Package ‘mapst’

January 10, 2026
Title Thematic Cartography

Version 1.1.0

Description Create and integrate thematic maps in your workflow. This package
helps to design various cartographic representations such as proportional
symbols, choropleth or typology maps. It also offers several functions to
display layout elements that improve the graphic presentation of maps
(e.g. scale bar, north arrow, title, labels). 'mapsf' maps 'sf' objects on
'base’ graphics.

License GPL (>=3)
URL https://riatelab.github.io/mapsf/

BugReports https://github.com/riatelab/mapsf/issues/
Depends R (>=3.6.0)
Imports classInt, graphics, maplegend, s2, sf, stats, utils, grDevices

Suggests terra, Ckmeans.1d.dp, png, jpeg, Iwgeom, knitr, rmarkdown,
svglite, tinytest, covr

Encoding UTF-8
RoxygenNote 7.3.3
VignetteBuilder knitr
Language en-US
NeedsCompilation no

Author Timothée Giraud [cre, aut] (ORCID:

<https://orcid.org/0000-0002-1932-3323>),

Hugues Pecout [ctb] (ORCID: <https://orcid.org/0000-0002-0246-0954>,
Logo),

Ronan Ysebaert [ctb] (ORCID: <https://orcid.org/0000-0002-7344-5911>,
Cheat sheet),

Elina Marveaux [ctb] (ORCID: <https://orcid.org/0009-0000-8667-3019>,
Themes),

Ian Fellows [cph] (No overlap algorithm for labels, from wordcloud
package),

Jim Lemon [cph] (Arc drawing algorithm for annotations, from plotrix
package)

https://riatelab.github.io/mapsf/
https://github.com/riatelab/mapsf/issues/
https://orcid.org/0000-0002-1932-3323
https://orcid.org/0000-0002-0246-0954
https://orcid.org/0000-0002-7344-5911
https://orcid.org/0009-0000-8667-3019

2 mapsf

Maintainer Timothée Giraud <timothee.giraud@cnrs.fr>
Repository CRAN
Date/Publication 2026-01-10 07:51:25 UTC

Contents
mapst . .. e 2
mf_annotation L e e e e e e 4
ME_AITOW L e 5
mf_background oL 6
mf_credits e 7
mf_diStr 8
mf_frame e 8
mf_get_borders e e 9
mf_get_breaks. L 10
mf_get_links 11
mf_get_mtq e e e e e e e 12
mf_get_pal 13
mf_get_pencil 14
mf_get_ratio. e e e e e 15
mf_graticule 15
mf INSEt_ON e e e 17
mf_label e 18
mf_layout 19
mf_legend L 20
mf_map e e 23
mf_png . . .o 31
mE Taster oL . s, 32
mf_scale e e 34
mf_shadow e 36
mE_SVE . . e 37
mf_theme e 38
mf_title e 40
mf_worldmap 41
Index 43

mapsf Package description

mapsf 3

Description

Create and integrate thematic maps in your workflow. This package helps to design various carto-
graphic representations such as proportional symbols, choropleth or typology maps. It also offers
several functions to display layout elements that improve the graphic presentation of maps (e.g.
scale bar, north arrow, title, labels). mapsf maps sf objects on base graphics.

A "Get Started" vignette contains commented scripts on how to create various maps: vignette(topic
= "mapsf”, package = "mapsf")

Symbology
These functions display cartographic layers.

* mf_map() Plot a map

e mf_label () Plot labels

e mf_raster() Plot a raster

* mf_graticule() Plot graticules

Map layout
These functions are dedicated to the map layout design.

e mf_theme() Set a theme

e mf_shadow() Plot a shadow

* mf_background() Plot a background image
e mf_annotation() Plot an annotation

e mf_arrow() Plot a north arrow

e mf_credits() Plot credits

* mf_layout() Plot a map layout

e mf_title() Plot a title

* mf_scale() Plot a scale bar

e mf_inset_on() /mf_inset_off () Plot an inset
* mf_worldmap() Plot a point on a world map
* mf_legend() Plot a legend

Utility functions

* mf_svg() Export a map in SVG file format

* mf_png() Export a map in SVG file format

e mf_distr() Plot a distribution

* mf_get_links() Get a link layer from a data.frame of links
* mf_get_pal() Get color palettes

e mf_get_breaks() Get class intervals

* mf_get_mtq() Get the 'mtq’ dataset

* mf_get_ratio() Get map width and height values

* mf_get_pencil() Get a pencil layer from polygons

» mf_get_borders() Get a border layer from polygons

4 mf _annotation

Author(s)
Maintainer: Timothée Giraud <timothee.giraud@cnrs. fr> (ORCID)

Other contributors:

* Hugues Pecout (ORCID) (Logo) [contributor]

¢ Ronan Ysebaert (ORCID) (Cheat sheet) [contributor]

¢ Elina Marveaux (ORCID) (Themes) [contributor]

¢ Jan Fellows (No overlap algorithm for labels, from wordcloud package) [copyright holder]

 Jim Lemon (Arc drawing algorithm for annotations, from plotrix package) [copyright holder]

See Also
Useful links:

e https://riatelab.github.io/mapsf/
* Report bugs at https://github.com/riatelab/mapsf/issues/

mf_annotation Plot an annotation

Description

Plot an annotation on a map.

Usage

mf_annotation(
X,
txt,
pos = "topright”,
cex = 0.8,
col_arrow,
col_txt,
halo = FALSE,
bg,
s =1,

Arguments

X an sf object with 1 row, a couple of coordinates (c(x, y)) or "interactive"

txt the text to display

pos position of the text, one of "topleft", "topright", "bottomright", "bottomleft" or
"center"

https://orcid.org/0000-0002-1932-3323
https://orcid.org/0000-0002-0246-0954
https://orcid.org/0000-0002-7344-5911
https://orcid.org/0009-0000-8667-3019
https://riatelab.github.io/mapsf/
https://github.com/riatelab/mapsf/issues/

mf_arrow

cex size of the text
col_arrow arrow color

col_txt text color

halo add a halo around the text
bg halo color

S arrow size (min=1)

further text arguments.

Value

No return value, an annotation is displayed.

Note

Annotations cannot be displayed on unprojected (long/lat) maps.

Examples

mtq <- mf_get_mtq()

mf_map(mtq)

mf_annotation(
x = ¢c(711167.8, 1614764),
txt = "Look!\nImportant feature\nhere!”,
pos = "bottomleft”, cex = 1.2, font = 2,
halo = TRUE, s = 1.5

)

mf_annotation(
x = mtq[20, 1,

txt = "This is less\nimportant”,
cex = .7, font = 3, s = 1.3
)
mf_arrow Plot a north arrow
Description

Plot a north arrow.

Usage

mf_arrow(pos = "topleft”, col, cex = 1, adj = c(@, 0), align)

6 mf_background

Arguments
pos position. It can be one of ’topleft’, "top’, topright’, ’right’, *bottomright’, ’bot-
tom’,’bottomleft’, ’left’, ’interactive’ or a vector of two coordinates in map units
(c(x, ¥))
col arrow color
cex arrow size
adj adjust the postion of the north arrow in x and y directions
align object of class sf or sfc used to adjust the arrow to the real north
Value

No return value, a north arrow is displayed.

Examples

mtg <- mf_get_mtq()
mf_map(mtq)
mf_arrow(pos = "topright")

mf_background Plot a background image

Description

Plot a background image on an existing plot

Usage
mf_background(filename, ...)
Arguments
filename filename of the background image, PNG or JPG/JPEG format.
ignored
Value

No return value, a background image is displayed.

Examples

mtg <- mf_get_mtq()
mf_map(mtg, col = NA, border = NA)
mf_background(system.file("img/background. jpg", package = "mapsf"))
mf_map(mtqg, lwd = 3, col = NA, border = "white"”, add = TRUE)
mf_credits(

txt = "Background photo by Noita Digital on Unsplash”,

col = "white”

mf _credits

mf_credits Plot credits

Description

Plot credits (sources, author, year...).

Usage

mf_credits(
txt = "Source(s) & Author(s)”,
pos = "bottomleft”,

col,
cex = 0.6,
font = 3,
bg = NA
)
Arguments
txt text of the credits, use *\n’ to add line breaks
pos position, one of "bottomleft’, "bottomright’ or ’rightbottom’
col color
cex cex of the credits
font font of the credits
bg background color
Value

No return value, credits are displayed.

Examples

mtq <- mf_get_mtq()
mf_map(mtq)
mf_credits(txt = "Author\nSources - Year")

8 mf _frame

mf_distr Plot a distribution

Description

This function displays a histogram, a box plot, a strip chart and a density curve on the same plot.

Usage

mf_distr(x, nbins, bw)

Arguments
X a numeric variable
nbins number of bins in the histogram
bw bandwidth of the density curve
Value

The number of bins of the histogram and the bandwidth of the density curve are (invisibly) returned
in a list.

Examples

(mf_distr(rnorm(1000)))
mf_distr(rbeta(1000, .6, 7))
mf_distr(rbeta(1000, 5, .6))

mf_frame Plot a frame

Description

Plot a frame around an existing map.

Usage

mf_frame(extent = "map”, col, 1wd = 1.5, 1ty =1, ...)
Arguments

extent type of frame, either *'map’ or ’figure’

col line color

lwd line width

1ty line type

other arguments from box

mf_get_borders 9

Value

No return value, a frame is displayed.

Examples

mtq <- mf_get_mtq()
mf_map(mtq)

mf_title()

mf_frame(extent = "map")
mf_map(mtq)

mf_title()

mf_frame(extent = "figure")

mf_get_borders Get a border layer from polygons

Description

This function extracts borders between contiguous polygons.

Usage

mf_get_borders(x)

Arguments

X an sf object of POLYGONS, using a projected CRS

Value

An sf object MULTILINESTRING) of borders is returned.

Note

If the polygon layer contains topology errors (such as contiguous polygons not sharing exactly the
same boundary) the function may not return all boundaries correctly. It is possible to use st_snap()
or other functions to try and correct these errors.

Examples

mtq <- mf_get_mtq()

mtg_b <- mf_get_borders(mtq)

mf_map(mtq)

mf_map(mtg_b, col = 1:5, lwd = 4, add = TRUE)

10 mf_get_breaks

mf_get_breaks Get class intervals

Description

A function to classify continuous variables.

This function is a wrapper for classIntervals with some additional methods.

Usage
mf_get_breaks(x, nbreaks, breaks, k = 1, central = FALSE, ...)
Arguments
X a vector of numeric values. NA and Inf values are not used in the classification.
nbreaks a number of classes
breaks a classification method; one of "fixed", "sd", "equal", "pretty", "quantile", "kmeans",
"hclust", "bclust”, "fisher", "jenks", "dpih", "g6", "Q6", geom", "arith", "em",
"msd" or "ckmeans" (see Details)
k number of standard deviation for "msd" method (see Details)
central creation of a central class for "msd" method (see Details)
further arguments of classIntervals
Details

non

"fixed", "sd", "equal”, "pretty", "quantile", "kmeans", "hclust", "bclust", "fisher", "jenks" and "dpih"
are classIntervals methods. You may need to pass additional arguments for some of them.

The "jenks", "fisher" and "ckmeans" methods are based on the same concept of natural breaks and
and produce similar groupings.

* The "jenks" method produces class boundaries falling on data points and is slow.

 The "fisher" method produces class boundaries located more conveniently between data points,
and is faster than the "jenks" method.

* The "ckmeans" method produces exactly the same class boundaries as the "fisher" method,
but is much faster. It uses the optimal univariate k-means method from the Ckmeans.1d.dp
package. If the "ckmeans" method is selected but the Ckmeans. 1d. dp package is not installed
then the "fisher" method is used.

The relative speeds of these three methods may vary depending on the number of data points and
the number of classes.

mf_get_links 11

The "q6" method uses the following quantile probabilities: 0, 0.05, 0.275, 0.5, 0.725, 0.95, 1.
The "Q6" method uses the following quantile probabilities: 0, 0.05, 0.25, 0.5, 0.75, 0.95, 1.

The "geom" method is based on a geometric progression along the variable values, all values must
be strictly greater than zero.

The "arith" method is based on an arithmetic progression along the variable values.
The "em" method is based on nested averages computation.

The "msd" method is based on the mean and the standard deviation of a numeric vector. The
nbreaks parameter is not relevant, use k and central instead. k indicates the extent of each class
in share of standard deviation. If central=TRUE then the mean value is the center of a class else the
mean is a break value.

Value

A numeric vector of breaks

See Also

classIntervals

Examples

mtq <- mf_get_mtq()
mf_get_breaks(x = mtq$MED, nbreaks = 6, breaks = "quantile")

mf_get_links Get a link layer from a data.frame of links

Description

Create a link layer from a data.frame of links and an sf object.

Usage
mf_get_links(x, df, x_id, df_id)

Arguments
X an sf object, a simple feature collection.
df a data.frame that contains identifiers of starting and ending points.
x_id name of the identifier variable in x, default to the first column (optional)
df_id names of the identifier variables in df, character vector of length 2, default to the

two first columns. (optional)

12 mf_get_mtq

Value

An sf object is returned, it is composed of df and the sfc (LINESTRING) of links.

Examples

mtq <- mf_get_mtq()

mob <- read.csv(system.file("csv/mob.csv", package = "mapsf"))
Select links from Fort-de-France (97209))

mob_97209 <- mob[mob$i == 97209,]

Create a link layer

mob_links <- mf_get_links(x = mtq, df = mob_97209)

Plot the links

mf_map(mtq)

mf_map(mob_links, col = "red4"”, lwd = 2, add = TRUE)

mf_get_mtq Get the 'mtq’ dataset

Description

Import the mtq dataset (Martinique municipalities).

Usage

mf_get_mtq()

Details
This a wrapper around st_read(system.file("gpkg/mtq.gpkg", package = "mapsf”),quiet
= TRUE).

Value

an sf object of Martinique municipalities

Examples

mtq <- mf_get_mtq()

mf_get_pal

13

mf_get_pal Get color palettes

Description

mf_get_pal builds sequential, diverging and qualitative color palettes. Diverging color palettes can

be dissymmetric (different number of colors in each of the two gradients).

Usage
mf_get_pal(
n ’
palette,
alpha = NULL,
rev = c(FALSE, FALSE),
neutral,
breaks,
mid
)
Arguments
n the number of colors (>= 1) to be in the palette
palette a valid palette name. See hcl.pals to get available palette names. The name is
matched to the list of available palettes, ignoring upper vs. lower case, spaces,
dashes, etc. in the matching.
alpha an alpha-transparency level in the range [0,1] (0 means transparent and 1 means
opaque)
rev logical indicating whether the ordering of the colors should be reversed
neutral a color, if two gradients are used, the *neutral’ color can be added between them
breaks a vector of class limit
mid a numeric value use to divide the palette in two colors
Value

A vector of colors.

Examples
cls <- mf_get_pal(n = c(3, 7), palette = c("Reds 2", "Greens"))
plot(1:10, rep(1, 10), bg = cls, pch = 22, cex = 4)
mtg <- mf_get_mtq()
bks <- mf_get_breaks(mtq$MED, breaks = "equal”, nbreaks = 8)
pal <- mf_get_pal(

breaks = bks, mid = 15000,
palette = c("Dark Mint", "Burg"), neutral = "grey90"

14 mf_get_pencil

)
mf_map(mtqg, "MED", "choro", breaks = bks, pal = pal)

pal <- mf_get_pal(breaks = bks, mid = bks[4], palette = c("Dark Mint"”, "Burg"))
mf_map(mtq, "MED", "choro", breaks = bks, pal = pal)

mf_get_pencil Get a pencil layer from polygons

Description

Create a pencil layer. This function transforms a POLY GON or MULTIPOLYGON sf object into a
MULTILINESTRING one.

Usage

mf_get_pencil(x, size = 100, buffer = @, lefthanded = TRUE, clip = FALSE)

Arguments
X an sf object, a simple feature collection (POLY GON or MULTIPOLYGON).
size density of the penciling. Median number of points used to build the MULTI-
LINESTRING.
buffer buffer around each polygon. This buffer (in map units) is used to take sample
points. A negative value adds a margin between the penciling and the original
polygons borders
lefthanded if TRUE the penciling is done left-handed style.
clip if TRUE, the penciling is cut by the original polygon.
Value

A MULTILINESTRING sf object is returned.

Examples

mtq <- mf_get_mtq()

mtqg_pencil <- mf_get_pencil(x = mtq, clip = FALSE)
mf_map(mtq)

mf_map(mtqg_pencil, add = TRUE)

mf_get_ratio 15

mf_get_ratio Get map width and height values

Description

This function is to be used to get width and height values for maps created in reports (*.Rmd,
*.qmd).

It uses the width / height ratio of a spatial object bounding box to find a matching ratio for the map.
If width is specified, then height is deduced from the width / height ratio of x, figure margins and
title size.

If height is specified, then width is deduced from the width / height ratio of x, figure margins and
title size.

Usage

mf_get_ratio(x, width, height, expandBB = rep(@, 4), theme = mf_theme())

Arguments
X object of class sf, sfc or SpatRaster
width width of the figure (inches), use only one of width or height
height height of the figure (inches), use only one of width or height
expandBB fractional values to expand the bounding box with, in each direction (bottom,
left, top, right)
theme theme used for the map
Value

Width and height are returned in inches.

Examples

mtg <- mf_get_mtq()
mf_get_ratio(x = mtq, width = 5)

mf_graticule Plot graticules

Description

Display graticules and labels on a map.

16 mf_graticule

Usage
mf_graticule(
X)
col,
Iwd =1,
1ty = 1,
expandBB = rep(0, 4),
label = TRUE,
pos = c("top”, "left"),
cex = 0.7,
add = TRUE
)
Arguments
X object of class sf, sfc or SpatRaster
col graticules and label color
lwd graticules line width
1ty graticules line type
expandBB fractional values to expand the bounding box with, in each direction (bottom,
left, top, right)
label whether to add labels (TRUE) or not (FALSE)
pos labels positions ("bottom", "left", "top" and / or "right")
cex labels size
add whether to add the layer to an existing plot (TRUE) or not (FALSE)
Value

An (invisible) layer of graticules is returned (LINESTRING).

Use of graticules

From st_graticule: "In cartographic visualization, the use of graticules is not advised, unless the
graphical output will be used for measurement or navigation, or the direction of North is important
for the interpretation of the content, or the content is intended to display distortions and artifacts
created by projection. Unnecessary use of graticules only adds visual clutter but little relevant
information. Use of coastlines, administrative boundaries or place names permits most viewers of
the output to orient themselves better than a graticule.”

Examples

mtq <- mf_get_mtq()
mf_map(mtq, expandBB = c(@, .1, .1, 0))
mf_graticule(mtq)

mf_graticule(
x = mtq,

mf _inset_on 17

col = "coral4”,
lwd = 2,
1ty = 2,
expandBB = c(.1, @, 0, .1),
label = TRUE,
pos = c("right”, "bottom"),
cex = .8,
add = FALSE
)

mf_map(mtq, add = TRUE)

mf_inset_on Plot an inset

Description

This function is used to add an inset map to the current map.

Usage

mf_inset_on(x, pos = "topright”, cex = 0.2, fig)

mf_inset_off()

Arguments
X an sf object, or "worldmap" to use with mf_worldmap.
pos position, one of "bottomleft", "left", "topleft", "top", "bottom", "bottomright",
"right", "topright"
cex share of the map width occupied by the inset
fig coordinates of the inset region (in NDC, see in ?par())
Details

If x is used (with pos and cex), the width/height ratio of the inset will match the width/height ratio
of x bounding box.

If fig is used, coordinates (xmin, xmax, ymin, ymax) are expressed as fractions of the mapping
space (i.e. excluding margins).

If map layers have to be plotted after the inset (i.e after mf_inset_off()), please use add = TRUE.

It is not possible to plot an inset within an inset.

It is possible to plot anything (base plots) within the inset, not only map layers.

Value

No return value, an inset is initiated or closed.

18

Examples

mtg <- mf_get_mtq
mf_map(mtq)
mf_inset_on(x = m
mf_map(mtql1, 1)
mf_inset_off()

mf_map(mtq)

0)

tql1, 1, cex = .2)

mf_inset_on(x = "worldmap”, pos = "bottomleft")

mf_worldmap(x = m
mf_inset_off()

mf_map(mtq)
mf_inset_on(fig =
mf_map(x = mtq)
mf_inset_off ()

ta)

c(0, 0.25, 0, 0.25))

mf label

mf_label

Plot labels

Description

Put labels on a map.

Usage

mf_label(
X,
var,
col,
cex = 0.7,

overlap = TRUE,

lines = TRUE,
halo = FALSE,

bg,
r=2=0.1,

q=1,

Arguments

X
var
col
cex

overlap

object of class sf

name(s) of the variable(s) to plot

labels color, it can be a single color or a vector of colors
labels cex, it can be a single size or a vector of sizes

if FALSE, labels are moved so they do not overlap.

mf_layout

lines

halo

bg

Value

19

if TRUE, then lines are plotted between X,y and the word, for those words not
covering their x,y coordinate

if TRUE, a “halo’ is displayed around the text and additional arguments bg and
r can be modified to set the color and width of the halo.

halo color, it can be a single color or a vector of colors
width of the halo, it can be a single value or a vector of values

quality of the non overlapping labels placement. Possible values are 0 (quick
results), 1 (reasonable quality and speed), 2 (better quality), 3 (insane quality,
can take a lot of time).

further text arguments.

No return value, labels are displayed.

Examples

mtg <- mf_get_mtq()

mf_map(mtq)

mtq$cex <- c(rep(.8, 8), 2, rep(.8, 25))

mf_label(

X = mtq, var = "LIBGEO",
col = "grey10"”, halo = TRUE, cex = mtg$cex,
overlap = FALSE, lines = FALSE

)

mf_layout

Plot a map layout

Description

Plot a map layout (title, credits, scalebar, north arrow, frame).

This function uses mf_title, mf_credits, mf_scale and mf_arrow with default values.

Usage
mf_layout(
title = "Map Title",
credits = "Authors & Sources”,
scale = TRUE,
arrow = TRUE,
frame = FALSE

20
Arguments
title title of the map
credits credits
scale display a scale bar
arrow display an arrow
frame display a frame
Value

No return value, a map layout is displayed.

Examples

mtq <- mf_get_mtq()
mf_map(mtq)
mf_layout()

mf_legend

mf_legend

Plot a legend

Description

Plot different types of legend. The "type" argument defines the legend type. Please note that some
arguments are available for all types of legend and some others are only relevant for specific legend

types (see Details). mf_legend() is a wrapper for maplegend: :leg().

Usage
mf_legend(

type,
val,
pos = "left”,
pal = "Inferno”,
alpha = 1,
col = "tomato4",
inches = 0.3,
symbol = "circle”,
self_adjust = FALSE,
lwd = 0.7,

border = "#333333",

pch = seqg_along(val),

cex = rep(1, length(val)),
title = "Legend Title"”,
title_cex = 0.8 * size,
val_cex = 0.6 * size,
val_rnd = 0,

mf_legend

21
col_na = "white",
cex_na =1,
pch_na = 4

no_data = FALSE,
no_data_txt = "No Data”,
box_border = "#333333",

box_cex = c(1, 1),
horiz = FALSE,

frame_border,

frame = FALSE,

bg,
fg,
size = 1,

return_bbox
adj = c(o, 0)

Arguments

type

val

pos

pal
alpha

col

inches
symbol
self_adjust

1wd

border

FALSE,

type of legend:

* prop for proportional symbols,
* choro for choropleth maps,
* cont for continuous maps (e.g. raster),
* typo for typology maps,
* symb for symbols maps,
* prop_line for proportional lines maps,
* grad_line for graduated lines maps.
vector of value(s) (for "prop" and "prop_line", at least c(min, max) for "cont"),

vector of categories (for "symb" and "typo"), break labels (for "choro" and
"grad_line").

position of the legend. It can be one of ’topleft’, 'top’, ’topright’, ‘right’, ’bot-
tomright’, “bottom’,’bottomleft’, ’left’, ’interactive’ or a vector of two coordi-
nates in map units (c(X, y)).

a color palette name or a vector of colors
if pal is a hcl.colors palette name, the alpha-transparency level in the range [0,1]

color of the symbols (for "prop") or color of the lines (for "prop_line" and
"grad_line")

size of the largest symbol (radius for circles, half width for squares) in inches
type of symbols, circle’ or ’square’

if TRUE values are self-adjusted to keep min, max and intermediate rounded
values

width(s) of the symbols borders (for "prop" and "symb"), width of the largest
line (for "prop_line"), vector of line width (for "grad_line")

symbol border color(s)

22

pch

cex

title
title_cex
val_cex
val_rnd
col_na
cex_na
pch_na
no_data
no_data_txt
box_border

box_cex

horiz
frame_border
frame

bg

fg

size
return_bbox

adj

Details

mf_legend

type(s) of the symbols (0:25)

size(s) of the symbols

title of the legend

size of the legend title

size of the values in the legend

number of decimal places of the values in the legend
color for missing values

size of the symbols for missing values
type of the symbols for missing values

if TRUE a "missing value" box is plotted
label for missing values

border color of legend boxes

width and height size expansion of boxes, (or offset between circles for "prop”
legends with horiz = TRUE)

if TRUE plot an horizontal legend

border color of the frame

if TRUE the legend is plotted within a frame

background color of the legend

foreground color of the legend

size of the legend; 2 means two times bigger

return only bounding box of the legend. No legend is plotted.

adjust the postion of the legend in x and y directions

Some arguments are available for all types of legend: val, pos, title, title_cex, val_cex,
frame, bg, fg, size, adj, return_bbox).

Relevant arguments for each specific legend types:

e mf_legend(type = "prop”, val, inches, symbol, col, lwd, border, val_rnd, self_adjust,

horiz)

e mf_legend(type = "choro"”, val, pal, val_rnd, col_na, no_data, no_data_txt, box_border,

horiz)

e mf_legend(type = "cont”, val, pal, val_rnd, col_na, no_data, no_data_txt, box_border,

horiz)

e mf_legend(type = "typo”, val, pal, col_na, no_data, no_data_txt, box_border)

e mf_legend(type = "symb"”, val, pal, pch, cex, 1lwd, pch_na, cex_na, col_na, no_data,
no_data_txt)

* mf_legend(type = "prop_line", val, col, 1lwd, val_rnd)

e mf_legend(type = "grad_line", val, col, 1lwd, val_rnd)

mf_map 23

Value

No value is returned, a legend is displayed (except if return_bbox is used).

Examples

mtq <- mf_get_mtq()
mf_map(mtq)
mf_legend(type = "prop”, pos = "topright”, val = c(1, 5, 10), inches = .3)
mf_legend(
type = "choro”, pos = "bottomright”, val = c(10, 20, 30, 40, 50),
pal = hcl.colors(4, "Reds 2")
)
mf_legend(
type = "typo”, pos = "topleft”, val = c("A", "B", "C", "D"),
pal = hcl.colors(4, "Dynamic")
)
mf_legend(
type = "symb”, pos = "bottomleft”, val = c("A", "B", "C"),
pch = 21:23, cex = c(1, 2, 2),
pal = hcl.colors(3, "Dynamic")
)
mf_legend(
type = "grad_line"”, pos = "top”, val = c(1, 2, 3, 4, 10, 15),
lwd = c(0.2, 2, 4, 5, 10)
)
mf_legend(type = "prop_line”, pos = "bottom”, lwd = 20, val = c(5, 50, 100))

mf_map Plot a map

Description

mf_map() is the main function of the package, it displays map layers on a georeferenced plot.

mf_map () has three main arguments:

* X, an sf object;
* var, the name(s) of a variable(s) to map;

* type, the map layer type.

Many parameters are available to fine tune symbologies and legends.

Relevant arguments and default values are different for each map type and are described in the
"Details" section.

24

Usage

mf_map

mf_map(x, var, type = "base",
breaks, nbreaks, pal, alpha, rev, inches, val_max, symbol, col,
lwd_max, val_order, pch, cex, border, lwd, col_na, cex_na, pch_na,
expandBB, add,
leg_pos, leg_title, leg_title_cex, leg_val_cex, leg_val_rnd,
leg_val_dec, leg_val_big, leg_no_data, leg_frame, leg_frame_border,
leg_horiz, leg_adj, leg_bg, leg_fg, leg_size, leg_border,
leg_box_border, leg_box_cex, ...)

Arguments

X
var

type

breaks

nbreaks
pal
alpha

rev

inches
val_max
symbol
col
lwd_max
val_order
pch

cex

border

object of class sf or sfc
name(s) of the variable(s) to plot

* base: base maps

* prop: proportional symbols maps
¢ choro: choropleth maps

* typo: typology maps

e symb: symbols maps

* grad: graduated symbols maps

* prop_choro: proportional symbols maps with symbols colors based on a
quantitative data classification

* prop_typo: proportional symbols maps with symbols colors based on qual-
itative data

* symb_choro: symbols maps with symbols colors based on a quantitative
data classification

either a numeric vector with the actual breaks, or a classification method name
(see mf_get_breaks and Details)

number of classes
a set of colors or a palette name (from hcl.colors)
opacity, in the range [0,1]

if pal is a hcl.colors palette name, whether the ordering of the colors should be
reversed (TRUE) or not (FALSE)

size of the biggest symbol (radius for circles, half width for squares) in inches.
maximum value used for proportional symbols

type of symbols, circle’ or ’square’

color

line width of the largest line

values order, a character vector that matches var modalities

point type

point size

border color

mf_map

lwd

col_na
cex_na
pch_na

expandBB

add
leg_pos

leg_title
leg_title_cex
leg_val_cex
leg_val_rnd
leg_val_dec
leg_val_big
leg_no_data

leg_frame

25

border width

color for missing values
point size for NA values
point type for NA values

fractional values to expand the bounding box with, in each direction (bottom,
left, top, right)

whether to add the layer to an existing plot (TRUE) or not (FALSE)

position of the legend, one of ’topleft’, ’top’, topright’, ’right’, *bottomright’,
’bottom’, ’bottomleft’, ’left’ or a vector of two coordinates in map units (c(Xx,
y)). If leg_pos = NA then the legend is not plotted. If leg_pos = ’interactive’
click onthe map to choose the legend position.

legend title

size of the legend title

size of the values in the legend

number of decimal places of the values in the legend

decimal separator

thousands separator

label for missing values

whether to add a frame to the legend (TRUE) or not (FALSE)

leg_frame_border

leg_horiz
leg_adj

leg_bg

leg_fg
leg_size
leg_border
leg_box_border

leg_box_cex

Details

border color of the legend frame

display the legend horizontally (for proportional symbols and choropleth types)
adjust the postion of the legend in x and y directions

color of the legend backgournd

color of the legend foreground

size of the legend; 2 means two times bigger

symbol border color(s)

border color of legend boxes

width and height size expansion of boxes

ignored

Relevant arguments and default values for each map types::

base: displays sf objects geometries.

mf_map(x, col = "grey8@", pch = 20, cex = 1, border =

"grey20"”,

lwd = 0.7, alpha = NULL, expandBB, add = FALSE, ...)

prop: displays symbols with areas proportional to a quantitative variable (stocks). inches is used
to set symbols sizes.

26

mf_map

mf_map(x, var, type = "prop”, inches = 0.3, val_max, symbol = "circle”,

col = "tomato4"”, alpha = NULL, lwd_max = 20,

border = getOption("mapsf.foreground”), lwd = @.7, expandBB,

add = TRUE,
leg_pos = mf_get_leg_pos(x), leg_title = var,

leg_title_cex = 0.8, leg_val_cex = 0.6, leg_val_rnd = 0,
leg_val_dec = "."

nn

, leg_val_big = ,

leg_frame = FALSE, leg_frame_border = getOption("mapsf.foreground”),

leg_horiz = FALSE, leg_adj = c(0, 0),
leg_bg = getOption("mapsf.background”),
leg_fg = getOption("mapsf.foreground”), leg_size = 1)

choro: areas are shaded according to the variation of a quantitative variable. Choropleth maps are
used to represent ratios or indices. nbreaks, and breaks allow to set the variable classification.
Colors palettes, defined with pal, can be created with mf_get_pal() or can use palette names

from hcl.pals().

mf_map(x, var, type = "choro”, breaks = "quantile”, nbreaks, pal
alpha = NULL, rev = FALSE, pch = 21, cex =1,
border = getOption("mapsf.foreground”), lwd = 0.7, col_na
cex_na = 1, pch_na = 4, expandBB, add = FALSE,

leg_pos = mf_get_leg_pos(x), leg_title = var, leg_title_cex

leg_val_cex = 0.6, leg_val_rnd = 2, leg_val_dec = ".",
leg_val_big = ""

, leg_no_data = "No data”, leg_frame = FALSE

leg_frame_border = getOption("mapsf.foreground”), leg_horiz

leg_adj = c(@, 0), leg_bg = getOption("mapsf.background”),

leg_fg = getOption("mapsf.foreground”), leg_size =1,

leg_box_border = getOption("mapsf.foreground”), leg_box_cex

"Mint" ,
"white”,

= 0.8,

FALSE,

c(1, 1))

typo: displays a typology map of a qualitative variable. val_order is used to set modalities order

in the legend.

mf_map(x, var, type = "typo”, pal = "Dynamic”, alpha = NULL, rev

FALSE,

val_order,border = getOption("mapsf.foreground”), pch = 21, cex = 2,

lwd = 0.7, cex_na = 1, pch_na = 4, col_na = "white",

leg_pos = mf_get_leg_pos(x), leg_title = var, leg_title_cex
leg_val_cex = 0.6, leg_no_data = "No data”, leg_frame = FALSE,
leg_frame_border = getOption("mapsf.foreground”), leg_adj = c(0, @),
leg_size = 1, leg_box_border = getOption("mapsf.foreground”),
leg_box_cex = c(1, 1), leg_fg = getOption("mapsf.foreground”),

leg_bg = getOption("mapsf.background”), add = FALSE)

symb: displays the different modalities of a qualitative variable as symbols.

mf_map(x, var, type = "symb", pal = "Dynamic”, alpha = NULL, rev
border = getOption("mapsf.foreground”), pch, cex = 2, 1lwd
col_na = "grey"”, pch_na = 4, cex_na = 1, val_order,

leg_pos = mf_get_leg_pos(x), leg_title = var, leg_title_cex

leg_val_cex = 0.6, leg_no_data = "No data”,

= 0.8,

FALSE,
0.7,

mf_map 27

leg_frame = FALSE, leg_frame_border = getOption("mapsf.foreground”),
leg_adj = c(@, 0), leg_fg = getOption("mapsf.foreground”),
leg_bg = getOption("mapsf.background”), leg_size = 1, add = TRUE)

grad: displays graduated symbols. Sizes classes are set with breaks and nbreaks. Symbol sizes
are set with cex.

mf_map(x, var, type = "grad", breaks = "quantile"”, nbreaks = 3,
col = "tomato4”, alpha = NULL, border = getOption("mapsf.foreground”),
pch = 21, cex, lwd,
leg_pos = mf_get_leg_pos(x), leg_title = var, leg_title_cex = 0.8,
leg_val_cex = 0.6, leg_val_rnd = 2, leg_val_dec = ".",
leg_val_big = "", leg_frame = FALSE,
leg_adj = c(@, 0), leg_size = 1, leg_border = border,
leg_box_cex = c(1, 1), leg_fg = getOption("mapsf.foreground”),
leg_bg = getOption("mapsf.background”),
leg_frame_border = getOption("mapsf.foreground”), add = TRUE)

prop_choro: displays symbols with sizes proportional to values of a first variable and colored to
reflect the classification of a second quantitative variable.

mf_map(x, var, type = "prop_choro”, inches = 0.3, val_max, symbol = "circle”,
pal = "Mint", alpha = NULL, rev = FALSE, breaks = "quantile”, nbreaks,
border = getOption("mapsf.foreground”), lwd = 0.7, col_na = "white",
leg_pos = mf_get_leg_pos(x, 1), leg_title = var,
leg_title_cex = c(0.8, 0.8), leg_val_cex = c(0.6, 0.6),
leg_val_rnd = c(@, 2), leg_val_dec = ".", leg_val_big = "",
leg_no_data = "No data"”, leg_frame = c(FALSE, FALSE),
leg_frame_border = getOption("mapsf.foreground”),
leg_horiz = c(FALSE, FALSE), leg_adj = c(@, 0),
leg_fg = getOption("mapsf.foreground”),
leg_bg = getOption("mapsf.background”), leg_size =1,
leg_box_border = getOption("mapsf.foreground”),
leg_box_cex = c(1, 1), add = TRUE)

prop_typo: displays symbols with sizes proportional to values of a first variable and colored to
reflect the modalities of a second qualitative variable.

mf_map(x, var, type = "prop_typo", inches = 0.3, val_max, symbol = "circle”,
pal = "Dynamic”, alpha = NULL, rev = FALSE, val_order,
border = getOption("mapsf.foreground”), lwd = 0.7, lwd_max = 15,
col_na = "white"”,
leg_pos = mf_get_leg_pos(x, 1), leg_title = var,
leg_title_cex = c(0.8, 0.8), leg_val_cex = c(0.6, 0.6),
leg_val_rnd = c(@), leg_val_dec = ".", leg_val_big = "",
leg_no_data = "No data”, leg_frame = c(FALSE, FALSE),
leg_frame_border = getOption("mapsf.foreground”), leg_horiz = FALSE,
leg_adj = c(@, 0), leg_fg = getOption("mapsf.foreground”),
leg_bg = getOption("mapsf.background”), leg_size =1,

28 mf_map

leg_box_border = getOption("mapsf.foreground”), leg_box_cex = c(1, 1),
add = TRUE)

symb_choro: displays the different modalities of a first qualitative variable as symbols colored to
reflect the classification of a second quantitative variable.

mf_map(x, var, type = "symb_choro”, pal = "Mint", alpha = NULL, rev = FALSE,

breaks = "quantile”, nbreaks, border = getOption("mapsf.foreground”),
pch, cex = 2, lwd = 0.7, pch_na = 4, cex_na = 1, col_na = "white",
val_order,

leg_pos = mf_get_leg_pos(x, 1), leg_title = var,
leg_title_cex = c(0.8, 0.8), leg_val_cex = c(0.6, 0.6),
leg_val_rnd = 2, leg_val_dec = ".", leg_val_big = "",
leg_no_data = c("No data”, "No data"),
leg_frame = c(FALSE, FALSE), leg_frame_border = getOption("mapsf.foreground”),
leg_horiz = FALSE, leg_adj = c(0, @), leg_fg = getOption("mapsf.foreground”),
leg_bg = getOption("mapsf.background”), leg_size =1,
leg_box_border = getOption("mapsf.foreground”), leg_box_cex = c(1, 1),
add = TRUE)

Class boundaries:

Breaks defined by a numeric vector or a classification method are left-closed: breaks defined by
c(2, 5, 10, 15, 20) will be mapped as [2 - 5[, [5 - 10[, [10 - 15[, [15 - 20].

Value

X is (invisibly) returned.

Examples

mtq <- mf_get_mtq()

basic examples

type = "base”

mf_map(mtq)

type = "prop”

mf_map (mtq)

mf_map(mtq, var = "POP", type = "prop")
type = "choro”

mf_map(mtq, var = "MED"”, type = "choro")
type = "typo”

mf_map(mtqg, "STATUS"”, "typo")

type = "symb”

mf_map(mtq)

mf_map(mtqg, "STATUS"”, "symb")

type = "grad”

mf_map(mtq)

mf_map(mtq, var = "POP", type = "grad")
type = "prop_choro”

mf_map(mtq)

mf_map(mtq, var = c("POP", "MED"), type = "prop_choro")

mf_map

type = "prop_typo”

mf_map(mtq)

mf_map(mtq, var = c("POP", "STATUS"), type = "prop_typo")
type = "symb_choro

mf_map(mtq)

mf_map(mtq, var = c("STATUS", "MED"), type = "symb_choro")

detailed examples
type = "base”
mf_map(mtq, type = "base”, col = "lightblue”, 1lwd = 1.5, 1ty = 2)

type = "prop”
mf_map(mtq)

mf_map(
x = mtq, var = "POP", type = "prop”,
inches = .4, symbol = "circle”, val_max = 90000,

col = "lightblue”, border = "grey”, lwd = 1,
leg_pos = "right"”, leg_title = "Population”,
leg_title_cex = 1, leg_val_cex = .8, leg_val_rnd = 0,
leg_frame = TRUE, add = TRUE

)

type = "choro”

mtql6, "MED"] <- NA

mf_map (
X = mtq, var = "MED", type = "choro”,
col_na = "grey80"”, pal = "Cividis”,
breaks = "quantile”, nbreaks = 4, border = "white",
lwd = .5, leg_pos = "topleft”,
leg_title = "Median Income"”, leg_title_cex = 1.1,

leg_val_cex = 1, leg_val_rnd = -2, leg_no_data "No data”,
leg_frame = TRUE, leg_adj = c(0, -3)
)
type = "typo”
mtq[4, "STATUS"] <- NA
mf_map(
X = mtq, var = "STATUS", type = "typo”,
pal = c("red”, "blue”, "yellow"), 1lwd = 1.1,
val_order = c("Prefecture”, "Sub-prefecture”, "Simple municipality”),

col_na = "green"”, border = "brown",
leg_pos = "bottomleft”,

leg_title = "Status”, leg_title_cex = 1.1,
leg_val_cex = 1, leg_no_data = "No data”,
leg_frame = TRUE, add = FALSE

type = "symb”
mf_map(mtq)
mf_map(

30

X = mtq, var = "STATUS", type = "symb",
pch = ¢(21:23), pal = c("red1”, "tanl1”, "khakil"),
border = "grey20", cex = c(2, 1.5, 1), 1lwd = .5,
val_order = c("Prefecture”, "Sub-prefecture”, "Simple municipality”),
pch_na = 24, col_na = "blue”, leg_frame = TRUE
)

type = "grad”
mf_map(mtq)

mf_map (
x = mtq, var = "POP", type = "grad",
pch = 22, breaks = "quantile”, nbreaks = 4, lwd = 2, border = "blue”,
cex = c(.75, 1.5, 3, 5), col = "lightgreen"

'

type = "prop_choro'
mf_map(mtq)

mf_map(
X = mtq, var = c("POP", "MED"), type = "prop_choro”,
inches = .35, border = "tomato4”,
val_max = 90000, symbol = "circle”, col_na = "white”, pal = "Cividis”,

breaks = "equal”, nbreaks = 4, lwd = 4,
leg_pos = "bottomleft”,

leg_title = c("Population”, "Median Income"),
leg_title_cex = c(0.8, 1),

leg_val_cex = c(.7, .9),

leg_val_rnd = c(0, 0),

leg_no_data = "No data”,

leg_frame = c(TRUE, TRUE),

add = TRUE

type = "prop_typo”
mf_map (mtq)

mf_map(
x = mtq, var = c("POP", "STATUS"), type = "prop_typo”,
inches = .35, border = "tomato4",
val_max = 90000, symbol = "circle”, col_na = "white”, pal = "Dynamic”,
lwd = 2,

leg_pos = c("bottomright”, "bottomleft"),

leg_title = c("Population”, "Municipality\nstatus"),

leg_title_cex = c(0.9, 0.9),

leg_val_cex = c(.7, .7),

val_order = c("Prefecture”, "Sub-prefecture”, "Simple municipality”),
leg_no_data = "No dada”,

leg_frame = c(TRUE, TRUE),

add = TRUE

type = "symb_choro”
mf_map(mtq)
mf_map(
x = mtq, c("STATUS", "MED"), type = "symb_choro”,

mf_map

mf_png 31

pal = "Reds 3", breaks = "quantile”, nbreaks = 4,
pch = 21:23, cex = ¢c(3, 2, 1),
pch_na = 25, cex_na = 1.5, col_na = "blue",
val_order = c(
"Prefecture”,
"Sub-prefecture”,
"Simple municipality”
)
)

mf_png Export a map in PNG format

Description

Export a map with the extent of a spatial object in PNG format.

PNG is a raster graphics file format and PNG export should be used for maps that do not require
further modification.

If width is specified, then height is deduced from the width/height ratio of x. Alternatively, if
height is specified, then width is deduced from the width/height ratio of x. This helps to produce
maps without too much wasted space.

Use dev.of f to finish the export (see Examples).

Usage
mf_png
X ’
filename = "map.png”,
width,
height,
expandBB = rep(0, 4),
res = 96,
)
Arguments
X object of class sf, sfc or SpatRaster
filename path to the exported file
width width of the figure (pixels)
height height of the figure (pixels)
expandBB fractional values to expand the bounding box with, in each direction (bottom,
left, top, right)
res nominal resolution in ppi

further parameters

32

Value

No return value, a PNG device is initiated.

Examples

mtg <- mf_get_mtq()
(filename <- tempfile(fileext = ".png"))
mf_png(mtq, filename = filename)

mf_map(mtq)
mf_title()
dev.off()

mf raster

mf_raster

Plot a raster

Description

Plot a raster object (SpatRaster from terra).

Usage

mf_raster(
X,
type,
nbreaks,

breaks = "equal”,

val_order,
pal,

expandBB = rep(0, 4),
alpha = NULL,

rev = FALSE,

leg_pos = "right",

leg_title =

names(x),

leg_title_cex = 0.8,

leg_val_cex = 0.6,
leg_val_rnd = 1,

leg_val_dec = ".",
leg_val_big = "",
leg_frame = FALSE,

leg_frame_border,
leg_horiz = FALSE,
leg_adj = c(0, 0),
leg_box_border,
leg_box_cex = c(1, 1),
leg_fg,

leg_bg,

leg_size = 1,

mf _raster

add = FALSE,

Arguments

X

type

nbreaks
breaks

val_order
pal
expandBB

alpha

rev

leg_pos

leg_title
leg_title_cex
leg_val_cex
leg_val_rnd
leg_val_dec
leg_val_big
leg_frame

33

a SpatRaster

non

type of raster map, one of "continuous", "classes", or "interval". Default type
for a numeric and categorial raster are "continuous" and "classes" respectively.

number of classes

either a numeric vector with the actual breaks (for type = "continuous" and type
= "interval"), or a classification method name (for type = "interval" only; see
mf_get_breaks for classification methods)

values order, a character vector that matches var modalities
a set of colors or a palette name (from hcl.colors)

fractional values to expand the bounding box with, in each direction (bottom,
left, top, right)

opacity, in the range [0,1]

if pal is a hcl.colors palette name, whether the ordering of the colors should be
reversed (TRUE) or not (FALSE)

position of the legend, one of ’topleft’, ’top’, topright’, ’right’, ’bottomright’,
’bottom’, ’bottomleft’, ’left’ or a vector of two coordinates in map units (c(Xx,
y)). If leg_pos = NA then the legend is not plotted. If leg_pos = ’interactive’
click onthe map to choose the legend position.

legend title

size of the legend title

size of the values in the legend

number of decimal places of the values in the legend

decimal separator

thousands separator

whether to add a frame to the legend (TRUE) or not (FALSE)

leg_frame_border

leg_horiz
leg_adj
leg_box_border
leg_box_cex
leg_fg

leg_bg
leg_size

add

border color of the legend frame

display the legend horizontally

adjust the postion of the legend in x and y directions

border color of legend boxes

width and height size expansion of boxes

color of the legend foreground

color of the legend backgournd

size of the legend; 2 means two times bigger

whether to add the layer to an existing plot (TRUE) or not (FALSE)

bgalpha, smooth, maxcell or other arguments passed to be passed to p1otRGB or
plot

34 mf _scale

Value

X is (invisibly) returned.

Examples

if (require("terra")) {
multi band
logo <- rast(system.file("ex/logo.tif"”, package = "terra"))
mf_raster(logo)

one band
elev <- rast(system.file("ex/elev.tif"”, package = "terra"))

continuous

mf_raster(elev)

mf_raster(elev,
pal = "Burg”, expandBB = c(.2, 0, 0, @),
leg_pos = "bottom”, leg_horiz = TRUE

)

continuous with colors and breaks
mf_raster(elev,

type = "continuous”,

breaks = c(141, 400, 547),

pal = c("darkseagreen1”, "black”, "red")

)

interval
mf_raster(elev,

type = "interval”,

nbreaks = 5, breaks = "equal”, pal = "Teal”
)
classes

elev2 <- classify(elev, c(140, 400, 450, 549))
lev_evel <- data.frame(ID = 0:2, elevation = c("Low"”, "High", "Super High"))
levels(elev2) <- lev_evel
mf_raster(elev2)
mf_raster(elev2,
pal = c("salmon4”, "olivedrab”, "yellow3"),
val_order = c("Super High”, "High", "Low")
)
3

mf_scale Plot a scale bar

Description

Plot a scale bar.

mf _scale

35

Usage
mf_scale(
size,
pos = "bottomright”,
lwd = 1.5,
cex = 0.6,
col,
crs_units = "m",
scale_units = "km",
adj = c(eo, 0,
X
)
Arguments
size size of the scale bar in scale units (scale_units, default to km). If size is not
set, an automatic size is used.
pos position. It can be one of "bottomright’, *bottomleft’, *interactive’ or a vector of
two coordinates in map units (c(X, y)).
lwd line width of the scale bar
cex size of the scale bar text
col color of the scale bar (line and text)
crs_units units used in the CRS of the currently plotted layer. Possible values are "m" and

scale_units

adj

Details

"ft" (see Details).

units used for the scale bar. Can be "mi" for miles, "ft" for feet, "m" for meters,
or "km" for kilometers (default).

adjust the postion of the scale bar in x and y directions

object of class crs, sf or sfc. If set, the CRS of x will be used instead of
crs_units to define CRS units.

Most CRS use the meter as unit. Some US CRS use feet or US survey feet. If unsure of the unit used
in the CRS you can use the x argument of the function. Alternatively, you can use sf::st_crs(zz,
parameters = TRUE) $units_gdal to see which units are used in the zz layer.

The scale bar cannot be displayed on unprojected (long/lat) maps or on maps without documented

CRS.

Value

No return value, a scale bar is displayed.

36 mf_shadow
Examples

mtg <- mf_get_mtq()

mf_map(mtq)

mf_scale()

library(sf)

nc <- st_read(system.file("shape/nc.shp”, package = "sf"))[1,]

nc_foot <- st_transform(nc, 2264) # NC state plane, US foot

mf_map(nc_foot)

mf_scale(size = 5, crs_units = "ft", scale_units = "mi")

mf_map(nc_foot)

mf_scale(size = 5, x = nc_foot, scale_units = "mi”

nc_meter <- st_transform(nc, 32119) # NC state plane, m

mf_map(nc_meter)

mf_scale(size = 5, crs_units = "m", scale_units = "mi")

mf_scale(size = 5, crs_units = "m", scale_units = "km", pos = "bottomleft")

mf_shadow Plot a shadow

Description

Plot the shadow of a polygon layer.
Usage

mf_shadow(x, col, cex = 1, add = FALSE)
Arguments

X an sf or sfc polygon object

col shadow color

cex shadow extent

add whether to add the layer to an existing plot (TRUE) or not (FALSE)
Value

x is (invisibly) returned.

Examples

mtg <- mf_get_mtq()
mf_shadow(mtq)
mf_map(mtq, add = TRUE)

mf_svg 37

mf_svg Export a map in SVG format

Description

Export a map with the extent of a spatial object in SVG format.

SVG export is the perfect solution for editing maps with desktop vector graphics software. SVG is
a vector graphics file format.

If width is specified, then height is deduced from the width/height ratio of x. Alternatively, if
height is specified, then width is deduced from the width/height ratio of x. This helps to produce
maps without too much wasted space.

Use dev.of f to finish the export (see Examples).

Usage

mf_svg(
X,
filename = "map.svg",
width,
height,
expandBB = rep(0, 4),
svglite = TRUE,

Arguments
X object of class sf, sfc or SpatRaster
filename path to the exported file
width width of the figure (inches)
height height of the figure (inches)
expandBB fractional values to expand the bounding box with, in each direction (bottom,
left, top, right)
svglite if TRUE, the export is done with the svglite package if it is installed (see
Details)
further parameters
Details

The default driver for building SVG files, grDevices: : svg(), has limitations regarding speed, file
size, editability, and font support. The svglite package aims to solve these issues but it is not
lightweight in terms of dependencies, so it is not imported by mapsf, but rather suggested.

However, we strongly recommend its use if the aim is to edit the maps after export.

38 mf _theme

Value

No return value, an SVG device is initiated.

Examples

mtg <- mf_get_mtq()

(filename <- tempfile(fileext = ".svg"))
mf_svg(mtq, filename = filename)
mf_map(mtq)

mf_title()

dev.off()

mf_theme Set a theme

Description

A theme is a set of graphical parameters that are applied to maps created with mapsf. These param-
eters are:

* figure margins and frames,
* background, foreground and highlight colors,
* default sequential and qualitative palettes,

* title options (position, size, banner...).

mapsf offers some builtin themes. It’s possible to modify an existing theme or to start a theme from
scratch. It is also possible to set a custom theme using a list of arguments

Themes are persistent across maps produced by mapsf (e.g. they survive a dev.of f () call).

Use mf_theme (NULL) or mf_theme('base") to reset to default theme settings.

Usage

mf_theme (
X,
mar,
foreground,
background,
highlight,
title_tab,
title_pos,
title_inner,
title_line,
title_cex,
title_font,
title_banner,
frame,

mf _theme

frame_lwd,
frame_lty,
pal_quali,
pal_seq,

Arguments

X

mar
foreground
background
highlight
title_tab
title_pos
title_inner
title_line
title_cex
title_font
title_banner
frame
frame_lwd
frame_lty
pal_quali
pal_seq

Value

39

non non

name of a map theme. One of "base", "sol_dark", "sol_light", "grey", "mint",

"non non

"dracula", "pistachio”, "rzine".

margins

foreground color

background color

highlight color

if TRUE the title is displayed as a ’tab’

title position, one of ’left’, *center’, ‘right’

if TRUE the title is displayed inside the plot area.
number of lines used for the title

cex of the title

font of the title

if TRUE the title is displayed as a banner

either "none", "map" or "figure"; plot a frame around the map or the figure.
line width for the frame

line type for the frame

default qualitative color palette (name or function)
default sequential color palettte (name or function)

deprecated arguments (Cbg’, ’fg’, ’tab’, 'pos’, ’inner’, ’line’, *cex’ and ’font’).
See the Note section.

The current list of theme parameters is (invisibly) returned.

Note

Although the map theming system has been radically changed in version 1.0.0 of the package, you
can still use the old themes by referencing them by name. If you need to use the pre v1.0.0 default
theme, set x to "default".

If an old theme is set, only deprecated arguments are used and others are ignored.

If current and deprecated arguments are mixed, only deprecated arguments are used and others are

ignored.

All references and usages of the old theming system will be removed in the next major version.

40

Examples

mtg <- mf_get_mtq()

Choosing a theme by name:
mf_theme("base")
mf_map(mtq)

mf_title()

Specifying some values directly:
mf_theme(title_banner = TRUE)
mf_map(mtq)

mf_title()

Using a mix of the above:

mf_theme("sol_dark”, title_tab = TRUE, title_font

mf_map (mtq)
mf_title()

Specifying a list with theme values:
theme <- list(
mar = c(1, 1, 3, 1),
title_tab = FALSE,
title_pos = "left”,
title_inner = FALSE,
title_line = 2,
title_cex = 1.5,
title_font = 2,
title_banner = FALSE,
frame = "figure”,
frame_lwd = 1,
frame_lty = 1,
foreground = "#fbfbfb",
background = "grey75",
highlight = "#0f5027",
pal_quali = "Dark 3",
pal_seq = "Greens”
)
mf_theme (theme)
mf_map(mtq, "MED"”, "choro")
mf_title()

Obtaining a list of parameters for the current theme:

current_theme <- mf_theme()

Use default theme:
mf_theme (NULL)

or

mf_theme ("base")

»

mf _title

mf_title Plot a title

mf_worldmap
Description

Plot a title

Usage

mf_title(txt = "Map Title"”, pos, tab, bg, fg, cex, line, font, inner, banner)

Arguments

txt title text

pos position, one of ’left’, ’center’, 'right’

tab if TRUE the title is displayed as a tab

bg background of the title

fg foreground of the title

cex cex of the title

line number of lines used for the title

font font of the title

inner if TRUE the title is displayed inside the plot area

banner if TRUE the title is dispalayed as a banner
Value

No return value, a title is displayed.

Examples

mtg <- mf_get_mtq()
mf_map(mtq)
mf_title()

41

mf_worldmap Plot a point on a world map

Description

Plot a point on a world map.

42 mf_worldmap

Usage

mf_worldmap(
X,
lon,
lat,
water_col = "lightblue”,
land_col = "grey60”,
border_col = "grey40",
border_lwd = 0.8,

)
Arguments
X object of class sf or sfc
lon longitude
lat latitude
water_col color of the water
land_col color of the land
border_col color of the borders
border_lwd width of the borders
further parameters related to the plotted point aspect (cex, pch, col...)
Value

No return value, a world map is displayed.

Note

The main part of the code is stolen from @fzenoni (https://gist.github.com/fzenoni/ef23faf6dlada5e4a91c9ef23be

Examples

mtg <- mf_get_mtq()

mf_worldmap(mtq)

mf_worldmap(lon = 24, lat = 39)

mf_worldmap(
lon = 106, lat = 26,
pch = 4, 1lwd = 3, cex = 2, col = "tomato4",
water_col = "#232525", land_col = "#A9B7C6",
border_col = "white"”, border_lwd = 1

https://gist.github.com/fzenoni/ef23faf6d1ada5e4a91c9ef23b0ba2c1

Index

box, 8

classIntervals, 10, 11

hcl.colors, 21, 24, 33

hcl.pals, I3

mapsf, 2

mapsf-package (mapsf), 2

mf_annotation, 4
mf_annotation(), 3
mf_arrow, 5, 19
mf_arrow(), 3
mf_background, 6
mf_background(), 3
mf_credits, 7, 19
mf_credits(), 3
mf_distr, 8
mf_distr(), 3
mf_frame, 8
mf_get_borders, 9
mf_get_borders(), 3

mf_get_breaks, 10, 24, 33

mf_get_breaks(), 3
mf_get_links, 11
mf_get_links(), 3
mf_get_mtq, 12
mf_get_mtq(), 3
mf_get_pal, 13
mf_get_pal(), 3
mf_get_pencil, 14
mf_get_pencil(), 3
mf_get_ratio, 15
mf_get_ratio(), 3
mf_graticule, 15
mf_graticule(), 3

mf_inset_off (mf_inset_on), 17

mf_inset_off(), 3
mf_inset_on, 17
mf_inset_on(), 3

mf_label, 18
mf_label(), 3
mf_layout, 19
mf_layout(), 3
mf_legend, 20
mf_legend(), 3
mf_map, 23
mf_map(), 3
mf_png, 31
mf_png(), 3
mf_raster, 32
mf_raster(), 3
mf_scale, 19, 34
mf_scale(), 3
mf_shadow, 36
mf_shadow(), 3
mf_svg, 37
mf_svg(), 3
mf_theme, 38
mf_theme(), 3
mf_title, 19,40
mf_title(), 3
mf_worldmap, 17, 41
mf_worldmap(), 3

plot, 33
plotRGB, 33

quantile, /1
st_graticule, 16

text, 5, 19

	mapsf
	mf_annotation
	mf_arrow
	mf_background
	mf_credits
	mf_distr
	mf_frame
	mf_get_borders
	mf_get_breaks
	mf_get_links
	mf_get_mtq
	mf_get_pal
	mf_get_pencil
	mf_get_ratio
	mf_graticule
	mf_inset_on
	mf_label
	mf_layout
	mf_legend
	mf_map
	mf_png
	mf_raster
	mf_scale
	mf_shadow
	mf_svg
	mf_theme
	mf_title
	mf_worldmap
	Index

