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Abstract

This paper presents an R package that supports the use of fuzzy relational cal-
culus and linguistic fuzzy logic in data processing applications. The 1fl package
enables computing compositions of fuzzy relations enhanced with distinct ex-
tensions, such as excluding features, unavoidable features, or generalized quan-
tifiers. Furthermore, it provides tools for transformation of data into fuzzy sets
representing linguistic expressions, mining of linguistic fuzzy association rules,
and performing an inference on fuzzy rule bases using the Perception-based log-
ical deduction (PbLD). The package also enables to use the Fuzzy rule-based
ensemble; a tool for time series forecasting based on an ensemble of forecasts
from several individual methods implemented in R. To the best of the authors’
knowledge, there is no other open source software that would provide free tools
covering the above-described fragments of the fuzzy modeling area. Therefore,
we find highly desirable to allow the community to get familiar with the tools
as well as their implementation.
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1. Introduction

The aim of this paper is to present particular package for the R statistical
environment [ 2] named 1fl that enables the use of the linguistic fuzzy logic in
data processing applications. The package provides implemented tools for using
the results of original work of [3, 4, Bl 6], and others, and it provides executable
routines that are not freely available anywhere else.

Indeed, there already exist several packages for R that are focused on vague-
ness and fuzziness. For instance, the sets package [7] introduces many basic
operations on fuzzy sets, the FuzzyNumbers package [8] provides classes and
methods to deal with fuzzy numbers, the SAFD package [9] contains tools for
elementary statistics on fuzzy data, and the fclust [10, [I1] brings the fuzzy
K-Means clustering technique to the environment of the R system. For an ex-
haustive study on existing software implementations of fuzzy methods we refer
to the recent survey by [12].

The 1fl package described in this paper focuses on creation of systems based
on fuzzy logic and their usage in classification and prediction. A similar task
is performed also by the fugeR package [13] that introduces an evolutionary
algorithm for a construction of a fuzzy system from a training data set, or by the
frbs package [14] that provides many widely accepted approaches for building
the fuzzy systems, based on space partition, neural networks, clustering, gradi-
ent descent, or genetic algorithms. However, the tools implemented in 1fl cover,
in our opinion, areas and theories not covered by any other existing software or
programming package.

The algorithms provided by the 1fl package are tightly connected with the
notion of the fuzzy natural logic (FNL), formerly also called the linguistic fuzzy
logic (LFL), that was initially developed in [3]. Moreover, it covers some other
closely related areas, for example fuzzy relational calculus [15] [16] [I7] that in-
cludes the latest generalizations [I8| [19], the algebraic structures for partial
fuzzy logics [20] 2], and the connection of both topics [22].

Evaluative linguistic expression — a central notion of the fuzzy natural logic
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— is the expression of the form
(linguistic hedge)(atomic expression)

that vaguely evaluates a position on the real line, for example, “very small”,
“roughly medium?”, or “extremely big”. The atomic expression takes values usu-
ally from the triplet “small”, “medium”, and “big” and its vague information can
be adjusted by the used linguistic hedge (such as “very”, “extremely”, “roughly”
or “more or less”). The particular fuzzy sets that model the semantics of the
evaluative linguistic expressions including the justification can be found in [3],
see also Figure [[] A mathematical framework for manipulation and reason-
ing with such linguistic expressions is provided in a specific inference method
called Perception-based Logical Deduction (PbLD), which was tailored to the
above-mentioned expressions, see [23, [ [24].

Unlike the traditional Mamdani-Assilan approach [25] that build the rule
base as a disjunction of conjunctions of antecedents and consequents, the PbLD
approach is closer to the implicative approach [26] [27] since it employs genuine
residuated implications to connect antecedents and consequents. However, it
does not aggregate them conjunctively and it considers the rule base as a list of
fuzzy rules from which only single or a very few are fired. The function choosing
the particular rules to be fired is called perception and it takes into account the
specificity of the antecedents of the rules. For instance, the antecedent “age is
very small” is more specific than the antecedent “age is small”, see the inclusion
of the respective fuzzy sets in Figure In PbLD, rules with more specific
antecedents take the precedence over the rules with more general antecedents,
assuming that both of them fire in the same degree. That enables, e.g., to
employ big discontinuous jumps in the control actions according to the needs
of the particular application. We refer to [4, [5] for all the details on PbLD. It
is important to note that PbLd is an inference procedure that is implemented
in 1l however, not the only one that may be modelled in this package. As the
Il contains a rich choice of residuated algebraic structures as well as distinct

ways of partitioning the universes, one may easily construct, for example, the
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above-mentioned Mamdani-Assilian or implicative models.

The 1l package also provides functions for searching for fuzzy association
rules [28]. Together with PbLD, they can be used as a machine learning tool
for classification or regression problems, see [29]. The package also includes the
Fuzzy Rule-based Ensemble (FRBE), a tool for time series forecasting [6], which
is built on top of the fuzzy association rules search algorithm and PbLD.

Alternatively to machine learning, classification tasks may be solved based
on human expert knowledge by using the technique of compositions of fuzzy
relations, see [19} (I8, B0]. Such an approach is especially useful when lacking a
large amount of data needed for automated predictor construction.

It is important to note that 1fl package was firstly released in 2015 and
described in [3I]. The differences are, however, essential. Indeed, many of
the above-mentioned results that are implemented in the current version of 1fl
were not even published and thus, could hardly be incorporated in the origi-
nal version. In particular, e.g., algebras for partial fuzzy logics including the
novel structures such as Dragonfly algebras or lower estimation algebras; fuzzy
relational calculus including the extensions such as the use of generalized quan-
tifiers, excluding features, or unavoidable features. Furthermore, apart from
these latest results, it newly includes even fundamental foundations such as the
basic fuzzy relational compositions that allow to employ the extensions and
also to deal with fuzzy inputs when incorporating fuzzy rule-based systems, and
regarding the latter notion, the standard fuzzy relational models (Mamdani-
Assilian and the implicative one) have been added as well including the related
defuzzification techniques. This changes the original nature of 1fl package from
an R-package implementation of the linguistic control software LFLC, see [32]
with a few extensions (associations rules and FRBE), to a brand new complex
package that can be used for distinct purposes and for building more complex
tools due to the presence of sound mathematical foundations of fuzzy modeling

techniques.
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1.1. Owverview of the paper

The aim of the paper is to provide readers with a concise description of the
Il package not only from the implementation point of view, but also from the
point of view of the theoretical tools that are at disposal. The description of the
functions of the package are accompanied with examples and theoretical foun-
dations. The paper is organized as follows. Section [2| presents basic algebraic
operations for fuzzy sets and fuzzy logic including extensions for missing values.
Section [3] describes compositions of fuzzy relations, a framework for classifica-
tion based on expert knowledge. Section [4] introduces the concept of evaluative
linguistic expressions, a mathematical model of vague linguistic notions, which
allows to consider the numeric information in terms that are very close to human
language. Section [5] discusses an application of evaluative linguistic expressions,
the fuzzy association rules mining algorithm provided by 1fl that extracts po-
tentially useful and interesting knowledge from data and presents it in the form
of fuzzy if/then rules. Perception-based logical deduction is an inference mecha-
nism tightly connected with evaluative linguistic expressions too; it is introduced

in Section [6} Section [§] concludes the paper.

1.2. How to obtain the Ifl package

To obtain the 1fl package, a working instance of the R statistical environment

has to be installed first and then the

install.packages("1£f1")

command automatically downloads the latest stable version of the 1fl package
from CRANEI together with all its dependencies, compiles, and installs it. The 1fl
package works on all platforms supported by the R software including Microsoft
Windows, GNU /Linux, and MacOS. Alternatively, the development version may
be installed directly from GitHub by issuing following commands within the R

session:

LCRAN is the Comprehensive R Archive Network, a network of ftp and web servers around

the world that store identical, up-to-date, versions of code and documentation for R.
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install.packages("devtools")
devtools::install_github("beerda/1£f1")

After the installation is successful, the following command causes loading of

the package into the working space so that the user can start using it:

library("1£1")

The 1l package is distributed under the terms of the GNU General Public
License (GPL), which guarantees the user the freedom to use it, study, share

and modify.

2. Fuzzy logic and fuzzy sets

We assume the readers are familiar with the fundamental definitions of fuzzy
sets, operations on fuzzy sets, and the algebraic background. So, we only briefly
recall the environment on which we work and fix the denotation for the rest of
the paper.

We consider a fuzzy set A on a non-empty universe U (denoted by A € F(U))
as a mapping A : U — [0,1], A(u) is called membership degree of u in A. A
cardinality |A| of a fuzzy set A on a finite universe U can be defined as the sum
of the membership degrees [33]:

Al =" Auw).
VueU

The algebra of operations on fuzzy sets forms a residuated lattice structure
([0,1], A, V,®,=,0, 1) that is also the algebraic structure of truth-values of the
respective fuzzy logic. Note that the structure has two conjunctions, the strong
conjunction ® and the weak conjunction A.

The strong conjunction ® is a left-continuous triangular norm (t-norm)
which allows to derive a dual concept — a triangular conorm (t-conorm) @ that
serves as the strong disjunction in the lattice. Analogously to the case of clas-

sical logic and classical set theory, also here we derive the intersection and the
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unton of fuzzy sets from the above introduced logical operations. Let A, B be

fuzzy sets on U. Then
(AnNB)(u) =A(u)®B(u), uwelU,
(AUB)(u) =A(u)®B(u), uvelU.
The left-continuity of ® is assumed in order to meet the adjunction property:
Yy®a<f ifandonlyif y<a=p

by the residuated implication [34] (abbr. residuum) = which enables capturing
the multiple-valued modus ponens property. Furthermore, we may define addi-
tional logical connectives, for instance, the residual negation —, and biresiduum

& that models the multiple-valued equivalence:
a=a=0, acf=(a=>pF)AL=a).

For the particular Lukasiewicz t-norm, the residual negation — leads to the
involutive negation -« = 1 — « that obeys the law of double negation —-—a = «.
Let us denote the involutive negation by ~ and recall the duality between a

t-norm and a t-conorm:

a®f=n~(ra®~p).

The duality makes ~ an important unary connective not only for the Lukasiewicz

algebra but for all residuated lattices and we may freely extend such structures
by the involutive negation for further use: ([0, 1], A, V,®, =, ~ 0,1). It does not
mean that — is not at disposal, it is always present via the definition recalled
above and we have in general two negations that, in the case of the Lukasiewicz
algebra, coincide. The fact that the weak conjunction A and the weak disjunc-
tion V are the lattice operations meet (infimum) A and the join (supremum) V

needs no further explanation.

2.1. Gaodel algebra
Based on the selected t-norm, the 1fl package provides all the derived op-

erations in a concise and extendable way. By calling the algebra() function
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with the name of the underlying t-norm as an argument, an instance of the S3
algebra class is obtained, which is a named list of functions. The user may
select from "goedel", "goguen", or "lukasiewicz" variant calling the respec-
tive Godel, Goguen (also often called product), or the already above-mentioned
Lukasiewicz residuated lattices of operations.

The instances of the algebra class serve often as a parameter to many other
functions of the 1fl package. User may extend these objects by selecting from
some predefined missing value handling schemes (see Section or by defining
a custom algebra instances by themselves.

For example, the algebra based on the Gédel t-norm, that is the standard

minimum, ® = A, is obtained as follows:

a <- algebra("goedel")

The algebra() function returns a named list of the following functions:

o n: (strict) negation defined as:

1, ifa=0,

0 =
0, otherwise ;

e ni: involutive negation defined as: ~a =1 — q;

e t, pt: vectorized and element-wise t-norm defined as: a ® 8 = min{a, 8};
o ¢, pc: vectorized and element-wise t-conorm defined as: a8 = max{«, 8};
e r: residuum defined as:

L, ifa<p,
a=f=
3, otherwise ;

e b: biresiduum;
o i, pi: vectorized and element-wise infimum defined as: aAS = min{a, 5};

e s, ps: vectorized and element-wise supremum defined as: aVf = max{a, 8}.
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Functions n and ni accept a vector of numeric values as a single input and
return a vector of negated values. Two-argument functions r and b compute the
desired operation element-wisely so that both input vectors should be of equal
size and return a vector of results of the same size. Similarly, pt, pc, pi, and ps
work element-wisely: they accept a vector of multiple arguments and compute
the outputs of the desired operation on first elements of the input vectors, then
on second elements, etc. until the end of the vectors is reached, which yields a
vector of the resulting values. The vectorized variants of these functions, i.e., t,
¢, i, and s first concatenate all the input vector arguments into a single vector
and then calculate a single resulting value from it by applying the operation
recursively on all elements. See the example below for more information.
a$n(c(0.5, 0.8, 0, 1))

# [1] 0010

a$ni(c(0.5, 0.8, 0, 1))

## [1] 0.5 0.2 1.0 0.0

a$t(c(0.8, 0.3), (0.2, 1), c(1, 0))
## [11 0

a$pt(c(0.8, 0.3), c(0.2, 1), c(1, 0))
## [1] 0.2 0.0

a$r(c(0.8, 0.3), c(0.2, 1))

## [1] 0.2 1.0

Note that as the strong and weak conjunction coincide in the Godel algebra
as well as the strong and weak disjunction coincide, also the following holds for

the functions in the Ifl R-package: t = i, pt = pi, ¢ = s, and pc = ps.

2.2. Goguen algebra

Goguen algebra is also often called the product algebra to emphasize that
its central point — the strong conjunction — is nothing else but the standard
product (multiplication) operation. Therefore, ® = - is also often called the

product t-norm. Goguen algebra is obtained in 1fl as follows:



a <- algebra("goguen")
The resulting list a contains the following functions:

e n: (strict) negation defined as:

1, ifa=0,
Q=
0, otherwise ;
165 e ni: involutive negation defined as: ~a =1 — q;

e t, pt: vectorized and element-wise t-norm defined as: a ® = af;
e c, pc: vectorized and element-wise t-conorm defined as: a®f = a+8—af;
e r: residuum defined as:

1, ifa<p,

a=f=

ﬁ, otherwise ;
(67

e b: biresiduum;
o i, pi: vectorized and element-wise infimum defined as: aAS = min{a, 5};
170 o s, ps: vectorized and element-wise supremum defined as: oV = max{a, 8}.

Arguments of these functions follow the same usage pattern as for Godel

algebra described in Section

2.3. Lukasiewicz algebra

The last implemented algebra is the Lukasiewicz algebra that stems from

s the seminal work on 3-valued logic by Polish logician Jan Lukasiewicz [35].
Note, that Lukasiewicz algebra forms so-called MV algebra [36] that is the best
generalization of the classical Boolean algebra. The implementation is provided

as follows:

a <- algebra("lukasiewicz")

10
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The particular functions are defined as follows:
e n, ni: both negations are equally defined as: ~a = ~a=1— q;

e t, pt: vectorized and element-wise t-norm defined as: a® 8 = max{0, a+

B —1};

o ¢, pc: vectorized and element-wise t-conorm defined as: a®f = min{1, a+

B}

e r: residuum defined as:

L, if a < B,
a=f=
1—a+ B, otherwise;

e b: biresiduum,;
e i, pi: vectorized and element-wise infimum defined as: oA = min{a, 8};

¢ s, ps: vectorized and element-wise supremum defined as: @V = max{«, §}.

2.4. Partial fuzzy set theory — handling of undefined and missing values

Situations when some part of the information is missing are very frequent.
So, naturally, it is also quite usual that we have no information about mem-
bership degrees of some elements to particular fuzzy sets. This phenomenon
was employed in partial (three-valued) logics that, besides the truth and false,
allowed to deal with the third value, say NA. As the missing value NA could have
a different origin, e.g., undefinedness, irrelevancy, inconsistency, or simply an
unknown truth value, the variety of available partial logics is rather rich, see
[37]. Recently, three-valued partial logics have been extended to partial fuzzy
logics and partial fuzzy set theory ([20],[21]).

Typical representatives of partial fuzzy logics, that are implemented in the
1fl package are the following ones: Bochvar, Sobocinski, Kleene, and the Nelson
logic. Furthermore, as none of the referred logics was specifically designed for

handling the unknown values, two recent algebras for partial fuzzy logics were

11
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Table 1: Handling of missing values by variants of residual negation

default
- sobocinski kleene nelson dragonfly lowerEst
(Bochvar)
a f(@) f@) fl)  fle) f@) f@)
NA NA 0 NA 1 NA 0

designed, in particular, the Lower estimation algebra [38], and the Dragonfly
algebra [22]. In all cases, firstly an underlying algebra, e.g., Godel, Goguen, or
Lukasiewicz, is chosen and only then the truth-value interval is extended by an
additional value NA in order to obtain [0, 1] U NA.

The implementation of the basic algebras (Godel, Goguen, Lukasiewicz) in
1fl treats missing values natively in such a way that if NA appears as a value to
some operation, it is propagated to the result. That is, any operation with NA
results in NA, by default. This scheme of handling missing values is equivalent
to the choice of the Bochvar logic [39].

However, the treatment of missing values may be easily changed in 1fl. The
sobocinski(), kleene(), nelson(), lowerEst() and dragonfly() functions
modify the algebra given as their argument to handle NAs in a different way than
by the default choice. For example, Sobociriski algebra simply ignores NA values
whereas Kleene algebra treats NA similarly to the Bochvar one however, extreme
points 0 and 1 have a specific position among other truth value from the interval
[0,1]. Dragonfly approach as well as the Lower estimation algebra combine
Sobocinski and Bochvar approaches with the preservation of the Kleene-style
specificity of truth values 0 and 1.. The distinct algebraic incorporation of the
treatment of missing values is provided in Tables [TH6]

By default, the functions in the structure that is obtained by calling the
algebra() function simply propagate NA to the output. If some other handling
of missing values is required, it can be done as follows. Firstly, the underlying
algebra (Godel, Goguen or Lukasiewicz) is created and then modified by apply-
ing one of the sobocinski(), kleene(), nelson(), dragonfly(), lowerEst ()

12



Table 2: Handling of missing values by variants of involutive negation

default
~ sobocinski kleene nelson dragonfly IlowerEst
(Bochvar)
a| fl@ f(@) f@  fl@  f) f(@)
NA NA NA NA NA NA NA
Table 3: Handling of missing values by variants of conjunctive operations
default
@, N sobocinski kleene nelson dragonfly lowerEst
(Bochvar)
o B | feB)  fl@B)  flaB) fleB)  flaB)  fla.f)
0 NA NA 0 0 0 0 0
a NA NA e’ NA NA NA NA
NA NA 1 NA NA NA NA
NA NA 0 0 0 0 0
NA NA 153 NA NA NA NA
NA 1 NA 1 NA NA NA NA
NA NA NA NA NA NA NA NA
Table 4: Handling of missing values by variants of disjunctive operations
default
@, V sobocinski kleene nelson dragonfly lowerEst
(Bochvar)
a B | flh @B  flaB) flB)  flaB)  flaf)
0 NA NA 0 NA NA NA NA
a NA NA « NA NA « «
NA NA 1 1 1 1 1
NA NA 0 NA NA NA NA
NA NA 153 NA NA 153 153
NA 1 NA 1 1 1 1 1
NA NA NA NA NA NA NA NA

13



Table 5: Handling of missing values by variants of residuum

default
sobocinski kleene nelson dragonfly lowerEst
(Bochvar)
o B | fB)  f@B)  flaB) fleB)  flaf)  fla.f)
0 NA NA 1 1 1 1 1
a NA NA e’ NA NA NA NA
1 NA NA 0 NA NA NA NA
NA NA 0 NA 1 NA
NA [ NA I} NA NA I} 15}
NA 1 NA 1 1 1 1 1
NA NA NA NA NA 1 1 NA
Table 6: Handling of missing values by variants of biresiduum
default
sobocinski kleene nelson dragonfly lowerEst
(Bochvar)
a B | flap) fla,p) [l B) fle ) fle ) fla,B)
0 NA NA 0 NA 1 NA 0
a NA NA —a N\ o NA NA NA NA
1 NA NA 0 NA NA NA NA
NA NA 0 NA 1 NA 0
NA [ NA -BAS NA NA NA NA
NA 1 NA 0 NA NA NA NA
NA NA NA NA NA 1 1 NA

14



225

230

235

240

245

functions on it — see the example:

a <- algebra("goedel")
a2 <- sobocinski(a)
a$t(NA, 0.3)

## [1] NA
a2$t(NA, 0.3)

## [1]1 0.3

3. Compositions of fuzzy relations

3.1. Fundamental compositions

Compositions of fuzzy relations establish one of the fundamental blocks for
mathematical fuzzy modeling, see [16, [40]. Let us consider three non-empty
universes X, Y, Z and let R and S be fuzzy relations on that universes, in par-
ticular, let R € F(X xY) and S € F(Y x Z). In general, a composition of R and
S results in a fuzzy relation RQS € F(X x Z) so, it defines some appropriate
relationship between elements from universes that were not connected before
defining the composition. The obligatory example comes from the medical di-
agnosis where X denotes a set of patients, Y denotes a set of symptoms and Z
denotes a set of diseases [15].

The use of the compositions may be easily demonstrated on a toy example
from medical diagnosis that by purposes simplifies the situation for the sake of

clarity. Consider the following numeric matrices R and S defined in R:

print (R)
#i#t tired cough fever blur.vis
## patientl 0.9 1.0 0.8 0.0

## patient2
## patient3
## patient4d

O O O
o O O

0.8
0.9
1.0

O O O
O 00 ©
O O O
O O =

print(S)

15
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#i#t pulm.hyp sleep.sick malaria hangover influenza

## tired 1.0 1.0 0.1 0.9 0.0
## cough 0.9 0.2 0.9 0.0 1.0
## fever 0.0 1.0 0.0 1.0 1.0
## blur.vis 1.0 0.0 0.7 0.1 0.9

The values in matrix R represent the degrees to which the patients show the
given symptoms (tiredness, cough, fever, blurred vision). The values in matrix S
indicate the degrees to which the symptoms are assigned to the given diagnoses
(pulmonary hypertension, sleeping sickness, malaria, hangover, influenza).

The main four types of fuzzy relational compositions implemented in 1fl are

defined as follows:

(RoS)(x,2) = \é(R(sc,y)@S(y,z)) , (1)
(R<S)(x,2) = /\Y (R(z,y) = S(y,2)) , (2)
(R S)(x,2) = é\y(R(w,y) = 5S(y.2) , (3)
(ROS)(z,2) = /\Y (R(z,y) & S(y, 2)) (4)

where o denotes the circlet or the basic composition (also the direct product), <
denotes the Bandler-Kohout subproduct (also the subdirect product), t> denotes
the Bandler-Kohout superproduct (also the supdirect product), and finally, O
denotes the Bandler-Kohout square product.

Note that these four compositions were studied already in late 1970’s and
early 1980’s [I5, 4I], the first two of them (o and <) play an essential role in
fuzzy inference mechanisms in the case of fuzzy inputs [42, 43} [44], and their
impact is essential for distinct branches including the medical diagnosis, see [45].

The main compositions, as defined above, may be computed in 1fl with the

compose () function as follows:

a <- algebra("lukasiewicz")
compose(R, S, alg=a, type="basic")

#it pulm.hyp sleep.sick malaria hangover influenza

16
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## patientl 0.9 0.9 0.9 0.8 1.0
## patient2 0.8 0.8 0.8 0.8 0.9
## patient3 0.7 0.9 0.7 0.9 0.9
## patientd 0.9 1.0 0.6 1.0 1.0

The type argument must be equal to one of: "basic" (o), "sub" (<),
"super" (>>) or "square" (). The compose() function is merely a wrap-
per around the mult () function, which computes a customizable inner-product
of two matrices. The mult() function takes two matrices as the arguments as
well as a two-argument function, which is called for each combination of row
and column. For instance, the basic composition may be equivalently computed
as follows:

mult(R, S, function(r, s) {
a$s(a$pt(r, s))

i)
#i# pulm.hyp sleep.sick malaria hangover influenza
## patientl 0.9 0.9 0.9 0.8 1.0

## patient2
## patient3
## patient4d

O O O
© N 0

0.8 0.8 0.8
0.9 0.7 0.9
1.0 0.6 1.0

= O O
O O ©

Additional examples of more complicated compositions computed directly
with the mult () function may be found below in Section [3.3

The fundamental fuzzy relational compositions — can be directly used
in the expert classification problem, and the above-mentioned medical diagnosis
[45] is only its special case where the symptoms are taken as the features and
the set of diseases is a special case of the set of classes. However, observing
the particular formulas, it is obvious that the huge gap between the existential
quantifier, represented by \/ in , and the universal quantifier, represented by
N in —, may cause undesirable effect. In particular, the basic composi-
tion o may detect too many suspicions as finding a single “connecting” feature
(symptom) will be a very frequent case for many classes (diseases) while carrying
all the expected features (symptoms) may be rather idealistic, in practice too
eliminating, requirement. Thus, o could nominate too many candidate classes

while <, >, and O may, vice-versa, eliminate all possibilities:

17
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compose(R, S, alg="lukasiewicz", type="sub")

#i# pulm.hyp sleep.sick malaria hangover influenza
## patientl 0.2 0.2 0.2 0.0 0.1
## patient2 0.2 0.3 0.2 0.1 1.0
## patient3 0.1 0.4 0.1 0.2 1.0
## patient4d 0.0 0.1 0.0 0.2 1.0
compose(R, S, alg="lukasiewicz", type="super")

## pulm.hyp sleep.sick malaria hangover influenza
## patientl 0 0.8 0.3 0.8 0.1
## patient2 0 0.0 0.4 0.1 0.2
## patient3 0 0.0 0.3 0.1 0.1
## patientd 0 0.0 0.1 0.1 0.0
compose(R, S, alg="lukasiewicz", type="square")

#it pulm.hyp sleep.sick malaria hangover influenza
## patientl 0 0.2 0.2 0.0 0.1
## patient2 0 0.0 0.2 0.1 0.2
## patient3 0 0.0 0.1 0.1 0.1
## patient4d 0 0.0 0.0 0.1 0.0

In order to get out of the problem, distinct extensions were defined recently.
One direction of the extensions led naturally to the employment of generalized
quantifiers that fill in the gap between the existential one and the universal
one and offer a tool to find an appropriate balance. The other one is based on
employing additional fuzzy relations containing another knowledge that may be

helpful in reducing the suspicions detected by the basic composition.

3.2. Compositions of more fuzzy relations

Assume that we are given fuzzy relations F,U € F(Y x Z). The intended
semantical meaning is such that E(y,z) expresses the degree up to which y
is a feature that excludes the class z from the possible candidates (the so-
called excluding feature) and Uy, z) expresses the degree up to which y is a
feature that is unavoidable for any object to be classified into the class z (the
so-called unavoidable feature). The approach using the first fuzzy relation has
been described by [46] while the work incorporating the latter one is very recent,

see [30].
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The compositions employing the concepts of excluding features (E) and un-

avoidable features (U) are defined as follows:

(Ro S'E)(z,2) = (RoS)(2,2) ® 2(Ro E) , (5)
(RoS)PY(x,2) = (RoS)(z,2) ® (R>U) , (6)
(RoS'E)"Y(2,2) = (Ro 8)(2,2) ® +(Ro E)® (R>U) (7)

where the last one (R o $'E)”Y combines the extra knowledge contained in both
additional fuzzy relations. As we may see, these extensions are mathematically
rather straightforward combinations of the fundamental blocks that only allow
other fuzzy relations to enter the constructions.

For example, let us imagine that the occurrence of fever is an evidence of
not having a pulmonary hypertension. Similarly, let cough exclude hangover
from the possible diagnoses. That is, fever and cough are excluding features of
pulmonary hypertension and hangover, respectively. This corresponds to the

following matrix E of excluding features:

print (E)

##t pulm.hyp sleep.sick malaria hangover influenza
## tired 0 0 0 0 0
## cough 0 0 0 1 0
## fever 1 0 0 0 0
## blur.vis 0 0 0 0 0

To compute (Ro S'E) as in , one can proceed with 1fl as follows:

a <- algebra("lukasiewicz")

RS <- compose(R, S, alg=a, type="basic")
RE <- compose(R, E, alg=a, type="basic")
a$pt (RS, a$n(RE))

#i#t pulm.hyp sleep.sick malaria hangover influenza
## patientl 0.1 0.9 0.9 0.0 1.0
## patient2
## patient3
## patient4d

o O O
o O O

0.8 0.8 0.0
0.9 0.7 0.1
1.0 0.6 1.0

= O O
o O ©

Now let us assume the blurred vision to be a typical unavoidable feature of
pulmonary hypertension as well as cough would be unavoidable for influenza.

This corresponds to the following matrix U of unavoidable features:
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print (U)

#it pulm.hyp sleep.sick malaria hangover influenza
## tired 0 0 0 0 0
## cough 0 0 0 0 1
## fever 0 0 0 0 0
## blur.vis 1 0 0 0 0

The (R o S)®Y composition (see (6)) may be evaluated by the following

commands:

RU <- compose(R, U, alg=a, type="super")
a$pt (RS, RU)

#i#t pulm.hyp sleep.sick malaria hangover influenza
## patientl 0.0 0.9 0.9 0.8 1.0
## patient2
## patient3
## patient4d

o O O
0w O O
= O O
O O 0

0.8 0.8
0.7 0.9
0.6 1.0

o O O
O N 0

Finally, the concept of unavoidable and excluding features together, as de-

fined in , is processed as follows:

a$pt (RS, a$n(RE), RU)

#H# pulm.hyp sleep.sick malaria hangover influenza
## patientl 0 0.9 0.9 0.0 1.0
## patient2 0 0.8 0.8 0.0 0.8
## patient3 0 0.9 0.7 0.1 0.7
## patient4d 0 1.0 0.6 1.0 0.0

3.8. Compositions based on Sugeno integrals

Another approach to avoid the undesirable effect of too many suspicions
(classification candidates) provided by the basic composition and too few (or
often none) suspicions provided by the Bandler-Kohout products is based on
employing generalized quantifiers. Intermediate generalized quantifiers allow to
deal with quantifications in between of the classical universal and existential
quantifiers, for example “most”, “many”, “at least 3”, “at least 257, or “a few”.
Note that the use of generalized quantifiers has been found very useful, e.g., in

flexible query answering systems [47], (48].
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The construction of a quantifier @ of the type (1) [49] uses a symmetric
fuzzy measure pu, i.e., a monotone measure on the potential set satisfying the
boundary condition. The direct application of the quantifier to the composition,
i.e., RQ?S, where @ € {o, <}, has been proposed by [50, [51] and it is defined

as follows:

(Ra®S)(z,2) = \/ A\ Ra.y)®5@.2) | @uD)|  ®
DeP(Y)\{0} yeD

where P(Y) represents the powerset of Y, ® € {*, —} corresponds to the com-
position, z € X, and z € Z.

Due to the choice of the symmetric fuzzy measure p, it is sufficient to consider
relative cardinality and its modification by distinct non-decreasing functions f

in order to use Sugeno integral [52] to calculate the composition based on Q:
(RQ®S)(, 2) \/ (%, Yn(i)) ® S(Yr(i), 2)) © f(i/n)) (9)

where n is the cardinality of Y, 7 is a permutation on {1,...,n} such that
R(x,Yr(i)) ® S(Yr(iys 2) > R(T,Yn(it1)) ® S(Yn(i+1), 2) forany i =1,...,n— 1.

The 1l package provides a function for computation of Sugeno integral,
which can be used for composition of fuzzy relations with the mult () function
described in Section B.11

For instance, one may require the patients to show at least two symptoms
of the diagnosis. To quantify the “at least 2” condition over a fuzzy set, Sugeno
integral will be applied. For that, we need a non-decreasing measure function
that returns a truth value from the [0, 1] interval. For us, a simple conditional

function will do the work:

gatleast <- sugeno(measure=function(x) as.numeric(x >= 2),
relative=FALSE,
strong=TRUE,
alg="goedel")

gRS <- mult(R, S, function(r, s) {

qatleast(a$pt(r, s))
b
print (qRS)
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#i#t pulm.hyp sleep.sick malaria hangover influenza
## patientl 0.9 0.8 0 0.8 0.8

## patient2 0.1 0.1 0 0.0 0.8
## patient3 0.0 0.0 0 0.0 0.8
## patient4d 0.0 0.0 0 0.0 0.8

The sugeno () function requires four arguments: measure, relative, strong
and alg. The measure argument is a non-decreasing function that assigns a
truth value from the [0, 1] interval to either relative or absolute quantity. The
relative argument is a TRUE/FALSE flag indicating what is expected by the
measure function. The strong argument determines whether ® in and @D
is a strong or weak conjunction. Finally, the alg argument is an underlying
algebra, i.e., either a string "goedel", "goguen", or "lukasiewicz", or object
of type algebra (see Section [2).

The result of the sugeno() function is a function that expects a vector of

membership degrees to be measured.

Remark 1. The above proposed formula (@ for the composition based on
Sugeno integrals is implemented for particular algebras for partial fuzzy logic,
namely for Bochvar, Dragonfly and Lower estimation algebra. The ordering of
the extended set of truth-values [0,1] U NA becomes of great importance. In the
case of the Bochvar algebra, the ordering, defined by NA < « for any « € [0,1],
preserves the equality of (@ and @ and thus, is adopted. Apart from the
Bochvar case, which is default, the users may choose either the Dragonfly alge-
bra or the Lower estimation algebra. In both cases, a “lattice-like” ordering <,
generated by the lattice operations N\ and V ensures the same preservation of the
equality of (@ and (@ It is defined as follows: 0 <; NA <; « for all a € (0,1],
see [22].

3.4. Combined cases

As the whole implementation of compositions in 1l is based on functions, it
is very easy to follow the block structure of distinct extension and thus, to call

compositions using combinations of generalized quantifiers and additional fuzzy
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relations ' and U. For example, the use of the following composition:
(Ro® S'E)PY(x,2) = (R0 S)(2,2) ® ~(Ro E)® (R>U)

turned to be very efficient in classifying dragonfly species as well as amphibian
species, for appropriately chosen quantifiers, see [30].

In the 1fl package, such complex formula is evaluated by the following code:

a$pt (qRS, a$n(RE), RU)

#Hit pulm.hyp sleep.sick malaria hangover influenza
## patientl 0 0.8 0 0 0.8
## patient2 0 0.1 0 0 0.7
## patient3 0 0.0 0 0 0.6
## patientd 0 0.0 0 0 0.0

4. Evaluative linguistic expressions

Evaluative linguistic expressions [3] are expressions vaguely describing a po-
sition on a quantitative axis no matter that not necessarily the position can be
numerically expressed, for example, we may consider expressions such as “very
nice”, “not very intelligent”, “extremely friendly”. Such expressions have either

the form

(linguistic hedge) (atomic expression)

or they are expressed as vague quantities also called fuzzy numbers [53].

The latter case of fuzzy numbers is in the 1l package modelled with help of
triangular or raised cosine that reach normality fuzzy set. The earlier case is
based on a small set of atomic expressions. Originally, the trichotomy “small”,
“medium”, “big” was used however, later on, an extension to a pentachotomy
by adding “lower medium”, “upper medium” was proposed as an alternative for
better distinction of medium-close values. The set of hedges serve as linguistic
modifiers making the meaning of an atomic expression wider or narrower. If we

consider an empty hedge as a special case between the hedges with narrowing

effect and the hedges with widening effect, we obtain a linear order of hedges:

Ex <y Si<yg Ve §H<empty> <gML<gRo<g QR <g VR
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where the abbreviations stand for “extremely”, “significantly”, “very”, “more or
less”, “roughly”, “quite roughly”, and “very roughly”, respectively. Note that
not all hedges have to be necessarily used and some redundancy analysis results

are valid only under assumptions that, e.g., require to omit the hedge VR.

- S . .
“V DEE(Sm) DEE(Me) DEE(BI) Vg
DEE(Ex Sm)

Figure 1: Visual sketch of fuzzy sets representing some particular evaluative linguistic expres-

sions. Specific defuzzification DEE is charted too.

The ordering of hedges has an important role in the inference mechanism
tailored to the linguistic fuzzy rules with the above mentioned evaluative lin-
guistic expressions. It is based on specificity that is directly determined by the
used hedge, assuming the same atomic expression is used. The narrower the
hedge, the more specific the expression is. And if an expression is more specific
that another one, the respective fuzzy set that models its meaning is a fuzzy
subset of the fuzzy set that models the less specific expression. This inclusion

is visualized on Fig.

4.1. Linguistic context

The linguistic context is a sort of extended notion to the notion of the uni-
verse in a sense that the universe is also accompanied with some fundamental
points. For the case of modeling expressions on numerical axis, we may dare
to restrict our focus to universes that are closed real intervals so, the universe
would be U = [vg,vg]. In order to talk about linguistic expression, we need
to add at least the third “middle” point that does not represent the center of

the interval however, it denotes the most typical value for middle size objects in
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the given domain. Usually, as humans are more sensitive to smaller values than
to the big ones, the middle point is closer to vy than to vg. For example, we
may consider the universe of pine trees U = [3,80] (in meters) while the middle
size pine tree would be rather around 15-20 meters than in the middle of the
interval U. So, extending the context to [vr,ve,vR] is not just a redundant
adding of the central point v but a desirable specification of the prototypical
middle point ve.

As the context has to reflect unilateral/bilateral nature (if it respects the
positive and negative values) or the decision whether we deal with trichotomy
or a pentachotomy (pentachotomy would require two more such emphasized
points), the order triplet [vy,,ve, vg] is not the only choice but the most funda-
mental and the simplest form of a linguistic context. In particular, four different
contexts are supported in 1fl, and the above-mentioned simplest context is the
unilateral trichotomy that is chosen by calling the function ctx3(). The higher
density of atomic expressions can be obtained by adding expressions “lower mid-
dle” and “upper middle”, which requires to consider unilateral pentachotomy by
calling the function ctx5(). The bilateral versions of the trichotomy and the
pentachotomy allow to deal with expressions such as “negative small”, “positive
medium”, or “negative very small” and can be called by functions ctx3bilat ()
and ctxbbilat (), respectively. The summary of functions responsible for cre-

ation of the linguistic context is provided below:

e ctx3(low, center, high): the unilateral trichotomy that enables the

atomic expressions: “small”, “medium”, “big”;

o ctx5(low, lowerCenter, center, upperCenter, high) — the unilat-
eral pentachotomy that enables the atomic expressions: “small”, “lower

medium”, “medium?”, “upper medium”, “big”;

e ctx3bilat(negMax, negCenter, origin, center, max) — the bilateral
”» [

trichotomy that enables the atomic expressions: “negative big”, “negative

medium”, “negative small”, “zero”, “small”, “medium”, “big”;
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e ctxbbilat(negMax, negUpperCenter, negCenter, neglLowerCenter, origin,

lowerCenter, center, upperCenter, max) — the bilateral pentachotomy
that enables the atomic expressions: “negative big”, “negative upper medium”,
“negative medium?”, “negative lower medium”, “negative small”, “zero”,

” 113

“small”, “lower medium?”, “medium?”, “upper medium?”, “big”.

The arguments of context creator functions have sensible defaults and need not

be therefore explicitly stated in all cases:
ctx3(5, 100, 1000)

## Linguistic context: unilateral trichotomy (ctx3)
#it low center high
## 5 100 1000

ctx3(0)

## Linguistic context: unilateral trichotomy (ctx3)
#H# low center high
## 0.0 0.5 1.0

ctx3(high=100)

## Linguistic context: unilateral trichotomy (ctx3)
#it low center high
## 0 50 100
Alternatively, the context may be automatically determined from data by
calling the minmax () function, which creates the selected type of the context

based on the minimum and maximum value found in data:

data <- runif(n=100, min=20, max=5000)
summary (data)

#i# Min. 1st Qu. Median Mean 3rd Qu. Max.
## 118.6 1306.3 2539.8 2580.3 3794.6 4997.8

minmax(data, type="ctx3")

## Linguistic context: unilateral trichotomy (ctx3)
#i# low center high
## 118.573 2558.195 4997.816

The minmax () function may be forced not to guess some values by specifying

them explicitly as additional arguments:
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minmax(data, type="ctx3", center=1000)

## Linguistic context: unilateral trichotomy (ctx3)
#it low center high
## 118.573 1000.000 4997.816

4.2. Fvaluative linguistic expressions

The atomic expressions, e.g., “small”, “medium” or “big” in the case of
the unilateral trichotomy, are according to the theory of evaluative linguistic
expressions [3] modelled with help of the horizon() function. Horizon of the
atomic expression is a function that represents basic limits of what humans treat

as small, medium or big, see Fig. 2}

ctx <- ctx3()
smHoriz <- horizon(ctx, atomic="sm")
smHoriz(seq(from=0, to=1, by=0.2))

## [1] 1.0 0.6 0.2 0.0 0.0 0.0

1.00-

atomic
0.75- expression
0.50- bi

- me
0.25-

sm

0.00-

-0.5 0.0 0.5 1.0 1.5

Figure 2: Horizons for the atomic expressions small, medium and big in the unilateral tri-

chotomy (ctx3(0, 0.5, 1))

A particular linguistic expression is obtained after the application of the
linguistic hedge. So, in 1fl, the hedge() function works as a modifier func-
tion, which is applied to a particular horizon. For instance, the function that
represents the “very small” expression can be obtained as follows:
veHedge <- hedge("ve")

ve.sm <- function(x) veHedge (smHoriz(x))
ve.sm(seq(from=0, to=0.5, by=0.1))
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## [1] 1.000000 0.585098 0.000000 0.000000 0.000000 0.000000

Such an approach gives the user a detailed control of the creation of a lin-
guistic expression, which may be useful for experimenting with novel expres-
sions. However, it may be tedious to manually create the functions for a routine
use. Therefore, the lingexpr() function provides a shortcut for creation of

pre-defined expressions:

ve.sm2 <- lingexpr(ctx, atomic="sm", hedge="ve")
ve.sm2(seq(from=0, to=0.5, by=0.1))

## [1] 1.000000 0.585098 0.000000 0.000000 0.000000 0.000000

An expression, consisting of an atomic expression only, is constructed using
an empty hedge:

emptyHedge <- hedge("-")
sm <- function(x) emptyHedge (smHoriz(x))
sm(seq(from=0, to=0.5, by=0.1))

## [1] 1.0000000 0.9620685 0.2439553 0.0000000 0.0000000 0.0000000

or equivalently:

sm2 <- lingexpr(ctx, atomic="sm", hedge="-")
sm2(seq(from=0, to=0.5, by=0.1))

## [1] 1.0000000 0.9620685 0.2439553 0.0000000 0.0000000 0.0000000

Figure [3]shows all linguistic expressions of the unilateral trichotomy context

(ctx3).

4.3. Other functions

For the sake of completeness, the 1fl package provides tools for the creation of
triangular or raised-cosine functions. Both triangular() and raisedcosine()
functions take three arguments, lo, center, hi, which fully parameterize the
shape of the resulting function. See the example below as well as Figure [ for
more detail. Note also that the 1o and hi parameters may be set to an infinite
value (-Inf resp. Inf), which causes the particular tail to be constantly equal

to 1.
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1.00-

expression
— —-.sm
0.75-
— ex.sm
— mlsm
0.50- — grsm
— ro.sm
0.25- — SsL.sm
— ve.sm
~— vr.sm
0.00-
0.00 0.25 050 0.75 1.00
1.00-
expression
0.75-
— —-.me
— mlme
0.50- — qr.me
—— ro.me
025+ ~ R
— vr.me
0.00-
0.00 0.25 050 0.75 1.00
1.00- )
expression
— —bi
0.751 — exbi
— mlbi
0.50 - — qrbi
— ro.bi
0.25- — sibi
— ve.bi
—— vrbi
0.00-
0.00 0.25 050 0.75 1.00

Figure 3: All pre-defined linguistic expressions for the unilateral trichotomy context ctx3
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.5, 1)
1, by = 0.2))

tri <- triangular(O,
ss  tri(seq(from = 0, to

## [1] 0.0 0.4 0.8 0.8 0.4 0.0

rcos <- raisedcosine(0, 0.5, 1)
rcos(seq(from = 0, to = 1, by = 0.2))

## [1] 0.0000000 0.3454915 0.9045085 0.9045085 0.3454915 0.0000000

1.00- 1.00-

0.75- 0.75-

0.50 - 0.50 -

0.25- 0.25-

0.00- ( f f f 0.00 - f f f f
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

(a) triangular(0, 0.5, 1) (b) triangular(-Inf, 0.5, 1)

1.00- 1.00-

0.75- 0.75-

0.50- 0.50 -

0.25- 0.25-

0.00- ] 1 1 f 0.00 - 1 1 1
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

(c) raisedcosinal(0, 0.5, 1) (d) raisedcosinal(0, 0.5, Inf)

Figure 4: Triangular and raised-cosinal functions

s 4.4. Batch transformations of data to membership degrees of fuzzy sets

Practical applications often require to transform data into multiple fuzzy
sets. The 1fl package provides the lcut() and fcut() functions to perform
such transformations. Both functions transform vectors (numeric, logical or
factors), matrices or data frames into an fsets object. Such an object is a data

s35  frame with each column representing a single fuzzy set. The values are from the
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[0, 1] interval and they are equal to the membership degrees of the element of the
universe to the particular fuzzy sets. These functions are the fuzzy-counterparts
of the well known cut () operation of the base R.

For logical input, the 1cut () function returns two columns of Os and 1s: these
columns represent (crisp) truth degrees equivalent to the original input and its
negation, respectively. The name of the column is either specified by the user

in the name argument, or derived from the given data argument automatically:

logvec <- c(TRUE, FALSE, TRUE, TRUE)

lcut (logvec)

#it logvec not.logvec
## [1,] 1 0
# [2,] 0 1
## [3,] 1 0
# [4,] 1 0

lcut(logvec, name="employed")

#Hit employed not.employed
## [1,] 1 0
## [2,] 0 1
## [3,] 1 0
## [4,] 1 0

The factor input is dichotomized in the result:

position <- factor(c("worker", "manager", "worker", "accountant"))
lcut(position)

#it position=accountant position=manager position=worker
## [1,] 0 0 1
## [2,] 0 1 0
## [3,] 0 0 1
## [4,] 1 0 0

For numeric input, the 1cut () function performs transformation to linguistic
expressions similarly as described in Section For this step, a linguistic
context must be provided (see Section . If the context is not provided, it is
determined automatically using the minmax () function described in Section 4.1
The required atomic expressions or hedges may be specified manually or leaved

empty to let the system use all relevant combinations:
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age <- round(runif(n=4, min=18, max=65))

print (age)

## [1] 55 32 41 52

lcut (age,
context=ctx3(low=0, high=100))

##
#Hit
#it
#i#t
##
##
#t
#i#t
#i#t
##
##
##
#Hit
#i#
#it
##
##
#H#t
#it
#i#t

[1,]
[2,]
(3,]
4,]

[1,]
[2,1]
(3,]
4,]

[1,]
[2,]
(3,1
4,]

[1,]
2,1]
(3,]
4,1]

ex.sm.age si.sm.age ve.sm.age sm.age ml.sm.age ro.sm.age

0 0 0
0 0 0
0 0 0
0 0 0

vr.sm.age ty.me.age

0.0000000 0.04761905 1.0000000 1.0000000
0.9475480 0.00000000 0.3914128 0.7993319
0.1993769 0.00000000 0.9859853 1.0000000
0.0000000 0.73333333 1.0000000 1.0000000

0
0
0
0

0
0
0
0

0
0
0
0

me.age ml.me.age ro.me.age qr.me.

1

1
1
1

vr.me.age ex.bi.age si.bi.age ve.bi.age bi.age ml.bi.age

1 0 0

1 0 0

1 0 0

1 0 0
qr.bi.age vr.bi.age

0 0

0 0

0 0

0 0

0

0
0
0

0

0
0
0

0

0
0
0

qr.sm.age
0.0000000
0.1315789
0.0000000
0.0000000
age

L

ro.bi.age

O O O

If data frame is to be processed with the 1cut () function, the result is created

per column. Also note that the names of the resulting variables are derived from

the column names of the input data frame. For the sake of brevity, the result’s

column names are listed only:

data <- data.frame(position=position,

age=age,
employed=logvec)

print(data)

#Hit position age employed

## 1 worker 55 TRUE

## 2 manager 32 FALSE

## 3 worker 41 TRUE

## 4 accountant 52 TRUE
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employees <- lcut(data,
context=ctx3(low=0, high=100),
atomic=c("sm", "me", "bi"),
hedges=c("ve", "-", "ro"))
print (colnames (employees))

## [1] "position=accountant" "position=manager" "position=worker"
## [4] "ve.sm.age" "sm.age" "ro.sm.age"

## [7] "me.age" "ro.me.age" "ve.bi.age"

## [10] "bi.age" "ro.bi.age" "employed"

## [13] "not.employed"

The given contexts, atomic expressions and hedges are recycled for each
input numeric column. If a different setting is needed for each column, the

arguments should be given as named lists as follows:

data$salary <- round(runif(n=4, min=1000, max=20000))
print(data)

#i#t position age employed salary
## 1 worker 55 TRUE 14191
## 2 manager 32 FALSE 7728
## 3 worker 41 TRUE 16279
## 4 accountant 52 TRUE 15044

employees <- lcut(data,
context=list (age=ctx3(low=0, high=100),
salary=ctx3(low=500, high=50000)),
atomic=list(salary=c("sm", "bi")),
hedges=list(age=c("ve", "-", "ro"),
salary=c("ex", "ve", "-", "ro")))
print (colnames (employees))

## [1] "position=accountant" "position=manager" "position=worker"
## [4] "ve.sm.age" "sm.age" "ro.sm.age"

## [7] "me.age" "ro.me.age" "ve.bi.age"

## [10] "bi.age" "ro.bi.age" "employed"

## [13] "not.employed" "ex.sm.salary" "ve.sm.salary"

## [16] "sm.salary" "ro.sm.salary" "ex.bi.salary"

## [19] "ve.bi.salary" "bi.salary" "ro.bi.salary"

The fsets object returned by the lcut () function (and the fcut() func-
tion as well, see below) handles an additional information, the vars and specs

attributes. In particular, vars is a character vector that assigns the original
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data name to each of the resulting column of membership degrees. In other
words, the vars vector specifies the equivalence classes of fuzzy sets that were

originated from the same data:

vars (employees)

## [1] "position" "position" "position" "age" "age" "age"

## [7] n agell "age n Ilagell llagell llage n Ilemployed"
## [13] "employed" "salary" "salary" "salary" "salary" "salary"
## [19] "salary"  "salary"  ‘"salary"

The specs attribute returns a matrix that encodes a sort of specificity rela-
tion (see Section [6)) between the columns of the fsets object. (In the following

example, some columns and rows are omitted for brevity.

specs (employees) [1:5, 1:5]

# (,1] [,2] [,3] [,4] [,5]
## [1,] o o o0 o0 0
## [2,] o o o0 o0 0
## [3,] o o o0 o0 0
## [4,] o o0 o0 o 1
## [5,] o o o0 o0 o0

As can be seen, the 4th fuzzy set (ve.sm.age) is more specific than 5th
(sm.age), which is more specific than the 6th fuzzy set (ro.sm.age).

The fcut () function works identically to 1cut () for logical and factor input.
However, numerical values are transformed with the fcut () function to trian-
gular or raised-cosine membership degrees (depending on the type argument

which has to be either "triangle" or "raisedcos"):

numvec <- 1:9

fcut (numvec,
breaks=c(1, 5, 9),
type="triangle")

#i#t numvec=1
# [1,] 0.00
##  [2,] 0.25
## [3,] 0.50
##  [4,] 0.75
## [5,] 1.00
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# [6,] 0.75

# o [7,] 0.50
#  [8,] 0.25
##  [9,] 0.00

This is identical to the call of the triangular () function:
triangular(l, 5, 9) (numvec)

## [1] 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0.00

However, the fcut () function is mainly useful for creation of multiple fuzzy
sets. A mandatory breaks argument determines the break-points of the posi-
tions of the fuzzy sets. It should be an ordered vector of numbers such that the
i-th index specifies the infimum of the support (left-hand side corner), (i +1)-th
the center, and (i 4+ 2)-th the supremum of the support of the i-th fuzzy set.
The minimum number of break-points is 3. n — 2 elementary fuzzy sets would
be created for n break-points.

For instance, the following command produces three triangular fuzzy sets
with parameters (1, 3,5), (3,5,7) and (5,7,9):
fcut (numvec,

breaks=c(1, 3, 5, 7, 9),
type="triangle")

#i# numvec=1 numvec=2 numvec=3
#  [1,] 0.0 0.0 0.0
# [2,] 0.5 0.0 0.0
# [3,] 1.0 0.0 0.0
# [4,] 0.5 0.5 0.0
## [5,] 0.0 1.0 0.0
# [6,] 0.0 0.5 0.5
# [7,] 0.0 0.0 1.0
# [8,] 0.0 0.0 0.5
##  [9,] 0.0 0.0 0.0

Let us consider the i-th fuzzy set. The values smaller than the i-th break
and greater than (i + 2)-th break result in the zero membership degree, values
equal to (i + 1)-th break result in the membership degree equal 1, and values

between them result in a membership degree between 0 and 1 accordingly to
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the specified type ("triangle" or "raisedcos"). Names of resulting fuzzy sets
are created from the name of the original data variable (numvec in this case),

the symbol of equality (=) and a number 3.

1.00- 1.00-
0.75- 0.75-
0.50 - 0.50 -
0.25- \ 0.25-
0.00- ; ] . y — 0.00-
0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0
numvec=1 numvec=1|numvec=2
— numvec=2 — numvec=2|numvec=3
numvec=3
(a) merge=1 (b) merge=2

Figure 5: Results of the fcut call with breaks=c(1, 3, 5, 7, 9) and different settings of

merge.

Additionally, combined fuzzy sets may be created by using the argument
merge. If merge=1 (the default), only the elementary fuzzy sets discussed above
are produced. Setting merge=2 means that each two consecutive elementary
fuzzy sets should be combined with the Lukasiewicz t-conorm into a single fuzzy
set, merge=3 causes combining three consecutive elementary fuzzy sets etc. See
Fig. p| and also the following example.

The merge argument determines whether to derive additional fuzzy sets
by merging the elementary fuzzy sets (defined with the breaks argument) into
super-sets. The merge may contain any integer number from 1 to length (breaks)
- 2. Value 1 means that the elementary fuzzy sets have to be created only, as

described above (the default case).

fcut (numvec,
breaks=c(1, 3, 5, 7, 9),
merge=2,
type="triangle")

#it numvec=1|numvec=2 numvec=2|numvec=3
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#i#t
##
##
#H#t
#it
#i#
##
##
#t

(1,1
[2,]
(3,1
[4,]
(5,]
(6,1
(7,1
(8,1
[9,1

OO OO kr KL, EFEL, OO
O O O 01O O O o1 O
OO, FPr P, OOOOo
O U1 O OO Ul © O O

fcut (numvec,

breaks=c(1, 3, 5, 7, 9),
merge=3,
type="triangle")

##
#Hit
#it
#i#
##
##
##t
#it
#i#t
##

[1,]
[2,]
(3,]
[4,]
(5,1
(6,1
(7,1]
(s,]
(9,1

numvec=1|numvec=2|numvec=

OO R R, R, R R OO
O U1 O O O OO UL OWw

The merge argument may contain multiple values. In that case, all types of

merged fuzzy sets are provided. In the following example, the merge argument

is a numeric vector containing 1, 2, 3, which means that the elementary fuzzy

sets are created (1), the combinations of two consecutive elementary fuzzy sets

are provided too (2), as also a single fuzzy set that combines all the three

elementary fuzzy sets is returned (3):

fd <- fcut(numvec,

breaks=c(1, 3, 5, 7, 9),
merge=c(1, 2, 3),
type="triangle")

print (colnames(£d))

## [1] "numvec=1" "numvec=2"

## [3] "numvec=3" "numvec=1|numvec=2"

## [5] "numvec=2|numvec=3" "numvec=1|numvec=2|numvec=3"
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As can be seen, the names of the derived (merged) fuzzy sets are created
from the names of the original elementary fuzzy sets by concatenating them
with the pipe (|) separator.

Similarly as for lcut(), the result of the fcut() function is an instance
of the fsets object. Hence the additional information, the vars and specs

attributes discussed above, is also available:
vars (£d)

## [1] "numvec" "numvec" "numvec" "numvec" "numvec" "numvec"

specs(£d)

## (11 [,2] [,31 [,4] [,5] [,6]
## [1,] 0 0 0 1 0 1
## [2,] 0 0 0 1 1 1
## [3,] 0 0 0 0 1 1
## [4,] 0 0 0 0 0 1
## [5,] 0 0 0 0 0 1
## [6,] 0 0 0 0 0 0

5. Fuzzy association rules

5.1. Theoretical background

The association rules [54] need not be introduced in detail, we only recall
the fact that firstly the method appeared under the name GUHA [55, 56] and
furthermore, we recall basic principles of how this method finds distinct statis-
tically approved associations between attributes of given objects. With help of
1l the method can be used also in the fuzzy setting, i.e., for graded properties.

The crisp version of association rules deals with Table [7] where o4, ..., 0,

Y,

denote objects, X1, ..., X,, denote independent boolean attributes, Y7,...,Y;

denote the dependent boolean attributes, and finally, symbols a;; and b;; are
values from {0, 1} that denote whether the i-th object o; carries attribute X; or
Y;, respectively. Each object can be represented as a boolean vector with m + ¢

components.
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X, X | Vi Y,
01 a1 . A1m b11 e blq
On | Gn1 .o Gpm | bp1 ... Dpg

Table 7: The table objects and attributes.

As the GUHA method deals with boolean attributes and features are often
taking values from a real universe, the attributes are usually partitioned to

intervals. Then the method seeks for associations:
A(Xil, ceey le) >~ B(Yk) (].0)

where A is a predicate with conjunctively connected variables Xj1,...,X;, (for
p < m), and B is a predicate with variables Y}, for k taking values from 1 to q.

In order to mine such associations, a four-fold Table [§]is constructed.

B notB

Al a b
notA | ¢ d

Table 8: Four-fold table for mining linguistic associations.

The number of synchronous occurrences of A and B is denoted by a in Table[8]
b denotes the number of occurrences of A while B does not hold, numbers ¢ and
d are determined analogously. Often, only numbers a and b are important for
distinct qualitative measures. For instance, the relationship between A and B
may be obtained with help of the binary multitudinal quantifier ~ := ] that

confirms the association if:

a

>y and > 7

a+b
where v € [0,1] is a degree of confidence and r € [0,1] is a degree of support.
In order to soften the binary character of the associations and the sensitivity

to the partitioning of the universes into intervals, distinct approaches to fuzzy
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associations were employed [67, 58|, [59]. The Ifl package adopts the approach
published in [6] because it directly uses the theory of evaluative linguistic ex-
pressions. The attributes are not boolean anymore. Recalling the example from
[6], we may consider independent variables BMI (Body Mass Index) and Chol
(cholesterol level), and the dependent variable BP (blood pressure) and the at-
tributes such as BMIV®B!, BPM¢ Chol®P! ete. that are defined by the fuzzy
sets modeling the particular evaluative expressions. In such a way, the authors

obtained Table [J] with membership degrees a;; € [0, 1].

BM[ExS™ Chol™B! | ppExSm BpExBi
01 0.5 0 1 0
09 0.8 0 0.4 0
03 0 0.1 0 0.4
04 0 0.4 0 0.3
05 0.6 0 1 0
On 0 . 0 0.5 .. 0

Table 9: An example of the table with fuzzy attributes for fuzzy associations mining, ref. [6].

Table [§]is constructed for the fuzzy case in the same way using the cardinal-
ity, i.e., values a,b, c¢,d are summations of membership degrees. The conjunc-
tive aggregations of the truth-values of A and B were modeled by the minimum
operation however, other t-norms [60] may be considered as well. So, if the
membership degree of o; to A is 0.4 and its membership degree to B is 0.7, the
value that enters the summation equals to min{0.4,0.7} = 0.4. If we sum up
such values over all objects, we obtain the number a in Table The other
numbers are determined in an analogous way.

The advantage of associations is that each of them can be interpreted

as the fuzzy rule:

R := IF X;; is A;1 AND --- AND X, is A;, THEN Yy, is B
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that may be used in the inference systems for approximate reasoning.

5.2. Searching for fuzzy association rules in Ifl

The 1fl package provides the searchrules() function that implements an

OPUS-inspired algorithm [61] for searching for fuzzy association rules in data.

The searchrules() function traverses through the data set transformed to

fuzzy sets (see 1cut() and fcut () functions in Section and searches for all

rules that satisfy certain restrictive conditions specified by the user:

rb

<- searchrules(employees,

lhs=seq_len(ncol (employees)),
rhs=seq_len(ncol(employees)),

minSupport=0.5,
minConfidence=0.8,
maxLength=3)

support lhsSupport rhsSupport confidence

print (rb)

##

## position=worker => employed 0.5000000
## => ro.me.age 1.0000000
## employed => me.age 0.7464963
## me.age => employed 0.7464963
## => me.age 0.8443495

accepts the following arguments:

the rule (i.e., in the antecedent);

the rule (i.e., in the consequent);

antecedent (defaults to Gédel minimum);

below that number are filtered out;

41

0.5000000
1.0000000
0.7500000
0.8443495
1.0000000

0.7500000
1.0000000
0.8443495
0.7500000
0.8443495

1.0000000
1.0000000
0.9953284
0.8841082
0.8443495

Besides the fsets data object (see Section, the searchrules() function

lhs — indices of data columns that may appear on the left-hand side of

rhs — indices of data columns that may appear on the right-hand side of

tnorm — the t-norm that represents the conjunction of predicates in the

n — the maximum number of rules with greatest confidence to be found;

minSupport — the minimum support degree of a rule. Rules with support
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e minConfidence — the minimum confidence degree of a rule. Rules with

confidence below that number are filtered out;

e maxConfidence — the maximum confidence threshold. After finding a rule
that has confidence degree above the maxConfidence threshold, no other
rule is resulted based on adding some additional attribute to its antecedent
part. So, if a => c has confidence above the maxConfidence threshold,
no more rules containing a in the antecedent and c in the consequent will

be produced regardless of their interest measures;

¢ maxLength — the maximum allowed length of the antecedent, i.e. maximal
number of predicates that are allowed to appear on both sides of the rule.

If negative, the maximum length of rules is unlimited.

e numThreads — the number of computing threads to start in parallel multi-

threaded computation.

Internally, the rule base produced by the searchrules() function is an
instance of the farules class. It is a list of two elements, rules and statistics,
where rules is a list of character vectors of rule predicate names. The first
element of these vectors is a consequent of the rule, the rest is the antecedent.
The statistics element is a matrix that assigns some quality measures to
each rule. The as.data.frame() function converts the farules object to a
usual data frame. The antecedent() or consequent () functions create a list

of antecedents or consequents from the farules object.

5.8. Reduction of rule bases

If the generated association rules are intended for use in some inference
mechanisms (such as PbLD described in Section [6]), it is sometimes useful to
employ a reduce() function to decrease the amount of rules obtained by the
searchrules() function.

The rule base coverage of data expresses the amount of data entries, for

which there exists a rule with an antecedent that models (that is, “covers”)
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the original data. The reduction algorithm performed in the reduce () function
selects a minimal rule base that covers at least the specified ratio of data. The
algorithm described by [62] turns out to be very efficient in reduction while
retaining the output of the PbLD inference.

For example, a set rb of rules obtained from the employees fuzzy sets may

be reduced to the 90 % coverage ratio as follows:

reduce(employees, rb, 0.9)

#it support lhsSupport rhsSupport confidence
## => me.age 0.8443495 1.0000000 0.8443495 0.8443495
## => ro.me.age 1.0000000 1.0000000 1.0000000 1.0000000

## me.age => employed 0.7464963 0.8443495 0.7500000 0.8841082

6. Perception-based Logical Deduction

Unlike the more frequent fuzzy inference methods, i.e., mainly the Mamdani-
Assilian [25] (and other derived conjunctive models) and the Takagi-Sugeno
[63], the perception-based logical deduction (abbr. PbLD) uses the genuine
Lukasiewicz implication. However, it is even different to the standard fuzzy
relational approach to implicative rules [64] that aggregates them to a single
fuzzy relation by the minimum. Let us note that the first two above-mentioned
approaches as well as many others are accessible in a very rich frbs R package
while the latter approach implementing conjunction of implications is up to the
best knowledge of the authors not implemented in any R package.

The difference between inferring with standard implicative fuzzy rules and
inferring with linguistic rules (containing evaluative linguistic expressions) lies
in the specific inference method PbLD that applies the so-called perception —
a certain algorithm that fires only particular rules based firing degree and the

specificity of the antecedents, see [65].

6.1. Formal background and implementation

In this Section, we present PbLD that was introduced in [4] and in the

selected fuzzy relational formal environment studied in [24]. However, note that
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there is also another variant, see e.g. [5]. The first one can be called global PbLD
and the latter one as local PbLD. The names, in the R-package implementation
mirrored in the values "global" and "local" of the type argument, point to
the application of the specificity ordering in the perception function that chooses
particular rules to be fired. Unless explicitly stated, all what is described below
has a general validity for both variants.

We briefly recall that the specificity ordering of linguistic expressions is based
on the ordering of hedges under the assumption that we consider two expressions
based on the same atomic expression, i.e., A; <pg Ay for A; := (hedge); A and
Ay, := (hedge),.A with A being an atomic expression and (hedge); <g(hedge)y,
where

Ex SH Si SH Ve §H<empty> SH ML SH Ro SH QR SH VR .

The specificity ordering principle, i.e., evaluative expressions of the same
type are ordered according to their hedges and expressions with different atomic
expressions are incomparable), is preserved also for the multiple-variable case
where the same atomic expression needs to be on each axis and the ordering
<pg has to be preserved also for all variables (hedges), otherwise again, the
expressions are incomparable. In 1fl, the specificity relation of two rules may
be questioned with the is.specific() function. See also the specs() function
discussed in Section [1.41

Fuzzy rules with evaluative expressions are gathered to a fuzzy rules base

that is here called the linguistic description, LD = {R1,..., Rk }:

Rq1:= IF z is A; THEN y is By,

................................ (11)
Ry := IF z is Ax THEN y is Bk

with z,y taking values from universes X and Y, respectively. For further pur-
poses, we will need to define the topic of linguistic description LD as the set
of antecedent fuzzy sets T*P = {A; | j = 1,...,K} where A; models the

expression A;.
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Given a linguistic description and an input zy € X, one may order the

elements of the topic w.r.t. the input: A; <, Ay for A;, Ay € TP if
either  A;(xo) > Ag(zo); or  A;(mg) = Ag(zo) and A; <y5 Ag, .

The definition of <, above relates only to the “original” PbLD that is called
global in this work as well as in 1fl R-package. For the local PbLD, there is an
additional assumption that A; and Ay need to be of the same type (constructed
with the same atomic expression), in order to be ordered A; <,, Ax. This slight
change in the definition has a strong impact on the functionality of the inference
[5] which is discussed in Remark [2] below.

Again, the extension to more variables is straightforward and component-
wise with the use of the minimum t-norm to aggregate the membership degrees

on the individual axes:

~-

Az(xo) = Aij(xoj), with X =X; x--- X Xm, To = (1’01, - ,.’Eom) .

j=1

The perception function maps an input x to the topic of a given linguistic
expression. In particular, it assigns to each input xy € X a subset of antecedent

fuzzy sets that are minimal wrt. the ordering <, :
PLD($0) = {Al S TLD | Az($0) >0 &VAJ S TLD : (AJ §$0 Al) = (AJ = Al)}

Remark 2. Only the rules with antecedents chosen by the perception function
are fired that can be interpreted as firing rules with the highest firing degree
and, firing the rules with the most specific antecedents, in the case of more
rules fired to the degree 1. The motivation came from the situations when some
extremely small objects are observed on the input and we have rules with an-
tecedents “small” and “extremely small”, see Figure[ll Indeed, extremely small
objects are also small however, we may wish to result different conclusions for
those small objects that are even extremely small. The above described principle
for the example with antecedents “small” and “very small” is preserved even

when the local PbLD is applied. However, in such a case, the perception also
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fires the rules with antecedents of the different type no matter that they are fired
in distinct degrees. If the input has a non-zero membership degree to antecedents
with expressions derived from atomic expressions “small” and “medium”, the or-
dering <., determines the most fired antecedents separately for both subsets and

both such rules are then chosen by perception to be fired.

The conclusion C' € F(Y) is then determined analogously to the standard

implicative approach, i.e.,
C =(NCi, | Ci,(y) = Ai,(z0) = By, (y) & A;, € PP(z0)}, yeY, (12)

where = is the Lukasiewicz residuum and N is the Godel intersection.

After deriving the output C, it often needs to be defuzzified that is, we often
need to find an element y € Y that represents the conclusion C' in the best way.
This necessity appears whenever particular numerical output is required, e.g., in
automatic control, robotics, etc. This step is provided by the function defuzz()
that is, as a function standing outside of the PbLD inference, described in
Section

The Ifl package implements PbLD in the pbld() function. The inference is
performed for each row of the input data object (which must be the instance of
the fsets class, see Section . For instance, let us consider the R’s standard

dataset, C02:
head (C02, n=4)

## Grouped Data: uptake ~ conc | Plant

##  Plant Type Treatment conc uptake
## 1 Qnl1 Quebec nonchilled 95 16.0
## 2 Qnl Quebec nonchilled 175 30.4
## 3 Qnl1 Quebec nonchilled 250 34.8
## 4 Qnl Quebec nonchilled 350 37.2

We are going to create a rule base for predicting the uptake variable from
the other columns of the dataset. First of all, let us convert the original data
into the set of fuzzy sets. We define a custom trichotomous context for the

predicted variable and leave defaults for all the other columns:
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uptakeContext <- ctx3(7, 28.3, 46)
d <- 1lcut(C02, context=list(uptake=uptakeContext))

Now we split the data into the training and testing part. There are 10
data rows randomly selected for the testing dataset (in real application, perhaps
more sophisticated method of training/testing split may be performed e.g. by

using the createDataPartition() function of the caret package [66]):

testingIndices <- sort(sample(seq_len(nrow(d)), 10))
print (testingIndices)

## [1] 8 44 46 51 61 67 73 78 80 83

training <- d[-testingIndices, ]
testing <- d[testingIndices, ]

On the training part, the rule base is created with the uptake fuzzy sets as

consequents (columns 39-58) and the rest as antecedents (columns 1-38):

rb <- searchrules(training,
lhs=which(vars(d) != "uptake"),
rhs=which(vars(d) == "uptake"),
minConfidence=0.5)

Before performing the inference with the pb1ld() function, a sampled conse-
quent values have to be provided. The following commands produce a vector v
of 1000 evenly distributed values from the uptake context and a fsets object
p of fuzzy sets that appear in the consequent with membership degrees corre-
sponding to the values from v. This information is needed for defuzzification,
which enables to obtain a crisp value of the uptake predicted by the PbLD

inference:

v <- seq(uptakeContext[1], uptakeContext[3], length.out=1000)
p <~ lcut(v, name="uptake", context=uptakeContext)

After that, everything is prepared to run the inference on the testing

dataset:

pbld(testing, rb, p, v, type="global")
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## [1] 27.26126 22.22523 7.00000 22.22523 7.00000 21.79580 19.29730

## [8] 17.63814 27.26126 27.26126

Each value of the resulting vector corresponds to the result of the inference
performed on a row of the testing input. As indicated by the type argument,
the global variant of PbLD has been computed. The local PbLD is obtained for
type="1local".

If the user wants to create the rule base by herself or himself, a list of
character strings has to be provided that represent the rules, with first element

standing for the consequent. For instance, rules

if Plant=Mcl and conc is small then uptake is medium

if Type=Mississippi then uptake is small

if Treatment=nonchilled and conc is roughly medium then uptake is big

may be evaluated with PbLD using the following code:

rules <- list(c("me.uptake", "Plant=Mcl", "sm.conc"),
c("sm.uptake", "Type=Mississippi"),
c("bi.uptake", "Treatment=nonchilled", "ro.me.conc"))
pbld(testing, rules, p, v)

## [1] 7.00000 10.16216 10.16216 10.16216 7.00000 10.16216 10.16216

## [8] 10.16216 10.16216 10.16216

6.2. Other functions related to the PbLD inference

The 1fl package provides some additional functions related to the logical in-
ference. These functions act primarily as building blocks for the PbLD, however,
they may be sometimes useful even separately.

The fire() function evaluates a list of rules on a given input. The result is
a vector of truth value degrees.

The perceive() function handles the perception, which is a central notion
of the PbLD inference. From a set of rules, perceive() removes each rule for

which another rule exists that is more specific. The specificity is determined by
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calling the is.specific() function. In other words, for each rule R; in the list
of rules, it searches for another rule R; such that is.specific(Rj, Ri, ...)
returns TRUE. If the answer is positive then R; is removed from the list. The
specificity is based on the specs() matrix defined as an attribute of the fsets
object, which can be created by the 1cut () or fcut() function.

The defuzz() function performs the defuzzification. As the flavor of the
output obtained by leads to expressions that look like modified evaluative
linguistic expressions, the use of the Defuzzification of Evaluative Expressions
(DEE) that has been designed for these purposes seems reasonable. It is a
hierarchical two-step defuzzification that firstly classifies the type of the output
into three types: S~ (“small”), II (“medium”), and ST (“big”). This step is done
based on the monotonicity of the output fuzzy set membership functions, e.g.,
non-increasing is classified as S™ (“small”). In its second step, DEE calls one
of the standard defuzzifications for implicative rules, First-Of-Maxima (FOM)
is used for the S~ type, Mean-Of-Mazima (MOM) is used for the II type, and
Last-Of-Mazima (LOM) is used for the ST type, see Figure

Function defuzz () takes a numeric vector of membership degrees, a numeric
vector of values corresponding to the given membership degrees and a type of
defuzzification ("mom" for Mean-Of-Maxima, "fom" for First-Of-Maxima, "lom"
for Last-Of-Maxima, or "dee" for Defuzzification of Evaluative Expressions) and
returns a defuzzified value.

As the 1l package is mainly focused on modeling implicative rules, it does
not contain defuzzifications designed for conjuntive rules (rules of the Mamdani-
Assilian type), such as the Center-Of-Gravity (COG) defuzzification, however,
it is at disposal in frbs R-package.

6.3. Application — fuzzy rule-based ensemble for time series prediction

The PbLD inference methods together with linguistic fuzzy rules have been
used for distinct purposes, such as classification of geological layers [67]. We
will emphasize one of them that significantly favored the use of the R-package

implementation compared to the LFLC commercial package (see [32]), namely,
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the Fuzzy Rule Based Ensemble (FRBE) for time series predictions [68]. It is an
ensemble of particular time series forecasting methods that is strongly motivated
by distinct automatic ensembles for these purposes [69], often dealing on the
meta-learning level with characteristic features of time series [70] and stimulated
by the interpretable form of rules as in the case of the well-known rule based
forecasting, see [71].

In this particular application, the authors used the forecast R-package [72]
in order to use particular forecasting methods with automated parameter tuning,
and the above-described functionalities of the 1fl package in order to create
ensemble that, based on characteristic features of the given time series, flexibly
adapts the weights of the particular time series forecasting methods.

There were four methods called from forecast package, namely the sea-
sonal ARIMA, exponential smoothing, Theta, and Random Walk. Using the
M3 competition dataset of 2829 time series [73], it was possible to determine
the accuracy of the four particular methods and to determine characteristic
features, such as frequency (yearly, monthly, weekly, etc.), skewness, kurtosis,
seasonality etc., for more details, see [68]. The weights were set up propor-
tional to the determined accuracy and employed into a table similar to Table[7]
where the objects were the particular time series used for the learning, features
X1, X,, where the determined time series features, and Y was set up to be equal
to the weight determined based on the accuracy of the particular method for
the particular time series. Such a table led to the generation of the linguistic
description for a single time series forecasting method and the procedure was
repeated for the remaining three forecasting methods. This resulted into four
linguistic descriptions that, after the redundancy analysis [24] and the size re-
duction by the function reduce() were ready to determine particular method
weights. Note that the DEE defuzzification was used at the end of the inference
process followed by the normalization of the obtained weights.

The whole procedure was not a single experiment procedure but a creation of
a stable forecasting tool that is at disposal in the 1fl package under the function

frbe().
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To perform the FRBE forecast, a proper time series object has to be created
with assigned frequency attribute. This can be done as in the following example.
The frbe() function may then be called with the h argument, which is the

forecast horizon, i.e. the number of future values to be predicted:

myts <- ts(1:100 + rnorm(100), frequency=24) # hourly frequency
fit <- frbe(myts, h=10)
fit$mean

## [1] 100.5002 101.4108 102.3139 103.2133 104.0460 104.9274 105.7708
ws  ## [8] 106.6504 107.5235 108.3899

The returned list contains a lot of values related to the forecast such as
forecasts of the particular methods and weights. The mean element is a list with

predicted values.

7. Applicability

1020 This section places the 1fl package into the perspective of the others from
the practical applicability point of view. Firstly, we briefly recall the other tools

and packages, secondly, we present a real case-study problem.

7.1. Other related packages

As mentioned above, Il is by far not the only SW or even R-package related
s to the fuzzy methods. An exhaustive study on SW related to fuzzy techniques
can be found in [12].

Apart from the above-mentioned LFLC [32] that served as the starting point
for 1l package, we should name at least some of the most often used ones. For
instance, JFML (Java Fuzzy Markup Language) [74] is a library that enables

wp  to design fuzzy rule-based systems. It allows to implement fuzzy systems for
embedded systems such as Arduino or Raspberry Pi [75]. Juzzy [76, [77] is an-
other SW implementation that attracted an attention, it is a Java-based toolkit

that enables to deal also with Type-2 fuzzy systems.
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Staying in the environment of R-packages, the above-mentioned frbs [14, 78]
is, according to the subjective opinion of the authors, topically the closest one
and it seems to be also developed to the widest application potential.

Other packages that deal with fuzzy rules are, for instance, FisPro [79] [80],
FuzzyToolkitUoN [81] or FuzzyR [82] [83] where the first two ones focuse
on Mamdani-Assilian and Takagi-Sugeno systems which makes them closer to
frbs while the latter one focuses mainly on the well-known neurofuzzy system
ANFIS.

The portfolio of problems possibly solvable by existing R-packages with fuzzy
techniques is, indeed, much wider. We may find, for example, packages for fuzzy
linear regression, AHP, fuzzy statistics, or fuzzy decision trees and random
forests [84] [85].

If we intend to compare the 1fl package with the most related ones from
the area/technique coverage point of view, we find the following differences and
similarities.

Due to the specific character of the PbLd inference and the related necessity
of the use of evaluative linguistic expressions [86] based on the basic trichotomy,
none of the existing packages contains these structures. Neither the predefined
fuzzy sets modeling expressions created by the application of linguistic hedges
to the basic triplet, nor the related implication-based inference based on a sort
of “pre-selection” of rules. This fact that is not that surprising, however, up
to the best knowledge of the authors, none of the existing packages contains
fuzzy relational model of implicative rules. Having in mind its importance, this
contribution of 1fl to the existing tools is essential.

For the sake of the completeness of the 1fl package and for the sake of the
consistency of the implementation with the implicative rules, 1fl contains also
Mamdani-Assilian model of fuzzy rules. However, here we have to note that
this approach is already employed in several packages, e.g., in FisPro, Fuzzy-
ToolkitUoNN, and mainly in frbs. We also emphasize distinct efficient mod-
ifications and learning techniques, e.g., neural-network based fuzzy inference

system ANFIS employed in FuzzyR and in frbs. In the latter package, ANFIS
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is supplemented by DENFIS, hybrid neural approach HYFIS, or evolutionary
approaches, e.g. by genetic fuzzy systems based on Thrift and MOGUL meth-
ods. This, jointly with other inferences (Takagi-Sugeno-Kang or Ishibuchi’s
method), makes frbs a powerfull and rich package for distinct purposes, such
as regression, data-driven classification, control, or decision-making.

Owing to mention other differences, 1fl contains complete and very recent
group of fuzzy relational composition calculus including the most recent tech-
niques [46], [30]. These structures can be used in the inference processing fuzzy
inputs as well as in distinct, e.g., expert-driven, classification or decision-making
tasks. We also emphasize that the implementation allows to compose partial
fuzzy relations [22].

Generally, the incorporation of algebraic structures is different in 1fl. It con-
tains the main three residuated structures (Godel, Goguen, and Lukasiewicz)
that are used as parameters to some algorithms. Moreover, these main underly-
ing residuated structures may be combined with six partial algebraic structures
that determine the way handling of undefined or missing values.

The 1l package also contains fuzzy association rules mining algorithm that
generates linguistic rules to which the PbLD inference is tailored. The mining
algorithm works with a genuine approach that reflects membership degrees and
that was used for the generation of the fuzzy rule base ensemble technique for
time series forecasting [6]. This ensemble is also employed in 1fl.

Association rules have a rich history. Before they got their name in [54],
they were propoed as so-called GUHA method already in [55]. However, we
are not aware of fuzzy associations rule mining algorithm implemented in any
existing R-package that would be any reflecting membership degrees. We may
recall, e.g., arules package, however, it deals with crisp association rules only.

The survey provided above brings a comparison of the R-packages that are
topic-closest to 1fl however, its goal is not to compare them from the superiority
point of view. This is probably even impossible. The goal is to compare them
from the area and technique coverage point of view — to show the similarities and

differences. The fact is that the packages have rather complementary positions
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not duplicating each other. Out of the existing packages, we would like to once
more emphasize the frbs package that provides the richest set of methods for
distinct purposes (control, regression, classification) — many of them not even
attempted in 1. The 1l package is closer to more mathematically oriented
foundations in providing algebraic backgrounds and tools from the fuzzy rela-
tional calculus that may be useful for distinct purposes. In the area of inference
systems, it complements existing packages with fundamental implicative rule
bases and specific PbLD method, that is even followed by associations mining

and FRBE for time series forecasts.

7.2. Case study I — expert classification of amphibians

This section briefly describes the application of fuzzy relational composi-
tions to the expert classification of animal species, namely of amphibians. It
nicely demonstrates the power of chaining distinct composition blocks to their
extensions. We avoid the details and the experimental comparison with classical
data-driven classifiers as this can be found int he very recent source [30] and we
concentrate on the use of the R-package.

The problem setting is as follows. We are given 79427 training data samples
(animal records) which constitutes the set X. Each data sample is a vector
containing 29 values — the features constituting the set Y. These are, e.g.,
Boolean descriptors or distinct colors from the top or from the bottom of an
animal. The task is to classify each animal into one of the 21 species — which
constitute the set of classes Z.

Expert knowledge is then encoded in the matrix S declaring the “supportive”
features for given species; in the matrix F declaring the excluding features
for particular classes; and in matrix U declaring the unavoidable features for
given classes. All these matrices (mathematically fuzzy relations on Y x Z) are
naturally of the dimension 29 x 23 and were determined by a biologist. Note,
that for the testing reasons, other 79418 data samples were used in [30].

The results of chosen compositions for a fixed row from matrix R, i.e., for

a particular animal record, are vectors of 23 values — each value expressing a
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membership degree to a particular species. However, it is important to note
that it is not a membership degree of the given animal to the given species as
each animal belongs to a single species only.

For example, if we use the command:

a <- algebra("lukasiewicz")

compose(R, S, alg = a, type = "basic")

we get (R o S)(z,z) which is the truth degree of the statement “there exists
at least a single feature that is carried by animal record x and it belongs to the
features related supporting the suspicion for species z”. As we can see from
[30], this composition would lead to 100% accuracy (sensitivity) in a sense of
true positive cases however, very lows accuracy (specificity) in a sense of false
positive cases. Indeed, on average over the whole testing set, there were 18
vector values equal to 1 and so, 18 species were found suspicious on average.
Right for the reasons of increasing the true negative accuracy and thus,
narrowing the set of suspicious species, the other extensions may be used. For

example, adding the commands:

RE <- compose(R, E, alg = a, type = "basic")
a$pt (RS, a$n(RE))

leads to (R o S*E)(x, z) which is the truth degree of the statement “there exists
at least a single feature that is carried by animal record x and it belongs to the
features related supporting the suspicion for species z and at the same time, x
carries no feature that would be excluding for the species z”. Such an extension
directly reduces the number of suspicious species to 3.41 on average while it
keeps the 100% accuracy in the true positive cases point of view, see [30].

Furthermore, we can involve also the unavoidable features:

RU <- compose(R, U, alg = a, type = "super")
a$pt (RS, a$n(RE), RU)
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which gives back values (RoS'E)>Y (x, z) with the meaning “there exists at least
a single feature that is carried by animal record x and it belongs to the features
related supporting the suspicion for species z and at the same time, x carries
no feature that would be excluding for the species z, and at the same time all
unavoidable features for species z are present in the record x”. This operations
reduces the number of suspicious species to 1.36 on average while still keeping
the 100% accuracy in the true positive cases point of view, see [30].

Of course, using distinct quantifiers may lead to even narrower set of sus-
picion species but, it can easily lower the accuracy. For this particular case
but also for the case of Dragonfly classification, we again refer to [30] where
the readers can find also comparison with data-driven techniques applied to the
same data and other accuracy measures. The details can be found again in
the referred source but it is probably worth mentioning that some techniques,
nnet and rpart in particular, were more efficient in narrowing the set of suspi-
cion species to values 1.13 and 1.12., respectively. However, the price for that
was that the true positive cases accuracy dropped to 90.17% and to 90.19%,

respectively.

7.3. Case study II — fuzzy associations rules from the Iris data

The second case study will work with the famous Iris dataset [87, [88], which

is also available in R as a built-in data frame:

summary (iris)

##  Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. 4.400 Max. :6.900 Max. :2.500
#it Species

## setosa :50

## versicolor:50
## virginica :50
#it
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We are going to search for association rules in that database: first by using
the 1fl package and then with the arules package. After that, we will compare
the results.

First of all, we transform the iris data frame into fuzzy sets:

ldata <- lcut(iris,
1185 context=function(x) minmax(x, type="ctx5"),
hedges="-")

This creates a data frame with each column representing linguistic expres-
sions on original Iris data attributes. We have opted for pentachotomical con-
texts, which cause each numeric variable to be transformed using 5 atomic lin-

ueo  guistic expressions “small” (sm), “lower medium” (1m), “medium” (me), “upper
medium” (um), and “big” (bi). The hedges="-" argument disables all linguis-
tic hedges. Note that such a setting is comparable to categorization of numeric
variables needed in order to run arules, see below.

The resulting fsets object contains 23 fuzzy sets: five for each of four orig-

ues  inal numeric variables (sepal/petal length/width) and three dichotomic fuzzy
sets for species categories.

All association rules with species in consequent and the rest of variables in
antecedent can be found by executing the following command:
lrules <- searchrules(ldata,

lhs=grep("“Species=", colnames(ldata), invert=TRUE),
rhs=grep(""Species=", colnames(ldata)),

1200 minSupport=0.05,
minConfidence=0.8,
n=0, # search for all rules

maxLength=5)

The minimum support threshold of a rule was set to 0.05 while the minimum
confidence is required to be at least 0.8 . Such a setting resulted in 50 fuzzy

association rules in total. Let us now print 8 rules with the greatest confidence:
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rule

support

confidence

bi.Petal.Length = Species=virginica

bi.Petal. Width = Species=virginica

sm.Petal. Width = Species=setosa

sm.Petal.Length = Species=setosa

Im.Sepal.Length & um.Sepal.Width =- Species=setosa
sm.Sepal.Length & me.Sepal. Width = Species=setosa
Im.Sepal.Width & um.Petal. Width = Species=virginica

bi.Sepal.Length = Species=virginica

Table 10: First 8 rules with the greatest confidence as found by the 1fl package.

1df <- as.data.frame(lrules)

0.088
0.139
0.317
0.323
0.059
0.119
0.067
0.054

1df <- 1df[order(1df$confidence, decreasing=TRUE), ]

head(1df[, c(’support’, ’confidence’)], n=8)

The resulting rules are listed in Table

1.000
1.000
1.000
1.000
1.000
0.998
0.997
0.996

In arules, the process is as follows. First of all, the numeric data have to

be transformed into categories. The standard R’s cut() function can be used

for that. The following command transforms the numeric variables into five

equidistant interval categories:

library(arules)

adata <- data.frame(
Sepal.Length=cut(iris$Sepal.Length, 5),
Sepal.Width=cut(iris$Sepal.Width, 5),
Petal.Length=cut (iris$Petal.Length, 5),
Petal.Width=cut (iris$Petal.Width, 5),
Species=iris$Species

Now the data may be transformed into transactions and the rules may be

searched with antecedents, consequents, minimum support and confidence set

as above:

tdata <- transactions(adata)
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rule support  confidence
Sepal.Length=(7.18,7.9] = Species=virginica 0.073 1.000
Petal.Length=(5.72,6.91] = Species=virginica 0.107 1.000
Petal. Width=(2.02,2.5] = Species=virginica 0.153 1.000
Petal. Width=(0.0976,0.58] = Species=setosa 0.327 1.000
Petal.Length=(0.994,2.18] = Species=setosa 0.333 1.000
Sepal.Length=(7.18,7.9] & Petal.Length=(5.72,6.91] = Species=virginica 0.073 1.000
Petal.Length=(5.72,6.91] & Petal. Width=(2.02,2.5] = Species=virginica 0.060 1.000
Sepal.Width=(2.96,3.44] & Petal.Length=(5.72,6.91] = Species=virginica 0.053 1.000

Table 11: First 8 rules with the greatest confidence as found by the arules package.

arules <- apriori(tdata,

parameter=list (support=0.05, confidence=0.8, target=’rules’),

appearance=list (lhs=grep(’Species=’, itemLabels(tdata),

invert=TRUE, value=TRUE),

rhs=grep(’Species=’, itemLabels(tdata),

value=TRUE)))

The arules package has found 64 rules, from which the 8 rules with the

greatest confidence are as follows:

adf <- as(arules, ’data.frame’)
adf <- adf [order(adf$confidence, decreasing=TRUE), ]
head(adf[, c(’rules’, ’support’, ’confidence’)], n=8)

See Table [11] for a list of the resulting rules.

As can be seen, both packages provide comparable results. For arules, the
numeric data have to be categorized into crisp intervals. The 1fl package allows
to work with linguistic expressions modelled with fuzzy sets, which enables
non-sharp borders between categories. The interpretability as well as the lower
number of rules play in favor of 1fl however, we do not dare to generalize too
much from the latter observation as each case study could lead to a different

result and the impact of the a proper categorization is essential.
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8. Conclusion

This article presents the R-package 1fl that presents tools and functions for
fuzzy relational calculus and fuzzy natural logic. It provides the implementa-
tion of the most usual algebras of operations on fuzzy sets (Godel, Goguen, and
Lukasiewicz), rich variety of compositions of binary fuzzy relations, namely, the
basic (circlet) one, all three Bandler-Kohout products, extensions with more bi-
nary fuzzy relations and generalized quantifiers. Of course, their combinations
are allowed as well. The chosen algebra always holds the position of an argu-
ment so, all the compositions may be calculated in any of the chosen algebra.
Furthermore, in order to cover various situations when the membership degree
is only partially defined (inconsistency, undefinedness, missing values), distinct
algebras for partial fuzzy logics, namely Bochvar, Sobocinski, Kleene, Nelson,
Deagonfly, and Lower estimation algebras are implemented as well.

The second very important part of the 1fl is formed by the concepts of the
fuzzy natural logic allowing to deal with linguistic fuzzy models. It allows to
define fuzzy sets, especially those modeling the evaluative linguistic expressions.
The particular shapes of fuzzy sets as well as their universes (contexts) may be
determined from data automatically. Theses concepts are later on used in lin-
guistic fuzzy rules that jointly with specific inference method PbLD that is also
implemented in 1fl for the approximate reasoning. An appropriate defuzzifica-
tion DEE is implemented as well.

The fuzzy rules can be defined expertly as well as learned from data — us-
ing the associations mining. The 1fl package contains original method of min-
ing associations rules with the evaluative expressions in antecedents as well as
consequents. Automatic redundancy analysis is supplied with a size reduction
algorithms that additionally reduces the size in cases when the deletion of re-
dundant rules is not sufficient. The provided algorithm is optimized to run fast
in multiple threads.

The general tools are supplied by a particular yet very powerful tool for

time series forecasting based on an ensemble of four forecasting methods. These
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are combined into a weighted average ensemble with weights determined by

linguistic fuzzy rules based on distinct characteristic features of a given time

series.
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