
Package ‘lifecycle’
January 8, 2026

Title Manage the Life Cycle of your Package Functions

Version 1.0.5

Description Manage the life cycle of your exported functions with shared
conventions, documentation badges, and user-friendly deprecation
warnings.

License MIT + file LICENSE

URL https://lifecycle.r-lib.org/, https://github.com/r-lib/lifecycle

BugReports https://github.com/r-lib/lifecycle/issues

Depends R (>= 3.6)

Imports cli (>= 3.4.0), rlang (>= 1.1.0)

Suggests covr, knitr, lintr (>= 3.1.0), rmarkdown, testthat (>=
3.0.1), tibble, tidyverse, tools, vctrs, withr, xml2

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate, usethis

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Lionel Henry [aut, cre],
Hadley Wickham [aut] (ORCID: <https://orcid.org/0000-0003-4757-117X>),
Posit Software, PBC [cph, fnd]

Maintainer Lionel Henry <lionel@posit.co>

Repository CRAN

Date/Publication 2026-01-08 08:00:02 UTC

Contents
badge . 2
deprecated . 3

1

https://lifecycle.r-lib.org/
https://github.com/r-lib/lifecycle
https://github.com/r-lib/lifecycle/issues
https://orcid.org/0000-0003-4757-117X

2 badge

deprecate_soft . 4
expect_deprecated . 6
last_lifecycle_warnings . 7
pkg_lifecycle_statuses . 8
signal_stage . 9
verbosity . 10

Index 12

badge Embed a lifecycle badge in documentation

Description

To include lifecycle badges in your documentation:

1. Call usethis::use_lifecycle() to copy the badge images into the man/ folder of your
package.

2. Call lifecycle::badge() inside R backticks to insert a lifecycle badge:

#' `r lifecycle::badge("experimental")`
#' `r lifecycle::badge("deprecated")`
#' `r lifecycle::badge("superseded")`

If the deprecated feature is a function, a good place for this badge is at the top of the topic
description. If it is an argument, you can put the badge in the argument description.

The badge is displayed as an image in the HTML version of the documentation and as text other-
wise.

lifecycle::badge() is run by roxygen at build time so you don’t need to add lifecycle to Imports:
just to use the badges. However, it’s still good practice to add to Suggests: so that it will be avail-
able to package developers.

Usage

badge(stage)

Arguments

stage A lifecycle stage as a string. Must be one of "experimental", "stable",
"superseded", or "deprecated".

Value

An Rd expression describing the lifecycle stage.

deprecated 3

Badges

• [Experimental] lifecycle::badge("experimental")
• [Stable] lifecycle::badge("stable")
• [Superseded] lifecycle::badge("superseded")
• [Deprecated] lifecycle::badge("deprecated")

The meaning of these stages is described in vignette("stages").

deprecated Mark an argument as deprecated

Description

Signal deprecated argument by using self-documenting sentinel deprecated() as default argument.
Test whether the caller has supplied the argument with is_present().

Usage

deprecated()

is_present(arg)

Arguments

arg A deprecated() function argument.

Magical defaults

We recommend importing lifecycle::deprecated() in your namespace and use it without the
namespace qualifier.

In general, we advise against such magical defaults, i.e. defaults that cannot be evaluated by the
user. In the case of deprecated(), the trade-off is worth it because the meaning of this default is
obvious and there is no reason for the user to call deprecated() themselves.

Examples

foobar_adder <- function(foo, bar, baz = deprecated()) {
Check if user has supplied `baz` instead of `bar`
if (lifecycle::is_present(baz)) {

Signal the deprecation to the user
deprecate_warn("1.0.0", "foo::bar_adder(baz =)", "foo::bar_adder(bar =)")

Deal with the deprecated argument for compatibility
bar <- baz

}

4 deprecate_soft

foo + bar
}

foobar_adder(1, 2)
foobar_adder(1, baz = 2)

deprecate_soft Deprecate functions and arguments

Description

These functions provide three levels of verbosity for deprecated functions. Learn how to use them
in vignette("communicate").

• deprecate_soft() warns only if the deprecated function is called directly, i.e. a user is
calling a function they wrote in the global environment or a developer is calling it in their
package. It does not warn when called indirectly, i.e. the deprecation comes from code that
you don’t control.

• deprecate_warn() warns unconditionally.

• deprecate_stop() fails unconditionally.

Warnings are only issued once per session to avoid overwhelming the user. Control with options(lifecycle_verbosity).

Usage

deprecate_soft(
when,
what,
with = NULL,
details = NULL,
id = NULL,
env = caller_env(),
user_env = caller_env(2)

)

deprecate_warn(
when,
what,
with = NULL,
details = NULL,
id = NULL,
always = FALSE,
env = caller_env(),
user_env = caller_env(2)

)

deprecate_stop(when, what, with = NULL, details = NULL, env = caller_env())

deprecate_soft 5

Arguments

when A string giving the version when the behaviour was deprecated.

what A string describing what is deprecated:

• Deprecate a whole function with "foo()".
• Deprecate an argument with "foo(arg)".
• Partially deprecate an argument with "foo(arg = 'must be a scalar integer')".
• Deprecate anything else with a custom message by wrapping it in I().

You can optionally supply the namespace: "ns::foo()", but this is usually not
needed as it will be inferred from the caller environment.

with An optional string giving a recommended replacement for the deprecated be-
haviour. This takes the same form as what.

details In most cases the deprecation message can be automatically generated from
with. When it can’t, use details to provide a hand-written message.
details can either be a single string or a character vector, which will be con-
verted to a bulleted list. By default, info bullets are used. Provide a named
vectors to override.

id The id of the deprecation. A warning is issued only once for each id. Defaults
to the generated message, but you should provide a unique id when the message
in details is built programmatically and depends on inputs, or when you’d like
to deprecate multiple functions but warn only once for all of them. Repeated
calls to deprecate_soft() and deprecate_warn() are also much faster if you
supply an id because it avoids spending time generating the message only to
immediately exit if the once per session warning has already been thrown before.

env, user_env Pair of environments that define where deprecate_*() was called (used to de-
termine the package name) and where the function called the deprecating func-
tion was called (used to determine if deprecate_soft() should message).
These are only needed if you’re calling deprecate_*() from an internal helper,
in which case you should forward env = caller_env() and user_env = caller_env(2).

always If FALSE, the default, will warn once per session. If TRUE, will always warn in
direct usages. Indirect usages keep warning once per session to avoid disrupting
users who can’t fix the issue. Only use always = TRUE after at least one release
with the default.

Value

NULL, invisibly.

Conditions

• Deprecation warnings have class lifecycle_warning_deprecated.

• Deprecation errors have class lifecycle_error_deprecated.

See Also

lifecycle()

6 expect_deprecated

Examples

A deprecated function `foo`:
deprecate_warn("1.0.0", "foo()")

A deprecated argument `arg`:
deprecate_warn("1.0.0", "foo(arg)")

A partially deprecated argument `arg`:
deprecate_warn("1.0.0", "foo(arg = 'must be a scalar integer')")

A deprecated function with a function replacement:
deprecate_warn("1.0.0", "foo()", "bar()")

A deprecated function with a function replacement from a
different package:
deprecate_warn("1.0.0", "foo()", "otherpackage::bar()")

A deprecated function with custom message:
deprecate_warn(

when = "1.0.0",
what = "foo()",
details = "Please use `otherpackage::bar(foo = TRUE)` instead"

)

A deprecated function with custom bulleted list:
deprecate_warn(

when = "1.0.0",
what = "foo()",
details = c(
x = "This is dangerous",
i = "Did you mean `safe_foo()` instead?"

)
)

expect_deprecated Does expression produce lifecycle warnings or errors?

Description

These functions are equivalent to testthat::expect_warning() and testthat::expect_error()
but check specifically for lifecycle warnings or errors.

To test whether a deprecated feature still works without causing a deprecation warning, set the
lifecycle_verbosity option to "quiet".

test_that("feature still works", {
withr::local_options(lifecycle_verbosity = "quiet")
expect_true(my_deprecated_function())

})

last_lifecycle_warnings 7

Usage

expect_deprecated(expr, regexp = NULL, ...)

expect_defunct(expr)

Arguments

expr Expression that should produce a lifecycle warning or error.

regexp Optional regular expression matched against the expected warning message.

... Arguments passed on to expect_match

fixed If TRUE, treats regexp as a string to be matched exactly (not a regular
expressions). Overrides perl.

perl logical. Should Perl-compatible regexps be used?

Details

expect_deprecated() sets the lifecycle_verbosity option to "warning" to enforce deprecation
warnings which are otherwise only shown once per session.

last_lifecycle_warnings

Display last deprecation warnings

Description

last_lifecycle_warnings() returns a list of all warnings that occurred during the last top-level
R command, along with a backtrace.

Use print(last_lifecycle_warnings(), simplify = level) to control the verbosity of the back-
trace. The simplify argument supports one of "branch" (the default), "collapse", and "none"
(in increasing order of verbosity).

Usage

last_lifecycle_warnings()

Examples

These examples are not run because `last_lifecycle_warnings()` does not
work well within knitr and pkgdown
Not run:

f <- function() invisible(g())
g <- function() list(h(), i())
h <- function() deprecate_warn("1.0.0", "this()")
i <- function() deprecate_warn("1.0.0", "that()")
f()

8 pkg_lifecycle_statuses

Print all the warnings that occurred during the last command:
last_lifecycle_warnings()

By default, the backtraces are printed in their simplified form.
Use `simplify` to control the verbosity:
print(last_lifecycle_warnings(), simplify = "none")

End(Not run)

pkg_lifecycle_statuses

Lint usages of functions that have a non-stable life cycle.

Description

• lifecycle_linter() creates a linter for lifecycle annotations which can be included in a
.lintr configuration if lintr is used directly.

• lint_lifecycle() dynamically queries the package documentation for packages in packages
for lifecycle annotations and then searches the directory in path for usages of those functions.

• lint_tidyverse_lifecycle() is a convenience function to call lint_lifecycle() for all
the packages in the tidyverse.

• pkg_lifecycle_statuses() returns a data frame of functions with lifecycle annotations for
an installed package.

Usage

pkg_lifecycle_statuses(
package,
which = c("superseded", "deprecated", "questioning", "defunct", "experimental",

"soft-deprecated", "retired")
)

lint_lifecycle(
packages,
path = ".",
pattern = "(?i)[.](r|rmd|qmd|rnw|rhtml|rrst|rtex|rtxt)$",
which = c("superseded", "deprecated", "questioning", "defunct", "experimental",

"soft-deprecated", "retired"),
symbol_is_undesirable = FALSE

)

lint_tidyverse_lifecycle(
path = ".",
pattern = "(?i)[.](r|rmd|qmd|rnw|rhtml|rrst|rtex|rtxt)$",
which = c("superseded", "deprecated", "questioning", "defunct", "experimental",

signal_stage 9

"soft-deprecated", "retired"),
symbol_is_undesirable = FALSE

)

lifecycle_linter(
packages = tidyverse::tidyverse_packages(),
which = c("superseded", "deprecated", "questioning", "defunct", "experimental",

"soft-deprecated", "retired"),
symbol_is_undesirable = FALSE

)

Arguments

package The name of an installed package.

which Vector of lifecycle statuses to lint.

packages One or more installed packages to query for lifecycle statuses.

path The directory path to the files you want to search.

pattern Any files matching this pattern will be searched. The default searches any files
ending in .R or .Rmd.

symbol_is_undesirable

Also lint symbol usages, e.g. lapply(x, is_na)?

Examples

lintr::lint(
text = "is_na(x)",
linters = lifecycle_linter(packages = "rlang")

)
lintr::lint(

text = "lapply(x, is_na)",
linters = lifecycle_linter(packages = "rlang",
symbol_is_undesirable = TRUE)

)

signal_stage Signal other experimental or superseded features

Description

[Experimental]

signal_stage() allows you to signal life cycle stages other than deprecation (for which you should
use deprecate_warn() and friends). There is no behaviour associated with this signal, it is cur-
rently purely a way to express intent at the call site. In the future, we hope to replace this with a
standardized call to base::declare().

10 verbosity

Usage

signal_stage(stage, what, with = NULL, env = deprecated())

Arguments

stage Life cycle stage, either "experimental" or "superseded".

what String describing what feature the stage applies too, using the same syntax as
deprecate_warn().

with An optional string giving a recommended replacement for a superseded func-
tion.

env [Deprecated]

Examples

foofy <- function(x, y, z) {
signal_stage("experimental", "foofy()")
x + y / z

}
foofy(1, 2, 3)

verbosity Control the verbosity of deprecation signals

Description

There are 3 levels of verbosity for deprecated functions: silence, warning, and error. Since the
lifecycle package avoids disruptive warnings, the default level of verbosity depends on the lifecycle
stage of the deprecated function, on the context of the caller (global environment or testthat unit tests
cause more warnings), and whether the warning was already issued (see the help for deprecation
functions).

You can control the level of verbosity with the global option lifecycle_verbosity. It can be set
to:

• "quiet" to suppress all deprecation messages.

• "default" or NULL to warn once per session.

• "warning" to warn every time.

• "error" to error instead of warning.

Note that functions calling deprecate_stop() invariably throw errors.

verbosity 11

Examples

if (rlang::is_installed("testthat")) {
library(testthat)

mytool <- function() {
deprecate_soft("1.0.0", "mytool()")
10 * 10

}

Forcing the verbosity level is useful for unit testing. You can
force errors to test that the function is indeed deprecated:
test_that("mytool is deprecated", {

rlang::local_options(lifecycle_verbosity = "error")
expect_error(mytool(), class = "defunctError")

})

Or you can enforce silence to safely test that the function
still works:
test_that("mytool still works", {

rlang::local_options(lifecycle_verbosity = "quiet")
expect_equal(mytool(), 100)

})
}

Index

badge, 2
bulleted list, 5

deprecate_soft, 4
deprecate_stop (deprecate_soft), 4
deprecate_stop(), 10
deprecate_warn (deprecate_soft), 4
deprecate_warn(), 9, 10
deprecated, 3
deprecation functions, 10

expect_defunct (expect_deprecated), 6
expect_deprecated, 6
expect_match, 7

is_present (deprecated), 3

last_lifecycle_warnings, 7
lifecycle(), 5
lifecycle_linter

(pkg_lifecycle_statuses), 8
lifecycle_verbosity, 7
lint_lifecycle

(pkg_lifecycle_statuses), 8
lint_tidyverse_lifecycle

(pkg_lifecycle_statuses), 8

options(lifecycle_verbosity), 4

pkg_lifecycle_statuses, 8

signal_stage, 9

testthat::expect_error(), 6
testthat::expect_warning(), 6

verbosity, 10

12

	badge
	deprecated
	deprecate_soft
	expect_deprecated
	last_lifecycle_warnings
	pkg_lifecycle_statuses
	signal_stage
	verbosity
	Index

