
Package ‘link2GI’
December 23, 2025

Type Package

Title Linking Geographic Information Systems, Remote Sensing and Other
Command Line Tools

Version 0.7-2

Date 2025-12-21

Encoding UTF-8

Maintainer Chris Reudenbach <reudenbach@uni-marburg.de>

Description Functions and tools for using open GIS and remote sensing command-
line interfaces in a reproducible environment.

URL https://github.com/r-spatial/link2GI/,

https://r-spatial.github.io/link2GI/

BugReports https://github.com/r-spatial/link2GI/issues/

License GPL (>= 3) | file LICENSE

Depends R (>= 3.5.0)

Imports devtools, R.utils, roxygen2, sf (>= 0.9), brew, yaml, terra,
methods, utils, rstudioapi, renv

SystemRequirements GNU make

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, sp, rgrass, stars, curl, markdown, testthat
(>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Chris Reudenbach [cre, aut],
Tim Appelhans [ctb]

Repository CRAN

Date/Publication 2025-12-23 07:30:02 UTC

1

https://github.com/r-spatial/link2GI/
https://r-spatial.github.io/link2GI/
https://github.com/r-spatial/link2GI/issues/

2 createFolders

Contents
createFolders . 2
findGDAL . 3
findGRASS . 4
findOTB . 4
findSAGA . 5
gvec2sf . 5
initProj . 7
linkGDAL . 9
linkGRASS . 10
linkOTB . 12
linkSAGA . 13
loadEnvi . 15
otb_api . 16
parseOTBAlgorithms . 18
parseOTBFunction . 19
runOTB . 19
runOTB_isolated . 20
saveEnvi . 21
searchOTBW . 22
setupProj . 23
setup_default . 24
sf2gvec . 25

Index 27

createFolders Compile folder list and create folders

Description

Compile folder list with absolut paths and create folders if necessary.

Usage

createFolders(root_folder, folders, create_folders = TRUE)

Arguments

root_folder root directory of the project.

folders list of subfolders within the project directory.

create_folders create folders if not existing already.

Value

List with folder paths and names.

findGDAL 3

Examples

Not run:
createFolders(root_folder = tempdir(), folders = c('data/', 'data/tmp/'))

End(Not run)
Create folder list and set variable names pointing to the path values

findGDAL Search recursivly existing ’GDAL binaries’ installation(s) at a given
drive/mountpoint

Description

Provides an list of valid ’GDAL’ installation(s) on your ’Windows’ system. There is a major differ-
ence between osgeo4W and stand_alone installations. The functions trys to find all valid installa-
tions by analysing the calling batch scripts.

Usage

findGDAL(searchLocation = "default", quiet = TRUE)

Arguments

searchLocation drive letter to be searched, for Windows systems default is C:/, for Linux sys-
tems default is /usr/bin.

quiet boolean switch for supressing console messages default is TRUE

Value

A dataframe with the ’GDAL’ root folder(s), and command line executable(s)

Author(s)

Chris Reudenbach

Examples

run = FALSE
if (run) {
find recursively all existing 'GDAL' installations folders starting
at the default search location
findGDAL()
}

4 findOTB

findGRASS Returns attributes of valid ’GRASS GIS’ installation(s) on the system.

Description

Retrieve a list of valid ’GRASS GIS’ installation(s) on your system. On Windows, uses search-
GRASSW() (cmd-free). On Unix, uses searchGRASSX().

Usage

findGRASS(searchLocation = "default", ver_select = FALSE, quiet = TRUE)

Arguments

searchLocation On Windows MUST start with drive letter + colon, e.g. "C:", "C:/", "C:/Users/...".
Defaults to "C:/". On Unix defaults to "/usr/bin".

ver_select If TRUE and more than one installation is found, interactively select one.

quiet Suppress messages.

Value

FALSE or data.frame(instDir, version, installation_type)

findOTB Locate Orfeo ToolBox (OTB) installations

Description

Dispatcher that calls the OS-specific search function and returns a normalized installations table.

Usage

findOTB(searchLocation = NULL, quiet = TRUE)

Arguments

searchLocation Character. On Linux: mountpoints/roots to search. If NULL, defaults to "de-
fault" which expands to c("~","/opt","/usr/local","/usr").

quiet Logical.

Value

data.frame of installations or FALSE.

findSAGA 5

findSAGA Search recursively existing ’SAGA GIS’ installation(s) at a given
drive/mount point

Description

Provides an list of valid ’SAGA GIS’ installation(s) on your ’Windows’ system. There is a major
difference between osgeo4W and stand_alone installations. The functions tries to find all valid
installations by analyzing the calling batch scripts.

Usage

findSAGA(searchLocation = "default", quiet = TRUE)

Arguments

searchLocation drive letter to be searched, for Windows systems default is C:/, for Linux sys-
tems default is /usr/bin.

quiet boolean switch for suppressing console messages default is TRUE

Value

A dataframe with the ’SAGA GIS’ root folder(s), version name(s) and installation type code(s)

Author(s)

Chris Reudenbach

Examples

Not run:
find recursively all existing 'SAGA GIS' installation folders starting
at the default search location
findSAGA()

End(Not run)

gvec2sf Converts from an existing ‘GRASS‘ environment an arbitrary vector
dataset into a sf object

Description

Converts from an existing ‘GRASS‘ environment an arbitrary vector dataset into a sf object

6 gvec2sf

Usage

gvec2sf(x, obj_name, gisdbase, location, gisdbase_exist = TRUE)

Arguments

x sf object corresponding to the settings of the corresponding GRASS container

obj_name name of GRASS layer

gisdbase GRASS gisDbase folder

location GRASS location name containing obj_name

gisdbase_exist logical switch if the GRASS gisdbase folder exist default is TRUE

Note

have a look at the sf capabilities to read direct from sqlite

Author(s)

Chris Reudenbach

Examples

run = FALSE
if (run) {
example
require(sf)
require(sp)
require(link2GI)
data(meuse)
meuse_sf = st_as_sf(meuse,

coords = c('x', 'y'),
crs = 28992,
agr = 'constant')

write data to GRASS and create gisdbase
sf2gvec(x = meuse_sf,

obj_name = 'meuse_R-G',
gisdbase = '~/temp3/',
location = 'project1')

read from existing GRASS
gvec2sf(x = meuse_sf,

obj_name = 'meuse_r_g',
gisdbase = '~/temp3',
location = 'project1')

}

initProj 7

initProj Simple creation and reproduction of an efficient project environment

Description

Set up the project environment with a defined folder structure, an RStudio project, initial scripts and
configuration files and optionally with Git and Renv support.

Usage

initProj(
root_folder = ".",
folders = NULL,
init_git = NULL,
init_renv = NULL,
code_subfolder = c("src", "src/functions", "src/configs"),
global = FALSE,
openproject = NULL,
newsession = TRUE,
standard_setup = "baseSpatial",
loc_name = NULL,
ymlFN = NULL,
appendlibs = NULL,
OpenFiles = NULL

)

Arguments

root_folder root directory of the project.

folders list of sub folders within the project directory that will be created.

init_git logical: init git repository in the project directory.

init_renv logical: init renv in the project directory.

code_subfolder sub folders for scripts and functions within the project directory that will be
created. The folders src, src/functions and src/config are mandatory.

global logical: export path strings as global variables?

openproject default NULL if TRUE the project is opened in a new session

newsession open project in a new session? default is FALSE

standard_setup select one of the predefined settings c(’base’, ’baseSpatial’, ’advancedSpatial’).
In this case, only the name of the base folder is required, but individual addi-
tional folders can be specified under ’folders’ name of the git repository must be
supplied to the function.

loc_name NULL by default, defines the research area of the analysis in the data folder as
a subfolder and serves as a code tag

ymlFN filename for a yaml file containing a non standard_setup

8 initProj

appendlibs vector with the names of libraries that are required for the initial project. settings
required for the project, such as additional libraries, optional settings, colour
schemes, etc. Important: It should not be used to control the runtime parameters
of the scripts. This file is not read in automatically, even if it is located in the
’fcts_folder’ folder.

OpenFiles default NULL

Details

The function uses [setupProj] for setting up the folders. Once the project is creaeted, manage the
overall configuration of the project by the ‘src/functions/000_settings.R script‘. It is sourced at the
begining of the template scripts that are created by default. Define additional constans, required
libraries etc. in the 000_settings.R at any time. If additonal folders are required later, just add them
manually. They will be parsed as part of the 000_settings.R and added to a variable called dirs that
allows easy acces to any of the folders. Use this variable to load/save data to avoid any hard coded
links in the scripts except the top-level root folder which is defined once in the main control script
located at src/main.R.

Value

dirs, i.e. a list containing the project paths.

Note

For yaml based setup you need to use one of the default configurations c(’base’, ’baseSpatial’,’advancedSpatial’)
or you provide a yaml file this MUST contain the standard_setup arguments, where mysetup is the
yaml root, all other items are mandatory keywords that can be filled in as needed.

mysetup:
dataFolder:
docsFolder:
tmpFolder:
init_git: true/false
init_renv: true/false
code_subfolder: ['src', 'src/functions' , 'src/config']
global: true/false
libs:
create_folders: true/false
files:

Alternatively you may set default_setup to NULL and provide the arguments via command line.

Examples

Not run:
root_folder <- tempdir() # Mandatory, variable must be in the R environment.
dirs <- initProj(root_folder = root_folder, standard_setup = 'baseSpatial')

End(Not run)

linkGDAL 9

linkGDAL Locate and set up ’GDAL’ API bindings

Description

Locate and set up ’GDAL - Geospatial Data Abstraction Librar’ API bindings

Usage

linkGDAL(
bin_GDAL = NULL,
searchLocation = NULL,
ver_select = FALSE,
quiet = TRUE,
returnPaths = TRUE

)

Arguments

bin_GDAL string contains path to where the gdal binaries are located

searchLocation string hard drive letter default is C:/

ver_select Boolean default is FALSE. If there is more than one ’GDAL’ installation and
ver_select = TRUE the user can select interactively the preferred ’GDAL’
version

quiet Boolean switch for suppressing messages default is TRUE

returnPaths Boolean if set to FALSE the paths of the selected version are written to the PATH
variable only, otherwise all paths and versions of the installed GRASS versions
ae returned.

Details

It looks for the gdalinfo(.exe) file. If the file is found in a bin folder it is assumed to be a valid
’GDAL’ binary installation.

if called without any parameter linkGDAL() it performs a full search over the hard drive C:. If it
finds one or more ’GDAL’ binaries it will take the first hit. You have to set ver_select = TRUE for
an interactive selection of the preferred version.

Value

add gdal paths to the environment and creates global variables path_GDAL

Note

You may also set the path manually. Using a ’OSGeo4W64’ https://trac.osgeo.org/osgeo4w/
installation it is typically C:/OSGeo4W64/bin/

https://gdal.org/
https://trac.osgeo.org/osgeo4w/

10 linkGRASS

Author(s)

Chris Reudenbach

Examples

Not run:
call if you do not have any idea if and where GDAL is installed
gdal<-linkGDAL()
if (gdal$exist) {
call it for a default OSGeo4W installation of the GDAL
print(gdal)
}

End(Not run)

linkGRASS Locate and set up GRASS GIS API bindings

Description

Initializes a GRASS GIS 7.x/8.x runtime environment and prepares a valid temporary or permanent
GRASS location and mapset for use from R.

Usage

linkGRASS(
x = NULL,
epsg = NULL,
default_GRASS = NULL,
search_path = NULL,
ver_select = FALSE,
gisdbase_exist = FALSE,
gisdbase = NULL,
use_home = FALSE,
location = NULL,
spatial_params = NULL,
resolution = NULL,
quiet = TRUE,
returnPaths = TRUE

)

Arguments

x A spatial object used to initialize the GRASS location. Supported classes are
‘terra::SpatRaster‘, ‘sf‘, ‘sp‘, ‘stars‘, or a file path to a raster dataset.

epsg Integer EPSG code used to define the GRASS projection. If ‘NULL‘, the EPSG
code is inferred from ‘x‘ when possible.

linkGRASS 11

default_GRASS Optional character vector defining a GRASS installation (e.g. ‘c("/usr/lib/grass83",
"8.3.2", "grass")‘).

search_path Character path used to search for GRASS installations.

ver_select Logical or numeric value controlling interactive or indexed GRASS version se-
lection.

gisdbase_exist Logical; if ‘TRUE‘, ‘gisdbase‘ and ‘location‘ must already exist and will only
be linked.

gisdbase Path to the GRASS database directory.

use_home Logical; if ‘TRUE‘, the user home directory is used for GISRC.

location Name of the GRASS location to create or link.

spatial_params Optional numeric vector defining extent manually (‘xmin, ymin, xmax, ymax[,
proj]‘).

resolution Numeric raster resolution used for ‘g.region‘.

quiet Logical; suppress console output if ‘TRUE‘.

returnPaths Logical; return detected GRASS installation paths.

Details

The function detects installed GRASS versions, initializes required environment variables, and de-
rives spatial reference information either from an existing spatial object or from manually provided
parameters.

GRASS requires a fully initialized runtime environment (PATH, GISBASE, PROJ, GDAL). On
some platforms, R must be started from a shell where GRASS is already available.

The function ensures that ‘PROJ_INFO‘ and ‘PROJ_UNITS‘ are written by explicitly calling ‘g.proj‘
before region initialization.

Value

A list describing the selected GRASS installation and status, or ‘NULL‘ if no valid installation was
found.

Author(s)

Chris Reudenbach

See Also

initGRASS, execGRASS

Examples

Not run:
library(link2GI)
library(sf)

Example 1: initialize a temporary GRASS location from an sf object

12 linkOTB

nc <- st_read(system.file("shape/nc.shp", package = "sf"))
grass <- linkGRASS(nc)

Example 2: select GRASS version interactively if multiple installations exist
linkGRASS(nc, ver_select = TRUE)

Example 3: create a permanent GRASS location
root <- tempdir()
linkGRASS(

x = nc,
gisdbase = root,
location = "project1"

)

Example 4: link to an existing GRASS location without recreating it
linkGRASS(

gisdbase = root,
location = "project1",
gisdbase_exist = TRUE

)

Example 5: manual setup using spatial parameters only
epsg <- 28992
linkGRASS(

spatial_params = c(178605, 329714, 181390, 333611),
epsg = epsg

)

End(Not run)

linkOTB Locate and describe Orfeo ToolBox (OTB) API bindings

Description

Public wrapper that dispatches to OS-specific implementations. No PATH mutation, no environment
setup here.

Dispatcher that selects the platform-specific OTB locator. This function is non-invasive: it does
NOT modify PATH or ENV.

Usage

linkOTB(
bin_OTB = NULL,
root_OTB = NULL,
type_OTB = NULL,
searchLocation = NULL,
ver_select = FALSE,
quiet = TRUE,

linkSAGA 13

returnPaths = TRUE
)

linkOTB(
bin_OTB = NULL,
root_OTB = NULL,
type_OTB = NULL,
searchLocation = NULL,
ver_select = FALSE,
quiet = TRUE,
returnPaths = TRUE

)

Arguments

bin_OTB Optional. Path to the OTB ‘bin/‘ directory.

root_OTB Optional. Path to the OTB installation root directory.

type_OTB Optional installation type filter (if available from discovery).

searchLocation Optional search location for autodetect (e.g. mountpoint).

ver_select Selection logic: FALSE = newest, TRUE = interactive, numeric = row index.

quiet Logical. If FALSE, print selection tables and messages.

returnPaths Logical. If TRUE, return the gili descriptor.

Value

A gili list describing the selected OTB installation.

linkSAGA Identifies SAGA GIS Installations and returns linking Informations

Description

Finds the existing SAGA GIS installation(s), generates and sets the necessary path and system
variables for a seamless use of the command line calls of the ’SAGA GIS’ CLI API, setup valid
system variables for calling a default rsaga.env and by this makes available the RSAGA wrapper
functions.
All existing installation(s) means that it looks for the saga_cmd or saga_cmd.exe executables. If
the file is found it is assumed to be a valid ’SAGA GIS’ installation. If it is called without any
argument the most recent (i.e. highest) SAGA GIS version will be linked.

https://saga-gis.sourceforge.io/

14 linkSAGA

Usage

linkSAGA(
default_SAGA = NULL,
searchLocation = "default",
ver_select = FALSE,
quiet = TRUE,
returnPaths = TRUE

)

Arguments

default_SAGA string contains path to RSAGA binaries

searchLocation drive letter to be searched, for Windows systems default is C:, for Linux systems
default is /usr/bin.

ver_select boolean default is FALSE. If there is more than one ’SAGA GIS’ installation
and ver_select = TRUE the user can select interactively the preferred ’SAGA
GIS’ version

quiet boolean switch for supressing console messages default is TRUE

returnPaths boolean if set to FALSE the paths of the selected version are written to the PATH
variable only, otherwise all paths and versions of the installed SAGA versions
ae returned.#’@details If called without any parameter linkSAGA() it performs
a full search over C:. If it finds one or more ’SAGA GIS’ binaries it will take
the first hit. You have to set ver_select = TRUE for an interactive selection
of the preferred version. Additionally the selected SAGA paths are added to
the environment and the global variables sagaPath, sagaModPath and sagaCmd
will be created.

Value

A list containing the selected RSAGA path variables $sagaPath,$sagaModPath,$sagaCmd and po-
tentially other installations $installed

Note

The ’SAGA GIS’ wrapper RSAGA package was updated several times however it covers currently
(May 2014) only ’SAGA GIS’ versions from 2.3.1 LTS - 8.4.1 The fast evolution of ’SAGA GIS’
makes it highly impracticable to keep the wrapper adaptions in line (currently 9.4). RSAGA will meet
all linking needs perfectly if you use ’SAGA GIS’ versions from 2.0.4 - 7.5.0.
However you must call rsaga.env using the rsaga.env(modules = saga$sagaModPath) assum-
ing that saga contains the returnPaths of linkSAGA In addition the very promising Rsagacmd wrap-
per package is providing a new list oriented wrapping tool.

Examples

Not run:

call if you do not have any idea if and where SAGA GIS is installed
it will return a list with the selected and available SAGA installations

https://CRAN.R-project.org/package=RSAGA
https://github.com/stevenpawley/Rsagacmd

loadEnvi 15

it prepares the system for running the selected SAGA version via RSAGA or CLI
linkSAGA()

overriding the default environment of rsaga.env call

saga<-linkSAGA()
if (saga$exist) {
require(RSAGA)
RSAGA::rsaga.env(path = saga$installed$binDir[1],modules = saga$installed$moduleDir[1])
}

End(Not run)

loadEnvi Load data from rds format and associated yaml metadata file.

Description

Load data from rds format and associated yaml metadata file.

Usage

loadEnvi(file_path)

Arguments

file_path name and path of the rds file.

Value

list of 2 containing data and metadata.

Examples

Not run:
a <- 1
meta <- list(a = 'a is a variable')
saveEnvi(a, file.path(tempdir(), 'test.rds'), meta)
b <- loadEnvi(file.path(tempdir(), 'test.rds'))

End(Not run)

16 otb_api

otb_api Orfeo ToolBox (OTB) helpers: introspection and command construc-
tion

Description

Public helpers to introspect OTB applications (by parsing ‘-help‘ output) and to build/modify com-
mand lists consumable by [runOTB()].

Calls the OTB application with ‘-help‘ and parses the ‘Parameters:‘ block into a parameter table.

Normalizes the parsed parameter table (from [otb_capabilities()]) into a stable schema used for
command building.

Convenience accessor based on [otb_args_spec()].

Like [otb_required()], but can ensure that a best-effort output key is included.

Convenience accessor based on [otb_args_spec()]. Returns a named list of optional parameters with
‘NA_character_‘ placeholders or default values.

Creates a command list suitable for [runOTB()], with mandatory parameters always present as
‘NA_character_‘ placeholders. Optional parameters can be omitted, filled with defaults, or included
as ‘NA_character_‘.

Prints a compact overview (help line count, parameter count) and the full normalized parameter
spec table.

Updates ‘cmd[[key]]‘ to a normalized output path. If the parameter is pixel-typed (‘[pixel]‘ in OTB
help), the value is set as ‘c(path, pixel_type)‘.

Usage

otb_capabilities(algo, gili = NULL, include_param_help = FALSE)

otb_args_spec(algo, gili = NULL)

otb_required(algo, gili = NULL)

otb_required_with_output(algo, gili = NULL, enforce_output = TRUE)

otb_optional(algo, gili = NULL, with_defaults = TRUE)

otb_build_cmd(
algo,
gili = NULL,
include_optional = c("none", "defaults", "all_na"),
require_output = TRUE

)

otb_show(algo, gili = NULL)

otb_api 17

otb_set_out(
cmd,
gili = NULL,
key = "out",
path,
pixel_type = NULL,
overwrite = TRUE,
create_dir = TRUE

)

Arguments

algo Character scalar. OTB application name.
gili Optional list from [linkOTB()]. If ‘NULL‘, [linkOTB()] is called.
include_param_help

Logical. If ‘TRUE‘, additionally queries ‘-help <param>‘ for each parameter
and returns these blocks as a named list.

enforce_output Logical. If ‘TRUE‘, attempts to add an output key from a small set of common
output parameter names (e.g. ‘"out"‘, ‘"io.out"‘).

with_defaults Logical. If ‘TRUE‘, populate optional parameters with their default where avail-
able; otherwise use ‘NA_character_‘.

include_optional

One of ‘"none"‘, ‘"defaults"‘, ‘"all_na"‘.
require_output Logical. If ‘TRUE‘, ensures that a best-effort output key placeholder exists if

the application exposes one of the common output keys.
cmd Command list as produced by [otb_build_cmd()].
key Character scalar. Output parameter key to set (default ‘"out"‘).
path Character scalar. Output file path.
pixel_type Optional character scalar pixel type (e.g. ‘"float"‘). Only used if the output

parameter is pixel-typed; if ‘NULL‘, uses the pixel default from spec or ‘"float"‘
as fallback.

overwrite Logical. If ‘FALSE‘, error if the file already exists.
create_dir Logical. If ‘TRUE‘, create the output directory if missing.

Details

The functions in this family are **non-invasive**: they do not mutate ‘PATH‘ or global environ-
ment variables. They rely on a valid OTB descriptor as returned by [linkOTB()]. On Linux/macOS
the implementation expects a working launcher (‘gili$launcher‘) and uses an explicit environment
map internally.

The common command representation is a list where: - ‘cmd[[1]]‘ is the application name (character
scalar), e.g. ‘"DimensionalityReduction"‘. - subsequent named entries represent CLI parameters
without a leading dash, e.g. ‘cmd[["in"]]‘, ‘cmd[["out"]]‘, ‘cmd[["method"]]‘. - values are
character scalars, ‘NA_character_‘ (placeholder), or for pixel-typed output parameters a character
vector ‘c(path, pixel_type)‘.

This function performs basic checks on directory existence and overwrite policy.

18 parseOTBAlgorithms

Value

A list with components: - ‘text‘: character vector of help lines. - ‘params‘: data.frame parsed from
the ‘Parameters:‘ block. - ‘param_help‘: ‘NULL‘ or named list of character vectors (per-parameter
help).

A data.frame with (at least) the columns: ‘key‘, ‘type‘, ‘mandatory‘, ‘has_pixel‘, ‘pixel_default‘,
‘has_default‘, ‘default‘, ‘class‘, ‘desc‘.

Character vector of mandatory parameter keys.

Character vector of required parameter keys (including output if enforced).

Named list of optional parameters.

A command list with ‘cmd[[1]] == algo‘ and named entries for parameters.

Invisibly returns a list with components ‘caps‘ and ‘spec‘.

The modified command list.

Introspection

- [otb_capabilities()] returns the raw help text and a parsed parameter table. - [otb_args_spec()]
normalizes the parsed table into a stable schema used by the helper functions below.

Command helpers

- [otb_required()], [otb_required_with_output()], [otb_optional()] - [otb_build_cmd()] creates a
template command list using the spec. - [otb_set_out()] sets/validates an output parameter path
(optionally pixel-typed). - [otb_show()] prints a compact overview for interactive use.

See Also

[linkOTB()], [runOTB()], [runOTB_isolated()]

parseOTBAlgorithms Linux/macOS: lists plugin libs otbapp_*.so, otbapp_*.dylib,
otbapp_*.dll Windows: lists wrappers otbcli_<Algo>.ps1,
otbcli_<Algo>.bat, otbcli_<Algo>.exe# Retrieve available OTB
applications

Description

Linux/macOS: lists ‘otbapp_*.{so,dylib,dll}‘ under OTB_APPLICATION_PATH derived from OTB
root.

Usage

parseOTBAlgorithms(gili = NULL)

Arguments

gili Optional list returned by [linkOTB()]. If ‘NULL‘, [linkOTB()] is called.

parseOTBFunction 19

Details

Windows: lists wrappers ‘otbcli_<Algo>.{ps1,bat,exe}‘ in ‘gili$pathOTB‘ (binDir). #’

Value

Character vector of application names.

parseOTBFunction Retrieve the argument list from an OTB application

Description

Legacy convenience wrapper that returns a list containing: - first element: algo name - named
entries: parameter defaults (if any) and "mandatory" markers - ‘$help‘: per-parameter help text (if
available)

Usage

parseOTBFunction(algo = NULL, gili = NULL)

Arguments

algo Character. OTB application name (see [parseOTBAlgorithms()]).

gili Optional list returned by [linkOTB()]. If ‘NULL‘, [linkOTB()] is called.

Details

Under the hood this uses the NEW introspection API: [otb_capabilities()] and [otb_args_spec()].

Value

List (legacy format).

runOTB Run an OTB application (new workflow C)

Description

Executes an Orfeo ToolBox application via the launcher/wrapper described by ‘gili‘ (typically re-
turned by [linkOTB()]). This wrapper is non-invasive: it does not permanently modify PATH or the
user environment.

20 runOTB_isolated

Usage

runOTB(
otbCmdList,
gili = NULL,
retRaster = TRUE,
retCommand = FALSE,
quiet = TRUE

)

Arguments

otbCmdList List. OTB command list. The first element must be the algorithm name; remain-
ing named elements are parameter keys/values.

gili List. OTB installation descriptor as returned by [linkOTB()]. If ‘NULL‘, [linkOTB()]
is called.

retRaster Logical. If ‘TRUE‘, return a ‘terra::SpatRaster‘ for the primary raster output
(when detectable). If ‘FALSE‘, return the output path(s) (character) or a status
code depending on implementation.

retCommand Logical. If ‘TRUE‘, do not execute; return the exact CLI command string that
would be run.

quiet Logical. If ‘TRUE‘, suppress console output from OTB (best-effort).

Details

The command is provided as a list in "link2GI style": - ‘otbCmdList[[1]]‘ is the application name
(e.g., ‘"DimensionalityReduction"‘) - named elements are OTB parameter keys (without leading
‘-‘)

Parameter values can be: - a scalar character/numeric (converted to character) - ‘NA‘ / ‘NA_character_‘
to omit the parameter - for pixel-typed outputs: a character vector of length 2 ‘c("<path>", "<pixel_type>")‘
(e.g. ‘c("out.tif","float")‘)

Value

Depending on ‘retCommand‘ / ‘retRaster‘, returns either a command string, a ‘terra::SpatRaster‘,
or a character vector/status describing the produced output.

runOTB_isolated Execute an OTB application in an isolated OTB environment (mainly
Windows)

Description

- Windows: dot-sources ‘otbenv.ps1‘ (preferred) or calls ‘otbenv.bat‘, then runs ‘otbcli‘ within the
same shell session. - Linux/macOS: delegates to [runOTB()] (launcher + explicit env already used).

saveEnvi 21

Usage

runOTB_isolated(otbCmdList, gili = NULL, retCommand = FALSE, quiet = TRUE)

Arguments

otbCmdList Non-empty list. ‘otbCmdList[[1]]‘ is the OTB application name. Named entries
are parameter keys without leading dashes.

gili Optional list from [linkOTB()]. If ‘NULL‘, [linkOTB()] is called.

retCommand Logical. If ‘TRUE‘, returns the exact shell command that would be executed
instead of running it.

quiet Logical. If ‘TRUE‘, suppresses stdout/stderr (best-effort).

Value

If ‘retCommand=TRUE‘, a character scalar command line. Otherwise an invisible status code.

saveEnvi Saves data in rds format and adds a yaml metadata file.

Description

Saves data in rds format and saves metadata in a corresponding yaml file.

Usage

saveEnvi(variable, file_path, meta)

Arguments

variable name of the data variable to be saved.

file_path name and path of the rds file.

meta name of the metadata list.

Examples

Not run:
a <- 1
meta <- list(a = 'a is a variable')
saveEnvi(a, file.path(tempdir(), 'test.rds'), meta)

End(Not run)

22 searchOTBW

searchOTBW Search for OTB installations on Windows (bounded, cmd-free)

Description

Detects Orfeo Toolbox (OTB) installations on Windows using a bounded set of plausible roots (no
full-disk crawl). Modern standalone bundles (OTB 9.x) are detected by the presence of:

• an environment script: otbenv.ps1 (preferred) or otbenv.bat

• a launcher: bin/otbApplicationLauncherCommandLine.exe

• at least one CLI wrapper in bin/: otbcli_*.ps1, otbcli_*.bat, or otbcli_*.exe

Usage

searchOTBW(searchLocation = "C:/", DL = NULL, maxdepth = 8L, quiet = FALSE)

Arguments

searchLocation Character scalar. Root directory to search (default "C:/").

DL Character scalar. Deprecated alias for searchLocation.

maxdepth Integer. Best-effort maximum recursion depth for the recursive list.files()
search (default 8).

quiet Logical. If TRUE, suppress messages.

Details

Backward compatibility: older callers may pass DL instead of searchLocation. Internally, DL is
treated as an alias for searchLocation.

Value

A data.frame with one row per detected installation and columns:

binDir Normalized path to <root>/bin.

baseDir Normalized OTB root directory.

otbCmd Path to a detected CLI wrapper (ps1/bat/exe).

envScript Path to otbenv.ps1 or otbenv.bat.

launcher Path to otbApplicationLauncherCommandLine.exe.

installation_type Classification string (e.g., "OTB_STANDALONE_PS1").

setupProj 23

Examples

Not run:
bounded search under C:/
searchOTBW("C:/", quiet = FALSE)

legacy alias
searchOTBW(DL = "C:/", quiet = FALSE)

End(Not run)

setupProj Setup project folder structure

Description

Defines folder structures and creates them if necessary, loads libraries, and sets other project relevant
parameters.

Usage

setupProj(
root_folder = tempdir(),
folders = c("data", "data/tmp"),
code_subfolder = NULL,
global = FALSE,
libs = NULL,
setup_script = "000_setup.R",
fcts_folder = NULL,
source_functions = !is.null(fcts_folder),
standard_setup = NULL,
create_folders = TRUE

)

Arguments

root_folder root directory of the project.
folders list of sub folders within the project directory.
code_subfolder sub folders for scripts and functions within the project directory that will be

created. The folders src, src/functions and src/config are recommended.
global logical: export path strings as global variables?
libs vector with the names of libraries
setup_script Name of the installation script that contains all the settings required for the

project, such as additional libraries, optional settings, colour schemes, etc. Im-
portant: It should not be used to control the runtime parameters of the scripts.
This file is not read in automatically, even if it is located in the ’fcts_folder’
folder.

24 setup_default

fcts_folder path of the folder holding the functions. All files in this folder will be sourced
at project start.

source_functions

logical: should functions be sourced? Default is TRUE if fcts_folder exists.

standard_setup select one of the predefined settings c(’base’, ’baseSpatial’, ’advancedSpatial’).
In this case, only the name of the base folder is required, but individual addi-
tional folders can be specified under ’folders’ name of the git repository must be
supplied to the function.

create_folders default is TRUE so create folders if not existing already.

Value

A list containing the project settings.

Examples

Not run:
setupProj(

root_folder = '~/edu', folders = c('data/', 'data/tmp/'),
libs = c('link2GI')

)

End(Not run)

setup_default Define working environment default settings

Description

Define working environment default settings

Usage

setup_default(
default = NULL,
new_folder_list = NULL,
new_folder_list_name = NULL

)

Arguments

default name of default list
new_folder_list

containing a list of arbitrary folders to be generated
new_folder_list_name

name of this list

sf2gvec 25

Details

After adding new project settings run [setup_default()] to update and savew the default settings. For
compatibility reasons you may also run [lutUpdate()].

Value

A list containing the default project settings

Examples

Not run:
Standard setup for baseSpatial
setup_default()

End(Not run)

sf2gvec Write sf object directly to ‘GRASS‘ vector utilising an existing or cre-
ating a new GRASS environment

Description

Write sf object directly to ‘GRASS‘ vector utilising an existing or creating a new GRASS environ-
ment

Usage

sf2gvec(x, epsg, obj_name, gisdbase, location, gisdbase_exist = FALSE)

Arguments

x sf object corresponding to the settings of the corresponding GRASS container

epsg numeric epsg code

obj_name name of GRASS layer

gisdbase GRASS gisDbase folder

location GRASS location name containing obj_name)

gisdbase_exist logical switch if the GRASS gisdbase folder exist default is TRUE

Note

have a look at the sf capabilities to write direct to sqlite

Author(s)

Chris Reudenbach

26 sf2gvec

Examples

run = FALSE
if (run) {
example
require(sf)
require(sp)
require(link2GI)
data(meuse)
meuse_sf = st_as_sf(meuse,

coords = c('x', 'y'),
crs = 28992,
agr = 'constant')

write data to GRASS and create gisdbase
sf2gvec(x = meuse_sf,

obj_name = 'meuse_R-G',
gisdbase = '~/temp3/',
location = 'project1')

read from existing GRASS
gvec2sf(x = meuse_sf,

obj_name = 'meuse_r_g',
gisdbase = '~/temp3',
location = 'project1')

}

Index

createFolder (createFolders), 2
createFolders, 2

execGRASS, 11

findGDAL, 3
findGRASS, 4
findOTB, 4
findSAGA, 5

gvec2sf, 5

initGRASS, 11
initProj, 7

linkGDAL, 9
linkGRASS, 10
linkOTB, 12
linkSAGA, 13
loadEnvi, 15

otb_api, 16
otb_args_spec (otb_api), 16
otb_build_cmd (otb_api), 16
otb_capabilities (otb_api), 16
otb_optional (otb_api), 16
otb_required (otb_api), 16
otb_required_with_output (otb_api), 16
otb_set_out (otb_api), 16
otb_show (otb_api), 16

parseOTBAlgorithms, 18
parseOTBFunction, 19

runOTB, 19
runOTB_isolated, 20

saveEnvi, 21
searchOTBW, 22
setup_default, 24
setupProj, 23
sf2gvec, 25

27

	createFolders
	findGDAL
	findGRASS
	findOTB
	findSAGA
	gvec2sf
	initProj
	linkGDAL
	linkGRASS
	linkOTB
	linkSAGA
	loadEnvi
	otb_api
	parseOTBAlgorithms
	parseOTBFunction
	runOTB
	runOTB_isolated
	saveEnvi
	searchOTBW
	setupProj
	setup_default
	sf2gvec
	Index

