
Package ‘knitr’
December 20, 2025

Type Package

Title A General-Purpose Package for Dynamic Report Generation in R

Version 1.51

Description Provides a general-purpose tool for dynamic report generation in R
using Literate Programming techniques.

Depends R (>= 3.6.0)

Imports evaluate (>= 0.15), highr (>= 0.11), methods, tools, xfun (>=
0.52), yaml (>= 2.1.19)

Suggests bslib, DBI (>= 0.4-1), digest, formatR, gifski, gridSVG,
htmlwidgets (>= 0.7), jpeg, JuliaCall (>= 0.11.1), magick,
litedown, markdown (>= 1.3), otel, otelsdk, png, ragg,
reticulate (>= 1.4), rgl (>= 0.95.1201), rlang, rmarkdown,
sass, showtext, styler (>= 1.2.0), targets (>= 0.6.0), testit,
tibble, tikzDevice (>= 0.10), tinytex (>= 0.56), webshot,
rstudioapi, svglite

License GPL

URL https://yihui.org/knitr/

BugReports https://github.com/yihui/knitr/issues

Encoding UTF-8

VignetteBuilder litedown, knitr

SystemRequirements Package vignettes based on R Markdown v2 or
reStructuredText require Pandoc (http://pandoc.org). The
function rst2pdf() requires rst2pdf
(https://github.com/rst2pdf/rst2pdf).

Collate 'block.R' 'cache.R' 'citation.R' 'hooks-html.R' 'plot.R'
'utils.R' 'defaults.R' 'concordance.R' 'engine.R' 'highlight.R'
'themes.R' 'header.R' 'hooks-asciidoc.R' 'hooks-chunk.R'
'hooks-extra.R' 'hooks-latex.R' 'hooks-md.R' 'hooks-rst.R'
'hooks-textile.R' 'hooks.R' 'otel.R' 'output.R' 'package.R'
'pandoc.R' 'params.R' 'parser.R' 'pattern.R' 'rocco.R' 'spin.R'
'table.R' 'template.R' 'utils-conversion.R' 'utils-rd2html.R'
'utils-string.R' 'utils-sweave.R' 'utils-upload.R'
'utils-vignettes.R' 'zzz.R'

1

https://yihui.org/knitr/
https://github.com/yihui/knitr/issues

2

RoxygenNote 7.3.3

NeedsCompilation no

Author Yihui Xie [aut, cre] (ORCID: <https://orcid.org/0000-0003-0645-5666>,
URL: https://yihui.org),

Abhraneel Sarma [ctb],
Adam Vogt [ctb],
Alastair Andrew [ctb],
Alex Zvoleff [ctb],
Amar Al-Zubaidi [ctb],
Andre Simon [ctb] (the CSS files under inst/themes/ were derived from

the Highlight package http://www.andre-simon.de),
Aron Atkins [ctb],
Aaron Wolen [ctb],
Ashley Manton [ctb],
Atsushi Yasumoto [ctb] (ORCID: <https://orcid.org/0000-0002-8335-495X>),
Ben Baumer [ctb],
Brian Diggs [ctb],
Brian Zhang [ctb],
Bulat Yapparov [ctb],
Cassio Pereira [ctb],
Christophe Dervieux [ctb],
David Hall [ctb],
David Hugh-Jones [ctb],
David Robinson [ctb],
Doug Hemken [ctb],
Duncan Murdoch [ctb],
Elio Campitelli [ctb],
Ellis Hughes [ctb],
Emily Riederer [ctb],
Fabian Hirschmann [ctb],
Fitch Simeon [ctb],
Forest Fang [ctb],
Frank E Harrell Jr [ctb] (the Sweavel package at inst/misc/Sweavel.sty),
Garrick Aden-Buie [ctb],
Gregoire Detrez [ctb],
Hadley Wickham [ctb],
Hao Zhu [ctb],
Heewon Jeon [ctb],
Henrik Bengtsson [ctb],
Hiroaki Yutani [ctb],
Ian Lyttle [ctb],
Hodges Daniel [ctb],
Jacob Bien [ctb],
Jake Burkhead [ctb],
James Manton [ctb],
Jared Lander [ctb],
Jason Punyon [ctb],
Javier Luraschi [ctb],

https://orcid.org/0000-0003-0645-5666
https://orcid.org/0000-0002-8335-495X

3

Jeff Arnold [ctb],
Jenny Bryan [ctb],
Jeremy Ashkenas [ctb, cph] (the CSS file at

inst/misc/docco-classic.css),
Jeremy Stephens [ctb],
Jim Hester [ctb],
Joe Cheng [ctb],
Johannes Ranke [ctb],
John Honaker [ctb],
John Muschelli [ctb],
Jonathan Keane [ctb],
JJ Allaire [ctb],
Johan Toloe [ctb],
Jonathan Sidi [ctb],
Joseph Larmarange [ctb],
Julien Barnier [ctb],
Kaiyin Zhong [ctb],
Kamil Slowikowski [ctb],
Karl Forner [ctb],
Kevin K. Smith [ctb],
Kirill Mueller [ctb],
Kohske Takahashi [ctb],
Lorenz Walthert [ctb],
Lucas Gallindo [ctb],
Marius Hofert [ctb],
Martin Modrák [ctb],
Michael Chirico [ctb],
Michael Friendly [ctb],
Michal Bojanowski [ctb],
Michel Kuhlmann [ctb],
Miller Patrick [ctb],
Nacho Caballero [ctb],
Nick Salkowski [ctb],
Niels Richard Hansen [ctb],
Noam Ross [ctb],
Obada Mahdi [ctb],
Pavel N. Krivitsky [ctb] (ORCID:

<https://orcid.org/0000-0002-9101-3362>),
Pedro Faria [ctb],
Qiang Li [ctb],
Ramnath Vaidyanathan [ctb],
Richard Cotton [ctb],
Robert Krzyzanowski [ctb],
Rodrigo Copetti [ctb],
Romain Francois [ctb],
Ruaridh Williamson [ctb],
Sagiru Mati [ctb] (ORCID: <https://orcid.org/0000-0003-1413-3974>),
Scott Kostyshak [ctb],

https://orcid.org/0000-0002-9101-3362
https://orcid.org/0000-0003-1413-3974

4 Contents

Sebastian Meyer [ctb],
Sietse Brouwer [ctb],
Simon de Bernard [ctb],
Sylvain Rousseau [ctb],
Taiyun Wei [ctb],
Thibaut Assus [ctb],
Thibaut Lamadon [ctb],
Thomas Leeper [ctb],
Tim Mastny [ctb],
Tom Torsney-Weir [ctb],
Trevor Davis [ctb],
Viktoras Veitas [ctb],
Weicheng Zhu [ctb],
Wush Wu [ctb],
Zachary Foster [ctb],
Zhian N. Kamvar [ctb] (ORCID: <https://orcid.org/0000-0003-1458-7108>),
Posit Software, PBC [cph, fnd]

Maintainer Yihui Xie <xie@yihui.name>

Repository CRAN

Date/Publication 2025-12-20 14:30:02 UTC

Contents
knitr-package . 6
all_labels . 7
all_patterns . 8
asis_output . 8
cache_engines . 9
clean_cache . 10
combine_words . 11
convert_chunk_header . 11
current_input . 13
dep_auto . 13
dep_prev . 14
download_image . 15
engine_output . 15
extract_raw_output . 16
fig_chunk . 18
fig_path . 19
hook_ffmpeg_html . 19
hook_movecode . 20
hook_pdfcrop . 21
hook_plot_html . 23
image_uri . 24
include_graphics . 25
include_url . 26
inline_expr . 27

https://orcid.org/0000-0003-1458-7108

Contents 5

is_latex_output . 27
is_low_change . 29
kable . 29
knit . 32
knit2html . 35
knit2pandoc . 36
knit2pdf . 37
knit2wp . 38
knit_child . 39
knit_code . 40
knit_engines . 41
knit_exit . 42
knit_expand . 42
knit_filter . 43
knit_global . 44
knit_hooks . 44
knit_meta . 45
knit_params . 46
knit_params_yaml . 47
knit_patterns . 48
knit_print . 49
knit_rd . 50
knit_theme . 51
knit_watch . 52
load_cache . 53
opts_chunk . 54
opts_hooks . 55
opts_knit . 56
opts_template . 57
pandoc . 57
pat_rnw . 59
plot_crop . 60
rand_seed . 60
raw_block . 61
read_chunk . 62
render_html . 64
rnw2pdf . 66
rocco . 67
rst2pdf . 68
set_alias . 69
set_header . 69
set_parent . 70
sew . 71
spin . 72
spin_child . 73
stitch . 74
Sweave2knitr . 75
vignette_engines . 77

6 knitr-package

wrap_rmd . 78
write_bib . 79

Index 80

knitr-package A general-purpose tool for dynamic report generation in R

Description

The knitr package is an implementation of Literate Programming, a programming paradigm that
intermingle code chunks (for computing) with prose (for documentation) in the same document.

Details

When the document is compiled, the code chunks can be executed, and the results from computing
(text or graphics) are automatically written to the output along with the prose.

This package is an alternative tool to Sweave with a more flexible design and new features like
caching and finer control of graphics. It is not limited to LaTeX and is ready to be customized
to process other file formats. See the package website in the references for more information and
examples.

Note

The pronunciation of knitr is similar to neater or you can think of knitter (but it is single t). The
name comes from knit + R (while Sweave = S + weave).

Author(s)

Yihui Xie <https://yihui.org>

References

Full documentation and demos: https://yihui.org/knitr/; FAQ’s: https://yihui.org/knitr/
faq/

See Also

The core function in this package: knit. If you are an Sweave user, see Sweave2knitr on how to
convert Sweave files to knitr.

https://yihui.org
https://yihui.org/knitr/
https://yihui.org/knitr/faq/
https://yihui.org/knitr/faq/

all_labels 7

all_labels Get all chunk labels in a document

Description

The function all_labels() returns all chunk labels as a character vector. Optionally, you can
specify a series of conditions to filter the labels. The function ‘all_rcpp_labels()‘ is a wrapper
function for all_labels(engine == 'Rcpp').

Usage

all_labels(...)

all_rcpp_labels(...)

Arguments

... A vector of R expressions, each of which should return TRUE or FALSE. The
expressions are evaluated using the local chunk options of each code chunk as
the environment, which means global chunk options are not considered when
evaluating these expressions. For example, if you set the global chunk op-
tion opts_chunk$set(purl = TRUE), all_labels(purl == TRUE) will not re-
turn the labels of all code chunks, but will only return the labels of those code
chunks that have local chunk options purl = TRUE.

Details

For example, suppose the condition expression is engine == 'Rcpp', the object engine is the local
chunk option engine. If an expression fails to be evaluated (e.g. when a certain object does not
exist), FALSE is returned and the label for this chunk will be filtered out.

Value

A character vector.

Note

Empty code chunks are always ignored, including those chunks that are empty in the original doc-
ument but filled with code using chunk options such as ref.label or code.

Examples

the examples below are meaningless unless you put them in a knitr document
all_labels()
all_labels(engine == "Rcpp")
all_labels(echo == FALSE && results != "hide")
or separate the two conditions
all_labels(echo == FALSE, results != "hide")

8 asis_output

all_patterns All built-in patterns

Description

This object is a named list of all built-in patterns.

Usage

all_patterns

Format

An object of class list of length 8.

References

Usage: https://yihui.org/knitr/patterns/

See Also

knit_patterns

Examples

all_patterns$rnw
all_patterns$html

str(all_patterns)

asis_output Mark an R object with a special class

Description

This is a convenience function that assigns the input object a class named knit_asis, so that knitr
will treat it as is (the effect is the same as the chunk option results = 'asis') when it is written to
the output.

Usage

asis_output(x, meta = NULL, cacheable = NA)

https://yihui.org/knitr/patterns/

cache_engines 9

Arguments

x An R object. Typically a character string, or an object which can be converted
to a character string via as.character().

meta Additional metadata of the object to be printed. The metadata will be collected
when the object is printed, and accessible via knit_meta().

cacheable Boolean indicating whether this object is cacheable. If FALSE, knitr will stop
when caching is enabled on code chunks that contain asis_output().

Details

This function is normally used in a custom S3 method based on the printing function knit_print().

For the cacheable argument, you need to be careful when printing the object involves non-trivial
side effects, in which case it is strongly recommended to use cacheable = FALSE to instruct knitr
that this object should not be cached using the chunk option cache = TRUE, otherwise the side ef-
fects will be lost the next time the chunk is knitted. For example, printing a shiny input element
or an HTML widget in an R Markdown document may involve registering metadata about some
JavaScript libraries or stylesheets, and the metadata may be lost if we cache the code chunk, be-
cause the code evaluation will be skipped the next time. This particular issue has been solved in
knitr after v1.13 (the metadata will be saved and loaded automatically when caching is enabled),
but not all metadata can be saved and loaded next time and still works in the new R session.

Note

This function only works in top-level R expressions, and it will not work when it is called inside
another expression, such as a for-loop. See https://github.com/yihui/knitr/issues/1137 for
a discussion.

Examples

see ?knit_print

cache_engines Cache engines of other languages

Description

This object controls how to load cached environments from languages other than R (when the chunk
option engine is not 'R'). Each component in this object is a function that takes the current path to
the chunk cache and loads it into the language environment.

Usage

cache_engines

Format

An object of class list of length 7.

https://github.com/yihui/knitr/issues/1137

10 clean_cache

Details

The cache engine function has one argument options, a list containing all chunk options. Note that
options$hash is the path to the current chunk cache with the chunk’s hash, but without any file
extension, and the language engine may write a cache database to this path (with an extension).

The cache engine function should load the cache environment and should know the extension ap-
propriate for the language.

References

See https://github.com/rstudio/reticulate/pull/167 for an implementation of a cache en-
gine for Python.

clean_cache Clean cache files that are probably no longer needed

Description

If you remove or rename some cached code chunks, their original cache files will not be automat-
ically cleaned. You can use this function to identify these possible files, and clean them if you are
sure they are no longer needed.

Usage

clean_cache(clean = FALSE, path = opts_chunk$get("cache.path"))

Arguments

clean Boolean; whether to remove the files.

path Path to the cache.

Note

The identification is not guaranteed to be correct, especially when multiple documents share the
same cache directory. You are recommended to call clean_cache(FALSE) and carefully check the
list of files (if any) before you really delete them (clean_cache(TRUE)).

This function must be called within a code chunk in a source document, since it needs to know all
chunk labels of the current document to determine which labels are no longer present, and delete
cache corresponding to these labels.

https://github.com/rstudio/reticulate/pull/167

combine_words 11

combine_words Combine multiple words into a single string

Description

This is a wrapper function of xfun::join_words().

Usage

combine_words(...)

Arguments

... Arguments passed to xfun::join_words().

convert_chunk_header Convert the in-header chunk option syntax to the in-body syntax

Description

This is a helper function for moving chunk options from the chunk header to the chunk body using
the new syntax.

Usage

convert_chunk_header(
input,
output = NULL,
type = c("multiline", "wrap", "yaml"),
width = 0.9 * getOption("width")

)

Arguments

input File path to the document with code chunks to convert.
output The default NULL will output to console. Other values can be a file path to write

the converted content into or a function which takes input as argument and
returns a file path to write into (e.g., output = identity to overwrite the input
file).

type This determines how the in-body options will be formatted. "mutiline" (the
default, except for ‘qmd’ documents, for which the default is "yaml") will write
each chunk option on a separate line. Long chunk option values will be wrapped
onto several lines, and you can use width = 0 to keep one line per option only.
"wrap" will wrap all chunk options together using base::strwrap(). "yaml"
will convert chunk options to YAML.

width An integer passed to base::strwrap() for type = "wrap" and type = "multiline".
If set to 0, deactivate the wrapping (for type = "multiline" only).

12 convert_chunk_header

Value

A character vector of converted input when output = NULL. The output file path with converted
content otherwise.

About knitr option syntax

Historical chunk option syntax have chunk option in the chunk header using valid R syntax. This is
an example for .Rmd document

```{r, echo = FALSE, fig.width: 10}
```

New syntax allows to pass option inside the chunk using several variants

• Passing options one per line using valid R syntax. This corresponds to convert_chunk_header(type
= "multiline").

```{r}
#| echo = FALSE,
#| fig.width = 10
```

• Passing option part from header in-chunk with several line if wrapping is needed. This corre-
sponds to convert_chunk_header(type = "wrap")

```{r}
#| echo = FALSE, fig.width = 10
```

• Passing options key value pairs in-chunk using YAML syntax. Values are no more R expres-
sion but valid YAML syntax. This corresponds to convert_chunk_header(type = "yaml")
(not implement yet).

```{r}
#| echo: false,
#| fig.width: 10
```

Note

Learn more about the new chunk option syntax in https://yihui.org/en/2022/01/knitr-news/

Examples

knitr_example = function(...) system.file("examples", ..., package = "knitr")
Convert a document for multiline type
convert_chunk_header(knitr_example("knitr-minimal.Rmd"))
Convert a document for wrap type
convert_chunk_header(knitr_example("knitr-minimal.Rmd"), type = "wrap")
Reduce default wrapping width
convert_chunk_header(knitr_example("knitr-minimal.Rmd"), type = "wrap", width = 0.6 *

getOption("width"))

https://yihui.org/en/2022/01/knitr-news/

current_input 13

Not run:
Explicitly name the output
convert_chunk_header("test.Rmd", output = "test2.Rmd")
Overwrite the input
convert_chunk_header("test.Rmd", output = identity)
Use a custom function to name the output
convert_chunk_header("test.Rmd", output = \(f) sprintf("%s-new.%s",

xfun::sans_ext(f), xfun::file_ext(f)))

End(Not run)

current_input Query the current input filename

Description

Returns the name of the input file passed to knit().

Usage

current_input(dir = FALSE)

Arguments

dir Boolean; whether to prepend the current working directory to the file path, i.e.
whether to return an absolute path or a relative path.

Value

A character string, if this function is called inside an input document. Otherwise NULL.

dep_auto Build automatic dependencies among chunks

Description

When the chunk option autodep = TRUE, all names of objects created in a chunk will be saved in a
file named ‘__objects’ and all global objects used in a chunk will be saved to ‘__globals’. This
function can analyze object names in these files to automatically build cache dependencies, which
is similar to the effect of the dependson option. It is supposed to be used in the first chunk of a
document and this chunk must not be cached.

Usage

dep_auto(path = opts_chunk$get("cache.path"), labels = all_labels())

14 dep_prev

Arguments

path Path to the dependency file.

labels A vector of labels of chunks for which the dependencies will be built. By default,
dependencies for all chunks will be built.

Value

NULL. The dependencies are built as a side effect.

Note

Be cautious about path: because this function is used in a chunk, the working directory when the
chunk is evaluated is the directory of the input document in knit, and if that directory differs from
the working directory before calling knit(), you need to adjust the path argument here to make
sure this function can find the cache files ‘__objects’ and ‘__globals’.

References

https://yihui.org/knitr/demo/cache/

See Also

dep_prev

dep_prev Make later chunks depend on previous chunks

Description

This function can be used to build dependencies among chunks so that all later chunks depend on
previous chunks, i.e. whenever the cache of a previous chunk is updated, the cache of all its later
chunks will be updated.

Usage

dep_prev()

Value

NULL; the internal dependency structure is updated as a side effect.

References

https://yihui.org/knitr/demo/cache/

See Also

dep_auto

https://yihui.org/knitr/demo/cache/
https://yihui.org/knitr/demo/cache/

download_image 15

download_image Download an image from the web and include it in a document

Description

When including images in non-HTML output formats such as LaTeX/PDF, URLs will not work
as image paths. In this case, we have to download the images. This function is a wrapper of
xfun::download_file() and include_graphics().

Usage

download_image(
url,
path = xfun::url_filename(url),
use_file = !pandoc_to("html"),
...

)

Arguments

url The URL of an image.

path The download path (inferred from the URL by default). If the file exists, it will
not be downloaded (downloading can take time and requires Internet connec-
tion). If you are sure the file needs to be downloaded again, delete it beforehand.

use_file Whether to use the URL or the download path to include the image. By default,
the URL is used for HTML output formats, and the file path is used for other
output formats.

... Other arguments to be passed to include_graphics().

Examples

knitr::download_image("https://www.r-project.org/Rlogo.png")

engine_output An output wrapper for language engine output

Description

If you have designed a language engine, you may call this function in the end to format and return
the text output from your engine.

Usage

engine_output(options, code, out, extra = NULL)

16 extract_raw_output

Arguments

options A list of chunk options. Usually this is just the object options passed to the
engine function; see knit_engines.

code Source code of the chunk, to which the output hook source is applied, unless
the chunk option echo is FALSE.

out Text output from the engine, to which the hook output is applied, unless the
chunk option results is 'hide'

extra Any additional text output that you want to include.

Details

For expert users, an advanced usage of this function is engine_output(options, out = LIST)
where LIST is a list that has the same structure as the output of evaluate::evaluate(). In this
case, the arguments code and extra are ignored, and the list is passed to knitr::sew() to return a
character vector of final output.

Value

A character string generated from the source code and output using the appropriate output hooks.

Examples

library(knitr)
engine_output(opts_chunk$merge(list(engine = "Rscript")),

code = "1 + 1", out = "[1] 2")
engine_output(opts_chunk$merge(list(echo = FALSE, engine = "Rscript")),

code = "1 + 1", out = "[1] 2")

expert use only
engine_output(opts_chunk$merge(list(engine = "python")),

out = list(structure(list(src = "1 + 1"), class = "source"),
"2"))

extract_raw_output Mark character strings as raw output that should not be converted

Description

These functions provide a mechanism to protect the character output of R code chunks. The output
is annotated with special markers in raw_output; extract_raw_output() will extract raw output
wrapped in the markers, and replace the raw output with its MD5 digest; restore_raw_output()
will restore the MD5 digest with the original raw output.

extract_raw_output 17

Usage

extract_raw_output(text, markers = raw_markers)

restore_raw_output(text, chunks, markers = raw_markers)

raw_output(x, markers = raw_markers, ...)

Arguments

text For extract_raw_output(), the content of the input file (e.g. Markdown); for
restore_raw_output(), the content of the output file (e.g. HTML generated
by Pandoc from Markdown).

markers A length-2 character vector to be used to wrap x; see knitr:::raw_markers
for the default value.

chunks A named character vector returned from extract_raw_output().

x The character vector to be protected.

... Arguments to be passed to asis_output().

Details

This mechanism is designed primarily for R Markdown pre/post-processors. In an R code chunk,
you generate raw_output() to the Markdown output. In the pre-processor, you can extract_raw_output()
from the Markdown file, store the raw output and MD5 digests, and remove the actual raw output
from Markdown so Pandoc will never see it. In the post-processor, you can read the Pandoc output
(e.g., an HTML or RTF file), and restore the raw output.

Value

For extract_raw_output(), a list of two components: value (the text with raw output replaced
by MD5 digests) and chunks (a named character vector, of which the names are MD5 digests and
values are the raw output). For restore_raw_output(), the restored text.

Examples

library(knitr)
out = c("*hello*", raw_output("<special>content</special> *protect* me!"),

"*world*")
pre = extract_raw_output(out)
str(pre)
pre$value = gsub("[*]([^*]+)[*]", "\\1",

pre$value) # think this as Pandoc conversion
pre$value
raw output was protected from the conversion
(e.g. *protect* was not converted)
restore_raw_output(pre$value, pre$chunks)

18 fig_chunk

fig_chunk Obtain the figure filenames for a chunk

Description

Given a chunk label, the figure file extension, the figure number(s), and the chunk option fig.path,
return the filename(s).

Usage

fig_chunk(label, ext = "", number, fig.path = opts_chunk$get("fig.path"))

Arguments

label The chunk label.

ext The figure file extension, e.g. png or pdf.

number The figure number (by default 1).

fig.path Passed to fig_path. By default, the chunk option fig.path is used.

Details

This function can be used in an inline R expression to write out the figure filenames without hard-
coding them. For example, if you created a plot in a code chunk with the label foo and figure path
‘my-figure/’, you are not recommended to use hard-coded figure paths like ‘\includegraphics{my-figure/foo-1.pdf}’
(in ‘.Rnw’ documents) or ‘’ (R Markdown) in your document. In-
stead, you should use ‘\Sexpr{fig_chunk('foo', 'pdf')}’ or ‘`)’.

You can generate plots in a code chunk but not show them inside the code chunk by using the chunk
option fig.show = 'hide'. Then you can use this function if you want to show them elsewhere.

Value

A character vector of filenames.

Examples

library(knitr)
fig_chunk("foo", "png")
fig_chunk("foo", "pdf")
fig_chunk("foo", "svg", 2) # the second plot of the chunk foo
fig_chunk("foo", "png", 1:5) # if the chunk foo produced 5 plots

fig_path 19

fig_path Path for figure files

Description

The filename of figure files is the combination of options fig.path and label. This function
returns the path of figures for the current chunk by default.

Usage

fig_path(suffix = "", options = opts_current$get(), number)

Arguments

suffix A filename suffix; if it is non-empty and does not contain a dot ., it will be
treated as the filename extension (e.g. png will be used as .png)

options A list of options; by default the options of the current chunk.

number The current figure number. The default is the internal chunk option fig.cur, if
this is available.

Value

A character vector of the form ‘fig.path-label-i.suffix’.

Note

When there are special characters (not alphanumeric or ‘-’ or ‘_’) in the path, they will be automat-
ically replaced with ‘_’. For example, ‘a b/c.d-’ will be sanitized to ‘a_b/c_d-’. This makes the
filenames safe to LaTeX.

Examples

fig_path(".pdf", options = list(fig.path = "figure/abc-", label = "first-plot"))
fig_path(".png", list(fig.path = "foo-", label = "bar"), 1:10)

hook_ffmpeg_html Hooks to create animations in HTML output

Description

hook_ffmpeg_html() uses FFmpeg to convert images to a video; hook_gifski() uses the gifski to
convert images to a GIF animation; hook_scianimator() uses the JavaScript library SciAnimator
to create animations; hook_r2swf() uses the R2SWF package.

20 hook_movecode

Usage

hook_ffmpeg_html(x, options)

hook_gifski(x, options)

hook_scianimator(x, options)

hook_r2swf(x, options)

Arguments

x Filename for the plot (a character string).

options A list of the current chunk options.

Details

These hooks are mainly for the package option animation.fun, e.g. you can set opts_knit$set(animation.fun
= hook_scianimator).

hook_movecode Some potentially useful document hooks

Description

A document hook is a function to post-process the output document.

Usage

hook_movecode(x)

Arguments

x A character string (the whole output document).

Details

hook_movecode() is a document hook to move code chunks out of LaTeX floating environments
like ‘figure’ and ‘table’ when the chunks were actually written inside the floats. This function
is primarily designed for LyX: we often insert code chunks into floats to generate figures or tables,
but in the final output we do not want the code to float with the environments, so we use regular
expressions to find out the floating environments, extract the code chunks and move them out. To
disable this behavior, use a comment % knitr_do_not_move in the floating environment.

Value

The post-processed document as a character string.

hook_pdfcrop 21

Note

These functions are hackish. Also note hook_movecode() assumes you to use the default output
hooks for LaTeX (not Sweave or listings), and every figure/table environment must have a label.

References

https://yihui.org/knitr/hooks/

Examples

Not run:
knit_hooks$set(document = hook_movecode)

End(Not run)
see example 103 at https://github.com/yihui/knitr-examples

hook_pdfcrop Built-in chunk hooks to extend knitr

Description

Hook functions are called when the corresponding chunk options are not NULL to do additional jobs
beside the R code in chunks. This package provides a few useful hooks, which can also serve as
examples of how to define chunk hooks in knitr.

Usage

hook_pdfcrop(before, ...)

hook_optipng(...)

hook_pngquant(...)

hook_mogrify(...)

hook_plot_custom(before, options, envir)

hook_purl(before, options, ...)

Arguments

before, options, envir, ...
See References below.

https://yihui.org/knitr/hooks/

22 hook_pdfcrop

Details

The function hook_pdfcrop() calls plot_crop() to crop the white margins of PDF plots.

The function hook_optipng() calls the program optipng to optimize PNG images. Note the chunk
option optipng can be used to provide additional parameters to the program optipng, e.g. optipng
= '-o7'.

The function hook_pngquant() calls the program pngquant to optimize PNG images. Note the
chunk option pngquant can be used to provide additional parameters to the program pngquant,
e.g. pngquant = '--speed=1 --quality=0-50'.

The function hook_mogrify() calls the program mogrify. Note the chunk option mogrify can be
used to provide additional parameters to the program mogrify (with default -trim to trim PNG
files).

When the plots are not recordable via grDevices::recordPlot() and we save the plots to files
manually via other functions (e.g. rgl plots), we can use the chunk hook hook_plot_custom to
help write code for graphics output into the output document.

The hook hook_purl() can be used to write the code chunks to an R script. It is an alternative
approach to purl, and can be more reliable when the code chunks depend on the execution of them
(e.g. read_chunk(), or opts_chunk$set(eval = FALSE)). To enable this hook, it is recommended
to associate it with the chunk option purl, i.e. knit_hooks$set(purl = hook_purl). When this
hook is enabled, an R script will be written while the input document is being knit. Currently the
code chunks that are not R code or have the chunk option purl=FALSE are ignored. Please note
when the cache is turned on (the chunk option cache = TRUE), no chunk hooks will be executed,
hence hook_purl() will not work, either. To solve this problem, we need cache = 2 instead of
TRUE (see https://yihui.org/knitr/demo/cache/ for the meaning of cache = 2).

Note

The two hook functions hook_rgl() and hook_webgl() were moved from knitr to the rgl package
(>= v0.95.1247) after knitr v1.10.5, and you can library(rgl) to get them.

References

https://yihui.org/knitr/hooks/#chunk-hooks

See Also

rgl::rgl.snapshot, rgl::rgl.postscript, rgl::hook_rgl, rgl::hook_webgl

Examples

if (require("rgl") && exists("hook_rgl")) knit_hooks$set(rgl = hook_rgl)
then in code chunks, use the option rgl=TRUE

https://yihui.org/knitr/demo/cache/
https://yihui.org/knitr/hooks/#chunk-hooks

hook_plot_html 23

hook_plot_html Default plot hooks for different output formats

Description

These hook functions define how to mark up graphics output in different output formats.

Usage

hook_plot_html(x, options)

hook_plot_asciidoc(x, options)

hook_plot_tex(x, options)

hook_plot_md(x, options)

hook_plot_rst(x, options)

hook_plot_textile(x, options)

Arguments

x Filename for the plot (a character string).

options A list of the current chunk options.

Details

Depending on the options passed over, hook_plot_tex may return the normal ‘\includegraphics{}’
command, or ‘\input{}’ (for tikz files), or ‘\animategraphics{}’ (for animations); it also takes
many other options into consideration to align plots and set figure sizes, etc. Similarly, hook_plot_html,
hook_plot_md and hook_plot_rst return character strings which are HTML, Markdown, reST
code.

In most cases we do not need to call these hooks explicitly, and they were designed to be used inter-
nally. Sometimes we may not be able to record R plots using grDevices::recordPlot(), and we
can make use of these hooks to insert graphics output in the output document; see hook_plot_custom
for details.

Value

A character string of code, with plot filenames wrapped.

References

https://yihui.org/knitr/hooks/

https://yihui.org/knitr/hooks/

24 image_uri

See Also

hook_plot_custom

Examples

this is what happens for a chunk like this

<<foo-bar-plot, dev='pdf', fig.align='right'>>=
hook_plot_tex("foo-bar-plot.pdf", opts_chunk$merge(list(fig.align = "right")))

<<bar, dev='tikz'>>=
hook_plot_tex("bar.tikz", opts_chunk$merge(list(dev = "tikz")))

<<foo, dev='pdf', fig.show='animate', interval=.1>>=

5 plots are generated in this chunk
hook_plot_tex("foo5.pdf", opts_chunk$merge(list(fig.show = "animate", interval = 0.1,

fig.cur = 5, fig.num = 5)))

image_uri Encode an image file to a data URI

Description

This function is the same as xfun::base64_uri() (only with a different function name). It can
encode an image file as a base64 string, which can be used in the img tag in HTML.

Usage

image_uri(f)

Arguments

f Path to the image file.

Value

The data URI as a character string.

Author(s)

Wush Wu and Yihui Xie

References

https://en.wikipedia.org/wiki/Data_URI_scheme

https://en.wikipedia.org/wiki/Data_URI_scheme

include_graphics 25

Examples

uri = image_uri(file.path(R.home("doc"), "html", "logo.jpg"))
if (interactive()) {

cat(sprintf("", uri), file = "logo.html")
browseURL("logo.html") # you can check its HTML source

}

include_graphics Embed external images in knitr documents

Description

When plots are not generated from R code, there is no way for knitr to capture plots automatically.
In this case, you may generate the images manually and pass their file paths to this function to
include them in the output. The major advantage of using this function is that it is portable in the
sense that it works for all document formats that knitr supports, so you do not need to think if
you have to use, for example, LaTeX or Markdown syntax, to embed an external image. Chunk
options related to graphics output that work for normal R plots also work for these images, such as
out.width and out.height.

Usage

include_graphics(
path,
auto_pdf = getOption("knitr.graphics.auto_pdf", FALSE),
dpi = NULL,
rel_path = getOption("knitr.graphics.rel_path", TRUE),
error = getOption("knitr.graphics.error", TRUE)

)

Arguments

path A character vector of image paths. Both local file paths and web paths are
supported. Note that the auto_pdf and dpi arguments are not supported for
web paths.

auto_pdf Whether to use PDF images automatically when the output format is LaTeX. If
TRUE, then e.g. ‘foo/bar.png’ will be replaced by ‘foo/bar.pdf’ if the latter
exists. This can be useful since normally PDF images are of higher quality than
raster images like PNG, when the output is LaTeX/PDF.

dpi DPI (dots per inch) value. Used to calculate the output width (in inches) of the
images. This will be their actual width in pixels, divided by dpi. If not provided,
the chunk option dpi is used; if NA, the output width will not be calculated.

rel_path Whether to automatically convert absolute paths to relative paths. If you know
for sure that absolute paths work, you may set this argument or the global option
knitr.graphics.rel_path to FALSE.

error Whether to signal an error if any files specified in the path argument do not exist
and are not web resources.

26 include_url

Value

The same as the input character vector path but it is marked with special internal S3 classes so that
knitr will convert the file paths to proper output code according to the output format.

Note

This function is supposed to be used in R code chunks or inline R code expressions. For local
images, you are recommended to use relative paths with forward slashes instead of backslashes
(e.g., ‘images/fig1.png’ instead of ‘/Users/me/code/images/fig1.png’).

The automatic calculation of the output width requires the png package (for PNG images) or the
jpeg package (for JPEG images). The width will not be calculated if the chunk option out.width
is already provided or dpi = NA.

include_url Embed a URL as an HTML iframe or a screenshot in knitr documents

Description

When the output format is HTML, include_url() inserts an iframe in the output; otherwise it
takes a screenshot of the URL and insert the image in the output. include_app() takes the URL of
a Shiny app and adds ‘?showcase=0’ to it (to disable the showcase mode), then passes the URL to
include_url().

Usage

include_url(url, height = "400px")

include_app(url, height = "400px")

Arguments

url A character vector of URLs.

height A character vector to specify the height of iframes.

Value

An R object with a special class that knitr recognizes internally to generate the iframes or screen-
shots.

See Also

include_graphics

inline_expr 27

inline_expr Wrap code using the inline R expression syntax

Description

This is a convenience function to write the "source code" of inline R expressions. For exam-
ple, if you want to write ‘`r 1+1`’ literally in an R Markdown document, you may write ‘`` `r
knitr::inline_expr('1+1')` ``’; for Rnw documents, this may be ‘\verb|\Sexpr{knitr::inline_expr{'1+1'}}|’.

Usage

inline_expr(code, syntax)

Arguments

code Character string of the inline R source code.

syntax A character string to specify the syntax, e.g. rnw, html, or md. If not specified,
this will be guessed from the knitting context.

Value

A character string marked up using the inline R code syntax.

Examples

library(knitr)
inline_expr("1+1", "rnw")
inline_expr("1+1", "html")
inline_expr("1+1", "md")

is_latex_output Check the current input and output type

Description

The function is_latex_output() returns TRUE when the output format is LaTeX; it works for both
‘.Rnw’ and R Markdown documents (for the latter, the two Pandoc formats latex and beamer are
considered LaTeX output). The function is_html_output() only works for R Markdown docu-
ments and will test for several Pandoc HTML based output formats (by default, these formats are
considered as HTML formats: c('markdown', 'epub', 'epub2', 'html', 'html4', 'html5',
'revealjs', 's5','slideous', 'slidy', 'gfm')).

28 is_latex_output

Usage

is_latex_output()

is_html_output(fmt = pandoc_to(), excludes = NULL)

pandoc_to(fmt, exact = FALSE)

pandoc_from(exact = FALSE)

Arguments

fmt A character vector of output formats to be checked against. If not provided,
is_html_output() uses pandoc_to(), and pandoc_to() returns the output
format name.

excludes A character vector of output formats that should not be considered as HTML
format. Options are: markdown, epub, epub2, html, html4, html5, revealjs, s5,
slideous, slidy, and gfm.

exact Whether to return or use the exact format name. If not, Pandoc extensions will be
removed from the format name, e.g., ‘latex-smart’ will be treated as ‘latex’.

Details

The function pandoc_to() returns the Pandoc output format, and pandoc_from() returns Pandoc
input format. pandoc_to(fmt) allows to check the current output format against a set of format
names. Both are to be used with R Markdown documents.

These functions may be useful for conditional output that depends on the output format. For ex-
ample, you may write out a LaTeX table in an R Markdown document when the output format is
LaTeX, and an HTML or Markdown table when the output format is HTML. Use pandoc_to(fmt)
to test a more specific Pandoc format.

Internally, the Pandoc output format of the current R Markdown document is stored in knitr::opts_knit$get('rmarkdown.pandoc.to'),
and the Pandoc input format in knitr::opts_knit$get('rmarkdown.pandoc.from')

Note

See available Pandoc formats, in Pandoc’s Manual

Examples

check for output formats type
knitr::is_latex_output()
knitr::is_html_output()
knitr::is_html_output(excludes = c("markdown", "epub"))
Get current formats
knitr::pandoc_from()
knitr::pandoc_to()
Test if current output format is 'docx'
knitr::pandoc_to("docx")

https://pandoc.org/MANUAL.html

is_low_change 29

is_low_change Compare two recorded plots

Description

Check if one plot only contains a low-level update of another plot.

Usage

is_low_change(p1, p2)

Arguments

p1, p2 Plot objects.

Value

Logical value indicating whether p2 is a low-level update of p1.

Examples

pdf(NULL)
dev.control("enable") # enable plot recording
plot(1:10)
p1 = recordPlot()
abline(0, 1) # add a line (a low-level change)
p2 = recordPlot()
plot(rnorm(100))
p3 = recordPlot() # draw a completely new plot
dev.off()
knitr::is_low_change(p1, p2) # true
knitr::is_low_change(p1, p3) # false

kable Create tables in LaTeX, HTML, Markdown and reStructuredText

Description

A very simple table generator, and it is simple by design. It is not intended to replace any other R
packages for making tables. The kable() function returns a single table for a single data object,
and returns a table that contains multiple tables if the input object is a list of data objects. The
kables() function is similar to kable(x) when x is a list of data objects, but kables() accepts a
list of kable() values directly instead of data objects (see examples below).

30 kable

Usage

kable(
x,
format,
digits = getOption("digits"),
row.names = NA,
col.names = NA,
align,
caption = opts_current$get("tab.cap"),
label = NULL,
format.args = list(),
escape = TRUE,
...

)

kables(x, format, caption = NULL, label = NULL)

Arguments

x For kable(), x is an R object, which is typically a matrix or data frame. For
kables(), a list with each element being a returned value from kable().

format A character string. Possible values are latex, html, pipe (Pandoc’s pipe tables),
simple (Pandoc’s simple tables), rst, jira, and org (Emacs Org-mode). The
value of this argument will be automatically determined if the function is called
within a knitr document. The format value can also be set in the global option
knitr.table.format. If format is a function, it must return a character string.

digits Maximum number of digits for numeric columns, passed to round(). This can
also be a vector of length ncol(x), to set the number of digits for individual
columns.

row.names Logical: whether to include row names. By default, row names are included if
rownames(x) is neither NULL nor identical to 1:nrow(x).

col.names A character vector of column names to be used in the table.
align Column alignment: a character vector consisting of 'l' (left), 'c' (center)

and/or 'r' (right). By default or if align = NULL, numeric columns are right-
aligned, and other columns are left-aligned. If length(align) == 1L, the string
will be expanded to a vector of individual letters, e.g. 'clc' becomes c('c',
'l', 'c'), unless the output format is LaTeX.

caption The table caption. By default, it is retrieved from the chunk option tab.cap.
label The table reference label. By default, the label is obtained from knitr::opts_current$get('label')

(i.e., the current chunk label). To disable the label, use label = NA.
format.args A list of arguments to be passed to format() to format table values, e.g. list(big.mark

= ',').
escape Boolean; whether to escape special characters when producing HTML or LaTeX

tables. When escape = FALSE, you have to make sure that special characters will
not trigger syntax errors in LaTeX or HTML.

... Other arguments (see Examples and References).

kable 31

Details

Missing values (NA) in the table are displayed as NA by default. If you want to display them with
other characters, you can set the option knitr.kable.NA, e.g. options(knitr.kable.NA = '') to
hide NA values.

You can set the option knitr.kable.max_rows to limit the number of rows to show in the table,
e.g., options(knitr.kable.max_rows = 30).

Value

A character vector of the table source code.

Note

When using kable() as a top-level expression, you do not need to explicitly print() it due to R’s
automatic implicit printing. When it is wrapped inside other expressions (such as a for loop), you
must explicitly print(kable(...)).

References

See https://bookdown.org/yihui/rmarkdown-cookbook/kable.html for some examples about
this function, including specific arguments according to the format selected.

See Also

Other R packages such as huxtable, xtable, kableExtra, gt and tables for HTML and LaTeX
tables, and ascii and pander for different flavors of markdown output and some advanced features
and table styles. For more on other packages for creating tables, see https://bookdown.org/
yihui/rmarkdown-cookbook/table-other.html.

Examples

d1 = head(iris)
d2 = head(mtcars)
pipe tables by default
kable(d1)
kable(d2[, 1:5])
no inner padding
kable(d2, format = "pipe", padding = 0)
more padding
kable(d2, format = "pipe", padding = 2)
kable(d1, format = "latex")
kable(d1, format = "html")
kable(d1, format = "latex", caption = "Title of the table")
kable(d1, format = "html", caption = "Title of the table")
use the booktabs package
kable(mtcars, format = "latex", booktabs = TRUE)
use the longtable package
kable(matrix(1000, ncol = 5), format = "latex", digits = 2, longtable = TRUE)
change LaTeX default table environment
kable(d1, format = "latex", caption = "My table", table.envir = "table*")

https://bookdown.org/yihui/rmarkdown-cookbook/kable.html
https://bookdown.org/yihui/rmarkdown-cookbook/table-other.html
https://bookdown.org/yihui/rmarkdown-cookbook/table-other.html

32 knit

add some table attributes
kable(d1, format = "html", table.attr = "id=\"mytable\"")
reST output
kable(d2, format = "rst")
no row names
kable(d2, format = "rst", row.names = FALSE)
Pandoc simple tables
kable(d2, format = "simple", caption = "Title of the table")
format numbers using , as decimal point, and ' as thousands separator
x = as.data.frame(matrix(rnorm(60, 1e+06, 10000), 10))
kable(x, format.args = list(decimal.mark = ",", big.mark = "'"))
save the value
x = kable(d2, format = "html")
cat(x, sep = "\n")
can also set options(knitr.table.format = 'html') so that the output is HTML

multiple tables via either kable(list(x1, x2)) or kables(list(kable(x1),
kable(x2)))
kable(list(d1, d2), caption = "A tale of two tables")
kables(list(kable(d1, align = "l"), kable(d2)), caption = "A tale of two tables")

knit Knit a document

Description

This function takes an input file, extracts the R code in it according to a list of patterns, evaluates the
code and writes the output in another file. It can also tangle R source code from the input document
(purl() is a wrapper to knit(..., tangle = TRUE)). The knitr.purl.inline option can be used
to also tangle the code of inline expressions (disabled by default).

Usage

knit(
input,
output = NULL,
tangle = FALSE,
text = NULL,
quiet = FALSE,
envir = parent.frame(),
encoding = "UTF-8"

)

purl(..., documentation = 1L)

Arguments

input Path to the input file.

knit 33

output Path to the output file for knit(). If NULL, this function will try to guess a
default, which will be under the current working directory.

tangle Boolean; whether to tangle the R code from the input file (like utils::Stangle).

text A character vector. This is an alternative way to provide the input file.

quiet Boolean; suppress the progress bar and messages?

envir Environment in which code chunks are to be evaluated, for example, parent.frame(),
new.env(), or globalenv()).

encoding Encoding of the input file; always assumed to be UTF-8 (i.e., this argument is
effectively ignored).

... arguments passed to knit() from purl()

documentation An integer specifying the level of documentation to add to the tangled script. 0
means to output pure code, discarding all text chunks); 1 (the default) means to
add the chunk headers to the code; 2 means to add all text chunks to code as
roxygen comments.

Details

For most of the time, it is not necessary to set any options outside the input document; in other
words, a single call like knit('my_input.Rnw') is usually enough. This function will try to de-
termine many internal settings automatically. For the sake of reproducibility, it is better practice to
include the options inside the input document (to be self-contained), instead of setting them before
knitting the document.

First the filename of the output document is determined in this way: ‘foo.Rnw’ generates ‘foo.tex’,
and other filename extensions like ‘.Rtex’, ‘.Rhtml’ (‘.Rhtm’) and ‘.Rmd’ (‘.Rmarkdown’) will
generate ‘.tex’, ‘.html’ and ‘.md’ respectively. For other types of files, if the filename contains
‘_knit_’, this part will be removed in the output file, e.g., ‘foo_knit_.html’ creates the output
‘foo.html’; if ‘_knit_’ is not found in the filename, ‘foo.ext’ will produce ‘foo.txt’ if ext is
not txt, otherwise the output is ‘foo-out.txt’. If tangle = TRUE, ‘foo.ext’ generates an R script
‘foo.R’.

We need a set of syntax to identify special markups for R code chunks and R options, etc. The syntax
is defined in a pattern list. All built-in pattern lists can be found in all_patterns (call it apat).
First knitr will try to decide the pattern list based on the filename extension of the input document,
e.g. ‘Rnw’ files use the list apat$rnw, ‘tex’ uses the list apat$tex, ‘brew’ uses apat$brew and
HTML files use apat$html; for unkown extensions, the content of the input document is matched
against all pattern lists to automatically determine which pattern list is being used. You can also
manually set the pattern list using the knit_patterns object or the pat_rnw series functions in
advance and knitr will respect the setting.

According to the output format (opts_knit$get('out.format')), a set of output hooks will be
set to mark up results from R (see render_latex). The output format can be LaTeX, Sweave and
HTML, etc. The output hooks decide how to mark up the results (you can customize the hooks).

The name knit comes from its counterpart ‘weave’ (as in Sweave), and the name purl (as ‘tangle’
in Stangle) comes from a knitting method ‘knit one, purl one’.

If the input document has child documents, they will also be compiled recursively. See knit_child.

See the package website and manuals in the references to know more about knitr, including the full
documentation of chunk options and demos, etc.

34 knit

Value

The compiled document is written into the output file, and the path of the output file is returned. If
the text argument is not NULL, the compiled output is returned as a character vector. In other words,
if you provide a file input, you get an output filename; if you provide a character vector input, you
get a character vector output.

Note

The working directory when evaluating R code chunks is the directory of the input document by
default, so if the R code involves external files (like read.table()), it is better to put these files
under the same directory of the input document so that we can use relative paths. However, it is
possible to change this directory with the package option opts_knit$set(root.dir = ...) so all
paths in code chunks are relative to this root.dir. It is not recommended to change the working
directory via setwd() in a code chunk, because it may lead to terrible consequences (e.g. figure
and cache files may be written to wrong places). If you do use setwd(), please note that knitr
will always restore the working directory to the original one. Whenever you feel confused, print
getwd() in a code chunk to see what the working directory really is.

If the output argument is a file path, it is strongly recommended to be in the current working
directory (e.g. ‘foo.tex’ instead of ‘somewhere/foo.tex’), especially when the output has ex-
ternal dependencies such as figure files. If you want to write the output to a different directory,
it is recommended to set the working directory to that directory before you knit a document. For
example, if the source document is ‘foo.Rmd’ and the expected output is ‘out/foo.md’, you can
write setwd('out/'); knit('../foo.Rmd') instead of knit('foo.Rmd', 'out/foo.md').

N.B. There is no guarantee that the R script generated by purl() can reproduce the computation
done in knit(). The knit() process can be fairly complicated (special values for chunk options,
custom chunk hooks, computing engines besides R, and the envir argument, etc). If you want
to reproduce the computation in a report generated by knit(), be sure to use knit(), instead of
merely executing the R script generated by purl(). This seems to be obvious, but some people do
not get it.

References

Package homepage: https://yihui.org/knitr/. The knitr main manual: and graphics manual.

See citation('knitr') for the citation information.

Examples

library(knitr)
(f = system.file("examples", "knitr-minimal.Rnw", package = "knitr"))
knit(f) # compile to tex

purl(f) # tangle R code
purl(f, documentation = 0) # extract R code only
purl(f, documentation = 2) # also include documentation

unlink(c("knitr-minimal.tex", "knitr-minimal.R", "figure"), recursive = TRUE)

https://stat.ethz.ch/pipermail/r-devel/2014-May/069113.html
https://stat.ethz.ch/pipermail/r-devel/2014-May/069113.html
https://yihui.org/knitr/
https://yihui.org/knitr/demo/manual/
https://yihui.org/knitr/demo/graphics/

knit2html 35

knit2html Convert markdown to HTML using knit() and mark_html()

Description

This is a convenience function to knit the input markdown source and call markdown::mark_html()
in the markdown package to convert the result to HTML.

Usage

knit2html(
input,
output = NULL,
...,
envir = parent.frame(),
text = NULL,
quiet = FALSE,
encoding = "UTF-8",
force_v1 = getOption("knitr.knit2html.force_v1", FALSE)

)

Arguments

input Path to the input file.

output Path to the output file for knit(). If NULL, this function will try to guess a
default, which will be under the current working directory.

... Options passed to markdown::mark_html().

envir Environment in which code chunks are to be evaluated, for example, parent.frame(),
new.env(), or globalenv()).

text A character vector. This is an alternative way to provide the input file.

quiet Boolean; suppress the progress bar and messages?

encoding Encoding of the input file; always assumed to be UTF-8 (i.e., this argument is
effectively ignored).

force_v1 Boolean; whether to force rendering the input document as an R Markdown v1
document, even if it is for v2.

Value

If the argument text is NULL, a character string (HTML code) is returned; otherwise the result is
written into a file and the filename is returned.

Note

The markdown package is for R Markdown v1, which is much less powerful than R Markdown
v2, i.e. the rmarkdown package (https://rmarkdown.rstudio.com). To render R Markdown v2
documents to HTML, please use rmarkdown::render() instead.

https://rmarkdown.rstudio.com

36 knit2pandoc

See Also

knit, markdown::mark_html

Examples

a minimal example
writeLines(c("# hello markdown", "```{r hello-random, echo=TRUE}", "rnorm(5)", "```"),

"test.Rmd")
knit2html("test.Rmd")
if (interactive()) browseURL("test.html")

unlink(c("test.Rmd", "test.html", "test.md"))

knit2pandoc Convert various input files to various output files using knit() and
Pandoc

Description

Knits the input file and compiles to an output format using Pandoc.

Usage

knit2pandoc(
input,
output = NULL,
tangle = FALSE,
text = NULL,
quiet = FALSE,
envir = parent.frame(),
to = "html",
pandoc_wrapper = NULL,
...,
encoding = "UTF-8"

)

Arguments

input Path to the input file.

output Path to the output file for knit(). If NULL, this function will try to guess a
default, which will be under the current working directory.

tangle Boolean; whether to tangle the R code from the input file (like utils::Stangle).

text A character vector. This is an alternative way to provide the input file.

quiet Boolean; suppress the progress bar and messages?

envir Environment in which code chunks are to be evaluated, for example, parent.frame(),
new.env(), or globalenv()).

knit2pdf 37

to Character string giving the Pandoc output format to use.

pandoc_wrapper An R function used to call Pandoc. If NULL (the default), rmarkdown::pandoc_convert()
will be used if rmarkdown is installed, otherwise pandoc().

... Options to be passed to the pandoc_wrapper function.

encoding Ignored (always assumes UTF-8).

Value

Returns the output of the pandoc_wrapper function.

Author(s)

Trevor L. Davis

knit2pdf Convert Rnw or Rrst files to PDF

Description

Knit the input Rnw or Rrst document, and compile to PDF using tinytex::latexmk() or rst2pdf().

Usage

knit2pdf(
input,
output = NULL,
compiler = NULL,
envir = parent.frame(),
quiet = FALSE,
...

)

Arguments

input Path to the input file.

output Path to the output file for knit(). If NULL, this function will try to guess a
default, which will be under the current working directory.

compiler A character string giving the LaTeX engine used to compile the tex document
to PDF. For an Rrst file, setting compiler to 'rst2pdf' will use rst2pdf to
compile the rst file to PDF using the ReportLab open-source library.

envir Environment in which code chunks are to be evaluated, for example, parent.frame(),
new.env(), or globalenv()).

quiet Boolean; suppress the progress bar and messages?

... Options to be passed to tinytex::latexmk() or rst2pdf().

38 knit2wp

Value

The filename of the PDF file.

Note

The output argument specifies the output filename to be passed to the PDF compiler (e.g. a tex
document) instead of the PDF filename.

Author(s)

Ramnath Vaidyanathan, Alex Zvoleff and Yihui Xie

Examples

#' compile with xelatex
knit2pdf(..., compiler = 'xelatex')

#' compile a reST file with rst2pdf
knit2pdf(..., compiler = 'rst2pdf')

knit2wp Knit an R Markdown document and post it to WordPress

Description

This function is a wrapper around the RWordPress package. It compiles an R Markdown document
to HTML and post the results to WordPress. Please note that RWordPress has not been updated
for several years, which is not a good sign. For blogging with R, you may want to try the blogdown
package instead.

Usage

knit2wp(
input,
title = "A post from knitr",
...,
envir = parent.frame(),
shortcode = FALSE,
action = c("newPost", "editPost", "newPage"),
postid,
publish = TRUE

)

https://github.com/yihui/knitr/issues/1866

knit_child 39

Arguments

input Filename of the Rmd document.

title Title of the post.

... Other meta information of the post, e.g. categories = c('R','Stats') and
mt_keywords = c('knitr', 'wordpress'), et cetera.

envir Environment in which code chunks are to be evaluated, for example, parent.frame(),
new.env(), or globalenv()).

shortcode A length-2 logical vector: whether to use the shortcode ‘[sourcecode lang='lang']’,
which can be useful to WordPress.com users for syntax highlighting of source
code and output. The first element applies to source code, and the second applies
to text output. By default, both are FALSE.

action Whether to create a new post, update an existing post, or create a new page.

postid If action is editPost, the post id postid must be specified.

publish Boolean: publish the post immediately?

Note

This function will convert the encoding of the post and the title to UTF-8 internally. If you have
additional data to send to WordPress (e.g. keywords and categories), you may have to manually
convert them to the UTF-8 encoding with the iconv(x, to = 'UTF-8') function (especially when
using Windows).

Author(s)

William K. Morris, Yihui Xie, and Jared Lander

References

https://yihui.org/knitr/demo/wordpress/

Examples

see the reference

knit_child Knit a child document

Description

This function knits a child document and returns a character string to input the result into the main
document. It is designed to be used in the chunk option child and serves as the alternative to the
SweaveInput command in Sweave.

Usage

knit_child(..., options = NULL, envir = knit_global())

https://yihui.org/knitr/demo/wordpress/

40 knit_code

Arguments

... Arguments passed to knit.

options A list of chunk options to be used as global options inside the child document.
When one uses the child option in a parent chunk, the chunk options of the
parent chunk will be passed to the options argument here. Ignored if not a list.

envir Environment in which code chunks are to be evaluated, for example, parent.frame(),
new.env(), or globalenv()).

Value

A character string of the content of the compiled child document is returned as a character string so
it can be written back to the parent document directly.

Note

This function is not supposed be called directly like knit(); instead it must be placed in a parent
document to let knit() call it indirectly.

The path of the child document is determined relative to the parent document.

References

https://yihui.org/knitr/demo/child/

Examples

you can write \Sexpr{knit_child('child-doc.Rnw')} in an Rnw file 'main.Rnw'
to input results from child-doc.Rnw in main.tex

comment out the child doc by \Sexpr{knit_child('child-doc.Rnw', eval =
FALSE)}

knit_code The code manager to manage code in all chunks

Description

This object provides methods to manage code (as character vectors) in all chunks in knitr source
documents. For example, knitr::knit_code$get() returns a named list of all code chunks (the
names are chunk labels), and knitr::knit_code$get('foo') returns the character vector of the
code in the chunk with the label foo.

Usage

knit_code

Format

An object of class list of length 7.

https://yihui.org/knitr/demo/child/

knit_engines 41

Note

The methods on this object include the set() method (i.e., you could do something like knitr::knit_code$set(foo
= "'my precious new code'")), but we recommend that you do not use this method to modify the
content of code chunks, unless you are as creative as Emi Tanaka and know what you are doing.

knit_engines Engines of other languages

Description

This object controls how to execute the code from languages other than R (when the chunk option
engine is not 'R'). Each component in this object is a function that takes a list of current chunk
options (including the source code) and returns a character string to be written into the output.

Usage

knit_engines

Format

An object of class list of length 7.

Details

The engine function has one argument options: the source code of the current chunk is in options$code.
Usually we can call external programs to run the code via system2. Other chunk options are also
contained in this argument, e.g. options$echo and options$eval, etc.

In most cases, options$engine can be directly used in command line to execute the code, e.g.
python or ruby, but sometimes we may want to specify the path of the engine program, in which
case we can pass it through the engine.path option. For example, engine='ruby',engine.path='/usr/bin/ruby1.9.1'.
Additional command line arguments can be passed through options$engine.opts, e.g. engine='ruby',engine.opts='-v'.

See str(knitr::knit_engines$get()) for a list of built-in language engines.

Note

The Leiningen engine lein requires lein-exec plugin; see https://github.com/yihui/knitr/
issues/1176 for details.

References

Usage: https://yihui.org/knitr/objects/; examples: https://yihui.org/knitr/demo/engines/

Examples

knit_engines$get("python")
knit_engines$get("awk")
names(knit_engines$get())

https://emitanaka.rbind.io/post/knitr-knitr-code/
https://github.com/yihui/knitr/issues/1176
https://github.com/yihui/knitr/issues/1176
https://yihui.org/knitr/objects/
https://yihui.org/knitr/demo/engines/

42 knit_expand

knit_exit Exit knitting early

Description

Sometimes we may want to exit the knitting process early, and completely ignore the rest of the
document. This function provides a mechanism to terminate knit().

Usage

knit_exit(append, fully = TRUE)

Arguments

append A character vector to be appended to the results from knit() so far. By default,
this is ‘\end{document}’ for LaTeX output, and ‘</body></html>’ for HTML
output, to make the output document complete. For other types of output, it is
an empty string.

fully Whether to fully exit the knitting process if knit_exit() is called from a child
document. If FALSE, only exit the knitting process of the child document.

Value

Invisible NULL. An internal signal is set up (as a side effect) to notify knit() to quit as if it had
reached the end of the document.

Examples

see https://github.com/yihui/knitr-examples/blob/master/096-knit-exit.Rmd

knit_expand A simple macro preprocessor for templating purposes

Description

This function expands a template based on the R expressions in {{}} (this tag can be customized
by the delim argument). These expressions are extracted, evaluated and replaced by their values in
the original template.

Usage

knit_expand(file, ..., text = read_utf8(file), delim = c("{{", "}}"))

knit_filter 43

Arguments

file The template file.

... A list of variables to be used for the code in the template; note that the variables
will be searched for in the parent frame as well.

text Character vector of lines of code. An alternative way to specify the template
code directly. If text is provided, file will be ignored.

delim A pair of opening and closing delimiters for the templating tags.

Value

A character vector, with the tags evaluated and replaced by their values.

References

This function was inspired by the pyexpander and m4 (http://www.gnu.org/software/m4/),
thanks to Frank Harrell.

Examples

see the knit_expand vignette
if (interactive()) browseVignettes(package = "knitr")

knit_filter Spell check filter for source documents

Description

When performing spell checking on source documents, we may need to skip R code chunks and
inline R expressions, because many R functions and symbols are likely to be identified as typos.
This function is designed for the filter argument of aspell() to filter out code chunks and inline
expressions.

Usage

knit_filter(ifile, encoding = "UTF-8")

Arguments

ifile Filename of the source document.

encoding Ignored (the file ifile must be encoded in UTF-8).

Value

A character vector of the file content, excluding code chunks and inline expressions.

http://www.gnu.org/software/m4/

44 knit_hooks

Examples

library(knitr)
knitr_example = function(...) system.file("examples", ..., package = "knitr")

if (Sys.which("aspell") != "") {
-t means the TeX mode
utils::aspell(knitr_example("knitr-minimal.Rnw"), knit_filter, control = "-t")

-H is the HTML mode
utils::aspell(knitr_example("knitr-minimal.Rmd"), knit_filter, control = "-H -t")

}

knit_global The global environment for evaluating code

Description

Get or set the environment in which code chunks are evaluated.

Usage

knit_global(envir = NULL)

Arguments

envir If NULL, the function returns the envir argument of knit, otherwise it should be
a new environment for evaluating code, in which case the function returns the
old environment after setting the new environment.

knit_hooks Hooks for R code chunks, inline R code and output

Description

A hook is a function of a pre-defined form (arguments) that takes values of arguments and returns
desired output. The object knit_hooks is used to access or set hooks in this package.

Usage

knit_hooks

Format

An object of class list of length 7.

knit_meta 45

References

Usage: https://yihui.org/knitr/objects/

Components in knit_hooks: https://yihui.org/knitr/hooks/

Examples

knit_hooks$get("source")
knit_hooks$get("inline")

knit_meta Metadata about objects to be printed

Description

As an object is printed, knitr will collect metadata about it (if available). After knitting is done, all
the metadata is accessible via this function. You can manually add metadata to the knitr session
via knit_meta_add().

Usage

knit_meta(class = NULL, clean = TRUE)

knit_meta_add(meta, label = "")

Arguments

class Optionally return only metadata entries that inherit from the specified class. The
default, NULL, returns all entries.

clean Whether to clean the collected metadata. By default, the metadata stored in
knitr is cleaned up once retrieved, because we may not want the metadata to
be passed to the next knit() call; to be defensive (i.e. not to have carryover
metadata), you can call knit_meta() before knit().

meta A metadata object to be added to the session.

label A chunk label to indicate which chunk the metadata belongs to.

Value

knit_meta() returns the matched metadata specified by class; knit_meta_add() returns all cur-
rent metadata.

https://yihui.org/knitr/objects/
https://yihui.org/knitr/hooks/

46 knit_params

knit_params Extract knit parameters from a document

Description

This function reads the YAML front-matter section of a document and returns a list of any param-
eters declared there. This function exists primarily to support the parameterized reports feature of
the rmarkdown package, however is also used by the knitr purl function to include the default
parameter values in the R code it emits.

Usage

knit_params(text, evaluate = TRUE)

Arguments

text Character vector containing the document text.

evaluate Boolean. If TRUE (the default), expression values embedded within the YAML
will be evaluated. If FALSE, parameters defined with an expression will have the
parsed but unevaluated expression in their value field.

Details

Parameters are included in YAML front matter using the params key. This key can have any number
of subkeys each of which represents a parameter. For example:

title: My Document
output: html_document
params:
frequency: 10
show_details: true

Parameter values can be provided inline as illustrated above or can be included in a value sub-key.
For example:

title: My Document
output: html_document
params:
frequency:
value: 10

knit_params_yaml 47

This second form is useful when you need to provide additional details about the parameter (e.g. a
label field as describe above).

You can also use R code to yield the value of a parameter by prefacing the value with !r, for
example:

title: My Document
output: html_document
params:
start: !r Sys.Date()

Value

List of objects of class knit_param that correspond to the parameters declared in the params section
of the YAML front matter. These objects have the following fields:

name The parameter name.

value The default value for the parameter.

expr The R expression (if any) that yielded the default value.

In addition, other fields included in the YAML may also be present alongside the name, type,
and value fields (e.g. a label field that provides front-ends with a human readable name for the
parameter).

knit_params_yaml Extract knit parameters from YAML text

Description

This function reads the YAML front-matter that has already been extracted from a document and
returns a list of any parameters declared there.

Usage

knit_params_yaml(yaml, evaluate = TRUE)

Arguments

yaml Character vector containing the YAML text.

evaluate If TRUE (the default) expression values embedded within the YAML will be eval-
uated. If FALSE, parameters defined with an expression will have the parsed but
unevaluated expression in their value field.

Value

List of objects of class knit_param that correspond to the parameters declared in the params section
of the YAML. See knit_params for a full description of these objects.

48 knit_patterns

See Also

knit_params

knit_patterns Patterns to match and extract R code in a document

Description

Patterns are regular expressions and will be used in functions like base::grep() to extract R code
and chunk options. The object knit_patterns controls the patterns currently used; see the refer-
ences and examples for usage. All built-in patterns are available in the list all_patterns.

Usage

knit_patterns

Format

An object of class list of length 7.

References

Usage: https://yihui.org/knitr/objects/

Components in knit_patterns: https://yihui.org/knitr/patterns/

See Also

all_patterns

Examples

library(knitr)
opat = knit_patterns$get() # old pattern list (to restore later)

apats = all_patterns # a list of all built-in patterns
str(apats)
knit_patterns$set(apats[["rnw"]]) # set pattern list from apats

knit_patterns$get(c("chunk.begin", "chunk.end", "inline.code"))

a customized pattern list; has to empty the original patterns first!
knit_patterns$restore()
we may want to use this in an HTML document
knit_patterns$set(list(chunk.begin = "<!--helloR\\s+(.*)", chunk.end = "^byeR-->"))
str(knit_patterns$get())

knit_patterns$set(opat) # put the old patterns back

https://yihui.org/knitr/objects/
https://yihui.org/knitr/patterns/

knit_print 49

knit_print A custom printing function

Description

The S3 generic function knit_print is the default printing function in knitr. The chunk option
render uses this function by default. The main purpose of this S3 generic function is to customize
printing of R objects in code chunks. We can fall back to the normal printing behavior by setting
the chunk option render = normal_print.

Usage

knit_print(x, ...)

normal_print(x, ...)

Arguments

x An R object to be printed

... Additional arguments passed to the S3 method. Currently ignored, except two
optional arguments options and inline; see the references below.

Details

Users can write custom methods based on this generic function. For example, if we want to print
all data frames as tables in the output, we can define a method knit_print.data.frame that turns
a data.frame into a table (the implementation may use other R packages or functions, e.g. xtable or
kable()).

Value

The value returned from the print method should be a character vector or can be converted to a
character value. You can wrap the value in asis_output() so that knitr writes the character value
as is in the output.

Note

It is recommended to leave a ... argument in your method, to allow future changes of the knit_print()
API without breaking your method.

References

See vignette('knit_print', package = 'knitr').

50 knit_rd

Examples

library(knitr)
write tables for data frames
knit_print.data.frame = function(x, ...) {

res = paste(c("", "", kable(x, output = FALSE)), collapse = "\n")
asis_output(res)

}
register the method
registerS3method("knit_print", "data.frame", knit_print.data.frame)
after you define and register the above method, data frames will be printed
as tables in knitr, which is different with the default print() behavior

knit_rd Knit package documentation

Description

Run examples in a package and insert output into the examples code; knit_rd_all() is a wrapper
around knit_rd() to build static HTML help pages for all packages under the ‘html’ directory of
them.

Usage

knit_rd(pkg, links = tools::findHTMLlinks(), frame = TRUE)

knit_rd_all()

Arguments

pkg Package name.

links A character vector of links to be passed to tools::Rd2HTML().

frame Boolean: whether to put a navigation frame on the left of the index page.

Value

All HTML pages corresponding to topics in the package are written under the current working
directory. An ‘index.html’ is also written as a table of content.

Note

Ideally the html pages should be put under the ‘html’ directory of an installed package which can be
found via system.file('html', package = 'your_package_name'), otherwise some links may
not work (e.g. the link to the DESCRITION file).

knit_theme 51

Examples

library(knitr)
Not run:

knit_rd("maps")
knit_rd("rpart")
setwd(system.file("html", package = "ggplot2"))
knit_rd("ggplot2") # time-consuming!

knit_rd_all() # this may take really long time if you have many packages installed

End(Not run)

knit_theme Syntax highlighting themes

Description

This object can be used to set or get themes in knitr for syntax highlighting.

Usage

knit_theme

Format

An object of class list of length 2.

Details

We can use knit_theme$set(theme) to set the theme, and knit_theme$get(theme) to get a
theme. The theme is a character string for both methods (either the name of the theme, or the path
to the CSS file of a theme), and for the set() method, it can also be a list returned by the get()
method. See examples below.

Note

The syntax highlighting here only applies to ‘.Rnw’ (LaTeX) and ‘.Rhtml’ (HTML) documents,
and it does not work for other types of documents, such as ‘.Rmd’ (R Markdown, which has its own
syntax highlighting themes; see https://rmarkdown.rstudio.com).

Author(s)

Ramnath Vaidyanathan and Yihui Xie

References

For a preview of all themes, see https://gist.github.com/yihui/3422133.

https://rmarkdown.rstudio.com
https://gist.github.com/yihui/3422133

52 knit_watch

Examples

opts_knit$set(out.format = "latex")
knit_theme$set("edit-vim")

knit_theme$get() # names of all available themes

thm = knit_theme$get("acid") # parse the theme to a list
knit_theme$set(thm)

opts_knit$set(out.format = NULL) # restore option

knit_watch Watch an input file continuously and knit it when it is updated

Description

Check the modification time of an input file continously in an infinite loop. Whenever the time
indicates the file has been modified, call a function to recompile the input file.

Usage

knit_watch(input, compile = knit, interval = 1, ...)

Arguments

input An input file path, or a character vector of mutiple input file paths.

compile A function to compile the input file. This could be e.g. knit or knit2pdf,
depending on the input file and the output you want.

interval A time interval to pause in each cycle of the infinite loop.

... Other arguments to be passed to the compile function.

Details

This is actually a general function not necessarily restricted to applications in knitr. You may
specify any compile function to process the input file. To stop the infinite loop, press the ‘Escape’
key or ‘Ctrl + C’ (depending on your editing environment and operating system).

Examples

knit_watch('foo.Rnw', knit2pdf)

knit_watch('foo.Rmd', rmarkdown::render)

load_cache 53

load_cache Load the cache database of a code chunk

Description

If a code chunk has turned on the chunk option cache = TRUE, a cache database will be established
after the document is compiled. You can use this function to manually load the database anywhere
in the document (even before the code chunk). This makes it possible to use objects created later
in the document earlier, e.g. in an inline R expression before the cached code chunk, which is
normally not possible because knitr compiles the document in a linear fashion, and objects created
later cannot be used before they are created.

Usage

load_cache(
label,
object,
notfound = "NOT AVAILABLE",
path = opts_chunk$get("cache.path"),
dir = opts_knit$get("output.dir"),
envir = NULL,
lazy = TRUE

)

Arguments

label The chunk label of the code chunk that has a cache database.

object The name of the object to be fetched from the database. If it is missing, NULL is
returned).

notfound A value to use when the object cannot be found.

path Path of the cache database (normally set in the global chunk option cache.path).

dir Path to use as the working directory. Defaults to the output directory if run inside
a knitr context and to the current working directory otherwise. Any relative
path is defined from dir.

envir Environment to use for cache loading, into which all objects in the cache for the
specified chunk (not just that in object) will be loaded. Defaults to the value in
knit_global.

lazy Whether to lazyLoad the cache database (depending on the chunk option cache.lazy
= TRUE or FALSE of that code chunk).

Value

Invisible NULL when object is not specified (the cache database will be loaded as a side effect),
otherwise the value of the object if found.

54 opts_chunk

Note

Apparently this function loads the value of the object from the previous run of the document, which
may be problematic when the value of the object becomes different the next time the document
is compiled. Normally you must compile the document twice to make sure the cache database is
created, and the object can be read from it. Please use this function with caution.

References

See the example #114 at https://github.com/yihui/knitr-examples.

opts_chunk Default and current chunk options

Description

Options for R code chunks. When running R code, the object opts_chunk (default options) is
not modified by chunk headers (local chunk options are merged with default options), whereas
opts_current (current options) changes with different chunk headers and it always reflects the
options for the current chunk.

Usage

opts_chunk

opts_current

Format

An object of class list of length 7.

An object of class list of length 7.

Details

Normally we set up the global options once in the first code chunk in a document using opts_chunk$set(),
so that all latter chunks will use these options. Note the global options set in one chunk will not af-
fect the options in this chunk itself, and that is why we often need to set global options in a separate
chunk.

See str(knitr::opts_chunk$get()) for a list of default chunk options.

Note

opts_current should be treated as read-only and you are supposed to only query its values via
opts_current$get(). Calling opts_current$set() will throw an error.

References

Usage: https://yihui.org/knitr/objects/

A list of available options: https://yihui.org/knitr/options/#chunk-options

https://github.com/yihui/knitr-examples
https://yihui.org/knitr/objects/
https://yihui.org/knitr/options/#chunk-options

opts_hooks 55

Examples

opts_chunk$get("prompt")
opts_chunk$get("fig.keep")

opts_hooks Hooks for code chunk options

Description

Like knit_hooks, this object can be used to set hook functions to manipulate chunk options.

Usage

opts_hooks

Format

An object of class list of length 7.

Details

For every code chunk, if the chunk option named, say, FOO, is not NULL, and a hook function with
the same name has been set via opts_hooks$set(FOO = function(options) { options }) (you
can manipuate the options argument in the function and return it), the hook function will be called
to update the chunk options.

References

https://yihui.org/knitr/hooks/

Examples

make sure the figure width is no smaller than fig.height
opts_hooks$set(fig.width = function(options) {

if (options$fig.width < options$fig.height) {
options$fig.width = options$fig.height

}
options

})
remove all hooks
opts_hooks$restore()

https://yihui.org/knitr/hooks/

56 opts_knit

opts_knit Options for the knitr package

Description

Options including whether to use a progress bar when knitting a document, and the base directory
of images, etc.

Usage

opts_knit

Format

An object of class list of length 7.

Details

Besides the standard usage (opts_knit$set()), we can also set package options prior to load-
ing knitr or calling knit() using options() in base R. A global option knitr.package.foo in
options() will be set as an option foo in opts_knit, i.e. global options in base R with the prefix
knitr.package. correspond to options in opts_knit. This can be useful to set package options in
‘~/.Rprofile’ without loading knitr.

See str(knitr::opts_knit$get()) for a list of default package options.

References

Usage: https://yihui.org/knitr/objects/

A list of available options: https://yihui.org/knitr/options/#package-options

Examples

opts_knit$get("verbose")
opts_knit$set(verbose = TRUE) # change it
if (interactive()) {

for unnamed chunks, use 'fig' as the figure prefix
opts_knit$set(unnamed.chunk.label = "fig")
knit("001-minimal.Rmd") # from https://github.com/yihui/knitr-examples

}

https://yihui.org/knitr/objects/
https://yihui.org/knitr/options/#package-options

opts_template 57

opts_template Template for creating reusable chunk options

Description

Creates a template binding a label to a set of chunk options. Every chunk that references the
template label will have the specified set of options applied to it.

Usage

opts_template

Format

An object of class list of length 7.

Examples

opts_template$set(myfigures = list(fig.height = 4, fig.width = 4))
later you can reuse these chunk options by 'opts.label', e.g.

<<foo, opts.label='myfigures'>>=

the above is equivalent to <<foo, fig.height=4, fig.width=4>>=

pandoc A Pandoc wrapper to convert documents to other formats

Description

This function calls Pandoc to convert documents to other formats such as HTML, LaTeX/PDF and
Word, etc, (optionally) based on a configuration file or in-file configurations which specify the
options to use for Pandoc.

Usage

pandoc(input, format, config = getOption("config.pandoc"), ext = NA)

Arguments

input A character vector of Markdown filenames (must be encoded in UTF-8).

format Name of the output format (see References). This can be a character vector of
multiple formats; by default, it is obtained from the t field in the configuration.
If the configuration is empty or the t field is not found, the default output format
will be 'html'.

58 pandoc

config Path to the Pandoc configuration file. If missing, it is assumed to be a file
with the same base name as the input file and an extension .pandoc (e.g. for
‘foo.md’ it looks for ‘foo.pandoc’)

ext Filename extensions. By default, the extension is inferred from the format, e.g.
latex creates pdf, dzslides creates html, and so on

Details

There are two ways to input the Pandoc configurations – through a config file, or embed the config-
urations in the input file as special comments between <!--pandoc and -->.

The configuration file is a DCF file (see read.dcf). This file must contain a field named t which
means the output format. The configurations are written in the form of tag:value and passed to
Pandoc (if no value is needed, just leave it empty, e.g. the option standalone or s for short). If
there are multiple output formats, write each format and relevant configurations in a block, and
separate blocks with blank lines.

If there are multiple records of the t field in the configuration, the input markdown file will be
converted to all these formats by default, unless the format argument is specified as one single
format.

Value

The output filename(s) (or an error if the conversion failed).

References

Pandoc: https://pandoc.org; Examples and rules of the configurations: https://yihui.org/
knitr/demo/pandoc/

Also see R Markdown (v2) at https://rmarkdown.rstudio.com. The rmarkdown package has
several convenience functions and templates that make it very easy to use Pandoc. The RStudio IDE
also has comprehensive support for it, so I’d recommend users who are not familiar with command-
line tools to use the rmarkdown package instead.

See Also

read.dcf

Examples

system("pandoc -h") # see possible output formats

https://pandoc.org
https://yihui.org/knitr/demo/pandoc/
https://yihui.org/knitr/demo/pandoc/
https://rmarkdown.rstudio.com

pat_rnw 59

pat_rnw Set regular expressions to read input documents

Description

These are convenience functions to set pre-defined pattern lists (the syntax to read input documents).
The function names are built from corresponding file extensions, e.g. pat_rnw() can set the Sweave
syntax to read Rnw documents.

Usage

pat_rnw()

pat_brew()

pat_tex()

pat_html()

pat_md()

pat_rst()

pat_asciidoc()

pat_textile()

Value

The patterns object knit_patterns is modified as a side effect.

Examples

see how knit_patterns is modified
knit_patterns$get()
pat_rnw()
knit_patterns$get()

knit_patterns$restore() # empty the list

60 rand_seed

plot_crop Crop a plot (remove the edges) using PDFCrop or ImageMagick

Description

The program pdfcrop (often shipped with a LaTeX distribution) is executed on a PDF plot file, and
magick::image_trim() is executed for other types of plot files.

Usage

plot_crop(x, quiet = TRUE)

Arguments

x Filename of the plot.

quiet Whether to suppress standard output from the command.

Details

The program pdfcrop can crop the extra white margins when the plot format is PDF, to make better
use of the space in the output document, otherwise we often have to struggle with graphics::par()
to set appropriate margins. Note pdfcrop often comes with a LaTeX distribution such as TinyTeX,
MiKTeX, or TeX Live, and you may not need to install it separately (use Sys.which('pdfcrop')
to check it; if it not empty, you are able to use it). Note that pdfcrop depends on GhostScript. You
can check if GhostScript is installed via tools::find_gs_cmd().

Value

The original filename.

References

PDFCrop: https://www.ctan.org/pkg/pdfcrop. If you use TinyTeX, you may install pdfcrop
with tinytex::tlmgr_install('pdfcrop').

rand_seed An unevaluated expression to return .Random.seed if exists

Description

This expression returns .Random.seed when eval(rand_seed) and NULL otherwise.

Usage

rand_seed

https://www.ctan.org/pkg/pdfcrop

raw_block 61

Details

It is designed to work with opts_chunk$set(cache.extra = rand_seed) for reproducibility of
chunks that involve with random number generation. See references.

References

https://yihui.org/knitr/demo/cache/

Examples

eval(rand_seed)
rnorm(1) # .Random.seed is created (or modified)
eval(rand_seed)

raw_block Mark character strings as raw blocks in R Markdown

Description

Wraps content in a raw attribute block, which protects it from being escaped by Pandoc. See https:
//pandoc.org/MANUAL.html#generic-raw-attribute. Functions raw_latex() and raw_html()
are shorthands of raw_block(x, 'latex') and raw_block(x, 'html'), respectively.

Usage

raw_block(x, type = "latex", ...)

raw_latex(x, ...)

raw_html(x, ...)

Arguments

x The character vector to be protected.

type The type of raw blocks (i.e., the Pandoc output format). If you are not sure about
the Pandoc output format of your document, insert a code chunk knitr:::pandoc_to()
and see what it returns after the document is compiled.

... Arguments to be passed to asis_output().

Examples

knitr::raw_latex("\\emph{some text}")

https://yihui.org/knitr/demo/cache/
https://pandoc.org/MANUAL.html#generic-raw-attribute
https://pandoc.org/MANUAL.html#generic-raw-attribute

62 read_chunk

read_chunk Read chunks from an external script

Description

Chunks can be put in an external script, and this function reads chunks into the current knitr session;
read_demo() is a convenience function to read a demo script from a package.

Usage

read_chunk(
path,
lines = read_utf8(path),
labels = NULL,
from = NULL,
to = NULL,
from.offset = 0L,
to.offset = 0L,
roxygen_comments = TRUE

)

read_demo(topic, package = NULL, ...)

Arguments

path Path to the R script.

lines Character vector of lines of code. By default, this is read from path.

labels Character vector of chunk labels (default NULL).

from, to Numeric vector specifying the starting/ending line numbers of code chunks, or
a character vector; see Details.

from.offset, to.offset
Offsets to be added to from/to.

roxygen_comments

Logical dictating whether to keep trailing roxygen-style comments from code
chunks in addition to whitespace

topic, package Name of the demo and the package. See utils::demo.

... Arguments passed to read_chunk.

Details

There are two approaches to read external code into the current session: (1) Use a special separator
of the from ## ---- chunk-label (at least four dashes before the chunk label) in the script; (2)
Manually specify the labels, starting and ending positions of code chunks in the script.

The second approach will be used only when labels is not NULL. For this approach, if from is NULL,
the starting position is 1; if to is NULL, each of its element takes the next element of from minus 1,

read_chunk 63

and the last element of to will be the length of lines (e.g. when from = c(1, 3, 8) and the script
has 10 lines in total, to will be c(2, 7, 10)). Alternatively, from and to can be character vectors
as regular expressions to specify the positions; when their length is 1, the single regular expression
will be matched against the lines vector, otherwise each element of from/to is matched against
lines and the match is supposed to be unique so that the numeric positions returned from grep()
will be of the same length of from/to. Note labels always has to match the length of from and to.

Value

As a side effect, code chunks are read into the current session so that future chunks can (re)use the
code by chunk label references. If an external chunk has the same label as a chunk in the current
session, chunk label references by future chunks will refer to the external chunk.

Note

This function can only be used in a chunk which is not cached (chunk option cache = FALSE), and
the code is read and stored in the current session without being executed (to actually run the code,
you have to use a chunk with a corresponding label).

Author(s)

Yihui Xie; the idea of the second approach came from Peter Ruckdeschel (author of the SweaveListingUtils
package)

References

https://yihui.org/knitr/demo/externalization/

Examples

put this in foo.R and read_chunk('foo.R')

---- my-label ----
1 + 1
lm(y ~ x, data = data.frame(x = 1:10, y = rnorm(10)))

later you can use <<my-label>>= to reference this chunk

the 2nd approach
code = c("#@a", "1+1", "#@b", "#@a", "rnorm(10)", "#@b")
read_chunk(lines = code, labels = "foo") # put all code into one chunk named foo
read_chunk(lines = code, labels = "foo", from = 2, to = 2) # line 2 into chunk foo
read_chunk(lines = code, labels = c("foo", "bar"), from = c(1, 4), to = c(3, 6))
automatically figure out 'to'
read_chunk(lines = code, labels = c("foo", "bar"), from = c(1, 4))
read_chunk(lines = code, labels = c("foo", "bar"), from = "^#@a", to = "^#@b")
read_chunk(lines = code, labels = c("foo", "bar"), from = "^#@a", to = "^#@b",

from.offset = 1, to.offset = -1)

later you can use, e.g., <<foo>>=
knitr::knit_code$get() # use this to check chunks in the current session
knitr::knit_code$restore() # clean up the session

https://yihui.org/knitr/demo/externalization/

64 render_html

render_html Set or get output hooks for different output formats

Description

The render_*() functions set built-in output hooks for LaTeX, HTML, Markdown, reStructured-
Text, AsciiDoc, and Textile. The hooks_*() functions return a list of the output hooks for the
corresponding format.

Usage

render_html()

hooks_html()

render_asciidoc()

hooks_asciidoc()

render_latex()

hooks_latex()

render_sweave()

hooks_sweave(envirs = c("Sinput", "Soutput", "Schunk"))

render_listings()

hooks_listings(envirs = c("Sinput", "Soutput", "Schunk"))

render_markdown(strict = FALSE, fence_char = "`")

hooks_markdown(strict = FALSE, fence_char = "`")

render_jekyll(highlight = c("pygments", "prettify", "none"), extra = "")

hooks_jekyll(highlight = c("pygments", "prettify", "none"), extra = "")

render_rst(strict = FALSE)

hooks_rst(strict = FALSE)

render_textile()

hooks_textile()

render_html 65

Arguments

envirs Names of LaTeX environments for code input, output, and chunk.

strict Boolean; whether to use strict markdown or reST syntax. For markdown, if
TRUE, code blocks will be indented by 4 spaces, otherwise they are put in fences
made by three backticks. For reST, if TRUE, code is put under two colons and
indented by 4 spaces, otherwise it is put under the ‘sourcecode’ directive (this
is useful for e.g. Sphinx).

fence_char A single character to be used in the code blocks fence. This can be e.g. a
backtick or a tilde, depending on your Markdown rendering engine.

highlight Which code highlighting engine to use: if pygments, the Liquid syntax is used
(default approach Jekyll); if prettify, the output is prepared for the JavaScript
library ‘prettify.js’; if none, no highlighting engine will be used, and code
blocks are simply indented by 4 spaces).

extra Extra tags for the highlighting engine. For pygments, this can be 'linenos';
for prettify, it can be 'linenums'.

Details

There are three variants of Markdown documents: ordinary Markdown (render_markdown(strict
= TRUE), which calls hooks_markdown(strict = TRUE)), extended Markdown (e.g., GitHub Fla-
vored Markdown and Pandoc; render_markdown(strict = FALSE), which calls hooks_markdown(strict
= FALSE)), and Jekyll (a blogging system on GitHub; render_jekyll(), which calls hooks_jekyll()).

For LaTeX output, there are three variants: knitr’s default style (render_latex(), which calls
hooks_latex() and uses the LaTeX framed package), Sweave style (render_sweave(), which
calls hooks_sweave() and uses ‘Sweave.sty’), and listings style (render_listings(), which
calls hooks_listings() and uses LaTeX listings package).

Default HTML output hooks are set by render_html() (which calls hooks_html()); render_rst()
(which calls hooks_rst()) is for reStructuredText; render_textile() (which calls hooks_textile())
is for Textile, and render_asciidoc() (which calls hooks_asciidoc()) is AsciiDoc.

The render_*() functions can be used before knit() or in the first chunk of the input docu-
ment (ideally this chunk has options include = FALSE and cache = FALSE) so that all the following
chunks will be formatted as expected.

You can also use knit_hooks to set the format’s hooks with the hooks_*() functions; see refer-
ences for more info on further customizing output hooks.

Value

NULL for render_* functions; corresponding hooks are set as a side effect. A list of output hooks
for hooks_*() functions.

References

See output hooks in https://yihui.org/knitr/hooks/, and some examples in https://bookdown.
org/yihui/rmarkdown-cookbook/output-hooks.html

Jekyll and Liquid: https://github.com/jekyll/jekyll/wiki/Liquid-Extensions; prettify.js:
https://code.google.com/archive/p/google-code-prettify

https://yihui.org/knitr/hooks/
https://bookdown.org/yihui/rmarkdown-cookbook/output-hooks.html
https://bookdown.org/yihui/rmarkdown-cookbook/output-hooks.html
https://github.com/jekyll/jekyll/wiki/Liquid-Extensions
https://code.google.com/archive/p/google-code-prettify

66 rnw2pdf

Examples

below is pretty much what knitr::render_markdown() does:
knitr::knit_hooks$set(knitr::hooks_markdown())

you can retrieve a subset of the hooks and set them, e.g.,
knitr::knit_hooks$set(knitr::hooks_markdown()["source"])

knitr::knit_hooks$restore()

rnw2pdf Convert an ‘Rnw’ document to PDF

Description

Call knit() to compile the ‘.Rnw’ input to ‘.tex’, and then tinytex::latexmk() to convert
‘.tex’ to ‘.pdf’.

Usage

rnw2pdf(
input,
output = with_ext(input, "pdf"),
compiler = "xelatex",
envir = parent.frame(),
quiet = FALSE,
clean = TRUE,
error = FALSE,
...

)

Arguments

input Path to the input file.

output Path of the PDF output file. By default, it uses the same name as the input, but
changes the file extension to ".pdf".

compiler, ... The LaTeX engine and other arguments to be passed to tinytex::latexmk().
The default compiler is xelatex.

envir Environment in which code chunks are to be evaluated, for example, parent.frame(),
new.env(), or globalenv()).

quiet Boolean; suppress the progress bar and messages?

clean If TRUE, the intermediate files will be removed.

error If FALSE, knitting stops when any error occurs.

rocco 67

Details

This function is similar to knit2pdf(), with the following differences:

1. The default compiler is "xelatex" instead of "pdflatex".

2. output uses the file extension ".pdf" instead of ".tex".

3. Before knitting, it tries to remove the output file and will throw a clear error if the file cannot
be removed.

4. output could be under any dir, not necessarily the same directory as input.

5. It cleans up intermediate files by default, including the ".tex" file.

6. It stops knitting when any error occurs (by setting the chunk option error = FALSE).

Value

The output file path.

rocco Knit R Markdown using the classic Docco style

Description

The classic Docco style is a two-column layout, with text in the left and code in the right column.

Usage

rocco(input, ...)

Arguments

input Path of the input R Markdown file.

... Arguments to be passed to knit2html

Details

The output HTML page supports resizing and hiding/showing the two columns. Move the cursor to
the center of the page, and it will change to a bidirectional resize cursor; drag the cursor to resize
the two columns. Press the key t to hide the code column (show the text column only), and press
again to hide the text column (show code).

Value

An HTML file is written, and its name is returned.

Author(s)

Weicheng Zhu and Yihui Xie

68 rst2pdf

References

The Docco package by Jeremy Ashkenas: https://github.com/jashkenas/docco

Examples

rocco_view = function(input) {
owd = setwd(tempdir())
on.exit(setwd(owd))
if (!file.exists(input))

return()
o = rocco(input, quiet = TRUE)
if (interactive())

browseURL(o)
}
knit these two vignettes using the docco style
rocco_view(system.file("doc", "docco-classic.Rmd", package = "knitr"))
rocco_view(system.file("doc", "knit_expand.Rmd", package = "knitr"))

rst2pdf A wrapper for rst2pdf

Description

Convert reST to PDF using rst2pdf (which converts from rst to PDF using the ReportLab open-
source library).

Usage

rst2pdf(input, command = "rst2pdf", options = "")

Arguments

input The input rst file.

command Character string giving the path of the rst2pdf program. If the program is not
in your PATH, the full path has to be given here.

options Extra command line options, e.g. '-v'.

Value

An input file ‘*.rst’ will produce ‘*.pdf’ and this output filename is returned if the conversion
was successful.

Author(s)

Alex Zvoleff and Yihui Xie

References

https://github.com/rst2pdf/rst2pdf

https://github.com/jashkenas/docco
https://github.com/rst2pdf/rst2pdf

set_alias 69

See Also

knit2pdf

set_alias Set aliases for chunk options

Description

We do not have to use the chunk option names given in knitr; we can set aliases for them. The
aliases are a named character vector; the names are aliases and the elements in this vector are the
real option names.

Usage

set_alias(...)

Arguments

... Named arguments. Argument names are aliases, and argument values are real
option names.

Value

NULL. opts_knit$get('aliases') is modified as the side effect.

Examples

set_alias(w = "fig.width", h = "fig.height")
then we can use options w and h in chunk headers instead of fig.width and
fig.height

set_header Set the header information

Description

Some output documents may need appropriate header information. For example, for LaTeX output,
we need to write ‘\usepackage{tikz}’ into the preamble if we use tikz graphics; this function sets
the header information to be written into the output.

Usage

set_header(...)

70 set_parent

Arguments

... Header components; currently possible components are highlight, tikz and
framed, which contain the necessary commands to be used in the HTML header
or LaTeX preamble. Note that HTML output does not use the tikz and framed
components, since they do not make sense in the context of HTML.

Details

By default, knitr will set up the header automatically. For example, if the tikz device is used,
knitr will add ‘\usepackage{tikz}’ to the LaTeX preamble, and this is done by setting the header
component tikz to be a character string: set_header(tikz = '\usepackage{tikz}'). Similary,
when we highlight R code using the highlight package (i.e. the chunk option highlight = TRUE),
knitr will set the highlight component of the header vector automatically; if the output type is
HTML, this component will be different – instead of LaTeX commands, it contains CSS definitions.

For power users, all the components can be modified to adapt to a customized type of output. For
instance, we can change highlight to LaTeX definitions of the listings package (and modify the
output hooks accordingly), so we can decorate R code using the listings package.

Value

The header vector in opts_knit is set.

Examples

set_header(tikz = "\\usepackage{tikz}")
opts_knit$get("header")

set_parent Specify the parent document of child documents

Description

This function extracts the LaTeX preamble of the parent document to use for the child document,
so that the child document can be compiled as an individual document.

Usage

set_parent(parent)

Arguments

parent Path to the parent document, relative to the current child document.

Details

When the preamble of the parent document also contains code chunks and inline R code, they will
be evaluated as if they were in this child document. For examples, when knitr hooks or other
options are set in the preamble of the parent document, it will apply to the child document as well.

sew 71

Value

The preamble is extracted and stored to be used later when the complete output is written.

Note

Obviously this function is only useful when the output format is LaTeX. This function only works
when the child document is compiled in a standalone mode using knit() (instead of being called
in knit_child()); when the parent document is compiled, this function in the child document will
be ignored.

References

https://yihui.org/knitr/demo/child/

Examples

can use, e.g. \Sexpr{set_parent('parent_doc.Rnw')} or

<<setup-child, include=FALSE>>=

set_parent('parent_doc.Rnw')

@

sew Wrap evaluated results for output

Description

This function is mainly for internal use: it is called on each part of the output of the code chunk
(code, messages, text output, and plots, etc.) after all statements in the code chunk have been
evaluated, and will sew these pieces of output together into a character vector.

Usage

sew(x, options = list(), ...)

Arguments

x Output from evaluate::evaluate().

options A list of chunk options used to control output.

... Other arguments to pass to methods.

https://yihui.org/knitr/demo/child/

72 spin

spin Spin goat’s hair into wool

Description

This function takes a specially formatted R script and converts it to a literate programming docu-
ment. By default normal text (documentation) should be written after the roxygen comment (#')
and code chunk options are written after #| or #+ or # %% or # ----.

Usage

spin(
hair,
knit = TRUE,
report = TRUE,
text = NULL,
envir = parent.frame(),
format = c("Rmd", "Rnw", "Rhtml", "Rtex", "Rrst", "qmd"),
doc = "^#+'[]?",
inline = "^[{][{](.+)[}][}][]*$",
comment = c("^[#]*/[*]", "^.*[*]/ *$"),
precious = !knit && is.null(text)

)

Arguments

hair Path to the R script. The script must be encoded in UTF-8 if it contains multibyte
characters.

knit Logical; whether to compile the document after conversion.

report Logical; whether to generate a report for ‘Rmd’, ‘Rnw’ and ‘Rtex’ output. Ignored
if knit = FALSE.

text A character vector of code, as an alternative way to provide the R source. If
text is not NULL, hair will be ignored.

envir Environment for knit() to evaluate the code.

format Character; the output format. The default is R Markdown.

doc A regular expression to identify the documentation lines; by default it follows
the roxygen convention, but it can be customized, e.g. if you want to use ## to
denote documentation, you can use '^##\\s*'.

inline A regular expression to identify inline R expressions; by default, code of the
form {{code}} on its own line is treated as an inline expression.

comment A pair of regular expressions for the start and end delimiters of comments; the
lines between a start and an end delimiter will be ignored. By default, the delim-
iters are /* at the beginning of a line, and */ at the end, following the convention
of C comments.

spin_child 73

precious logical: whether intermediate files (e.g., .Rmd files when format is "Rmd")
should be preserved. The default is FALSE if knit is TRUE and the input is a
file.

Details

Obviously the goat’s hair is the original R script, and the wool is the literate programming document
(ready to be knitted).

Value

If text is NULL, the path of the final output document, otherwise the content of the output.

Note

If the output format is Rnw and no document class is specified in roxygen comments, this function
will automatically add the article class to the LaTeX document so that it is complete and can
be compiled. You can always specify the document class and other LaTeX settings in roxygen
comments manually.

When the output format is Rmd, it is compiled to HTML via knit2html(), which uses R Markdown
v1 instead of v2. If you want to use the latter, you should call rmarkdown::render() instead.
Similarly, if the output format is qmd, you need to render the output with Quarto.

Author(s)

Yihui Xie, with the original idea from Richard FitzJohn (who named it as sowsear() which meant
to make a silk purse out of a sow’s ear)

References

https://yihui.org/knitr/demo/stitch/

See Also

stitch (feed a template with an R script)

spin_child Spin a child R script

Description

This function is similar to knit_child() but is used in R scripts instead. When the main R script is
not called via spin(), this function simply executes the child script via sys.source(), otherwise
it calls spin() to spin the child script into a source document, and uses knit_child() to compile
it. You can call this function in R code, or using the syntax of inline R expressions in spin() (e.g.
{{knitr::spin_child('script.R')}}).

https://yihui.org/knitr/demo/stitch/

74 stitch

Usage

spin_child(input, format)

Arguments

input Filename of the input R script.
format Passed to format in spin(). If not provided, it will be guessed from the current

knitting process.

Value

A character string of the knitted R script.

stitch Automatically create a report based on an R script and a template

Description

This is a convenience function for small-scale automatic reporting based on an R script and a tem-
plate. The default template is an Rnw file (LaTeX); stitch_rhtml() and stitch_rmd() are wrap-
pers on top of stitch() using the R HTML and R Markdown templates respectively.

Usage

stitch(
script,
template = system.file("misc", "knitr-template.Rnw", package = "knitr"),
output = NULL,
text = NULL,
envir = parent.frame()

)

stitch_rhtml(..., envir = parent.frame())

stitch_rmd(..., envir = parent.frame())

Arguments

script Path to the R script.
template Path of the template to use. By default, the Rnw template in this package; there

is also an HTML template in knitr.
output Output filename, passed to knit). By default, the base filename of the script is

used.
text A character vector. This is an alternative way to provide the input file.
envir Environment in which code chunks are to be evaluated, for example, parent.frame(),

new.env(), or globalenv()).
... Arguments passed to stitch().

Sweave2knitr 75

Details

The first two lines of the R script can contain the title and author of the report in comments of
the form ‘## title:’ and ‘## author:’. The template must have a token ‘%sCHUNK_LABEL_HERE’,
which will be used to input all the R code from the script. See the examples below.

The R script may contain chunk headers of the form ‘## ---- label,opt1=val1, opt2=val2’,
which will be copied to the template; if no chunk headers are found, the whole R script will be
inserted into the template as one code chunk.

Value

path of the output document

See Also

spin (turn a specially formatted R script to a report)

Examples

s = system.file("misc", "stitch-test.R", package = "knitr")
if (interactive()) stitch(s) # compile to PDF

HTML report
stitch(s, system.file("misc", "knitr-template.Rhtml", package = "knitr"))

or convert markdown to HTML
stitch(s, system.file("misc", "knitr-template.Rmd", package = "knitr"))

unlink(c("stitch-test.html", "stitch-test.md", "figure"), recursive = TRUE)

Sweave2knitr Convert Sweave to knitr documents

Description

This function converts an Sweave document to a knitr-compatible document.

Usage

Sweave2knitr(
file,
output = gsub("[.]([^.]+)$", "-knitr.\\1", file),
text = NULL

)

76 Sweave2knitr

Arguments

file Path to the Rnw file (must be encoded in UTF-8).

output Output file path. By default, ‘file.Rnw’ produces ‘file-knitr.Rnw’); if text
is not NULL, no output file will be produced.

text An alternative way to provide the Sweave code as a character string. If text is
provided, file will be ignored.

Details

The pseudo command ‘\SweaveInput{file.Rnw}’ is converted to a code chunk header <<child='file.Rnw'>>=.

Similarly ‘\SweaveOpts{opt = value}’ is converted to a code chunk ‘opts_chunk$set(opt =
value)’ with the chunk option include = FALSE; the options are automatically fixed in the same
way as local chunk options (explained below).

The Sweave package ‘\usepackage{Sweave}’ in the preamble is removed because it is not re-
quired.

Chunk options are updated if necessary: option values true and false are changed to TRUE and
FALSE respectively; fig=TRUE is removed because it is not necessary for knitr (plots will be auto-
matically generated); fig=FALSE is changed to fig.keep='none'; the devices pdf/jpeg/png/eps/tikz=TRUE
are converted to dev='pdf'/'jpeg'/'png'/'postscript'/'tikz'; pdf/jpeg/png/eps/tikz=FALSE
are removed; results=tex/verbatim/hide are changed to results='asis'/'markup'/'hide';
width/height are changed to fig.width/fig.height; prefix.string is changed to fig.path;
print/term/prefix=TRUE/FALSE are removed; most of the character options (e.g. engine and
out.width) are quoted; keep.source=TRUE/FALSE is changed to tidy=FALSE/TRUE (note the or-
der of values).

If a line @ (it closes a chunk) directly follows a previous @, it is removed; if a line @ appears before
a code chunk and no chunk is before it, it is also removed, because knitr only uses one ‘@’ after
‘<<>>=’ by default (which is not the original Noweb syntax but more natural).

Value

If text is NULL, the output file is written and NULL is returned. Otherwise, the converted text string
is returned.

Note

If ‘\SweaveOpts{}’ spans across multiple lines, it will not be fixed, and you have to fix it manu-
ally. The LaTeX-style syntax of Sweave chunks are ignored (see ?SweaveSyntaxLatex); only the
Noweb syntax is supported.

References

The motivation of the changes in the syntax: https://yihui.org/knitr/demo/sweave/

See Also

Sweave, gsub

https://yihui.org/knitr/demo/sweave/

vignette_engines 77

Examples

Sweave2knitr(text = "<<echo=TRUE>>=") # this is valid
Sweave2knitr(text = "<<png=true>>=") # dev='png'
Sweave2knitr(text = "<<eps=TRUE, pdf=FALSE, results=tex, width=5, prefix.string=foo>>=")
Sweave2knitr(text = "<<,png=false,fig=TRUE>>=")
Sweave2knitr(text = "\\SweaveOpts{echo=false}")
Sweave2knitr(text = "\\SweaveInput{hello.Rnw}")
Sweave example in utils
testfile = system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")
Sweave2knitr(testfile, output = "Sweave-test-knitr.Rnw")
if (interactive()) knit("Sweave-test-knitr.Rnw") # or knit2pdf() directly
unlink("Sweave-test-knitr.Rnw")

vignette_engines Package vignette engines

Description

Since R 3.0.0, package vignettes can use non-Sweave engines, and knitr has provided a few engines
to compile vignettes via knit() with different templates. See https://yihui.org/knitr/demo/
vignette/ for more information.

Note

If you use the knitr::rmarkdown engine, please make sure that you put rmarkdown in the
‘Suggests’ field of your ‘DESCRIPTION’ file. Also make sure pandoc is available during R CMD
build. If you build your package from RStudio, this is normally not a problem. If you build the
package outside RStudio, run rmarkdown::find_pandoc() in an R session to check if Pandoc can
be found.

When the rmarkdown package is not installed or not available, or pandoc cannot be found, the
knitr::rmarkdown engine will fall back to the knitr::knitr engine, which uses R Markdown v1
based on the markdown package.

Examples

library(knitr)
vig_list = tools::vignetteEngine(package = "knitr")
str(vig_list)
vig_list[["knitr::knitr"]][c("weave", "tangle")]
vig_list[["knitr::knitr_notangle"]][c("weave", "tangle")]
vig_list[["knitr::docco_classic"]][c("weave", "tangle")]

https://yihui.org/knitr/demo/vignette/
https://yihui.org/knitr/demo/vignette/

78 wrap_rmd

wrap_rmd Wrap long lines in Rmd files

Description

This function wraps long paragraphs in an R Markdown file. Other elements are not wrapped: the
YAML preamble, fenced code blocks, section headers and indented elements. The main reason for
wrapping long lines is to make it easier to review differences in version control.

Usage

wrap_rmd(file, width = 80, text = NULL, backup)

Arguments

file The input Rmd file.

width The expected line width.

text A character vector of text lines, as an alternative to file. If text is not NULL,
file is ignored.

backup Path to back up the original file in case anything goes wrong. If set to NULL, no
backup is made. The default value is constructed from file by adding __ before
the base filename.

Value

If file is provided, it is overwritten; if text is provided, a character vector is returned.

Note

Currently it does not wrap blockquotes or lists (ordered or unordered). This feature may or may not
be added in the future.

Examples

wrap_rmd(text = c("```", "1+1", "```", "- a list item", "> a quote", "",
paste(rep("this is a normal paragraph", 5), collapse = " ")))

write_bib 79

write_bib Generate BibTeX bibliography databases for R packages

Description

A wrapper function of xfun::pkg_bib().

Usage

write_bib(..., prefix = getOption("knitr.bib.prefix", "R-"))

Arguments

..., prefix Arguments passed to xfun::pkg_bib().

Index

∗ datasets
all_patterns, 8
cache_engines, 9
knit_code, 40
knit_engines, 41
knit_hooks, 44
knit_patterns, 48
knit_theme, 51
opts_chunk, 54
opts_hooks, 55
opts_knit, 56
opts_template, 57
rand_seed, 60

all_labels, 7
all_patterns, 8, 48
all_rcpp_labels (all_labels), 7
as.character, 9
asis_output, 8, 17, 49, 61
aspell, 43

base64_uri, 24
base::strwrap, 11

cache_engines, 9
clean_cache, 10
combine_words, 11
convert_chunk_header, 11
current_input, 13

demo, 62
dep_auto, 13, 14
dep_prev, 14, 14
download_file, 15
download_image, 15

engine_output, 15
evaluate, 71
extract_raw_output, 16

fig_chunk, 18

fig_path, 18, 19
for, 31
format, 30

globalenv, 33, 35–37, 39, 40, 66, 74
grep, 48
gsub, 76

hook_ffmpeg_html, 19
hook_gifski (hook_ffmpeg_html), 19
hook_mogrify (hook_pdfcrop), 21
hook_movecode, 20
hook_optipng (hook_pdfcrop), 21
hook_pdfcrop, 21
hook_plot_asciidoc (hook_plot_html), 23
hook_plot_custom, 23, 24
hook_plot_custom (hook_pdfcrop), 21
hook_plot_html, 23
hook_plot_md (hook_plot_html), 23
hook_plot_rst (hook_plot_html), 23
hook_plot_tex (hook_plot_html), 23
hook_plot_textile (hook_plot_html), 23
hook_pngquant (hook_pdfcrop), 21
hook_purl (hook_pdfcrop), 21
hook_r2swf (hook_ffmpeg_html), 19
hook_rgl, 22
hook_scianimator (hook_ffmpeg_html), 19
hook_webgl, 22
hooks_asciidoc (render_html), 64
hooks_html (render_html), 64
hooks_jekyll (render_html), 64
hooks_latex (render_html), 64
hooks_listings (render_html), 64
hooks_markdown (render_html), 64
hooks_rst (render_html), 64
hooks_sweave (render_html), 64
hooks_textile (render_html), 64

iconv, 39
image_trim, 60

80

INDEX 81

image_uri, 24
include_app (include_url), 26
include_graphics, 15, 25, 26
include_url, 26
inline_expr, 27
is_html_output (is_latex_output), 27
is_latex_output, 27
is_low_change, 29

join_words, 11

kable, 29, 49
kables (kable), 29
knit, 6, 13, 14, 22, 32, 33, 36, 40, 42, 44, 52,

66, 71, 72, 74, 77
knit2html, 35, 67, 73
knit2pandoc, 36
knit2pdf, 37, 52, 67, 69
knit2wp, 38
knit_child, 33, 39, 71, 73
knit_code, 40
knit_engines, 16, 41
knit_exit, 42
knit_expand, 42
knit_filter, 43
knit_global, 44, 53
knit_hooks, 44, 55, 65
knit_meta, 45
knit_meta_add (knit_meta), 45
knit_params, 46, 47, 48
knit_params_yaml, 47
knit_patterns, 8, 33, 48, 59
knit_print, 9, 49
knit_rd, 50
knit_rd_all (knit_rd), 50
knit_theme, 51
knit_watch, 52
knitr (knitr-package), 6
knitr-package, 6

latexmk, 37, 66
lazyLoad, 53
load_cache, 53

mark_html, 35, 36

new.env, 33, 35–37, 39, 40, 66, 74
normal_print (knit_print), 49

options, 56

opts_chunk, 22, 54
opts_current, 30
opts_current (opts_chunk), 54
opts_hooks, 55
opts_knit, 28, 34, 56
opts_template, 57

pandoc, 37, 57
pandoc_convert, 37
pandoc_from (is_latex_output), 27
pandoc_to (is_latex_output), 27
par, 60
parent.frame, 33, 35–37, 39, 40, 66, 74
pat_asciidoc (pat_rnw), 59
pat_brew (pat_rnw), 59
pat_html (pat_rnw), 59
pat_md (pat_rnw), 59
pat_rnw, 33, 59
pat_rst (pat_rnw), 59
pat_tex (pat_rnw), 59
pat_textile (pat_rnw), 59
pkg_bib, 79
plot_crop, 22, 60
purl, 22, 46
purl (knit), 32

rand_seed, 60
raw_block, 61
raw_html (raw_block), 61
raw_latex (raw_block), 61
raw_output (extract_raw_output), 16
Rd2HTML, 50
read.dcf, 58
read_chunk, 22, 62, 62
read_demo (read_chunk), 62
recordPlot, 22, 23
render, 73
render_asciidoc (render_html), 64
render_html, 64
render_jekyll (render_html), 64
render_latex, 33
render_latex (render_html), 64
render_listings (render_html), 64
render_markdown (render_html), 64
render_rst (render_html), 64
render_sweave (render_html), 64
render_textile (render_html), 64
restore_raw_output

(extract_raw_output), 16

82 INDEX

rgl.postscript, 22
rgl.snapshot, 22
rnw2pdf, 66
rocco, 67
rst2pdf, 37, 68

set_alias, 69
set_header, 69
set_parent, 70
setwd, 34
sew, 71
spin, 72, 73, 75
spin_child, 73
Stangle, 33, 36
stitch, 73, 74
stitch_rhtml (stitch), 74
stitch_rmd (stitch), 74
Sweave, 76
Sweave2knitr, 6, 75
sys.source, 73
system2, 41

vignette_engines, 77

wrap_rmd, 78
write_bib, 79

	knitr-package
	all_labels
	all_patterns
	asis_output
	cache_engines
	clean_cache
	combine_words
	convert_chunk_header
	current_input
	dep_auto
	dep_prev
	download_image
	engine_output
	extract_raw_output
	fig_chunk
	fig_path
	hook_ffmpeg_html
	hook_movecode
	hook_pdfcrop
	hook_plot_html
	image_uri
	include_graphics
	include_url
	inline_expr
	is_latex_output
	is_low_change
	kable
	knit
	knit2html
	knit2pandoc
	knit2pdf
	knit2wp
	knit_child
	knit_code
	knit_engines
	knit_exit
	knit_expand
	knit_filter
	knit_global
	knit_hooks
	knit_meta
	knit_params
	knit_params_yaml
	knit_patterns
	knit_print
	knit_rd
	knit_theme
	knit_watch
	load_cache
	opts_chunk
	opts_hooks
	opts_knit
	opts_template
	pandoc
	pat_rnw
	plot_crop
	rand_seed
	raw_block
	read_chunk
	render_html
	rnw2pdf
	rocco
	rst2pdf
	set_alias
	set_header
	set_parent
	sew
	spin
	spin_child
	stitch
	Sweave2knitr
	vignette_engines
	wrap_rmd
	write_bib
	Index

