Package ‘ldmppr’

January 9, 2026
Type Package

Title Estimate and Simulate from Location Dependent Marked Point
Processes

Version 1.1.0
Maintainer Lane Drew <lanetdrew@gmail.com>

Description A suite of tools for estimating, assessing model fit, simulating from, and visualizing loca-
tion dependent marked point processes characterized by regularity in the pattern.
You provide a reference marked point process, a set of raster images containing location spe-
cific covariates, and select the estimation algorithm and type of mark model.
'ldmppr’ estimates the process and mark models and allows you to check the appropriate-
ness of the model using a variety of diagnostic tools.
Once a satisfactory model fit is obtained, you can simulate from the model and visualize the re-
sults.
Documentation for the package 'ldmppr’ is available in the form of a vignette.

License GPL (>=3)
Encoding UTF-8
LazyData true

Imports stats, bundle, Rcpp (>= 1.0.12), terra, doParallel, xgboost,
ranger, parsnip (>= 1.4.0), dials, recipes, rsample, tune,
workflows, magrittr, hardhat, ggplot2, spatstat.geom,
spatstat.explore, nloptr, GET, progress, future, furrr,
foreach, yardstick

LinkingTo Rcpp, ReppArmadillo
URL https://github.com/lanedrew/1ldmppr

BugReports https://github.com/lanedrew/ldmppr/issues
RoxygenNote 7.3.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0), dplyr
VignetteBuilder knitr

Depends R (>=3.5.0)

Config/testthat/edition 3

https://github.com/lanedrew/ldmppr
https://github.com/lanedrew/ldmppr/issues

NeedsCompilation yes

Author Lane Drew [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0006-5427-4092>),
Andee Kaplan [aut] (ORCID: <https://orcid.org/0000-0002-2940-889X>)

Repository CRAN
Date/Publication 2026-01-08 23:30:07 UTC

check_model_fit

Contents
check_model_fit. 2
estimate_process_parameters e e e e e e e e e e e e e e 5
EXITACE_COVALS . .« v v v v o e e e e e e e e e e e e e e 9
GENETALE_IMPP - « « v ¢ v v v e 10
Idmppr_fit 10
Idmppr_mark_model 12
Idmppr_model_check 14
Idmppr_sim L e e e e e 15
medium_example_data Lo 16
plot_mpp 17
power_law_mappingo 18
predict_marks e 18
SCale_TaSterS o e e e e e e e e e e e 20
simulate_mpp e e e e e e e e 21
simulate _SC e e 22
small_example_data 24
train_mark_model 24

Index 27

check_model_fit Check the fit of estimated self-correcting model on the reference point
pattern dataset
Description

Allows the user to perform global envelope tests for the nonparametric L, F, G, J, E, and V sum-
mary functions from the spatstat package. These tests serve as a goodness of fit measure for the

estimated model relative to the reference dataset of interest.

Usage

check_model_fit(
reference_data,
t_min = 0,
t_max =1,
sc_params = NULL,

https://orcid.org/0009-0006-5427-4092
https://orcid.org/0000-0002-2940-889X

check_model_fit 3

anchor_point = NULL,
raster_list = NULL,
scaled_rasters = FALSE,
mark_model = NULL,
xy_bounds = NULL,
include_comp_inds = FALSE,
thinning = TRUE,

correction = "none”,
competition_radius = 15,
n_sim = 2500,

save_sims = TRUE,
verbose = TRUE,
seed = @

Arguments

reference_data a ppp object for the reference dataset.

t_min minimum value for time.
t_max maximum value for time.
sc_params vector of parameter values corresponding to (alpha_1, beta_1, gamma_1, al-

pha_2, beta_2, alpha_3, beta_3, gamma_3).
anchor_point vector of (x,y) coordinates of point to condition on.
raster_list a list of raster objects.
scaled_rasters ‘TRUE‘or ‘FALSE‘ indicating whether the rasters have been scaled.
mark_model a model object (typically from train_mark_model).

xy_bounds a vector of domain bounds (2 for x, 2 for y).

include_comp_inds
‘TRUE" or ‘FALSE" indicating whether to generate and use competition indices
as covariates.

thinning ‘TRUE‘ or ‘FALSE‘ indicating whether to use the thinned or unthinned simu-
lated values.

correction type of correction to apply ("none" or "toroidal").

competition_radius
distance for competition radius if include_comp_inds is “TRUE®.

n_sim number of simulated datasets to generate.
save_sims ‘TRUE' or ‘FALSE* indicating whether to save and return the simulated datasets.
verbose ‘TRUE' or ‘FALSE" indicating whether to show progress of model checking.
seed an integer value to set the seed for reproducibility.

Details

This function relies on the spatstat package for the calculation of the point pattern metrics and
the GET package for the global envelope tests. The L, F, G, J, E, and V functions are a collection

4 check_model_fit

of non-parametric summary statistics that describe the spatial distribution of points and marks in a

point pattern. See the documentation for [spatstat.explore::Lest()], [spatstat.explore::Fest()], [spat-
stat.explore::Gest()], [spatstat.explore::Jest()], [spatstat.explore::Emark()], and [spatstat.explore::Vmark()]
for more information. Also, see the [GET::global_envelope_test()] function for more information

on the global envelope tests.

Value

a list containing a combined global envelope test, individual global envelope tests for the L, F, G, J,
E, and V functions, and simulated metric values (if specified).

References

Baddeley, A., Rubak, E., & Turner, R. (2015). *Spatial Point Patterns: Methodology and Ap-
plications with R*. Chapman and Hall/CRC Press, London. ISBN 9781482210200. Available at:
https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/
Baddeley-Rubak-Turner/p/book/9781482210200.

Myllymiki, M., & Mrkvicka, T. (2023). GET: Global envelopes in R. arXiv:1911.06583 [stat. ME].
doi:10.48550/arXiv.1911.06583.

Examples

Note: The example below is provided for illustrative purposes and may take some time to run.

Load the small example data
data(small_example_data)

Load the example mark model that previously was trained on the small example data
file_path <- system.file("extdata”, "example_mark_model.rds"”, package = "ldmppr")
mark_model <- load_mark_model(file_path)

Load the raster files

raster_paths <- list.files(system.file("extdata"”, package = "ldmppr"),
pattern = "\\.tif$", full.names = TRUE)

raster_paths <- raster_paths[!grepl(”_med\\.tif$", raster_paths)]

rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Generate the reference pattern

reference_data <- generate_mpp(
locations = small_example_datal[, c("x", "y")1,
marks = small_example_data$size,
xy_bounds = c(0, 25, 9, 25)

)

Define an anchor point
M_n <- c(small_example_datal1, c("x", "y")1)

Specify the estimated parameters of the self-correcting process

https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200
https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200
https://doi.org/10.48550/arXiv.1911.06583

es timate_process_parameters

Note: These would generally be estimated using estimate_process_parameters.
These values are estimates from the small_example_data generating script.

estimated_parameters <-

c(

0.05167978, 8.20702166, 0.02199940, 2.63236890,
1.82729512, ©.65330061, 0.86666748, ©0.04681878

)

Check the model fit

example_model_fit <- check_model_fit(
reference_data = reference_data,

t_min = 0,
t_max = 1,

sc_params = estimated_parameters,
anchor_point = M_n,

raster_list = scaled_raster_list,
scaled_rasters = TRUE,

mark_model = mark_model,
xy_bounds = c(0, 25, 9, 25),
include_comp_inds = TRUE,

thinning = TRUE,
correction = "none”,
competition_radius =
n_sim = 100,
save_sims = FALSE,
verbose = TRUE,
seed = 90210

)

plot(example_model_fit,

10,

which = 'combined')

estimate_process_parameters

Estimate point process parameters using log-likelihood maximization

Description

Estimate spatio-temporal point process parameters by maximizing the (approximate) full log-likelihood
using nloptr. For the self-correcting process, the arrival times must be on (0, 1) and can either be
supplied directly in data as time, or constructed from size via the gentle-decay (power-law) map-
ping power_law_mapping using delta (single fit) or delta_values (delta search).

process = c("self_correcting”),

Usage
estimate_process_parameters(
data,
x_grid = NULL,
y_grid = NULL,

t_grid = NULL
upper_bounds

estimate_process_ parameters

’

= NULL,

parameter_inits = NULL,

delta = NULL,

delta_values = NULL,

parallel = FALSE,

num_cores = max(1L, parallel::detectCores() - 1L),
set_future_plan = FALSE,

strategy = c(
grid_levels =

"local"”, "global_local”, "multires_global_local”),

NULL,

refine_best_delta = TRUE,
global_algorithm = "NLOPT_GN_CRS2_LM",
local_algorithm = "NLOPT_LN_BOBYQA",
global_options = list(maxeval = 150),

local_options
n_starts = 1L
jitter_sd = 0@
seed = 1L,

finite_bounds

= list(maxeval = 300, xtol_rel = 1e-05, maxtime = NULL),

’

.35,

= NULL,

verbose = TRUE

Arguments

data

process

A data.frame or matrix. Must contain either columns (time, x, y) or (x, vy,
size). If a matrix is provided for delta search, it must have column names
C("X”,"y”,"size").

Character string specifying the process model. Currently supports "self_correcting”.

x_grid, y_grid, t_grid

upper_bounds
parameter_inits

delta

delta_values

parallel

num_cores

set_future_plan

Numeric vectors defining the integration grid for (z,y, t).

Numeric vector of length 3 giving c(b_t, b_x, b_y).

Numeric vector of length 8 giving initialization values for the model parameters.

Optional numeric scalar used only when data contains (x,y,size) but not
time.

Optional numeric vector. If supplied, the function fits the model for each value
of delta_values (mapping size -> time via power_law_mapping) and returns
the best fit (lowest objective).

logical. If TRUE, uses furrr/future to parallelize either (a) over ‘delta_values*
(when provided) or (b) over multi-start initializations (when ‘delta_values® is
NULL and ‘n_starts > 1°).

Integer number of workers to use when set_future_plan = TRUE.

Logical. If TRUE, temporarily sets future::plan(multisession, workers =
num_cores) and restores the original plan on exit.

es timate_process_parameters 7

strategy Character string specifying the estimation strategy: - "local": single-level local
optimization from parameter_inits. - "global_local”: single-level global
optimization (from parameter_inits) followed by local polish. - "multires_global_local”:
multi-resolution fitting over grid_levels (coarsest level uses global + local;
finer levels use local polish only).

grid_levels Optional list defining the multi-resolution grid schedule when strategy = "multires_global_local”.
Each entry can be a numeric vector c(nx, ny, nt) or a list with named en-
tries list(nx=..., ny=..., nt=...). If NULL, uses the supplied (x_grid,
y_grid, t_grid) as a single level.

refine_best_delta
Logical. If TRUE and delta_values is supplied, performs a final refinement fit
at the best delta found using the full multi-resolution strategy.

global_algorithm, local_algorithm
Character strings specifying the NLopt algorithms to use for the global and local
optimization stages, respectively.

global_options, local_options
Named lists of options to pass to nloptr::nloptr() for the global and local
optimization stages, respectively.

n_starts Integer number of multi-start initializations to use for the local optimization
stage.

jitter_sd Numeric standard deviation used to jitter the multi-start initializations.

seed Integer random seed used for multi-start initialization jittering.

finite_bounds Optional list with components 1b and ub giving finite lower and upper bounds
for all 8 parameters. Used only when the selected optimization algorithms re-
quire finite bounds.

verbose Logical. If TRUE, prints progress messages during fitting.

Details

For the self-correcting process, the log-likelihood integral is approximated using the supplied grid
(x_grid, y_grid, t_grid) over the bounded domain upper_bounds. When delta_values is
supplied, this function performs a grid search over delta values, fitting the model separately for
each mapped dataset and selecting the best objective value.

Value

An object of class "1dmppr_fit"” containing the best nloptr fit and (optionally) all fits from a delta
search.

References

Mgller, J., Ghorbani, M., & Rubak, E. (2016). Mechanistic spatio-temporal point process mod-
els for marked point processes, with a view to forest stand data. Biometrics, 72(3), 687-696.
doi:10.1111/biom.12466.

https://doi.org/10.1111/biom.12466

Examples

data(small_example_data)

Build time using a single delta (so data has time,x,y)
small_txy <- small_example_data %>%

dplyr::mutate(time = power_law_mapping(size,
dplyr::select(time, x, y)

x_grid <- seq(@, 25, length.out = 5)

y_grid <- seq(@, 25, length.out
t_grid <- seq(@, 1, length.out

5)
5)

parameter_inits <- c(1.5, 8.5, .015, 1.5, 3.2,
upper_bounds <- c(1, 25, 25)

fit <- estimate_process_parameters(

)

data = small_txy,

process = "self_correcting”,

x_grid = x_grid,

y_grid = y_grid,

t_grid = t_grid,

upper_bounds = upper_bounds,
parameter_inits = parameter_inits,
strategy = "global_local”,
global_algorithm = "NLOPT_GN_CRS2_LM",
local_algorithm = "NLOPT_LN_BOBYQA",
global_options = list(maxeval = 150),

local_options = list(maxeval = 25, xtol_rel =

verbose = TRUE

coef (fit)
loglLik(fit)

0.5)) %%

.75, 3,

le-2),

.08)

estimate_process_ parameters

Delta-search example (data has x,y,size; time is derived internally for each delta)
fit_delta <- estimate_process_parameters(

data = small_example_data, # x,y,size
process = "self_correcting”,

x_grid = x_grid,

y_grid = y_grid,

t_grid = t_grid,

upper_bounds = upper_bounds,
parameter_inits = parameter_inits,
delta_values = c(0.35, 0.5, 0.65, 0.9, 1.0),
parallel = TRUE,

set_future_plan = TRUE,

num_cores = 2,

strategy = "multires_global_local”,
global_options = list(maxeval = 100),

local_options = list(maxeval = 100, xtol_rel = 1e-3),

n_starts = 3,

extract_covars

refine_best_delta = TRUE,
verbose = TRUE

)
plot(fit_delta)

extract_covars Extract covariate values from a set of rasters

Description

Extract covariate values from a set of rasters

Usage

extract_covars(locations, raster_list)

Arguments
locations a matrix/data.frame of (x,y) locations.
raster_list a list of SpatRaster objects.

Value

a data.frame of covariates (no ID column; unique names).

Examples

Load example raster data

raster_paths <- list.files(system.file("extdata"”, package = "ldmppr"),
pattern = "\\.tif$"”, full.names = TRUE

)

raster_paths <- raster_paths[!grepl(”"_med\\.tif$", raster_paths)]

rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Load example locations

locations <- small_example_data %>%
dplyr::select(x, y) %>%
as.matrix()

Extract covariates
example_covars <- extract_covars(locations, scaled_raster_list)
head(example_covars)

10 Idmppr_fit

generate_mpp Generate a marked process given locations and marks

Description

Creates an object of class "ppp" that represents a marked point pattern in the two-dimensional plane.

Usage

generate_mpp(locations, marks = NULL, xy_bounds = NULL)

Arguments
locations a data frame of (x,y) locations with names "x" and "y".
marks a vector of marks.
xy_bounds a vector of domain bounds (2 for x, 2 for y).

Value

a ppp object with marks.

Examples

Load example data
data(small_example_data)

Generate a marked point process

generate_mpp(
locations = small_example_data %>% dplyr::select(x, y),
marks = small_example_data$size,
xy_bounds = c(0, 25, 0, 25)

)

ldmppr_fit Fitted point-process model object

Description

Objects of class ‘Idmppr_fit* are returned by [estimate_process_parameters()]. They contain the
best-fitting optimization result (and optionally multiple fits, e.g. from a delta search) along with
metadata used to reproduce the fit.

Idmppr._fit 11

Usage

S3 method for class 'ldmppr_fit'
print(x, ...)

S3 method for class 'ldmppr_fit'
coef(object, ...)

S3 method for class 'ldmppr_fit'
logLik(object, ...)

S3 method for class 'ldmppr_fit'
summary (object, ...)

S3 method for class 'summary.ldmppr_fit'
print(x, ...)

S3 method for class 'ldmppr_fit'
plot(x, ...)

as_nloptr(x, ...)

S3 method for class 'ldmppr_fit'

as_nloptr(x, ...)
Arguments
X an object of class ‘Idmppr_fit°.

additional arguments (not used).

object an object of class ‘Idmppr_fit°.

Details

A ‘ldmppr_fit* is a list with (at minimum):

e ‘process‘: process name (e.g. ‘"self_correcting"*)
* ‘“fit‘: best optimization result (currently an ‘nloptr* object)
* ‘mapping‘: mapping information (e.g. chosen ‘delta‘, objectives)

 ‘grid‘: grid definitions used by likelihood approximation

Value

* ‘print()‘ prints a brief summary of the fit. * ‘coef()‘ returns the estimated parameter vector. *
‘logLik()‘ returns the log-likelihood at the optimum. * ‘summary()‘ returns a ‘summary.ldmppr_fit°.
* ‘plot() plots diagnostics for multi-fit runs (e.g. objective vs delta), if available.

12 Idmppr_mark_model

Methods (by generic)

e print(ldmppr_fit): Print a brief summary of a fitted model.

e coef(ldmppr_fit): Extract the estimated parameter vector.

e loglLik(ldmppr_fit): Log-likelihood at the optimum.

e summary (ldmppr_fit): Summarize a fitted model.

* plot(ldmppr_fit): Plot diagnostics for a fitted model.

* as_nloptr(ldmppr_fit): Extract the underlying ‘nloptr‘ result.

Functions

e print(summary.ldmppr_fit): Print a summary produced by [summary.ldmppr_fit()].
* as_nloptr(): Extract the underlying ‘nloptr* result.

ldmppr_mark_model Mark model object

Description

‘ldmppr_mark_model* objects store a fitted mark model and preprocessing information used to
predict marks at new locations and times.

Usage

ldmppr_mark_model(
engine,
fit_engine = NULL,
xgb_raw = NULL,
recipe = NULL,
outcome = "size",
feature_names = NULL,
info = list()

)

S3 method for class 'ldmppr_mark_model'
print(x, ...)

S3 method for class 'ldmppr_mark_model'
predict(object, new_data, ...)

save_mark_model(object, path, ...)

S3 method for class 'ldmppr_mark_model'
save_mark_model(object, path, ...)

load_mark_model (path)

Idmppr_mark_model 13

Arguments
engine Character scalar. One of ‘"xgboost"* or ‘"ranger"*.
fit_engine Fitted engine object (e.g. ‘xgb.Booster® or a ranger fit).
xgb_raw Raw xgboost payload (e.g. UBJ) used for rehydration.
recipe A prepped recipes object used for preprocessing new data.
outcome Outcome column name (default ‘"size"*).

feature_names Optional vector of predictor names required at prediction time.
info Optional list of metadata.
X a ‘ldmppr_mark_model‘ object.

passed to methods.

object a ‘ldmppr_mark_model* object.

new_data a data frame of predictors (and possibly outcome columns).

path path to an ‘.rds‘ created by [save_mark_model()] (or legacy objects).
Details

These objects are typically returned by [train_mark_model()] and can be saved/loaded with [save_mark_model()]
and [load_mark_model()].

ne o "ne

The model may be backed by different engines (currently ‘"xgboost"‘ and ‘"ranger"). For xgboost,
the object can store a serialized booster payload to make saving/loading robust across R sessions.

Value

* ‘print()* prints a brief summary. * ‘predict()‘ returns numeric predictions for new data.

an object of class ‘"ldmppr_mark_model"*.

Methods (by generic)

e print(ldmppr_mark_model): Print a brief summary of the mark model.
e predict(ldmppr_mark_model): Predict marks for new data.

* save_mark_model (1dmppr_mark_model): Save method for ‘ldmppr_mark_model‘.

Functions

e ldmppr_mark_model (): Create a mark model container.
* save_mark_model(): Save a mark model to disk.

e load_mark_model(): Load a saved mark model from disk.

14 Idmppr_model_check

ldmppr_model_check Model fit diagnostic object

Description

Objects of class ‘ldmppr_model_check* are returned by [check_model_fit()]. They contain global
envelope test results and curve sets for multiple summary functions/statistics.

Usage

S3 method for class 'ldmppr_model_check'
print(x, ...)

S3 method for class 'ldmppr_model_check'
summary (object, ...)

S3 method for class 'summary.ldmppr_model_check'
print(x, ...)

S3 method for class 'ldmppr_model_check'

plOt(X, WhiCh = C(“Combined”, HLII’ HFII’ IIGH, IIJ'H’ IIEII, ”VII), . ‘)
Arguments
X an object of class ‘ldmppr_model_check®.

additional arguments passed to the underlying ‘plot()‘ method (e.g., from **GET*%*).
object an object of class ‘ldmppr_model_check®.

o

which which envelope to plot. ‘"combined"* plots the global envelope; otherwise one
Of “‘L"‘7 4"Fll" £||G||4’ ‘VVJIIA, 4IIE||4’ ‘IIVVVG.

Details
An ‘ldmppr_model_check" is a list with components such as:
* ‘combined_env‘: a global envelope test object (typically from **GET**)
* ‘envs‘: named list of envelope test objects (e.g., ‘L, ‘F*, ‘G*, ‘J*, ‘E*, V)
* ‘curve_sets‘: named list of curve set objects

* ‘settings‘: list of settings used when generating envelopes (e.g., ‘n_sim‘, ‘thinning®)

Value

* ‘print()* prints a brief summary of the diagnostic object. * ‘summary()* returns a ‘summary.ldmppr_model_check*
object. * ‘plot()‘ plots the combined envelope or a selected statistic envelope.

Idmppr_sim 15

Methods (by generic)

e print(ldmppr_model_check): Print a brief summary of the diagnostic results.

* summary (ldmppr_model_check): Summarize p-values from the combined and individual en-
velopes.

* plot(ldmppr_model_check): Plot the combined envelope or a selected statistic.

Functions

* print(summary.ldmppr_model_check): Print a summary produced by [summary.ldmppr_model_check()].

ldmppr_sim Simulated marked point process object

Description
‘ldmppr_sim* objects are returned by [simulate_mpp()]. They contain the simulated realization, an
associated marked point pattern object, and metadata used to reproduce or inspect the simulation.
Usage

S3 method for class 'ldmppr_sim'
print(x, ...)

S3 method for class 'ldmppr_sim'
as.data.frame(x, ...)

S3 method for class 'ldmppr_sim'
nobs(object, ...)

S3 method for class 'ldmppr_sim'
plot(x, pattern_type = "simulated”, ...)

mpp. ldmppr_sim(x, ...)

Arguments
X a ‘ldmppr_sim* object.
additional arguments (not used).
object a ‘ldmppr_sim* object.

pattern_type type of pattern to plot ‘"simulated"* (default).

16 medium_example_data

Details
An ‘ldmppr_sim* is a list with at least:

e ‘process‘: process name (e.g. ‘"self_correcting"*)
* ‘mpp‘: a marked point pattern object

* ‘realization‘: data.frame with columns ‘time°, ‘x‘, ‘y‘, ‘marks*

e ‘params‘, ‘bounds‘, and other metadata

Value
For methods:

‘print()¢ prints a summary of the simulation.

‘plot()¢ returns a ggplot visualization of the marked point pattern.
‘as.data.frame()¢ returns the simulated realization as a data.frame.
‘nobs()¢ returns the number of points in the realization.

‘mpp()¢ returns the marked point pattern object.

Methods (by generic)

e print(ldmppr_sim): Print a brief summary of the simulation.

e as.data.frame(ldmppr_sim): Coerce to a data.frame of the simulated realization.
* nobs(ldmppr_sim): Number of simulated points.

* plot(ldmppr_sim): Plot the simulated marked point pattern.

Functions

e mpp.ldmppr_sim(): Extract the underlying marked point pattern object.

medium_example_data Medium Example Data

Description

A medium sized example dataset consisting of 111 observations in a (50m x 50m) square domain.

Usage

data("medium_example_data")

Format
‘medium_example_data‘ A data frame with 111 rows and 3 columns:

X X coordinate
y y coordinate

size Size ...

plot_mpp 17

Details

The dataset was generated using the Snodgrass dataset available at https://data.ess-dive.lbl.gov/view/doi: 10.15485/2476543.

The full code to generate this dataset is available in the package’s ‘data_raw* directory.

Source

Real example dataset. Code to generate it can be found in ‘data_raw/medium_example_data.R".

plot_mpp Plot a marked point process

Description

Plot a marked point process

Usage

plot_mpp(mpp_data, pattern_type = c("reference”, "simulated"))

Arguments

mpp_data ppp object with marks or data frame with columns (x, y, size).

pattern_type type of pattern to plot ("reference" or "simulated").

Value

a ggplot object of the marked point process.

Examples

Load example data

data(small_example_data)

mpp_data <- generate_mpp(
locations = small_example_data %>% dplyr::select(x, y),
marks = small_example_data$size,
xy_bounds = c(0, 25, 0, 25)

)

Plot the marked point process
plot_mpp(mpp_data, pattern_type = "reference")

18 predict_marks

power_law_mapping Gentle decay (power-law) mapping function from sizes to arrival times

Description

Gentle decay (power-law) mapping function from sizes to arrival times

Usage

power_law_mapping(sizes, delta)

Arguments

sizes vector of sizes to be mapped to arrival times.

delta numeric value (greater than 0) for the exponent in the mapping function.
Value

vector of arrival times.

Examples

Generate a vector of sizes
sizes <- runif(100, 0, 100)

Map the sizes to arrival times using a power-law mapping with delta = .5
power_law_mapping(sizes, .5)

predict_marks Predict values from the mark distribution

Description

Predict values from the mark distribution

Usage

predict_marks(
sim_realization,
raster_list = NULL,
scaled_rasters = FALSE,
mark_model = NULL,
xy_bounds = NULL,
include_comp_inds = FALSE,
competition_radius = 15,
correction = "none”

predict_marks 19

Arguments

sim_realization
a data frame containing a thinned or unthinned realization from simulate_sc.

raster_list a list of raster objects.
scaled_rasters ‘TRUE‘or ‘FALSE‘ indicating whether the rasters have been scaled.
mark_model a model object (typically from train_mark_model).

xy_bounds a vector of domain bounds (2 for x, 2 for y).

include_comp_inds
‘TRUE" or ‘FALSE" indicating whether to generate and use competition indices
as covariates.

competition_radius
distance for competition radius if include_comp_inds is “TRUE".

correction type of correction to apply ("none" or "toroidal").

Value

a vector of predicted mark values.

Examples

Simulate a realization
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)
M_n <- c(10, 14)
generated_locs <- simulate_sc(
t_min = 0,
t_max =1,
sc_params = generating_parameters,
anchor_point = M_n,
xy_bounds = c(0, 25, 9@, 25)
)

Load the raster files

raster_paths <- list.files(system.file("extdata"”, package = "ldmppr"),
pattern = "\\.tif$", full.names = TRUE

)

raster_paths <- raster_paths[!grepl(”_med\\.tif$", raster_paths)]

rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Load the example mark model
file_path <- system.file("extdata”, "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)

Predict the mark values

predict_marks(
sim_realization = generated_locs$thinned,
raster_list = scaled_raster_list,

20 scale_rasters

scaled_rasters = TRUE,
mark_model = mark_model,
xy_bounds = c(0, 25, 0, 25),
include_comp_inds = TRUE,
competition_radius = 10,
correction = "none”

scale_rasters Scale a set of rasters

Description

Scale a set of rasters

Usage

scale_rasters(raster_list, reference_resolution = NULL)

Arguments

raster_list a list of raster objects.
reference_resolution
the resolution to resample the rasters to.

Value

a list of scaled raster objects.

Examples

Create two example rasters
rast_a <- terra::rast(

ncol = 10, nrow = 10,

xmin = @, xmax = 10,

ymin = @, ymax = 10,

vals = runif(100)

rast_b <- terra::rast(
ncol = 10, nrow = 10,
xmin = @, xmax = 10,
ymin = @, ymax = 10,
vals = runif(100)

Scale example rasters in a list
rast_list <- list(rast_a, rast_b)
scale_rasters(rast_list)

simulate_mpp 21

simulate_mpp Simulate a realization of a location dependent marked point process

Description

Simulate a realization of a location dependent marked point process

Usage

simulate_mpp(
sc_params = NULL,
t_min = 0,
t_max = 1,
anchor_point = NULL,
raster_list = NULL,
scaled_rasters = FALSE,
mark_model = NULL,
xy_bounds = NULL,
include_comp_inds = FALSE,
competition_radius = 15,

correction = "none",
thinning = TRUE
)
Arguments
sc_params vector of parameter values corresponding to (alpha_1, beta_1, gamma_1, al-
pha_2, beta_2, alpha_3, beta_3, gamma_3).
t_min minimum value for time.
t_max maximum value for time.

anchor_point vector (or 1x2 matrix) of (X,y) coordinates to condition on.
raster_list list of raster objects.

scaled_rasters ‘TRUE‘or ‘FALSE‘ indicating whether the rasters have been scaled.

mark_model a mark model (e.g., from train_mark_model()), or a path to a saved mark
model.
xy_bounds a vector of domain bounds (a_x, b_x, a_y, b_y).

include_comp_inds
‘TRUE‘ or ‘FALSE" indicating whether to generate competition indices as co-
variates.

competition_radius
distance for competition radius if include_comp_inds is “TRUE".

correction type of correction to apply ("none" or "toroidal").

thinning ‘TRUE" or ‘FALSE" indicating whether to thin the realization.

22 simulate_sc

Value

An object of class "1dmppr_sim".

Examples

Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)

Specify an anchor point
M_n <- matrix(c(1@, 14), ncol = 1)

Load the raster files

raster_paths <- list.files(system.file("extdata"”, package = "ldmppr"),
pattern = "\\.tif$", full.names = TRUE

)

raster_paths <- raster_paths[!grepl(”"_med\\.tif$", raster_paths)]

rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Load the example mark model
file_path <- system.file("extdata”, "example_mark_model.rds"”, package = "ldmppr")
mark_model <- load_mark_model(file_path)

Simulate a realization
example_mpp <- simulate_mpp(
sc_params = generating_parameters,
t_min = 0,
t_max = 1,
anchor_point = M_n,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
mark_model = mark_model,
xy_bounds = c(@, 25, 0, 25),
include_comp_inds = TRUE,
competition_radius = 10,
correction = "none”,
thinning = TRUE
)

Plot the realization and provide a summary
plot(example_mpp, pattern_type = "simulated")
summary (example_mpp)

simulate_sc Simulate from the self-correcting model

simulate_sc 23

Description

Allows the user to simulate a realization from the self-correcting model given a set of parameters
and a point to condition on.

Usage
simulate_sc(
t_min = 0,
t_max = 1,

sc_params = NULL,
anchor_point = NULL,
xy_bounds = NULL

)
Arguments
t_min minimum value for time.
t_max maximum value for time.
sc_params Vector of parameter values corresponding to (a1, 81,71, @2, B2, as, B3, 73) (i.e.,

alpha_1, beta_1, gamma_1, alpha_2, beta_2, alpha_3, beta_3, gamma_3).
anchor_point vector of (x,y) coordinates of point to condition on.

xy_bounds a vector of domain bounds (2 for x, 2 for y).

Value

a list containing the thinned and unthinned simulation realizations.

Examples

Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)

Specify an anchor point
M_n <- c(10, 14)

Simulate the self-correcting process
generated_locs <- simulate_sc(
t_min = 0,
t_max =1,
sc_params = generating_parameters,
anchor_point = M_n,
xy_bounds = c(0, 25, 9, 25)

24 train_mark_model

small_example_data Small Example Data

Description
A small example dataset for testing and examples consisting of 121 observations in a (25m x 25m)
square domain.

Usage

data(”small_example_data")

Format
‘small_example_data‘ A data frame with 121 rows and 3 columns:
X X coordinate

y y coordinate

size Size ...

Details

The dataset was generated using the example raster data and an exponential decay size function.

The full code to generate this dataset is available in the package’s ‘data_raw* directory.

Source

Simulated dataset. Code to generate it can be found in ‘data_raw/small_example_data.R".

train_mark_model Train a flexible model for the mark distribution

Description

Trains a predictive model for the mark distribution of a spatio-temporal process. Allows the user to
incorporate location specific information and competition indices as covariates in the mark model.

train_mark_model 25

Usage

train_mark_model(
data,
raster_list = NULL,
scaled_rasters = FALSE,
model_type = "xgboost”,
xy_bounds = NULL,
save_model = FALSE,
save_path = NULL,
parallel = TRUE,
n_cores = NULL,
include_comp_inds = FALSE,
competition_radius = 15,

correction = "none",
selection_metric = "rmse”,
cv_folds = 5,
tuning_grid_size = 200,
verbose = TRUE
)
Arguments
data a data frame containing named vectors X, y, size, and time.
raster_list a list of raster objects.

scaled_rasters ‘TRUE® or ‘FALSE‘ indicating whether the rasters have been scaled.

model_type the machine learning model type ("xgboost" or "random_forest").

xy_bounds a vector of domain bounds (2 for x, 2 for y).

save_model ‘TRUE’ or ‘FALSE’ indicating whether to save the generated model.
save_path path for saving the generated model.

parallel ‘TRUE' or ‘FALSE® indicating whether to use parallelization in model training.
n_cores number of cores to use in parallel model training (if ‘parallel‘ is “TRUE®).

include_comp_inds
‘TRUE' or ‘FALSE" indicating whether to generate and use competition indices
as covariates.

competition_radius
distance for competition radius if include_comp_inds is “TRUE".

non

correction type of correction to apply ("none", "toroidal", or "truncation").
selection_metric

metric to use for identifying the optimal model ("rmse" or "mae").
cv_folds number of cross-validation folds to use in model training.
tuning_grid_size

size of the tuning grid for hyperparameter tuning.

verbose ‘TRUE" or ‘FALSE" indicating whether to show progress of model training.

26

Value

an ldmppr_mark_model object.

Examples

Load example raster data

raster_paths <- list.files(system.file("extdata"”, package = "ldmppr"),
pattern = "\\.tif$", full.names = TRUE

)

raster_paths <- raster_paths[!grepl(”_med\\.tif$", raster_paths)]

rasters <- lapply(raster_paths, terra::rast)

Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

Load example locations
locations <- small_example_data %>%
dplyr::mutate(time = power_law_mapping(size, .5))

Train the model

mark_model <- train_mark_model(
data = locations,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
model_type = "xgboost”,
xy_bounds = c(0, 25, 0, 25),
parallel = FALSE,
include_comp_inds = FALSE,
competition_radius = 10,

correction = "none”,
selection_metric = "rmse”,
cv_folds = 3,

tuning_grid_size = 2,
verbose = TRUE

print(mark_model)

train_mark_model

Index

+ datasets
medium_example_data, 16
small_example_data, 24

as.data.frame.ldmppr_sim (ldmppr_sim),
15
as_nloptr (ldmppr_fit), 10

check_model_fit, 2
coef . ldmppr_fit (ldmppr_fit), 10

estimate_process_parameters, 5
extract_covars, 9

generate_mpp, 10

ldmppr_fit, 10

ldmppr_mark_model, 12
ldmppr_model_check, 14

ldmppr_sim, 15

load_mark_model (1dmppr_mark_model), 12
logLik.ldmppr_fit (1dmppr_fit), 10

medium_example_data, 16
mpp . 1dmppr_sim (1dmppr_sim), 15

nloptr, 5
nobs. ldmppr_sim (ldmppr_sim), 15

plot.ldmppr_fit (ldmppr_fit), 10
plot.ldmppr_model_check
(Ldmppr_model_check), 14
plot.ldmppr_sim (ldmppr_sim), 15
plot_mpp, 17
power_law_mapping, 5, 6, 18
predict.ldmppr_mark_model
(ldmppr_mark_model), 12
predict_marks, 18
print.ldmppr_fit (ldmppr_fit), 10
print.ldmppr_mark_model
(Lldmppr_mark_model), 12

27

print.ldmppr_model_check
(1dmppr_model_check), 14
print.ldmppr_sim (1dmppr_sim), 15
print.summary.ldmppr_fit (ldmppr_fit),
10
print.summary.ldmppr_model_check
(1dmppr_model_check), 14

save_mark_model (1dmppr_mark_model), 12

scale_rasters, 20

simulate_mpp, 21

simulate_sc, 22

small_example_data, 24

summary. ldmppr_fit (ldmppr_fit), 10

summary . ldmppr_model_check
(ldmppr_model_check), 14

train_mark_model, 24

	check_model_fit
	estimate_process_parameters
	extract_covars
	generate_mpp
	ldmppr_fit
	ldmppr_mark_model
	ldmppr_model_check
	ldmppr_sim
	medium_example_data
	plot_mpp
	power_law_mapping
	predict_marks
	scale_rasters
	simulate_mpp
	simulate_sc
	small_example_data
	train_mark_model
	Index

