance should be read
only

ram load data to memory immediately, default is false

quiet whether to suppress messages

Value

If ram is true, then return data as arrays, otherwise return a LazyH5 instance.

See Also

io_write_h5

Examples

file <- tempfile()
x <- array(1:120, dim = c(4,5,6))

save x to file with name /group/dataset/1
io_write_h5(x, file, '/group/dataset/1', quiet = TRUE)

read data
y <- io_read_h5(file, '/group/dataset/1', ram = TRUE)
class(y) # array

z <- io_read_h5(file, '/group/dataset/1', ram = FALSE)
class(z) # LazyH5

32 io_write_h5

dim(z)

clean up
unlink(file)

io_write_h5 Save objects to ’HDF5’ file without trivial checks

Description

Save objects to ’HDF5’ file without trivial checks

Usage

io_write_h5(
x,
file,
name,
chunk = "auto",
level = 4,
replace = TRUE,
new_file = FALSE,
ctype = NULL,
quiet = FALSE,
...

)

Arguments

x an array, a matrix, or a vector

file path to ’HDF5’ file

name path/name of the data; for example, "group/data_name"

chunk chunk size

level compress level from 0 - no compression to 10 - max compression

replace should data be replaced if exists

new_file should removing the file if old one exists

ctype data type such as "character", "integer", or "numeric". If set to NULL then au-
tomatically detect types. Note for complex data please store separately the real
and imaginary parts.

quiet whether to suppress messages, default is false

... passed to other LazyH5$save

Value

Absolute path of the file saved

LazyFST 33

See Also

io_read_h5

Examples

file <- tempfile()
x <- array(1:120, dim = 2:5)

save x to file with name /group/dataset/1
io_write_h5(x, file, '/group/dataset/1', chunk = dim(x))

load data
y <- io_read_h5(file, '/group/dataset/1')

read data to memory
y[]

clean up
unlink(file)

LazyFST R6 Class to Load ’FST’ Files

Description

provides low-level hybrid array loading for ’FST’ file; used internally

Value

none

none

none

vector, dimensions

subset of data

Methods

Public methods:
• LazyFST$open()

• LazyFST$close()

• LazyFST$save()

• LazyFST$new()

• LazyFST$get_dims()

• LazyFST$subset()

34 LazyFST

Method open(): to be compatible with LazyH5

Usage:
LazyFST$open(...)

Arguments:
... ignored

Method close(): close the connection

Usage:
LazyFST$close(..., .remove_file = FALSE)

Arguments:
... ignored
.remove_file whether to remove the file when garbage collected

Method save(): to be compatible with LazyH5

Usage:
LazyFST$save(...)

Arguments:
... ignored

Method new(): constructor

Usage:
LazyFST$new(file_path, transpose = FALSE, dims = NULL, ...)

Arguments:
file_path where the data is stored
transpose whether to load data transposed
dims data dimension, only support 1 or 2 dimensions
... ignored

Method get_dims(): get data dimension

Usage:
LazyFST$get_dims(...)

Arguments:
... ignored

Method subset(): subset data

Usage:
LazyFST$subset(i = NULL, j = NULL, ..., drop = TRUE)

Arguments:
i, j, ... index along each dimension
drop whether to apply drop the subset

Author(s)

Zhengjia Wang

LazyH5 35

Examples

library(ieegio)

Data to save, 8 MB
x <- matrix(rnorm(1000000), ncol = 100)

Save to local disk
f <- tempfile()
io_write_fst(as.data.frame(x), con = f)

Load via LazyFST
dat <- LazyFST$new(file_path = f, dims = c(10000, 100))

dat < 1 MB

Check whether the data is identical
range(dat[] - x)

system.time(dat[,1])

system.time(dat[1:100,])

LazyH5 Lazy ’HDF5’ file loader

Description

Provides hybrid data structure for ’HDF5’ file. The class is not intended for direct-use. Please see
io_read_h5 and io_write_h5.

Public fields

quiet whether to suppress messages

Methods

Public methods:
• LazyH5$do_finalize()

• LazyH5$print()

• LazyH5$new()

• LazyH5$save()

• LazyH5$open()

• LazyH5$close()

• LazyH5$subset()

36 LazyH5

• LazyH5$get_dims()

• LazyH5$get_type()

Method do_finalize(): garbage collection method

Usage:
LazyH5$do_finalize()

Returns: none

Method print(): overrides print method

Usage:
LazyH5$print()

Returns: self instance

Method new(): constructor

Usage:
LazyH5$new(file_path, data_name, read_only = FALSE, quiet = FALSE)

Arguments:

file_path where data is stored in ’HDF5’ format
data_name the data stored in the file
read_only whether to open the file in read-only mode. It’s highly recommended to set this to

be true, otherwise the file connection is exclusive.
quiet whether to suppress messages, default is false

Returns: self instance

Method save(): save data to a ’HDF5’ file

Usage:
LazyH5$save(
x,
chunk = "auto",
level = 7,
replace = TRUE,
new_file = FALSE,
force = TRUE,
ctype = NULL,
size = NULL,
...

)

Arguments:

x vector, matrix, or array
chunk chunk size, length should matches with data dimension
level compress level, from 1 to 9
replace if the data exists in the file, replace the file or not
new_file remove the whole file if exists before writing?

LazyH5 37

force if you open the file in read-only mode, then saving objects to the file will raise error. Use
force=TRUE to force write data

ctype data type, see mode, usually the data type of x. Try mode(x) or storage.mode(x) as
hints.

size deprecated, for compatibility issues
... passed to self open() method

Method open(): open connection
Usage:
LazyH5$open(new_dataset = FALSE, robj, ...)

Arguments:
new_dataset only used when the internal pointer is closed, or to write the data
robj data array to save
... passed to createDataSet in hdf5r package

Method close(): close connection
Usage:
LazyH5$close(all = TRUE)

Arguments:
all whether to close all connections associated to the data file. If true, then all connections,

including access from other programs, will be closed

Method subset(): subset data
Usage:
LazyH5$subset(..., drop = FALSE, stream = FALSE, envir = parent.frame())

Arguments:
drop whether to apply drop the subset
stream whether to read partial data at a time
envir if i,j,... are expressions, where should the expression be evaluated
i, j, ... index along each dimension
Returns: subset of data

Method get_dims(): get data dimension
Usage:
LazyH5$get_dims(stay_open = TRUE)

Arguments:
stay_open whether to leave the connection opened
Returns: dimension of the array

Method get_type(): get data type
Usage:
LazyH5$get_type(stay_open = TRUE)

Arguments:
stay_open whether to leave the connection opened
Returns: data type, currently only character, integer, raw, double, and complex are available,
all other types will yield "unknown"

38 low-level-read-write

low-level-read-write Low-level file read and write

Description

Interfaces to read from or write to files with common formats.

Usage

io_read_fst(
con,
method = c("proxy", "data_table", "data_frame", "header_only"),
...,
old_format = FALSE

)

io_write_fst(x, con, compress = 50, ...)

io_read_ini(con, ...)

io_read_json(con, ...)

io_write_json(
x,
con = stdout(),
...,
digits = ceiling(-log10(.Machine$double.eps)),
pretty = TRUE,
serialize = TRUE

)

io_read_mat(
con,
method = c("auto", "R.matlab", "pymatreader", "mat73"),
verbose = TRUE,
on_convert_error = c("warning", "error", "ignore"),
...

)

io_write_mat(x, con, method = c("R.matlab", "scipy"), ...)

io_read_yaml(con, ...)

io_write_yaml(x, con, ..., sorted = FALSE)

Arguments

con connection or file

low-level-read-write 39

method method to read table. For 'fst', the choices are

’proxy’ do not read data to memory, query the table when needed;
’data_table’ read as data.table;
’data_frame’ read as data.frame;
’header_only’ read 'fst' table header.

For 'mat', the choices are

’auto’ automatically try the native option, and then 'pymatreader' if fails;
’R.matlab’ use the native method (provided by readMat); only support ’MAT

5.0’ format;
’pymatreader’ use ’Python’ library 'pymatreader';
’mat73’ use ’Python’ library 'mat73'.

... passed to internal function calls

old_format see fst

x data to write to disk

compress compress level from 0 to 100; default is 50

digits, pretty for writing numeric values to ’json’ format

serialize set to TRUE to serialize the data to ’json’ format (with the data types, default); or
FALSE to save the values without types

verbose whether to print out the process
on_convert_error

for reading 'mat' files with ’Python’ modules, the results will be converted
to R objects in the end. Not all objects can be converted. This input defines
the behavior when the conversion fails; choices are "error", "warning", or
"ignore"

sorted whether to sort the list; default is FALSE

Value

The reader functions returns the data extracted from files, mostly as R objects, with few excep-
tions on some ’Matlab’ files. When reading a ’Matlab’ file requires using ’Python’ modules,
io_read_mat will try its best effort to convert ’Python’ objects to R. However, such conversion
might fail. In this case, the result might partially contain ’Python’ objects with warnings.

Examples

---- fst --

f <- tempfile(fileext = ".fst")
x <- data.frame(

a = 1:10,
b = rnorm(10),
c = letters[1:10]

)

40 low-level-read-write

io_write_fst(x, con = f)

default reads in proxy
io_read_fst(f)

load as data.table
io_read_fst(f, "data_table")

load as data.frame
io_read_fst(f, "data_frame")

get header
io_read_fst(f, "header_only")

clean up
unlink(f)

---- json ---
f <- tempfile(fileext = ".json")

x <- list(a = 1L, b = 2.3, c = "a", d = 1+1i)

default is serialize
io_write_json(x, f)

io_read_json(f)

cat(readLines(f), sep = "\n")

just values
io_write_json(x, f, serialize = FALSE, pretty = FALSE)

io_read_json(f)

cat(readLines(f), sep = "\n")

clean up
unlink(f)

---- Matlab .mat --

Not run:

f <- tempfile(fileext = ".mat")

x <- list(a = 1L, b = 2.3, c = "a", d = 1+1i)

save as MAT 5.0
io_write_mat(x, f)

merge.ieegio_surface 41

io_read_mat(f)

require setting up Python environment

io_read_mat(f, method = "pymatreader")

MAT 7.3 example
sample_data <- ieegio_sample_data("mat_v73.mat")
io_read_mat(sample_data)

clean up
unlink(f)

End(Not run)

---- yaml ---

f <- tempfile(fileext = ".yaml")

x <- list(a = 1L, b = 2.3, c = "a")
io_write_yaml(x, f)

io_read_yaml(f)

clean up
unlink(f)

merge.ieegio_surface Merge two ’ieegio’ surfaces

Description

Either merge surface objects by attributes or merge geometries

Usage

S3 method for class 'ieegio_surface'
merge(
x,
y,
...,
merge_type = c("attribute", "geometry"),
merge_space = c("model", "world"),
transform_index = 1,
verbose = TRUE

)

42 merge.ieegio_surface

Arguments

x, y, ... 'ieegio' surface objects, see as_ieegio_surface or read_surface. Object
x must contain geometry information.

merge_type type of merge:

"attribute" merge y,... into x by attributes such as color, measurements,
annotations, or time-series data, assuming x,y,... all refer to the same
geometry, hence the underlying number of vertices should be the same.

"geometry" merge y,... into x by geometry; this requires the surfaces to
merge have geometries and cannot be only surface attributes. Two mesh
objects will be merged into one, and face index will be re-calculated. The
merge happens in transformed space, Notice the attributes will be ignored
and eventually discarded during merge.

merge_space space to merge the geometries; only used when merge_type is "geometry".
Default is to directly merge the surfaces in "model" space, i.e. assuming the
surfaces share the same transform; alternatively, if the model to world trans-
forms are different, users can choose to merge in "world" space, then all the
surfaces will be transformed into world space and mapped back to the model
space in x

transform_index

which local-to-world transform to use when merging geometries in the world
space; default is the first transform for each surface object. The transform list
can be obtained from surface$geometry$transforms and transform_index
indicates the index of the transform matrices. The length of transform_index
can be either 1 (same for all surfaces) or the length of all the surfaces, (i.e.
length of list(x,y,...)), when the index needs to be set for each surface
respectively. If any index is set to NA, then it means no transform is to be applied
and that surface will be merged assuming its model space is the world space.

verbose whether to verbose the messages

Value

A merged surface object

Examples

Construct example geometry
dodecahedron_vert <- matrix(

ncol = 3, byrow = TRUE,
c(-0.62, -0.62, -0.62, 0.62, -0.62, -0.62, -0.62, 0.62, -0.62,

0.62, 0.62, -0.62, -0.62, -0.62, 0.62, 0.62, -0.62, 0.62,
-0.62, 0.62, 0.62, 0.62, 0.62, 0.62, 0.00, -0.38, 1.00,
0.00, 0.38, 1.00, 0.00, -0.38, -1.00, 0.00, 0.38, -1.00,
-0.38, 1.00, 0.00, 0.38, 1.00, 0.00, -0.38, -1.00, 0.00,
0.38, -1.00, 0.00, 1.00, 0.00, -0.38, 1.00, 0.00, 0.38,
-1.00, 0.00, -0.38, -1.00, 0.00, 0.38)

)

merge.ieegio_surface 43

dodecahedron_face <- matrix(
ncol = 3L, byrow = TRUE,
c(1, 11, 2, 1, 2, 16, 1, 16, 15, 1, 15, 5, 1, 5, 20, 1, 20, 19,
1, 19, 3, 1, 3, 12, 1, 12, 11, 2, 11, 12, 2, 12, 4, 2, 4, 17,
2, 17, 18, 2, 18, 6, 2, 6, 16, 3, 13, 14, 3, 14, 4, 3, 4, 12,
3, 19, 20, 3, 20, 7, 3, 7, 13, 4, 14, 8, 4, 8, 18, 4, 18, 17,
5, 9, 10, 5, 10, 7, 5, 7, 20, 5, 15, 16, 5, 16, 6, 5, 6, 9,
6, 18, 8, 6, 8, 10, 6, 10, 9, 7, 10, 8, 7, 8, 14, 7, 14, 13)

)

x0 <- as_ieegio_surface(dodecahedron_vert, faces = dodecahedron_face)

plot(x0)

---- merge by attributes -----------------------------------

point-cloud but with vertex measurements
y1 <- as_ieegio_surface(

dodecahedron_vert,
measurements = data.frame(MyVariable = dodecahedron_vert[, 1]),
transform = diag(c(2,1,0.5,1))

)

plot(y1)

the geometry of `y1` will be discarded and only attributes
(in this case, measurements:MyVariable) will be merged to `x`

z1 <- merge(x0, y1, merge_type = "attribute")

plot(z1)

---- merge by geometry --

y2 <- as_ieegio_surface(
dodecahedron_vert + 4, faces = dodecahedron_face,
transform = diag(c(2, 1, 0.5, 1))

)

plot(y2)

merge directly in model space: transform matrix of `y2` will be ignored
z2 <- merge(x0, y2, merge_type = "geometry", merge_space = "model")

plot(z2)

merge x, y2 in the world space where transforms will be respected
z3 <- merge(x0, y2, merge_type = "geometry", merge_space = "world")

plot(z3)

44 merge.ieegio_volume

merge.ieegio_volume Merge ’ieegio’ volumes

Description

Merge volume data into base image. The images must be static 3-dimensional volume data. Cur-
rently time-series or 4-dimensional data is not supported.

Usage

S3 method for class 'ieegio_volume'
merge(x, y, ..., thresholds = 0, reshape = dim(x), na_fill = NA)

Arguments

x base image to be merged

y, ... images to be merged into x

thresholds numerical threshold for y,..., can be length of one or more, if images to overlay
is more than one. The image values lower than the threshold will be trimmed
out

reshape output shape, default is the dimension of x; if changed, then the underlay will
be sampled into the new shape

na_fill how to handle missing values; default is NA; for compatibility, you might want
to set to 0

Value

Merged volume with dimension reshape.

Examples

base_array <- array(0, c(15, 15, 15))
base_array[4:6, 4:6, 4:6] <- runif(27) * 255

generate a 15x15x15 mask with 1mm spacing
vox2ras1 <- diag(1, 4)
vox2ras1[1:3, 4] <- -5
x <- as_ieegio_volume(base_array, vox2ras = vox2ras1)

15x15x15 mask with 0.5mmx1mmx1mm spacing but oblique to `x`
vox2ras2 <- matrix(

nrow = 4, byrow = TRUE,
c(
2, 0.2, -0.1, -3,
-0.2, 1, 0.4, -4,

new_space 45

0.3, -0.1, 1, -1,
0, 0, 0, 1

)
)
vox2ras2[1:3, 4] <- c(-3,-4, -1)
base_array[4:6, 4:6, 4:6] <- runif(27) * 255
y <- as_ieegio_volume(base_array, vox2ras = vox2ras2)

merge y into x and up-sample mask to 64^3 volume
set to higher number to get better interpolation quality
Only voxels of y>0 will be merged to x
z <- merge(x, y, reshape = c(64, 64, 64), thresholds = 0)

Visualize

oldpar <- par(mfrow = c(1, 3), mar = c(0, 0, 2, 0))

zoom <- 10
crosshair_ras <- c(0, 0, 0)
pixel_width <- 2

plot(x,
zoom = zoom,
position = crosshair_ras,
pixel_width = pixel_width,
main = "Original - underlay")

plot(y,
zoom = zoom,
position = crosshair_ras,
pixel_width = pixel_width,
main = "Original - overlay")

plot(
z,
zoom = zoom,
position = crosshair_ras,
pixel_width = pixel_width,
main = "Merged & up-sampled")

reset graphical state
par(oldpar)

new_space Define a coordinate space

Description

Creates an object representing a coordinate space/reference frame used in medical imaging. The
orientation defines the anatomical meaning of the coordinate axes.

46 new_space

Usage

new_space(name = "", orientation = ORIENTATION_CODES, dimension = 3, ...)

Arguments

name character string identifying the coordinate space (e.g., "T1w", "MNI152NLin2009cAsym",
"scanner"); default is "", a wildcard that indicates arbitrary space

orientation character string specifying the axis orientation convention. Common orienta-
tions in brain imaging:

• "RAS": Right-Anterior-Superior (FreeSurfer, NIfTI default)
• "LAS": Left-Anterior-Superior
• "LPS": Left-Posterior-Superior (DICOM, ANTs, ITK)
• "RPS": Right-Posterior-Superior
• "LPI": Left-Posterior-Inferior
• "RPI": Right-Posterior-Inferior
• "LAI": Left-Anterior-Inferior
• "RAI": Right-Anterior-Inferior

dimension integer dimension of the space (typically 3 for 3D imaging)

... additional attributes to attach to the space object

Details

Orientation codes use three letters to define the positive direction of the x, y, and z axes respectively:

• First letter (x-axis): Left or Right

• Second letter (y-axis): Anterior or Posterior

• Third letter (z-axis): Superior or Inferior

For example, "RAS" means: +x points Right, +y points Anterior (toward face), +z points Superior
(toward top of head).

Value

An S3 object of class "ieegio_space" with attributes orientation and dimension

Examples

FreeSurfer/NIfTI convention
scanner_space <- new_space("scanner", orientation = "RAS")
print(scanner_space)

DICOM/ANTs convention
mni_space <- new_space("MNI152NLin2009cAsym", orientation = "LPS", dimension = 3)
format(mni_space)

NWBHDF5IO 47

NWBHDF5IO Creates a NWBHDF5IO file container

Description

Class definition for ’PyNWB’ container; use read_nwb for construction function.

Active bindings

opened Whether the container is opened.

Methods

Public methods:
• NWBHDF5IO$new()

• NWBHDF5IO$get_handler()

• NWBHDF5IO$open()

• NWBHDF5IO$close()

• NWBHDF5IO$close_linked_files()

• NWBHDF5IO$read()

• NWBHDF5IO$with()

• NWBHDF5IO$clone()

Method new(): Initialize the class

Usage:
NWBHDF5IO$new(path = NULL, mode = c("r", "w", "r+", "a", "w-", "x"), ...)

Arguments:
path Path to a '.nwb' file
mode Mode for opening the file
... Other parameters passed to nwb$NWBHDF5IO

Method get_handler(): Get internal file handler. Please make sure you close the handler
correctly.

Usage:
NWBHDF5IO$get_handler()

Returns: File handler, i.e. ’PyNWB’ NWBHDF5IO instance.

Method open(): Open the connections, must be used together with $close method. For high-
level method, see $with

Usage:
NWBHDF5IO$open()

Returns: container itself

Examples:

48 NWBHDF5IO

\dontrun{

low-level method to open NWB file, for safer methods, see
`container$with()` below

container$open()

data <- container$read()

process data...

Make sure the container is closed!
container$close()

}

Method close(): Close the connections (low-level method, see ’with’ method below)

Usage:
NWBHDF5IO$close(close_links = TRUE)

Arguments:

close_links Whether to close all files linked to from this file; default is true

Returns: Nothing

Method close_linked_files(): Close all opened, linked-to files. 'MacOS' and 'Linux'
automatically release the linked-to file after the linking file is closed, but 'Windows' does not,
which prevents the linked-to file from being deleted or truncated. Use this method to close all
opened, linked-to files.

Usage:
NWBHDF5IO$close_linked_files()

Returns: Nothing

Method read(): Read the 'NWB' file from the ’IO’ source. Please use along with '$with'
method

Usage:
NWBHDF5IO$read()

Returns: 'NWBFile' container

Method with(): Safe wrapper for reading and handling 'NWB' file. See class examples.

Usage:
NWBHDF5IO$with(expr, quoted = FALSE, envir = parent.frame())

Arguments:

expr R expression to evaluate
quoted Whether expr is quoted; default is false
envir environment for expr to evaluate; default is the parent frame (see parent.frame)

NWBHDF5IO 49

Returns: Whatever results generated by expr

Examples:

\dontrun{

container$with({
data <- container$read()
process data

})

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
NWBHDF5IO$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

Running this example requires a .nwb file

library(rnwb)
container <- NWBHDF5IO$new(path = file)
container$with({

data <- container$read()
electrode_table <- data$electrodes[convert = TRUE]

})

print(electrode_table)

End(Not run)

--
Method `NWBHDF5IO$open`
--

Not run:

low-level method to open NWB file, for safer methods, see
`container$with()` below

container$open()

data <- container$read()

50 plot.ieegio_surface

process data...

Make sure the container is closed!
container$close()

End(Not run)

--
Method `NWBHDF5IO$with`
--

Not run:

container$with({
data <- container$read()
process data

})

End(Not run)

plot.ieegio_surface Plot ’3D’ surface objects

Description

Plot ’3D’ surface objects

Usage

S3 method for class 'ieegio_surface'
plot(
x,
method = c("auto", "r3js", "rgl_basic", "rgl_full"),
transform = 1L,
name = "auto",
vlim = NULL,
col = c("black", "white"),
slice_index = NULL,
...

)

Arguments

x 'ieegio_surface' object, see read_surface

method plot method; 'basic' for just rendering the surfaces; 'full' for rendering with
axes and title

plot.ieegio_surface 51

transform which transform to use, can be a 4-by-4 matrix; if the surface contains transform
matrix, then this argument can be an integer index of the transform embedded, or
the target (transformed) space name; print names(x$transforms) for choices

name attribute and name used for colors, options can be 'color' if the surface has
color matrix; c('annotations', varname) for rendering colors from annota-
tions with variable varname; c('measurements', varname) for rendering col-
ors from measurements with variable varname; 'time_series' for plotting
time series slices; or "flat" for flat color; default is 'auto', which will plot
the first available data. More details see ’Examples’.

vlim when plotting with continuous data (name is measurements or time-series), the
value limit used to generate color palette; default is NULL: the range of the values.
This argument can be length of 1 (creating symmetric value range) or 2. If set,
then values exceeding the range will be trimmed to the limit

col color or colors to form the color palette when value data is continuous; when
name="flat", the last color will be used

slice_index when plotting the name="time_series" data, the slice indices to plot; default
is to select a maximum of 4 slices

... ignored

Examples

library(ieegio)

geometry
geom_file <- "gifti/GzipBase64/sujet01_Lwhite.surf.gii"

measurements
shape_file <- "gifti/GzipBase64/sujet01_Lwhite.shape.gii"

time series
ts_file <- "gifti/GzipBase64/fmri_sujet01_Lwhite_projection.time.gii"

if(ieegio_sample_data(geom_file, test = TRUE)) {

geometry <- read_surface(ieegio_sample_data(geom_file))
measurement <- read_surface(ieegio_sample_data(shape_file))
time_series <- read_surface(ieegio_sample_data(ts_file))
ts_demean <- apply(

time_series$time_series$value,
MARGIN = 1L,
FUN = function(x) {

x - mean(x)
}

)
time_series$time_series$value <- t(ts_demean)

merge measurement & time_series into geometry (optional)

52 plot.ieegio_volume

merged <- merge(geometry, measurement, time_series)
print(merged)

---- plot method/style ------------------------------------
plot(merged)

---- plot data --

Measurements or annotations

the first column of `measurements`
plot(merged, name = "measurements")

equivalent to
plot(merged, name = list("measurements", 1L))

equivalent to
measurement_names <- names(merged$measurements$data_table)
plot(merged, name = list("measurements", measurement_names[[1]]))

Time-series

automatically select 4 slices, trim the color palette
from -25 to 25
plot(merged, name = "time_series", vlim = c(-25, 25),

slice_index = 1L)

plot(
merged,
name = "time_series",
vlim = c(-25, 25),
slice_index = 64,
col = c("#053061", "#2166ac", "#4393c3",

"#92c5de", "#d1e5f0", "#ffffff",
"#fddbc7", "#f4a582", "#d6604d",
"#b2182b", "#67001f")

)

}

plot.ieegio_volume Plot ’3D’ volume in anatomical slices

Description

Plot ’3D’ volume in anatomical slices

plot.ieegio_volume 53

Usage

S3 method for class 'ieegio_volume'
plot(
x,
position = c(0, 0, 0),
center_position = FALSE,
which = c("coronal", "axial", "sagittal"),
slice_index = 1L,
transform = "vox2ras",
zoom = 1,
pixel_width = max(zoom/2, 1),
col = c("black", "white"),
alpha = NA,
crosshair_gap = 4,
crosshair_lty = 2,
crosshair_col = "#00FF00A0",
label_col = crosshair_col,
continuous = TRUE,
vlim = NULL,
add = FALSE,
main = "",
axes = FALSE,
background = col[[1]],
foreground = col[[length(col)]],
...,
.xdata = x$data

)

Arguments

x 'ieegio_volume' object; see read_volume

position position in 'RAS' (right-anterior-superior) coordinate system on which cross-
hair should focus

center_position

whether to center canvas at position, default is FALSE

which which slice to plot; choices are "coronal", "axial", and "sagittal"

slice_index length of 1: if x has fourth dimension (e.g. ’fMRI’), then which slice index to
draw

transform which transform to apply, can be a 4-by-4 matrix, an integer or name indicat-
ing the matrix in x$transforms; this needs to be the transform matrix from
voxel index to ’RAS’ (right-anterior-superior coordinate system), often called
'xform', 'sform', 'qform' in ’NIfTI’ terms, or 'Norig' in ’FreeSurfer’

zoom zoom-in level

pixel_width pixel size, ranging from 0.05 to 50; default is the half of zoom or 1, whichever
is greater; the unit of pixel_width divided by zoom is milliliter

col color palette for continuous x values

54 plot.ieegio_volume

alpha opacity value if the image is to be displayed with transparency

crosshair_gap the cross-hair gap in milliliter

crosshair_lty the cross-hair line type

crosshair_col the cross-hair color; set to NA to hide

label_col the color of anatomical axis labels (i.e. "R" for right, "A" for anterior, and "S"
for superior); default is the same as crosshair_col

continuous reserved

vlim the range limit of the data; default is computed from range of x$data; data
values exceeding the range will be trimmed

add whether to add the plot to existing underlay; default is FALSE

main, ... passed to image

axes whether to draw axes; default is FALSE
background, foreground

background and foreground colors; default is the first and last elements of col

.xdata default is x$data, used to speed up the calculation when multiple different an-
gles are to be plotted

Examples

library(ieegio)

nifti_file <- "nifti/rnifti_example.nii.gz"
nifti_rgbfile <- "nifti/rnifti_example_rgb.nii.gz"

Use
`ieegio_sample_data(nifti_file)`
and
`ieegio_sample_data(nifti_rgbfile)`
to download sample data

if(
ieegio_sample_data(nifti_file, test = TRUE) &&
ieegio_sample_data(nifti_rgbfile, test = TRUE)

) {

---- NIfTI examples ---

underlay_path <- ieegio_sample_data(nifti_file)
overlay_path <- ieegio_sample_data(nifti_rgbfile)

basic read
underlay <- read_volume(underlay_path)
overlay <- read_volume(overlay_path)

par(mfrow = c(1, 3), mar = c(0, 0, 3.1, 0))

ras_position <- c(50, -10, 15)

pynwb_module 55

ras_str <- paste(sprintf("%.0f", ras_position), collapse = ",")

for(which in c("coronal", "axial", "sagittal")) {
plot(x = underlay, position = ras_position, crosshair_gap = 10,

crosshair_lty = 2, zoom = 3, which = which,
main = sprintf("%s T1RAS=[%s]", which, ras_str))

plot(x = overlay, position = ras_position,
crosshair_gap = 10, label_col = NA,
add = TRUE, alpha = 0.9, zoom = 5, which = which)

}

}

pynwb_module Install ’NWB’ via ’pynwb’

Description

Install 'NWB' via 'pynwb'

Usage

install_pynwb(python_ver = "auto", verbose = TRUE)

pynwb_module(force = FALSE, error_if_missing = TRUE)

Arguments

python_ver ’Python’ version, see configure_conda; default is "auto", which is suggested

verbose whether to print the installation messages

force whether to force-reload the module
error_if_missing

whether to raise errors when the module fails to load; default is true

Value

A ’Python’ module pynwb.

56 read_bci2000

read_bci2000 Read ’BCI2000’ data file

Description

Read ’BCI2000’ data file

Usage

read_bci2000(
file,
extract_path = getOption("ieegio.extract_path", NULL),
header_only = FALSE,
cache_ok = TRUE,
verbose = TRUE

)

Arguments

file file path to the data file

extract_path location to where the extracted information is to be stored

header_only whether to only load header data

cache_ok whether existing cache should be reused; default is TRUE. This input can speed
up reading large data files; set to FALSE to delete cache before importing.

verbose whether to print processing messages; default is TRUE

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.

Examples

if(ieegio_sample_data("bci2k.dat", test = TRUE)) {
file <- ieegio_sample_data("bci2k.dat")

x <- read_bci2000(file)
print(x)

channel <- x$get_channel(1)

plot(
channel$time,
channel$value,
type = "l",
main = channel$info$Label,
xlab = "Time",

read_brainvis 57

ylab = channel$info$Unit
)

}

read_brainvis Read ’BrainVision’ data

Description

Read ’BrainVision’ data

Usage

read_brainvis(
file,
extract_path = getOption("ieegio.extract_path", NULL),
header_only = FALSE,
cache_ok = TRUE,
verbose = TRUE

)

Arguments

file file path to the data file

extract_path location to where the extracted information is to be stored

header_only whether to only load header data

cache_ok whether existing cache should be reused; default is TRUE. This input can speed
up reading large data files; set to FALSE to delete cache before importing.

verbose whether to print processing messages; default is TRUE

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.

Examples

if(ieegio_sample_data("brainvis.dat", test = TRUE)) {
ensure the header and marker files are downloaded as well
ieegio_sample_data("brainvis.vhdr")
ieegio_sample_data("brainvis.dat")
file <- ieegio_sample_data("brainvis.vmrk")

x <- read_brainvis(file)
print(x)

x$get_header()

58 read_edf

x$get_channel_table()

x$get_annotations()

channel <- x$get_channel(10)

plot(
channel$time,
channel$value,
type = "l",
main = channel$info$Label,
xlab = "Time",
ylab = channel$info$Unit

)
}

read_edf Read ’EDF’ or ’BDF’ data file

Description

Read ’EDF’ or ’BDF’ data file

Usage

read_edf(
con,
extract_path = getOption("ieegio.extract_path", NULL),
header_only = FALSE,
cache_ok = TRUE,
begin = 0,
end = Inf,
convert = TRUE,
verbose = TRUE

)

Arguments

con file or connection to the data file
extract_path location to where the extracted information is to be stored
header_only whether to only load header data
cache_ok whether existing cache should be reused; default is TRUE. This input can speed

up reading large data files; set to FALSE to delete cache before importing.
begin, end begin and end of the data to read
convert whether to convert digital numbers to analog signals; default is TRUE
verbose whether to print processing messages; default is TRUE

read_nsx 59

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.

Examples

---- EDF/BDF(+) ---

Run `ieegio_sample_data("edfPlusD.edf")` to download sample data

Tun example if the sample data exists
if(ieegio_sample_data("edfPlusD.edf", test = TRUE)) {

edf_path <- ieegio_sample_data("edfPlusD.edf")

data <- read_edf(edf_path)

data$get_header()

data$get_annotations()

data$get_channel_table()

channel <- data$get_channel(1)

plot(
channel$time,
channel$value,
type = "l",
main = channel$info$Label,
xlab = "Time",
ylab = channel$info$Unit

)

}

read_nsx Read (’BlackRock’) ’NEV’ ’NSx’ data

Description

Read (’BlackRock’) ’NEV’ ’NSx’ data

Usage

read_nsx(
file,
extract_path = getOption("ieegio.extract_path", NULL),

60 read_nwb

header_only = FALSE,
cache_ok = TRUE,
include_waveform = FALSE,
verbose = TRUE

)

Arguments

file file path to the data file

extract_path location to where the extracted information is to be stored

header_only whether to only load header data

cache_ok whether existing cache should be reused; default is TRUE. This input can speed
up reading large data files; set to FALSE to delete cache before importing.

include_waveform

whether to include ’waveform’ data (usually for online spike sorting); default is
FALSE

verbose whether to print processing messages; default is TRUE

Value

A cached object that is readily to be loaded to memory; see SignalDataCache for class definition.

read_nwb Read ’NWB’ format

Description

Life cycle: experimental. Read "Neurodata Without Borders" (’NWB’ format) file. Unlike other
readers read_nwb returns low-level ’Python’ class handler via pynwb module.

Usage

read_nwb(file, mode = c("r", "w", "r+", "a", "w-", "x"), ...)

Arguments

file path to ’NWB’ file

mode file open mode; default is 'r' (read-only)

... passed to NWBHDF5IO initialize function

Value

A NWBHDF5IO instance

read_nwb 61

Examples

if(ieegio_sample_data("nwb_sample.nwb", test = TRUE)) {
file <- ieegio_sample_data("nwb_sample.nwb")

Create NWBIO container
container <- read_nwb(file)

Open connection
container$open()

read meta data
data <- container$read()
data

get `test_timeseries` data
ts_data <- data$get_acquisition("test_timeseries")
ts_data

read timeseries data into memory
ts_arr <- ts_data$data[]
ts_arr

Convert Python array to R
using `rpymat::py_to_r(ts_arr)` or
as.numeric(ts_arr)

Make sure you close the connection
container$close()

}

Requires setting up Python environment
run `ieegio::install_pynwb()` to set up environment first

Not run:

Replicating tutorial
https://pynwb.readthedocs.io/en/stable/tutorials/general/plot_file.html

library(rpymat)

Load Python module
pynwb <- import("pynwb")
uuid <- import("uuid")
datetime <- import("datetime")
np <- import("numpy")
tz <- import("dateutil.tz")

62 read_nwb

2018L is 2018 as integer
session_start_time <- datetime$datetime(

2018L, 4L, 25L, 2L, 30L, 3L,
tzinfo=tz$gettz("US/Pacific"))

---- Create NWB file object ------------------------
nwbfile <- pynwb$NWBFile(

session_description="Mouse exploring a closed field",
identifier=py_str(uuid$uuid4()),
session_start_time=session_start_time,
session_id="session_4321",
experimenter=py_list(c("Baggins, Frodo")),
lab="Bag End Laboratory",
institution="University of Middle Earth at the Shire",
experiment_description="Thank you Bilbo Baggins.",
keywords=py_list(c("behavior", "exploration"))

)

---- Add subject ------------------------------------
subject <- pynwb$file$Subject(

subject_id="001",
age="P90D",
description="mouse 5",
species="Mus musculus",
sex="M"

)

nwbfile$subject <- subject

nwbfile

---- Add TimeSeries ------------------------------------
data <- seq(100, 190, by = 10)
time_series_with_rate <- pynwb$TimeSeries(

name="test_timeseries",
description="an example time series",
data=data,
unit="m",
starting_time=0.0,
rate=1.0

)
time_series_with_rate

nwbfile$add_acquisition(time_series_with_rate)

---- New Spatial positions ------------------------------------
position_data <- cbind(

seq(0, 10, length.out = 50),
seq(0, 9, length.out = 50)

)
position_timestamps = seq(0, 49) / 200

resample_volume 63

spatial_series_obj = pynwb$behavior$SpatialSeries(
name="SpatialSeries",
description="(x,y) position in open field",
data=position_data,
timestamps=position_timestamps,
reference_frame="(0,0) is bottom left corner",

)
spatial_series_obj

position_obj = pynwb$behavior$Position(
spatial_series=spatial_series_obj)

position_obj

---- Behavior Processing Module ------------------------------
behavior_module <- nwbfile$create_processing_module(

name="behavior", description="processed behavioral data"
)
behavior_module$add(position_obj)

nwbfile$processing$behavior

omit some process

---- Write ---
f <- normalizePath(tempfile(fileext = ".nwb"),

winslash = "/",
mustWork = FALSE)

io <- pynwb$NWBHDF5IO(f, mode = "w")
io$write(nwbfile)
io$close()

End(Not run)

resample_volume Down-sample or super-sample volume

Description

Using nearest-neighbor.

Usage

resample_volume(x, new_dim, na_fill = NA)

64 resample_volume

Arguments

x image volume

new_dim new dimension

na_fill value to fill if missing

Value

A new volume with desired shape

Examples

---- Toy example ----------------------------

dm <- c(6, 6, 6)
arr <- array(seq_len(prod(dm)) + 0.5, dm)
orig <- as_ieegio_volume(

arr, vox2ras = cbind(diag(1, nrow = 4, ncol = 3), c(-dm / 2, 1)))

resample
downsampled <- resample_volume(orig, new_dim = c(3, 3, 3))
dim(downsampled)

up-sample on coronal
upsampled <- resample_volume(orig, new_dim = c(20, 20, 24))
dim(upsampled)

par(mfrow = c(2, 2), mar = c(0, 0, 2.1, 0.1))
plot(orig, pixel_width = 0.5, zoom = 20, main = "Original")
plot(downsampled, pixel_width = 0.5, zoom = 20, main = "Down-sampled")
plot(upsampled, pixel_width = 0.5, zoom = 20, main = "Super-sampled")
plot(

orig,
main = "Overlay super-sample (diff)",
col = c("black", "white"),
pixel_width = 0.5, zoom = 20

)
plot(

upsampled,
add = TRUE,
col = c("white", "black"),
pixel_width = 0.5, zoom = 20,
alpha = 0.5

)

---- Real example ---------------------------
nifti_file <- "brain.demosubject.nii.gz"

if(ieegio_sample_data(nifti_file, test = TRUE)) {

orig <- read_volume(ieegio_sample_data(nifti_file))
dim(orig)

SignalDataCache 65

resample
downsampled <- resample_volume(orig, new_dim = c(30, 30, 30))
dim(downsampled)

up-sample on coronal
upsampled <- resample_volume(orig, new_dim = c(300, 300, 64))
dim(upsampled)

par(mfrow = c(2, 2), mar = c(0, 0, 2.1, 0.1))
plot(orig, main = "Original")
plot(downsampled, main = "Down-sampled")
plot(upsampled, main = "Super-sampled")
plot(

orig,
main = "Overlay super-sample",
col = c("black", "white"),
zoom = 2,
vlim = c(0, 255)

)
plot(

upsampled,
add = TRUE,
col = c("white", "black"),
zoom = 2,
alpha = 0.5,
vlim = c(0, 255)

)

}

SignalDataCache Class definition for signal cache

Description

This class is an internal abstract class

Methods

Public methods:

• SignalDataCache$get_header()

• SignalDataCache$get_annotations()

• SignalDataCache$get_channel_table()

• SignalDataCache$get_channel()

• SignalDataCache$delete()

66 surface_to_surface

Method get_header(): Get header information, often small list object

Usage:
SignalDataCache$get_header(...)

Arguments:
... passed to child methods

Method get_annotations(): Get annotation information, often a large table

Usage:
SignalDataCache$get_annotations(...)

Arguments:
... passed to child methods

Method get_channel_table(): Get channel table

Usage:
SignalDataCache$get_channel_table(...)

Arguments:
... passed to child methods

Method get_channel(): Get channel data

Usage:
SignalDataCache$get_channel(x, ...)

Arguments:
x channel order or label
... passed to child methods

Returns: Channel signal with time-stamps inheriting class 'ieegio_get_channel'

Method delete(): Delete file cache

Usage:
SignalDataCache$delete(...)

Arguments:
... passed to child methods

surface_to_surface Transform surface between coordinate spaces

Description

Transforms surface vertex positions from one coordinate space or orientation to another, optionally
applying an additional custom transform.

Usage

surface_to_surface(surface, space_from = "", space_to = "", transform = NULL)

surface_to_surface 67

Arguments

surface an ieegio_surface object or file path; see as_ieegio_surface for valid inputs

space_from source coordinate space; either an ieegio_space object (from new_space) or a
character string; default is empty string

space_to target coordinate space; either an ieegio_space object or a character string;
default is empty string

transform optional 4x4 affine transformation matrix or ieegio_transforms object to ap-
ply; see as_ieegio_transform

Details

The function handles orientation changes (e.g., "RAS" to "LPS") and optional custom transforms. It
creates a transform chain consisting of: an affine (orientation alignment from source), the custom
transform, and a post-affine (final orientation alignment to target).

If the provided transform has a "passive" interpretation, it is automatically converted to an "active"
interpretation before being applied to the vertex coordinates.

Value

A transformed ieegio_surface object with updated vertex positions and transform metadata

See Also

as_ieegio_surface for creating surface objects, new_space for defining coordinate spaces, transform_orientation
for orientation transforms, volume_to_surface for creating surfaces from volumes

Examples

library(ieegio)

geometry
geom_file <- "gifti/GzipBase64/sujet01_Lwhite.surf.gii"

if(ieegio_sample_data(geom_file, test = TRUE)) {

surf_ras <- read_surface(ieegio_sample_data(geom_file))
plot(surf_ras)

---- Change axis orientation ------------------
convert from RAS orientation to LPS
surf_lps <- surface_to_surface(

surf_ras,
space_from = new_space("", orientation = "RAS"),
space_to = new_space("", orientation = "LPS")

)
plot(surf_lps)

validate
lps_verts <- diag(c(-1, -1, 1, 1)) %*% surf_ras$geometry$vertices

68 transform_flirt2ras

range(surf_lps$geometry$vertices - lps_verts)

---- Apply transforms ------------------
transform <- matrix(

byrow = TRUE, nrow = 4,
c(
0.5, 0, 0.3, 1,
0, -1, 0.2, 2,
0, 0.7, -0.5, 4,
0, 0, 0, 1

)
)
surf_stretch <- surface_to_surface(surf_ras, transform = transform)
plot(surf_stretch)

validate
stretch_verts <- transform %*% surf_ras$geometry$vertices
range(surf_stretch$geometry$vertices - stretch_verts)

}

transform_flirt2ras Convert FLIRT transform to world (RAS) coordinates

Description

Converts an FSL FLIRT matrix from FSL scaled-voxel coordinates to world (RAS) coordinates.
Allows partial conversion by specifying only source, only reference, or both images.

Usage

transform_flirt2ras(transform, source = NULL, reference = NULL)

Arguments

transform an ieegio_transforms object with FSL orientation (typically from io_read_flirt_transform),
or a 4x4 matrix

source source (moving) image used in FLIRT registration. Can be:

• A file path to a NIfTI image
• An ieegio_volume object
• NULL to skip source-side conversion

reference reference (fixed) image used in FLIRT registration. Can be:

• A file path to a NIfTI image
• An ieegio_volume object
• NULL to skip reference-side conversion

transform_flirt2ras 69

Details

FSL FLIRT matrices operate in a scaled-voxel coordinate system that depends on the image geom-
etry. The conversion to world coordinates uses:

world_transform = ref_vox2ras %*% ref_fsl2vox %*% flirt %*% src_vox2fsl %*% src_ras2vox

Where:

• src_ras2vox: Inverse of source image’s voxel-to-RAS matrix
• src_vox2fsl: Source voxel-to-FSL coordinate transform
• flirt: The original FLIRT matrix
• ref_fsl2vox: Inverse of reference voxel-to-FSL transform
• ref_vox2ras: Reference image’s voxel-to-RAS matrix

The FSL coordinate system uses scaled voxels with possible X-axis flip depending on the image’s
sform determinant sign.

Value

An ieegio_transforms object with updated orientations:

• Both images provided: RAS -> RAS transform
• Source only: RAS -> FSL transform (source side converted)
• Reference only: FSL -> RAS transform (reference side converted)
• Neither: FSL -> FSL transform (unchanged)

See Also

io_read_flirt_transform for reading FLIRT matrices transform_orientation for general ori-
entation transforms

Examples

Not run:
Read FLIRT matrix
xfm <- io_read_flirt_transform("source_to_reference.mat")

Full conversion to RAS coordinates
xfm_ras <- transform_flirt2ras(xfm,

source = "source.nii.gz",
reference = "reference.nii.gz")

Partial conversion (reference side only)
xfm_partial <- transform_flirt2ras(xfm, reference = "reference.nii.gz")

Using ieegio_volume objects
src_vol <- read_volume("source.nii.gz", header_only = TRUE)
ref_vol <- read_volume("reference.nii.gz", header_only = TRUE)
xfm_ras <- transform_flirt2ras(xfm, source = src_vol, reference = ref_vol)

End(Not run)

70 transform_orientation

transform_orientation Create transform between coordinate orientations

Description

Generates an affine transformation to convert coordinates or coordinate frames between different
anatomical orientation conventions (e.g., RAS to LPS). Supports all 48 possible 3D orientations in-
cluding axis permutations, plus FSL scaled-voxel coordinates (which require an image for conver-
sion).

Usage

transform_orientation(
space_from,
orientation_from,
orientation_to,
interpretation = c("active", "passive"),
image = NULL

)

Arguments

space_from either an ieegio_space object or a character string identifying the source space.
If provided, orientation_from must be omitted (orientation is extracted from
the space object).

orientation_from

character string specifying the source orientation (e.g., "RAS", "LPS", "FSL").
Only used if space_from is missing. Must be one of the 48 valid orientation
codes plus "FSL".

orientation_to character string specifying the target orientation. Must be one of the 48 valid
orientation codes plus "FSL".

interpretation character string specifying transform interpretation:

• "active" (default): Point transform - transforms point coordinates from
one orientation to another. Use this when you have coordinates in the source
orientation and want to convert them.

• "passive": Axis transform - transforms the coordinate frame/basis vec-
tors. This is the transpose of the active transform. Use this when transform-
ing reference frames or basis vectors.

image optional image for FSL coordinate conversion. Required when either orientation_from
or orientation_to is "FSL" (but not both). Can be a file path or an ieegio_volume
object.

transform_orientation 71

Details

The function creates orthogonal transformations (rotations and reflections) to convert between dif-
ferent anatomical coordinate conventions. For active transforms, the matrix can be directly ap-
plied to homogeneous point coordinates. For passive transforms, the matrix transforms coordinate
axes/frames instead.

Common orientation codes (first 8):

• RAS, LAS, LPS, RPS, LPI, RPI, LAI, RAI (standard axis order)

Extended orientations (40 more) include axis permutations like:

• PIR, AIL, SAR, etc. (permuted axes)

FSL Coordinates: When "FSL" orientation is involved, an image is required for conversion be-
cause FSL coordinates are image-dependent (scaled voxels with possible X-flip). Three scenarios
are supported:

• FSL -> FSL: Identity transform (no image needed)

• FSL -> RAS/other: Uses vox2ras %*% fsl2vox from image

• RAS/other -> FSL: Uses vox2fsl %*% ras2vox from image

The relationship between active and passive interpretations: passive_matrix = t(active_matrix)
for orthogonal transforms.

Value

An ieegio_transforms object containing a 4x4 affine transformation matrix

Examples

Active transform: convert point coordinates from RAS to LPS
trans <- transform_orientation(orientation_from = "RAS",

orientation_to = "LPS",
interpretation = "active")

trans$data[[1]] # diag(-1, -1, 1, 1)

Apply to a point
point_ras <- c(10, 20, 30, 1)
point_lps <- trans$data[[1]] %*% point_ras

Using a space object
space <- new_space("scanner", orientation = "RAS")
trans <- transform_orientation(space_from = space,

orientation_to = "LPS")

Passive transform: transform coordinate axes
trans_passive <- transform_orientation(orientation_from = "RAS",

orientation_to = "LPS",
interpretation = "passive")

With axis permutation

72 volume_to_surface

trans <- transform_orientation(orientation_from = "RAS",
orientation_to = "PIR")

Not run:
FSL to RAS conversion (requires image)
trans_fsl2ras <- transform_orientation(orientation_from = "FSL",

orientation_to = "RAS",
image = "brain.nii.gz")

End(Not run)

volume_to_surface Create smooth surface from volume mask or data

Description

Create smooth surface from volume mask or data

Usage

volume_to_surface(
volume,
lambda = 0.2,
degree = 2,
threshold_lb = 0.5,
threshold_ub = NA,
...

)

Arguments

volume volume object or path to the NIfTI volume files, see as_ieegio_volume for
details

lambda, degree smooth parameters; see vcg_smooth_implicit for details. To disable smooth-
ing, set lambda to negative or NA

threshold_lb, threshold_ub
threshold of volume, see vcg_isosurface; default is any voxel value above 0.5

... passed to as_ieegio_volume

Value

A as_ieegio_surface object; the surface is transformed into anatomical space defined by the
volume.

write_edf 73

Examples

toy example; in practice, use tha path to the volume
volume <- array(0, dim = rep(30, 3))
volume[11:20, 11:20, 3:28] <- 1
volume[3:28, 11:20, 11:20] <- 1
volume[11:20, 3:28, 11:20] <- 1
vox2ras <- diag(1, 4)

surf <- volume_to_surface(volume, vox2ras = vox2ras)

if(interactive()) {
plot(surf)

}

write_edf Write to ’EDF’ format

Description

Currently supports continuous ’EDF+’ format with annotations

Usage

as_edf_channel(
x,
channel_num,
sample_rate,
label = sprintf("Ch%d", channel_num),
physical_min = NA,
physical_max = NA,
is_annotation = NA,
transducer_type = "",
unit = "uV",
filter = "",
comment = ""

)

write_edf(
channels,
con,
patient_id = "anomymous",
recording_id = NULL,
record_duration = NA,
physical_min = NA,
physical_max = NA,

74 write_edf

start_time = Sys.time()
)

Arguments

x channel signals or annotations; for signals, x is a numeric vector; for annota-
tions, x is a data frame with 'timestamp', 'comments', and optionally 'duration'
(case sensitive) columns

channel_num channel number, integer

sample_rate sampling frequency

label channel label, default is 'Ch' followed by the channel number for signal chan-
nels, or "EDF Annotation" for annotations

physical_min, physical_max
range of the channel values when converting from physical unit to digital; de-
fault is the range of x

is_annotation whether the channel is annotation
transducer_type

transducer type

unit physical unit or dimension; default is 'uV'

filter preliminary filters applied to the signals

comment additional comments (maximum 32 bytes)

channels list of channel data, each element should be generated from as_edf_channel

con file path or binary connection

patient_id patient identifier; default is 'anomymous'

recording_id recording identifier
record_duration

duration of each recording chunk: ’EDF’ format slices the data into equal-length
chunks and writes the data (interleave channels) to file; this is the duration for
each chunk, not the entire recording length

start_time start time of the recording; see as.POSIXct

Value

as_edf_channel returns a channel wrapper (with metadata); write_edf writes to the connection
and returns nothing

Examples

signal <- sin(seq(0, 10, 0.01))

channels <- list(

signal
as_edf_channel(channel_num = 1, signal,

sample_rate = 375.5),

write_edf 75

as_edf_channel(channel_num = 2, signal,
sample_rate = 200),

annotation
as_edf_channel(channel_num = 3, data.frame(

timestamp = c(0, 1, 2),
comments = c("Start", "half to go", "Finish!")

))

)

write to file
path <- tempfile(fileext = ".edf")
write_edf(con = path, channels = channels)

edf <- read_edf(con = path, extract_path = tempdir())

annot <- edf$get_annotations()
annot

ch1 <- edf$get_channel(1)

around 1e-5 due to digitization
range(ch1$value[seq_along(signal)] - signal)

ch2 <- edf$get_channel(2)
range(ch2$value[seq_along(signal)] - signal)

plot(ch1$time, ch1$value, type = "l",
main = "Toy-example")

lines(ch2$time, ch2$value, col = "red")
abline(v = annot$timestamp, col = "gray", lty = 2)

edf$delete()
unlink(path)

Index

as.POSIXct, 74
as_ANTsImage, 19
as_edf_channel (write_edf), 73
as_ieegio_streamlines, 21
as_ieegio_streamlines

(imaging-streamlines), 13
as_ieegio_surface, 3, 42, 67
as_ieegio_transform, 6, 27, 29, 67
as_ieegio_volume, 7, 10
as_nifti_header, 9

burn_volume, 10

configure_conda, 55
convert-fst, 11
convert_fst_to_csv (convert-fst), 11
convert_fst_to_hdf5 (convert-fst), 11

data.frame, 39
data.table, 39
drop, 34, 37

fst, 39

hdf5r-package, 31

ieegio_sample_data, 12
image, 54
imaging-streamlines, 13
imaging-surface, 15
imaging-volume, 17
install_pynwb (pynwb_module), 55
io-trk, 21
io-tt, 23
io-vtk-streamlines, 24
io_h5_names (io_h5_valid), 25
io_h5_valid, 25
io_read_ants_transform, 26, 29
io_read_flirt_transform, 28, 68, 69
io_read_fs (imaging-surface), 15
io_read_fst (low-level-read-write), 38

io_read_fstarray_or_h5, 30
io_read_gii (imaging-surface), 15
io_read_h5, 31, 33, 35
io_read_ini (low-level-read-write), 38
io_read_json (low-level-read-write), 38
io_read_mat (low-level-read-write), 38
io_read_mgz (imaging-volume), 17
io_read_nii (imaging-volume), 17
io_read_tck (io-trk), 21
io_read_trk (io-trk), 21
io_read_tt (io-tt), 23
io_read_vtk_streamlines

(io-vtk-streamlines), 24
io_read_yaml (low-level-read-write), 38
io_write_fst (low-level-read-write), 38
io_write_gii (imaging-surface), 15
io_write_h5, 31, 32, 35
io_write_json (low-level-read-write), 38
io_write_mat (low-level-read-write), 38
io_write_mgz (imaging-volume), 17
io_write_nii (imaging-volume), 17
io_write_tck (io-trk), 21
io_write_trk (io-trk), 21
io_write_vtk_streamlines

(io-vtk-streamlines), 24
io_write_yaml (low-level-read-write), 38

LazyFST, 31, 33
LazyH5, 31, 34, 35
low-level-read-write, 38

merge.ieegio_surface, 41
merge.ieegio_volume, 44
mode, 37

new_space, 45, 67
NWBHDF5IO, 47, 60

plot.ieegio_surface, 50
plot.ieegio_volume, 52

76

INDEX 77

pynwb_module, 55

read.fs.curv, 15
read.fs.surface, 15
read_bci2000, 56
read_brainvis, 57
read_edf, 58
read_nsx, 59
read_nwb, 47, 60
read_streamlines, 21
read_streamlines (imaging-streamlines),

13
read_surface, 4, 42, 50
read_surface (imaging-surface), 15
read_volume, 53
read_volume (imaging-volume), 17
readMat, 39
readNIfTI, 19
readNifti, 19
resample_volume, 63

SignalDataCache, 56, 57, 59, 60, 65
surface_to_surface, 66

transform_flirt2ras, 29, 68
transform_orientation, 27, 67, 69, 70

vcg_isosurface, 72
vcg_smooth_implicit, 72
volume_to_surface, 67, 72

write_edf, 73
write_streamlines

(imaging-streamlines), 13
write_surface (imaging-surface), 15
write_volume (imaging-volume), 17

	as_ieegio_surface
	as_ieegio_transform
	as_ieegio_volume
	as_nifti_header
	burn_volume
	convert-fst
	ieegio_sample_data
	imaging-streamlines
	imaging-surface
	imaging-volume
	io-trk
	io-tt
	io-vtk-streamlines
	io_h5_valid
	io_read_ants_transform
	io_read_flirt_transform
	io_read_fstarray_or_h5
	io_read_h5
	io_write_h5
	LazyFST
	LazyH5
	low-level-read-write
	merge.ieegio_surface
	merge.ieegio_volume
	new_space
	NWBHDF5IO
	plot.ieegio_surface
	plot.ieegio_volume
	pynwb_module
	read_bci2000
	read_brainvis
	read_edf
	read_nsx
	read_nwb
	resample_volume
	SignalDataCache
	surface_to_surface
	transform_flirt2ras
	transform_orientation
	volume_to_surface
	write_edf
	Index

