Package ‘matRiks’

December 19, 2025
Type Package

Title Generates Raven-Like Matrices According to Rules
Version 0.1.5
Maintainer Andrea Brancaccio <andreabrancaccio@1@gmail.com>

Description Generates Raven like matrices according to different rules and the response list associ-
ated to the matrix.
The package can generate matrices composed of 4 or 9 cells, along with a response list of 11 el-
ements (the correct response + 10 incorrect responses). The matrices can be generated accord-
ing to both logical rules (i.e., the relationships between the elements in the matrix are manipu-
lated to create the matrix) and visual-spatial rules (i.e., the visual or spatial characteris-
tics of the elements are manipulated to generate the matrix).
The graphical elements of this package are based on the 'DescTools' package.
This package has been developed within the PRIN2020 Project (Prot. 20209WKCLL) ti-
tled * * Computerized, Adaptive and Personalized Assessment of Executive Func-
tions and Fluid Intelligence" and founded by the Italian Ministry of Education and Research.

License MIT + file LICENSE

Encoding UTF-8

Imports DescTools

Suggests devtools, knitr, rmarkdown, testthat (>= 3.0.0), V8
Config/testthat/edition 3

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Andrea Brancaccio [aut, ctb, cph, cre],
Ottavia M. Epifania [aut, ctb, com],
Debora de Chiusole [ctb]

Repository CRAN
Date/Publication 2025-12-19 17:10:03 UTC

2 Contents

Contents
AXC o v o e e e e e e e e e e 3
DISCULt e 4
change_color L 5
circle e e e 6
COf . L e e e e e e 7
COITEC . . . v v e i e 10
CTOSS « v v v e 11
decof e e e 12
dice e e e 13
difference e 14
dot . . . e e 15
draw . . .o e e e e e 16
ellipse e e 19
hexagon e e 20
hide e 21
hidefigure L 21
IC o e 22
identity L e 25
lily . . o e 26
10gIC e e 27
Tuck . . . e e e e 28
malta e e e 29
MArgin oo e e e e e e e e e e e e e 30
mat_apply 31
MAXI . . . o s e e e e e e 32
miley . ..o e 33
NNJA . . . o e e e e e e e e 34
PACIAN . . . o oL e e e e e e e e e e e e e e 35
PENtAZON e e e e e e e 36
phantom 37
Pizza_4 37
TEPELitioON e e e 40
replace L 41
response_liSt L. e e e e 42
TOLALE o e e e e e e e e e e e e 43
semi_circle_bottom_inv. e 44
Semi_Circle_top o e e e 46
shade L e 47
shape L e e 48
ShOW . . . e e 49
SIZE v e e e e e e s 50
SliCe . . . e e e 51
split_mat e e e e 52
SQUATE . . v v v v e e e e e e e e e e e e e e e e e e e 53
STAT . . . i o e e e e e e e e e e 54

axe 3

up_petal e e e 57
vertical_eight L e 58
vertical_s L e e 59
vert_ bow_tie e e e e e 61
VIINE e 63
v_arc_left_up e e e 66
WD o e e 69

Index 71

axe Coordinates of an axe
Description

Define the coordinates for drawing an axe

Usage

axe(size.x = 15, pos.x = @, pos.y = 0, 1ty =1, 1wd = 3, shd = NA)

s_axe(size.x = 15, pos.x = @, pos.y = @, 1ty = 1, 1lwd = 3, shd = NA)

Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 15
pos. X numeric, define the position on the x axis. Default is 0
pos.y numeric, define the position on the y axis. Default is 0
1ty integer, define the line type of the figure, default is 1 (solid line)
lwd integer, define the line width of the figure. Default is 3
shd character, define the color of the figure. Default is NA, which results in a trans-
parent figure
Value

Return the coordinates for drawing an axe

Return the coordinates for drawing a single axe

Functions

* s_axe(): Coordinates of a single axe

Define the coordinates for drawing a single axe, to be used in shape()

4 biscuit

Examples

return the default coordinates for drawing an axe

axe()

change the coordinates for drawing a smaller single axe
axe(size.x = 5)

return the default coordinates for drawing single axe
s_axe()

change the coordinates for drawing a smaller single axe
s_axe(size.x = 5)

biscuit Coordinates of a biscuit

Description

Define the coordinates for drawing a biscuit (composed of two hexagons)

Usage

biscuit(size.x = 10, size.y = size.x, shd = "black”, lwd = 3, 1ty = 0)

s_biscuit(
pos.x = 0,
pos.y = 0,
size.x = 10,
size.y = size.x,
shd = "black”,
lty = 1,
lwd = 3
)
Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x
shd character, define the shading of the figure. Default is black
lwd integer, define the line width of the figure. Default is 3
1ty integer, define the line type of the figure, default is O
pos. X numeric, position on the x axis. Default is 0
pos.y numeric, position the y axis, Default is 0
Value

Return the coordinates for drawing a biscuit

Return the coordinates for drawing a single biscuit

change_color 5

Functions

* s_biscuit(): Coordinates of a single biscuit

Define the coordinates for drawing a single biscuit (composed of two hexagons), to be used in
shape()

Examples

return the default coordinates for drawing a biscuit
biscuit()

change the shade of the biscuit

biscuit(shd = "grey", 1ty = 0)

return the default coordinates for drawing a single biscuit
s_biscuit()

change the shade of the single biscuit

biscuit(shd = "grey", lty = 0)

change_color Change shade

Description

Change the shade of a figure

Usage

change_color(obj, ...)

S3 method for class 'figure'

change_color(obj, ...)
Arguments
obj The figure

other arguments

Value

Return the original figure with the inverted shade

Return the original figure with the inverted shade

Methods (by class)

* change_color(figure): Change shade
Change the shade of a figure

6 circle

Examples

draw a square with inverted color
draw(change_color(square()))
draw(change_color(square()))

circle Coordinates of a circle

Description

Define the coordinates for drawing a circle

Usage

circle(
size.x = 10,
size.y = size.x,

pos.x = 0,
pos.y = 0,
1ty =1,
lwd = 3,
shd = NA,
vis =1
)
Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x
pos. X numeric, position on the x axis. Default is 0
pos.y numeric, position the y axis, Default is 0
1ty integer, define the line type of the figure, default is 1 (solid line).
lwd integer, define the line width of the figure. Default is 3
shd character, define the shading of the figure. Default is NA which results in a
transparent figure
vis Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0
Value

Return the coordinates for drawing a circle

cof

Examples

return the default coordinates for drawing a circle
circle()

change the coordinates for drawing a smaller circle
circle(size.x = 5)

cof Concatenation of figures (method)

Description

Concatenation of different figures to create a new figure
Usage
cof (..., name, single)

S3 method for class 'figure'
cof (..., name = NULL, single = FALSE)

S3 method for class 'character'
cof(...)

com(...)

S3 method for class 'matriks'
com(...)

concatenation(...)

S3 method for class 'list'
concatenation(...)

S3 method for class 'double'
concatenation(...)

S3 method for class 'double'
cof(...)

S3 method for class 'numeric'
cof(...)

S3 method for class 'character'
concatenation(...)

S3 method for class 'integer'
concatenation(...)

8 cof

Arguments
The to be concatenated
name character, name of the figure created with cof()
single logical, force the figure to be a single figure to be used in shape(). Default is
FALSE
Value

An object of class figure

An object of class figure

A concatenation of character

An object of class matriks resulting from the hierarchical concatenation of the original matrices

An object of class matriks resulting from the hierarchical concatenation of the original matrices

Methods (by class)
e cof(figure): Concatenation of figures (figures)
Concatenation of different figures to create a new figure

e cof(character): Concatenation of character
Concatenation of different figures to create a new figure

e cof(double): Concatenation of double

e cof(numeric): Concatenation of numeric

Functions

¢ com(): Concatenation of matrices (Method)

Hierarchical concatenation of 2+ matrices on top of one another. The first matrix is placed on
the bottom, the last matrix is placed on top of all other matrices.

e com(matriks): Concatenation of matrices

Hierarchical concatenation of 2+ matrices on top of one another. The first matrix is placed on
the bottom, the last matrix is placed on top of all other matrices.

e concatenation(): Concatenation (Method)

e concatenation(list): Concatenation of lists

e concatenation(double): Concatenation of double

e concatenation(character): Concatenation of characters

e concatenation(integer): Concatenation of stuff

Examples

concatenate figures without creating a new figure
new_figure <- cof(square(), size(malta(), 2))

structure of new_figure

str(new_figure)

concatenate figures and create a new figure

cof

my_figure <- cof(square(), size(malta(), 2),
single = TRUE,
name = "my_figure”)
structure of new_figure
str(my_figure)
concatenate figures without creating a new figure
new_figure <- cof(square(), size(malta(), 2))
structure of new_figure
str(new_figure)
concatenate figures and create a new figure
my_figure <- cof(square(), size(malta(), 2),
single = TRUE,
name = "my_figure")
structure of new_figure
str(my_figure)
concatenate figures without creating a new figure
new_figure <- cof(square(), size(malta(), 2))
structure of new_figure
str(new_figure)
concatenate figures and create a new figure
my_figure <- cof(square(), size(malta(), 2),
single = TRUE,
name = "my_figure”)
structure of new_figure
str(my_figure)
create the first layer matrix
ml <- mat_apply(hexagon(), hrules = "1ty")
create the second matrix
m2 <- mat_apply(size(malta(), 2), vrules = "shade")
concatenate the matrices
the_mat <- com(m1, m2)
draw the final matrix
draw(the_mat)
create the first layer matrix
ml <- mat_apply(hexagon(), hrules = "1ty")
create the second matrix
m2 <- mat_apply(size(malta(), 2), vrules = "shade")
concatenate the matrices
the_mat <- com(ml, m2)
draw the final matrix
draw(the_mat)
concatenate two characters
concatenation(”a", "b")
create some lists
a <- list(letters[c(14,13)], LETTERS[c(4, 3)1)
b <- list(letters[c(12, 13)], LETTERS[c(4, 3)1)
concatenation(a, b)
create the first layer matrix
ml <- mat_apply(hexagon(), hrules = "1ty")
create the second matrix
m2 <- mat_apply(size(malta(), 2), vrules = "shade")
concatenate the matrices
the_mat <- com(ml, m2)

10 correct

draw the final matrix

draw(the_mat)

create the first layer matrix

ml <- mat_apply(hexagon(), hrules = "1lty")
create the second matrix

m2 <- mat_apply(size(malta(), 2), vrules = "shade")
concatenate the matrices

the_mat <- com(ml, m2)

draw the final matrix

draw(the_mat)

concatenate two numeric

cof (rnorm(1, 25), rnorm(4, 34))

concatenate two numeric

cof("a”", "b", "d")

concatenate two numeric

cof(1:3, 22:20)

correct Correct response (Method)

Description

Isolate the correct response from a matriks

Usage

correct(obj)

S3 method for class 'matriks'
correct(obj)

Arguments

obj The matrix

Value

The correct response of a matriks

The correct response of a matriks

Methods (by class)

* correct(matriks): Correct response

Isolate the correct response from a matriks

Cross

Examples

apply the size rule on a triangle for creating a matriks with 9 cell
my_mat <- mat_apply(triangle(), mat.type = 9, hrule = "size")

draw the matriks without the correct response

draw(my_mat, hide = TRUE)

add the correct response

draw(correct(my_mat))

apply the rotate rule on a pacman for creating a matriks with 4 cells
my_mat <- mat_apply(pacman(), mat.type = 4,
vrule = "rotate"”)
draw the matriks without the correct response
draw(my_mat, hide = TRUE)
add the correct response
draw(correct(my_mat))
apply the size rule on a triangle for creating a matriks with 9 cell
my_mat <- mat_apply(triangle(), mat.type = 9, hrule = "size")
draw the matriks without the correct response
draw(my_mat, hide = TRUE)
add the correct response
draw(correct(my_mat))

apply the rotate rule on a pacman for creating a matriks with 4 cells
my_mat <- mat_apply(pacman(), mat.type = 4,
vrule = "rotate"”)
draw the matriks without the correct response
draw(my_mat, hide = TRUE)
add the correct response
draw(correct(my_mat))

cross Coordinates of a cross

Description

Define the coordinates for drawing a cross

Usage
cross(
size.x = sqrt(square()$size.x[[1]1]1*2/2),
size.y = size.x,
lwd = 3,
1ty =1
)

X(size.x = sqgrt(square()$size.x[[1]1]*2/2), size.y = size.x, lwd = 3, 1ty

12

Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is sqrt(square()$ size.x[[1]]"2 /2)
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x.
lwd integer, define the line width of the figure. Default is 3
1ty integer, define the line type of the figure, default is 1 (solid line
Value

Return the coordinates for drawing a cross

Return the coordinates for drawing an X

Functions

* X(): Coordinates of an X
Define the coordinates for drawing an X

Examples

default coordinates of an horizontal line
cross()

draw a vertical line with different 1ty
draw(cross(lty = 2))

default coordinates of an X

X0

draw an X with different 1ty

draw(X(1ty = 2))

decof Split the elements of a figure (Method)

Description

Return the elements composing a figure

Usage
decof (obj)

S3 method for class 'figure'
decof (obj)

Arguments

obj The figure of class figure to be split in its single components

dice 13

Value

A named list of figures of length equal to the total of shapes in a figure (both visible and not visible)
A named list of figures of length equal to the total of shapes in a figure (both visible and not visible)

Methods (by class)

* decof (figure): Split the elements of a figure
Return the elements composing a figure

Examples

apply the size rule on a triangle for creating a matriks with 9 cell
my_matl <- mat_apply(triangle(), hrules = "size")

my_mat2 <- mat_apply(dot(), hrules = "shade")

my_mat <- com(my_matl, my_mat2)

Return the figures composing the first cell of the matriks

decof (my_mat$Sq2)

apply the size rule on a triangle for creating a matriks with 9 cell
my_matl <- mat_apply(triangle(), hrules = "size")

my_mat2 <- mat_apply(dot(), hrules = "shade")

my_mat <- com(my_matl, my_mat2)

Return the figures composing the first cell of the matriks

decof (my_mat$Sq2)

dice Coordinates of a dice with four dots

Description

Define the coordinates for drawing four dots placed in the vertices of a square

Usage

dice(pos.x = 13, pos.y = 13, shd = "black”, 1lwd = 3, 1ty = 1)

cross_dice(shd = "black”, 1wd = 3, 1ty = 1)

Arguments
pos. X numeric, position on the x axis. Default is 13 (-13)
pos.y numeric, position on the y axis. Default is 13 (-13)
shd character, define the shading of the figure. Default is black
lwd integer, define the line width of the figure. Default is 3

1ty integer, define the line type of the figure, default is 1 (solid line).

14 difference

Value

Return the coordinates for drawing a dice with 4 dots

The coordinates for drawing a dice with 4 dots

Functions

e cross_dice(): Coordinates of a cross dice with four dots
Define the coordinates for drawing four dots placed in the vertices of a luck

Examples

return the default coordinates for drawing a dot
dice()

change the shade of the dice

dice(shd = "grey")

return the default coordinates for drawing a dot
cross_dice()

change the shade of the cross dice

cross_dice(shd = "grey")
difference Difference distractor (Method)
Description

Generate difference distractor from a matriks

Usage

difference(obj, seed, ...)

S3 method for class 'matriks'

difference(obj, seed = 666, ...)

Arguments
obj matriks, The matriks for which the distractor is generated
seed seed

other arguments

Value

An object of class figure that is the difference distractor of a matrix

An object of class figure that is the difference distractor of a matrix

dot 15

Methods (by class)

e difference(matriks): Difference distractors

Examples

create a matrix

ml <- mat_apply(hexagon(), hrules = "lty")
draw the matrix

draw(m1)

draw the difference distractor
draw(difference(m1))

create a matrix

ml <- mat_apply(hexagon(), hrules = "lty")
draw the matrix

draw(m1)
draw the difference distractor
draw(difference(m1))
dot Coordinates of a dot
Description

Define the coordinates for drawing a dot

Usage
dot(
size.x = 2,
size.y = size.x,
pos.x = 0,
pos.y = 0,
lwd = 3,
Ity =1,
shd = "black”,
vis =1
)
Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 2
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x
poS. X numeric, position on the x axis. Default is 0
pos.y numeric, position the y axis, Default is O

lwd integer, define the line width of the figure. Default is 3

16 draw

1ty integer, define the line type of the figure, default is 1 (solid line).
shd character, define the shading of the figure. Default is black
vis Visibility of the figure. Default is 1, making the figure visible. To hide the figure,

change it to 0

Value

Return the coordinates for drawing a dot

Examples

return the default coordinates for drawing a dot
dot()

change the shade of the dot

dot(shd = "grey")

draw Draw (Method)

Description

Draws single figures, matrices with 9 or 4 cells, or response list of a matriks

Usage
draw(
obj,
main = NULL,
canvas = TRUE,
hide = FALSE,
bg = "white"”,
mar = c(1, 1, 1, 1),
xlim = 16,
)
S3 method for class 'figure'
draw(
obj,
main = NULL,
canvas = TRUE,
hide = FALSE,
bg = "white”,

mar = c(1, 1, 1, 1),
xlim = 16,

draw

)

S3 method for class 'matriks'
draw(

obj,

main = NULL,

canvas = TRUE,

hide = FALSE,

bg = "white”,

mar = c(1, 1, 1, 1),

xlim = 16,
)
S3 method for class 'responses'’
draw(

obj,

main = FALSE,

canvas = TRUE,

hide = FALSE,

bg = "white”,

mar = c(1, 1, 1, 1),
xlim = 16,
distractors = NULL,
labels = NULL,

print = FALSE,

frow = NULL,

17

Arguments
obj
main
canvas
hide
bg
mar

xlim

distractors

labels

print

The figure/matriks/response list to be drawn

logical, print the title of the drawing. Default is FALSE

logical, draw the figure on a new canvas. Default is TRUE

logical, hide the cell corresponding to the correct response. Default is FALSE
character, define the color background. Default is white

numeric vector, change margins of the canvas

numeric, change the length of the x axis

other arguments

integer, default length of the response list. Works also with a character vector
with the labels of the desired distractors.

character, alternative labels to be printed as the main title of the distractors (main
= TRUE). The labels must have the same length as the vector of distractors.

logical, print all the distractors together (default, FALSE) or one by one (TRUE)

18 draw

frow numeric, vector of length 2 (nrow, ncol), response options will be drawn in a
nrow X ncol array. Further details in ‘par()‘ documentation

Value
A graphic
A graphic of the figure
A graphic of the matriks
A graphic of the matriks

Methods (by class)

e draw(figure): Draw figure

Draw a figure

e draw(matriks): Draw Matriks

Draw a matriks

* draw(responses): Draw response list

Draw the response list of a matriks

Examples

draw a circle

draw(circle())

draw a circle inside the first circle
draw(size(circle(), 2), canvas = FALSE)
draw a circle

draw.figure(circle())

draw a circle inside the other

draw.figure(size(circle(), 2), canvas = FALSE)

draw a matriks

my_mat <- mat_apply(cof(circle(), luck(), pacman()), "shade"”, "shape")
draw(my_mat)

generate a matriks

my_mat1 <- mat_apply(cof(s_axe(), luck(), pacman()), "rotate”, "shape")
my_mat2 <- mat_apply(dot(), "shade"”, "shade")

my_mat <- com(my_mat1, my_mat2)

generate a response list

my_resp <- response_list(my_mat)

draw response list

draw(my_resp)

ellipse

19

ellipse

Coordinates of an ellipse

Description

Define the coordinates for drawing an ellipse

Usage

ellipse(
size.x
size.y =

rot =

shd
pos.
pos.
vis

I < X

1ty =

lwd

Arguments

size.x
size.y

rot
shd

pos.x

pos.y
vis

1ty
Iwd

Value

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 7

define the rotation. Default is O

character, define the shading of the figure. Default is NA which results in a
transparent figure

numeric, position on the x axis. Default is O
numeric, position the y axis, Default is 0

Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

integer, define the line type of the figure, default is 1 (solid line).
integer, define the line width of the figure. Default is 3

Return the coordinates for drawing a ellipse

Examples

return the default coordinates for drawing an ellipse

ellipse()

change the coordinates for drawing a smaller ellipse

ellipse(size.x

5, size.y = 3)

20 hexagon

hexagon Coordinates of a hexagon

Description

Define the coordinates for drawing an hexagon

Usage

hexagon(
size.x = 15,
size.y = size.x,

rot = 0,
pos.x = 0,
pos.y = 0,
shd = NA,
vis = 1,
lty = 1,
lwd = 3
)
Arguments
size.x numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 15
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x
rot define the rotation. Default is 0
pos. X numeric, position on the x axis. Default is O
pos.y numeric, position the y axis, Default is 0
shd character, define the shading of the figure. Default is NA which results in a
transparent figure
vis Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0
1ty integer, define the line type of the figure, default is 1 (solid line).
lwd integer, define the line width of the figure. Default is 3
Value

Return the coordinates for drawing an hexagon

Examples

return the default coordinates for drawing a hexagon
hexagon()

change the coordinates for drawing a smaller hexagon
hexagon(size.x = 10)

hide

21

hide Hide figures (Method)

Description

Change the visibility of a figure from 1 to 0

Usage
hide(obj, index)

Arguments
obj A figure composed of different figures
index integer, the index of the element to hide
Value

The starting object with a hidden figure

Examples

concatenate three figures into an object
my_shapes <- cof(square(), triangle(), slice())
draw object

draw(my_shapes)

hide the triangle

draw(hide(my_shapes, 2))

hide.figure Hide figures

Description

Change the visibility of a figure from 1 to 0

Usage
S3 method for class 'figure'
hide(obj, index = "Full")
Arguments

obj A figure composed of different figures

index integer, the index of the element to hide

22

Value

The starting object with a hidden figure

Examples

concatenate three figures into an object
my_shapes <- cof(square(), triangle(), slice())
draw object

draw(my_shapes)

hide the triangle

draw(hide(my_shapes, 2))

ic Incomplete correlate distractors (method)

Description

Generate incomplete correlate flip distractor from a matriks

Usage
ic(obj)

S3 method for class 'matriks'
ic(obj, ...)

ic_flip(obj, ...)

S3 method for class 'matriks'
ic_flip(obj, ...)

ic_inc(obj, ...)

S3 method for class 'matriks'
ic_inc(obj, ...)

ic_neg(obj, ...)

S3 method for class 'matriks'
ic_neg(obj, ...)

ic_size(obj, ...)

S3 method for class 'matriks'
ic_size(obj, ...)

ic 23

Arguments
obj matriks, The matriks for which the distractor is generated

other arguments

Value
An object of class responses of length 4, which contains the incomplete correlate distractors of a
matriks (IC-Inc, IC-Flip, IC-Neg, IC-Size). If the distractor could not be generated because of the
constraints imposed by the matrix, it will be covered by a thick, black X and a warning is given.
An object of class responses of length 4, which contains the incomplete correlate distractors of a
matriks. If the distractor could not be generated because of the constraints imposed by the matrix,
it will be covered by a thick, black X and a warning is given.
An object of class figure that is the incomplete correlate flip distractor of a matrix. If the distractor
could not be generated because of the constraints imposed by the matrix, it will be covered by a
thick, black X and a warning is given.
An object of class figure that is the incomplete correlate flip distractor of a matrix. If the distractor
could not be generated because of the constraints imposed by the matrix, it will be covered by a
thick, black X and a warning is given.
An object of class figure that is the incomplete correlate incomplete distractor of a matrix. If the
distractor could not be generated because of the constraints imposed by the matrix, it will be covered
by a thick, black X and a warning is given.
An object of class figure that is the incomplete correlate incomplete distractor of a matrix. If the
distractor could not be generated because of the constraints imposed by the matrix, it will be covered
by a thick, black X and a warning is given.
An object of class figure that is the incomplete correlate negative distractor of a matrix. If the
distractor could not be generated because of the constraints imposed by the matrix, it will be covered
by a thick, black X and a warning is given.
An object of class figure that is the incomplete correlate negative distractor of a matrix. If the
distractor could not be generated because of the constraints imposed by the matrix, it will be covered
by a thick, black X and a warning is given.
An object of class figure that is the incomplete correlate size distractor of a matrix. If the distractor
could not be generated because of the constraints imposed by the matrix, it will be covered by a
thick, black X and a warning is given.
An object of class figure that is the incomplete correlate size distractor of a matrix. If the distractor
could not be generated because of the constraints imposed by the matrix, it will be covered by a
thick, black X and a warning is given.

Methods (by class)

* ic(matriks): Incomplete correlate distractors

Generate incomplete correlate flip distractor from a matriks

24

Functions

* ic_flip(): Incomplete correlate flip distractor (method)
Generate incomplete correlate flip distractor from a matriks

e ic_flip(matriks): Incomplete correlate flip distractor
Generate incomplete correlate flip distractor from a matriks

e ic_inc(): Incomplete correlate incomplete distractor (method)
Generate incomplete correlate incomplete distractor from a matriks

e ic_inc(matriks): Incomplete correlate incomplete distractor
Generate incomplete correlate incomplete distractor from a matriks

* ic_neg(): Incomplete correlate negative distractor (method)
Generate incomplete negative incomplete distractor from a matriks

* ic_neg(matriks): Incomplete correlate negative distractor
Generate incomplete negative incomplete distractor from a matriks

* ic_size(): Incomplete correlate size distractor (method)
Generate incomplete size incomplete distractor from a matriks

* ic_size(matriks): Incomplete correlate size
Generate incomplete correlate size distractor of a matrix

Examples

create a matrix

ml <- mat_apply(pacman(), hrules = "lty")
m2 <- mat_apply(dot(), "shade")

mat <- com(ml, m2)

draw the matrix

draw(mat)

draw the incomplete correlate distractors
draw(ic(mat))

create a matrix

ml <- mat_apply(pacman(), hrules = "1ty")
m2 <- mat_apply(dot(), "shade")

mat <- com(ml, m2)

draw the matrix

draw(mat)

draw the incomplete correlate distractors
draw(ic(mat))

create a matrix

ml <- mat_apply(pacman(), hrules = "1ty")

draw the matrix

draw(m1)

draw the incomplete correalate flip distractor
draw(ic_flip(m1))

create a matrix

ml <- mat_apply(pacman(), hrules = "1ty")

draw the matrix

draw(m1)

draw the incomplete correalate flip distractor

ic

identity 25

draw(ic_flip(m1))

create a matrix

ml <- mat_apply(pacman(), hrules = "1ty")

m2 <- mat_apply(dot(), "shade")

mat <- com(ml, m2)

draw the matrix

draw(mat)

draw the incomplete correlate incomplete distractor
draw(ic_inc(mat))

create a matrix

ml <- mat_apply(pacman(), hrules = "lty")

m2 <- mat_apply(dot(), "shade")

mat <- com(ml, m2)

draw the matrix

draw(mat)

draw the incomplete correlate incomplete distractor
draw(ic_inc(mat))

create a matrix

ml <- mat_apply(pacman(), hrules = "lty")

draw the matrix

draw(m1)

draw the incomplete correlate negative distractor
draw(ic_neg(ml))

create a matrix

ml <- mat_apply(pacman(), hrules = "lty")

draw the matrix

draw(m1)

draw the incomplete correlate negative distractor
draw(ic_neg(ml))

create a matrix

ml <- mat_apply(pacman(), hrules = "lty")

draw the incomplete correlate size distractor
draw(ic_size(m1))

create a matrix

ml <- mat_apply(pacman(), hrules = "1ty")

draw the incomplete correlate size distractor
draw(ic_size(m1))

identity Identity rule (Method)

Description

Apply an identity rule to the figures in a matrix (i.e., no changes)

Usage
identity(fig, ...)

S3 method for class 'figure'
identity(fig, ...)

26 lily

Arguments
fig Vector of figures obtained with the concatenation of figures function (‘cof()‘).
Three figures are needed.
Other arguments
Value

An object composed of figures combined according to an identity rule

Methods (by class)

e identity(figure): Identity figure

Examples

generate a matrix with 9 squares
draw(mat_apply(square(), hrules = "identity"))
generate a matrix with 9 squares
draw(mat_apply(square(), hrules = "identity"))

lily Define the coordinates of a lily

Description

Define the coordinates for drawing the circle arches composing a lily

Usage
lily(lwd = 3, 1ty = 1)

s_lily(lwd = 3, 1ty = 1)

Arguments

lwd integer, define the line width of the figure. Default is 3

1ty integer, define the line type of the figure, default is 1 (solid line)
Value

Return the coordinates for drawing the circle arches composing a lily

Return the coordinates for drawing the circle arches composing a single lily, to be used in shape()

Functions

* s_lily(): Define the coordinates a single lily
Define the coordinates for drawing the circle arches composing a single lily, to be used in
shape()

logic 27

Examples

return the default coordinates drawing the circle arches composing a lily
lilyO

change the line type of the lily

lily(lty = 3)

return the default coordinates for drawing a single lily

s_lily()

change the line type of the single lily

s_lily(1ty = 3)

logic Logical rules (Method)

Description

Apply logical rules (intersection—AND, union—OR, symmetrical difference-XOR) to a concatena-
tion of figures

Usage

logic(fig, n, rule, seed, ...)

S3 method for class 'figure'

logic(fig, n = 1, rule = "logic", seed = 1, ...)
Arguments
fig Vector of figures obtained with the concatenation of figures function (‘cof()*).

Three figures are needed.

n integer, defines the elements of the logical expression. n=1 and n=2 are the
concatenations of figures to which the logical operation is applied. n=3 is the
result of the operation.

rule character, logic rule to be applied, either ‘AND*, ‘OR‘, ‘XOR*
seed integer, Set the random seed so that the permutations are consistent

Other arguments

Value

An object that is the logical combination of the figures

An object that is the logical combination of the figures

Methods (by class)

* logic(figure): Logical rules
Apply logical rules (intersection—AND, union—OR, symmetrical difference-XOR) to a con-
catenation of figures

28

Examples

luck

draw(logic(cof (square(), malta(), circle()), "AND"))

draw(logic(cof(square(), malta(), circle()), "AND"))

luck

Coordinates of a luck

Description

Define the coordinates for drawing a luck of the ellipse within which a luck can be inscribed.

Usage
luck(

size.x =

)

1
S

w = =

luck4(size.x = 10, size.y = 7, 1lwd = 3, 1ty = 1)

Arguments

size.x

size.y

rot
pos.x

pos.y
shd

vis

1ty
Iwd

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 7

define the rotation. Default is 5
numeric, position on the x axis. Default is O
numeric, position the y axis, Default is 0

character, define the shading of the figure. Default is NA which results in a
transparent figure

Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

integer, define the line type of the figure, default is 1 (solid line)
integer, define the line width of the figure. Default is 3

malta 29

Value

Return the coordinates for drawing a luck

Return the coordinates for drawing a luck composed of 4 lines

Functions

* luck4(): Coordinates of a luck composed of 4 lines

Define the coordinates for drawing of a luck composed of 4 lines

Examples

return the default coordinates for drawing a luck
luck()

change the coordinates for drawing a smaller luck
luck(size.x = 10, size.y = 15)

default coordinates of an luck composed of 4 lines
luck4()

draw a luck composed of 4 lines with different lty
draw(luck4(lty = 2))

malta Coordinates of a Malta cross

Description

Define the coordinates for drawing a Malta cross

Usage

malta(size.x = 10, size.y = size.x, pos.x = @, shd = NA, 1wd = 3, 1ty = 1)

s_malta(size.x = 10, pos.x = @, shd = NA, 1wd = 3, 1ty = 1)

Arguments

size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10

size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x

pos. X numeric, define the position on the x axis. Default is 0

shd character, define the color of the figure. Default is NA, which results in a trans-
parent figure

lwd integer, define the line width of the figure. Default is 3

1ty integer, define the line type of the figure, default is 1 (solid line)

30

Value

margin

Return the coordinates for drawing a Malta cross

Return the coordinates for drawing a single Malta cross

Functions

* s_malta(): Coordinates of a single Malta cross

Define the coordinates for drawing a single Malta cross, to be used in shape()

Examples

return the
malta()

change the
malta(size.x
return the
s_malta()

change the

s_malta(size.

default coordinates for drawing a Malta cross

coordinates for drawing a smaller Malta cross
= 5)
default coordinates for drawing a single Malta cross

coordinates for drawing a smaller single Malta cross
X = 5)

margin

Margin rule (Method)

Description

Apply a change in the margins of the figure

Usage
margin(fig,

n, rule, ...)

S3 method for class 'figure'

margin(fig,

Arguments
fig
n

rule

Value

n, rule, ...)

The figure on which the rule is applied
integer, defines the linetype of the linewidth

character, Ity changes the linetype (1 = solid, 2 = dashed, 3 = dotted), lwd
changes the linewdith

Other arguments

A figure with changed margins

A figure with changed margins

mat_apply 31

Methods (by class)

* margin(figure): Change the margins rule
Apply a change in the margins of the figure

Examples

draw default triangle
draw(triangle())

change the linetype
draw(margin(triangle(), "lty", 2))
draw default triangle
draw(triangle())

change the linetype
draw(margin(triangle(),"1ty", 2))

mat_apply Apply rule to generate a matriks (method)

Description

Apply a rule or a set of rules to a figure to create a matriks

Usage
E))

mat_apply(Sql, hrules = "identity"”, vrules = "identity”, mat.type

S3 method for class 'figure'
mat_apply(Sql, hrules = "identity", vrules = "identity"”, mat.type = 9)

Arguments
Sq1 the figure(s) on which the rule should be applied for creating the matriks
hrules character, the rule(s) to be applied horizontally. Default is identity
vrules character, the rule(s) to be applied vertically. Default is identity
mat.type integer, the type of matriks, either 4-cell matriks or 9-cell matriks (Default is 9)
Value

A list of length 7 (4-cell matriks) or of length 12 (9-cell matriks)
An object of class matriks of length 7 (4-cell matriks) or of length 12 (9-cell matriks)

Methods (by class)

* mat_apply(figure): Apply rule to generate a matriks (method)
Apply a rule or a set of rules to a figure to create a matriks

32 maxi

Examples

apply the size rule on a triangle for creating a matriks with 9 cell
my_mat <- mat_apply(triangle(), mat.type = 9, hrule = "size")
apply the size rule on a triangle for creating a matriks with 9 cell
my_mat <- mat_apply(triangle(), mat.type = 9, hrule = "size")

maxi Coordinates of a maxi

Description

Define the coordinates for drawing a maxi (i.e., a cross composed of four lucks)

Usage

maxi(size.x = 8, size.y = 4, pos.x = 0@, shd = NA, 1ty = 1, 1wd = 3)

s_maxi(size.x = 8, size.y = 4, pos.x = 0@, shd = NA, 1ty = 1, 1lwd = 3)

Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 8
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 4
pos. X numeric, define the position on the x axis. Default is 0
shd character, define the color of the figure. Default is NA, which results in a trans-
parent figure
1ty integer, define the line type of the figure, default is 1 (solid line)
lwd integer, define the line width of the figure. Default is 3
Value

Return the coordinates for drawing a maxi

Return the coordinates for drawing a maxi

Functions

* s_maxi(): Coordinates of a single maxi

Define the coordinates for drawing a single maxi (i.e., a cross composed of four lucks), to be
used in shape()

miley 33

Examples

return the default coordinates for drawing a maxi

maxi()

change the coordinates for drawing a smaller maxi
maxi(size.x = 5)

return the default coordinates for drawing a single maxi
s_maxi()

change the coordinates for drawing a smaller single maxi
s_maxi(size.x = 5)

miley Define the coordinates of a miley

Description

Define the coordinates for drawing the petals composing a miley

Usage
miley(lwd = 3, 1ty = 1)

s_miley(lwd = 3, 1ty = 1)
Arguments

lwd integer, define the line width of the figure. Default is 3

1ty integer, define the line type of the figure, default is 1 (solid line)
Value

Return the coordinates for drawing the petals composing a miley

Return the coordinates for drawing the petals composing a single miley

Functions

* s_miley(): Define the coordinates a single miley
Define the coordinates for drawing the petals composing a single miley, to be used in shape()

Examples

return the default coordinates for drawing a right petal

miley()

change the line type of the right petal

miley(lty = 3)

return the default coordinates for drawing the petals composing a single miley
s_miley()

change the line type of the single miley

s_miley(lty = 3)

34 ninja

ninja Coordinates of a ninja star

Description

Define the coordinates for drawing a ninja star (composed of two lucks)

Usage

ninja(size.x = 10, size.y = 15, shd = "black”, lwd = 3, lty = 0)

s_ninja(size.x = 10, size.y = 15, shd = "black”, lwd = 3, 1ty = @)

Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 15
shd character, define the shading of the figure. Default is black
lwd integer, define the line width of the figure. Default is 3
1ty integer, define the line type of the figure, default is 0
Value

Return the coordinates for drawing a ninja star

Return the coordinates for drawing a single ninja

Functions

e s_ninja(): Coordinates of a single ninja
Define the coordinates for drawing a single ninja star (composed of two lucks), to be used in
shape()

Examples

return the default coordinates for drawing a ninja
ninja()

change the shade of the ninja

ninja(shd = "grey"”, lty = @)

return the default coordinates for drawing a single ninja
s_ninja()

change the shade of the single ninja

s_ninja(shd = "grey", 1ty = 0)

pacman 35

pacman Coordinates of a pacman

Description

Define the coordinates for drawing the circle sections for drawing a pacman

Usage
pacman (
size.x = sqrt(square()$size.x[[11]1*2/2),
size.y = 0,
pos.x = 0,
pos.y = 0

thetal = pi/4,
theta2 = 7 x pi/4,

1ty =1,
lwd = 3,
shd = NA,
vis =1
)
Arguments
size.x integer, length of the semi-major axis of the ellipse within which the figure is
inscribed. Default is sqrt(square()$ size.x[[1]]72 /2)
size.y integer, length of the semi-minor axis of the ellipse within which the figure is
inscribed. Default is O
pos. X numeric, position on the x axis. Default is 0
pos.y numeric, position the y axis, Default is 0
thetal Starting angle of the circle section. Default is 7
theta2 Ending angle of the circle section. Default is %’
1ty integer, define the line type of the figure, default is 1 (solid line)
lwd integer, define the line width of the figure. Default is 3
shd character, define the shading of the figure. Default is NA which results in a
transparent figure
vis Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0
Value

Return the coordinates for drawing a pacman

36

Examples

pentagon

default coordinates of pacman

pacman()

draw an actual pacman
draw(cof (pacman(shd = "yellow"), dot(pos.y = 6)))

pentagon

Coordinates of a pentagon

Description

Define the coordinates for drawing a pentagon

Usage

pentagon(

size.x = 15,

size.y = size.x,

rot =

pos.
pos.
shd

I < X

vis =
1ty =

lwd

Arguments

size.x

size.y

rot

pos. x

pos.y
shd

vis

1ty
1wd

Value

pi/2,

= 0’
= 0,
NA,

w = =

’

’

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 15

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x

define the rotation. Default is g
numeric, position on the x axis. Default is 0
numeric, position the y axis, Default is O

character, define the shading of the figure. Default is NA which results in a
transparent figure

Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

integer, define the line type of the figure, default is 1 (solid line).
integer, define the line width of the figure. Default is 3

Return the coordinates for drawing a pentagon

phantom

Examples

return the default coordinates for drawing a pentagon
pentagon()

change the coordinates for drawing a smaller pentagon
pentagon(size.x = 10)

37

phantom Coordinates of a panthom figure

Description

Draw an empty figure

Usage

phantom()

Value

An empty figure (nothing is plotted in draw)

Examples

empty figure
phantom()

draw an empty figure
draw(phantom())

pizza_4 Coordinates of a pizza with four slices

Description

Define the coordinates for drawing the circle sections composing a pizza with four slices

Usage

pizza_4(size.x = 15, shd = NA, 1lwd = 3, 1ty = 1)
s_pizza_4(size.x = 15, shd = NA, 1wd = 3, 1ty = 1)

pizza_2(
size.x =1
size.y = @
pos.x = 0,
pos.y = 0,

5

’
’

38

shd = NA,
1ty =1,
lwd = 3
)
s_pizza_2(

size.x = 15,
size.y = 0,

pos.x = 0,
pos.y = 0,
shd = NA,
1ty = 1,
lwd = 3

)

pizza_2_inv(
size.x = 15,
size.y = 0,
pos.x = 0,
pos.y = 0,
shd = NA,
1ty = 1,
lwd = 3

)

n 1< x

s_pizza_2_inv(
size.x = 15,
size.y = 0,
pos.x = 0,
pos.y = 0,
shd = NA,
1ty =1,
lwd = 3

n 1< x

Arguments

size.x

shd

Iwd
1ty

size.y

pos. X

pos.y

pizza_4

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 15

character, define the shading of the figure. Default is NA which results in a
transparent figure

integer, define the line width of the figure. Default is 3
integer, define the line type of the figure, default is 1 (solid line)

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is O

numeric, position on the x axis. Default is 0

numeric, position the y axis, Default is O

pizza_4 39

Value

Return the coordinates for drawing four circle sections composing a pizza with four slices

Return the coordinates for drawing four circle sections composing a singledocu pizza with four
slices

Return the coordinates for drawing two circle sections composing a pizza with two slices
Return the coordinates for drawing two circle sections composing a single pizza with two slices
The coordinates of two circle sections composing an inverse pizza with two slices

The coordinates of two circle sections composing a single pizza with two slices

Functions

* s_pizza_4(): Coordinates of a single pizza with four slices

Define the coordinates for drawing the circle section composing a single pizza with four slices,
to be used in shape()

* pizza_2(): Coordinates of a pizza with two slices

Define the coordinates for drawing the circle sections composing a pizza with two slices

* s_pizza_2(): Coordinates of a single pizza with two slices

Define the coordinates for drawing the circle section composing a single pizza with two slices,
to be used in shape()

e pizza_2_inv(): Coordinates of an inverse pizza with two slices

Define the coordinates for drawing the circle sections composing an inverse pizza with two
slices

* s_pizza_2_inv(): Coordinates of a single inverse pizza with two slices

Define the coordinates for drawing the circle sections composing an inverse pizza with two
slices, to be used in shape()

Examples

default coordinates of the pizza with four slices
pizza_4()

default coordinates of the single pizza with four slices
s_pizza_4()

default coordinates of the pizza with two slices
pizza_2()

default coordinates of the single pizza with two slices
s_pizza_2()

default coordinates of the inverse pizza with two slices
pizza_2_inv()

default coordinates of the single inverse pizza with two slices
s_pizza_2_inv()

40 repetition

repetition Repetition distractors (Method)

Description

Generate repetition distractors from a matriks

Usage

repetition(obj, ...)

S3 method for class 'matriks'

repetition(obj, ...)
Arguments
obj matriks, The matriks for which the distractor is generated

other arguments

Value

An object of class responses of length 3, which contains the repetition distractors of a matriks (R-
Left, R-Top, R-Diag). If the distractor could not be generated because of the constraints imposed
by the matrix, it will be covered by a thick, black X and a warning is given.

An object of class responses of length 3, which contains the repetition distractors of a matriks (R-
Left, R-Top, R-Diag). If the distractor could not be generated because of the constraints imposed
by the matrix, it will be covered by a thick, black X and a warning is given.

Methods (by class)

* repetition(matriks): Repetition distractors (Method)
Generate repetition distractors from a matriks

Examples

create a matrix

ml <- mat_apply(pacman(), hrules = "1ty")
m2 <- mat_apply(dot(), "shade")

mat <- com(ml, m2)

draw the matrix

draw(mat)

draw the repetition distractors
draw(repetition(mat))

create a matrix

ml <- mat_apply(pacman(), hrules = "1ty")
m2 <- mat_apply(dot(), "shade")

mat <- com(ml, m2)

draw the matrix

replace

draw(mat)
draw the repetition distractors
draw(repetition(mat))

41

replace Replace figures (Method)

Description

Replace a figure with another figure

Usage

replace(obj, index, replacement, visible)

S3 method for class 'figure'
replace(obj, index, replacement, visible = FALSE)

Arguments

obj A figure composed of different figures

index integer, the index of the element to replace

replacement The figure with which the original one is replaced

visible logical, if TRUE it will replace only the visible figure. Default is FALSE
Value

An object with a changed figure
The starting object with a replaced figure
An object with a changed figure
The starting object with a replaced figure

Methods (by class)

* replace(figure): Replace figures
Replace a figure with another figure

Examples

concanate three figures into an object
my_shapes <- cof(square(), triangle(), slice())
draw object

draw(my_shapes)

replace the square with a gray pacman
draw(replace(my_shapes, 1, pacman(shd = "grey")))
concanate three figures into an object
my_shapes <- cof(square(), triangle(), slice())

42

draw object

draw(my_shapes)

replace the square with a gray pacman
draw(replace(my_shapes, 1, pacman(shd = "grey")))

response_list

response_list Response list (Method)

Description

Generate the response list from a matriks (correct response and distractors)

Usage

response_list(obj, seed, ...)

S3 method for class 'matriks'

response_list(obj, seed = 666, ...)

Arguments
obj matriks, The matriks for which the distractor is generated
seed seed

other arguments

Value

An object of class responses of length 11, containing the correct response + 10 distractors (3 repe-

tition, 1 difference, 2 wrong principles, 4 incomplete correlate)

An object of class responses of length 11, containing the correct response + 10 distractors (3 repe-

tition, 1 difference, 2 wrong principles, 4 incomplete correlate)

Methods (by class)

* response_list(matriks): Response list

Generate the response list from a matriks (correct response and distractors)

Examples

create a matrix

ml <- mat_apply(hexagon(), hrules = "1ty", vrules = "size"
draw the matrix

draw(m1)

draw the responses

draw(response_list(m1))

change the difference distractor by changing the random seed
draw(response_list(ml, seed = 8))

rotate 43

create a matrix

ml <- mat_apply(hexagon(), hrules = "1lty", vrules = "size"
draw the matrix

draw(m1)

draw the responses

draw(response_list(m1))

change the difference distractors by changing the random seed
draw(response_list(ml, seed = 8))

rotate Rotation rule (Method)

Description

Apply a rotation of a fixed angle to a figure

Usage

rotate(fig, n, rule, ...)

S3 method for class 'figure'

rotate(fig, n = 4, rule = "rotation”, ...)
Arguments
fig The figure on which the rule is applied
n integer, defines the angle of the rotation. Default is 4, which corresponds to a

rotation of 4«

rule character, defines the rotation rule. Default is counterclockwise. If the rule
arguments contain the string "inv" forces a clockwise rotation. Each corresponds
toan o = %w. Default k is 4. To change the value of k is sufficient to add a
number from 1 to 9 in the argument.

Other arguments

Value

A figure of class figure with different rotation coordinates

A figure of class figure with different rotation coordinates

Methods (by class)

* rotate(figure): Rotate a figure
Apply a rotation of a fixed angle to a figure

44 semi_circle_bottom_inv

Examples

default luck
draw(luck())

apply the default rotation on the default luck
draw(rotate(luck()))

force clockwise rotation
draw(rotate(luck(), rule = "inv"))
default luck

draw(luck())

apply the default rotation on the default luck
draw(rotate(luck()))

force clockwise rotation
draw(rotate(luck(), rule = "inv"))

semi_circle_bottom_inv
Coordinates of an upward-facing left semi-circle

Description

Define the coordinates for drawing an upward-facing left semi-circle

Usage

semi_circle_bottom_inv(

size.x = sqrt(square()$size.x[[1]1]1*2/2),
size.y = 0,

pos.x = 0,

pos.y = 0@
thetal
theta2
shd = NA,
1ty =
lwd =
vis

5 % pi/4,
pi/4,

—_ W =

semi_circle_bottom(
size.x = sqrt(square()$size.x[[1]1]*2/2),
size.y = 0,
pos.x = 0,
pos.y = 0,
thetal = 3 * pi/4,
theta2 = 7 * pi/4,

semi_circle_bottom_inv 45

shd
1ty
lwd
vis

Arguments

size.x

size.y

pos. X
pos.y
thetal
theta2
shd

1ty
1wd

vis

Value

—_ W =

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is sqrt(square()$ size.x[[1]]72 /2)

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 0

numeric, position on the x axis. Default is 0

numeric, position the y axis, Default is O

Starting angle of the circle section. Default is 3*pi/4.

Ending angle of the circle section (built counterclockwise). Default is 7*pi/4.

character, define the shading of the figure. Default is NA which results in a
transparent figure

integer, define the line type of the figure, default is 1 (solid line)
integer, define the line width of the figure. Default is 3

Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

The coordinates for drawing an upward-facing left semi-circle

The coordinates a upward-facing left semi-circle

Functions

* semi_circle_bottom_inv(): Coordinates of an upward-facing right semi-circle

Define the coordinates fr drawing an upward-facing right semi-circle

Examples

default coordinates of the upward-facing right semi-circle
semi_circle_bottom_inv()

change the rotation of the upward-facing right semi-circle
semi_circle_bottom_inv(thetal = pi, theta2 = 2xpi)

default coordinates of the upward-facing left semi-circle
semi_circle_bottom()

change the rotation of the upward-facing left semi-circle
semi_circle_bottom(thetal = pi, theta2 = 2*pi)

46

semi_circle_top

semi_circle_top

Coordinates of a downward-facing left semi-circle

Description

Define the coordinates for drawing a downward-facing left semi-circle

Usage

semi_circle_top(
sqrt(square()$size.x[[11]1*2/2),

size.x
size.y

pos.Xx =
pos.y =

thetal
theta2

1ty

lwd =
shd =

V1s

)

:Q,

0,
0

pi/4,
5 % pi/4,

semi_circle_top_inv(
sqrt(square()$size.x[[1]]1*2/2),

size.x
size.y

pos.
pos.

thetal
theta2

shd
1ty
lwd
vis

Arguments

size.x
size.y

pos.Xx
pos.y

thetal
theta2

X
y

—_ W =

:Q,

o,
0

=7 % pi/4,
= 3 % pi/4,
NA,

’

’

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is sqrt(square()$ size.x[[1]]"2 /2)

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is O

numeric, position on the x axis. Default is O
numeric, position the y axis, Default is O
Starting angle of the circle section. Default is %”

Ending angle of the circle section (built counterclockwise). Default is %Tﬂ'

shade 47

1ty integer, define the line type of the figure, default is 1 (solid line)
lwd integer, define the line width of the figure. Default is 3
shd character, define the shading of the figure. Default is NA which results in a

transparent figure

vis Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

Value

Return the coordinates for drawing downward-facing left semi-circle

Return the coordinates for drawing a downward-facing right semi-circle

Functions

e semi_circle_top_inv(): Coordinates of a downward-facing right semi-circle
Define the coordinates for drawing a downward-facing right semi-circle

Examples

default coordinates of the downward-facing left semi-circle
semi_circle_top()

change the rotation of the downward-facing left semi-circle
semi_circle_top(thetal = pi/2, theta2 = 3xpi/2)

default coordinates of the downward-facing right semi-circle
semi_circle_top_inv()

change the rotation of the downward-facing right semi-circle
semi_circle_top_inv(thetal = @, theta2 = pi/2)

shade Shade rule (Method)

Description

Apply a change in the shading of the figure

Usage
shade(fig, n, rule, ...)

S3 method for class 'figure'

shade(fig, n = 1, rule = "shade", ...)
Arguments
fig The figure on which the rule is applied
n integer, defines the color of the shading. Default is 1 (white). Other options are
2 (grey) and 3 (black)
rule character, defines the rule for shading the figure

Other arguments

48 shape

Value

An object of class figure with different shading characteristics

An object of class figure with different shading characteristics

Methods (by class)

* shade(figure): Change the shade of a figure
Apply a change in the shading of the figure

Examples

draw default triangle
draw(triangle())

make it grey
draw(shade(triangle(), 2))
draw default triangle
draw(triangle())

make it grey
draw(shade(triangle(), 2))

shape Shape rule (Method)

Description

Apply a change in figures rule by change the visibility of the shapes in a figure

Usage

shape(fig, n, rule, ...)

S3 method for class 'figure'

shape(fig, n = 1, rule = "shape", ...)
Arguments
fig A vector of figures obtained with the concatenation of figures function (cof()).

Three figures are needed

n integer, the index of the element to see. Default is 1 (the first figure in cof() is
shown). To see the other figures, change n to index the figure you want to show

rule character, defines the rule for shading the figure

Other arguments

show

Value

An object of class figures, only the first figure is visible

Methods (by class)

* shape(figure): Change the visible shapes

Examples

Three figures, only the first is shown
draw(shape(cof(s_lily(), square(), s_star())))

Show the third figure (star)
draw(shape(cof(s_lily(), square(), s_star()), n = 3))

Show the first and the second figures
draw(shape(cof(s_lily(), square(), s_star()), n = c(1,2)))

49

show Show figures (Method)

Description

Change the visibility of a figure from O to 1
Usage
show(obj, index)

S3 method for class 'figure'
show(obj, index = "Full")

Arguments
obj A figure composed of different figures
index integer, the index of the element to hide
Value

The starting object with one more visible figure

The starting object with one more visible figure

Methods (by class)

* show(figure): Show figures
Change the visibility of a figure from O to 1

50 size

Examples

concatenate three figures into an object. The first figure is not visible
my_shapes <- cof(square(vis = @), triangle(), slice())

draw object

draw(my_shapes)

show the square

draw(show(my_shapes, 1))

concatenate three figures into an object. The first figure is not visible
my_shapes <- cof(square(vis = @), triangle(), slice())

draw object

draw(my_shapes)

show the square

draw(show(my_shapes, 1))

size Sizing rule (Method)

Description

Apply a resizing to a figure

Usage

size(fig, n, rule, ...)

S3 method for class 'figure'

size(fig, n = 2, rule = "size", ...)
Arguments
fig The figure on which the rule is applied
n A number defining the dimension of the sizing. Default is 2.
rule Define the sizing rule. Default is to reduce the dimension. rule = "inv" forces to

increase the dimension.

Other arguments

Value

A figure of class figure with different size.x and size.y

Methods (by class)

* size(figure): Resize a figure

slice 51

Examples

default square
draw(square())

apply the default resizing to the default square
draw(size(square()))

make the square bigger

draw(size(square(), rule = "inv"))
slice Coordinates of a pizza slice
Description

Define the coordinates for drawing a circle section

Usage
slice(
size.x = 15,
size.y = 0,
pos.x = 0,
pos.y = 0,
thetal = pi/4,
theta2 = 3 * pi/4,
lty = 1,
lwd = 3,
vis = 1,
shd = NA
)
Arguments
size.x integer, length of the semi-major axis of the ellipse within which the figure is
inscribed. Default is 15
size.y integer, length of the semi-major axis of the ellipse within which the figure is
inscribed. Default is O
PoS. X numeric, position on the x axis. Default is 0
pos.y numeric, position the y axis, Default is 0
thetal Starting angle of the circle section. Default is 7
theta2 Ending angle of the circle section (built counterclockwise). Default is 3{
1ty integer, define the line type of the figure, default is 1 (solid line)

lwd integer, define the line width of the figure. Default is 3

52 split_mat

vis Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

shd character, define the shading of the figure. Default is NA which results in a
transparent figure

Value

Return the coordinates for drawing a circle section

Examples

default coordinates of the pizza slice
slice()

change the rotation of the pizza slice
slice(thetal = 3*pi/4, theta2 = 5%pi/4)

split_mat Split the correct response (Method)

Description

Split all the visible figures composing a cell of the matrix or of a concatenation of figures

Usage
split_mat(obj, vis = TRUE, cell = NULL)
S3 method for class 'figure'
split_mat(obj, vis = TRUE, cell = NULL)

S3 method for class 'matriks'
split_mat(obj, vis = TRUE, cell = NULL)

Arguments

obj The complex figure or the matrix to split

vis logical, split only the visible figures. Default is TRUE

cell integer, The index of the cell to be split. Default is the correct response
Value

A list of figures of length equal to the number of figures visible in the correct response (vis = TRUE)
or to all the figures composing the complex figure (vis = FALSE)

A list of figures of length equal to the number of figures visible in the correct response (vis = TRUE)
or to all the figures composing the complex figure (vis = FALSE)

A list of figures of length equal to the number of figures visible in the correct response (vis = TRUE)
or to all the figures composing the complex figure (vis = FALSE)

square

Methods (by class)

e split_mat(figure): Split the correct response

Split all the visible figures composing a cell of the matrix or of a concatenation of figures

53

e split_mat(matriks): Split all the visible figures composing a cell of the matrix or a con-

catenation of figures

Examples

ml <- mat_apply(hexagon(), hrules = "lty")

split the elements in the correct response and assign to an object
split_m1 <- split_mat(m1$Sq1)

ml <- mat_apply(hexagon(), hrules = "lty")

split the elements in the correct response and assign to an object
split_ml <- split_mat(m1$Sq1)

ml <- mat_apply(hexagon(), hrules = "lty")

split the elements in the correct response and assign to an object
split_m1 <- split_mat(m1)

square

Coordinates of a square

Description

Define the coordinates for drawing a square

Usage

square(

size.x
size.y

rot
pos.
pos.
shd

I < X

vis =
1ty =

lwd

square4(
size.x
size.y

pos.
pos.
lwd
1ty

I < X

15,

size.x,

pi/4,

- w Il

’

sqrt(square()$size.x[[1]1]1*2/2),

size.x,
size.x,
size.x,

54

Arguments

size.x

size.y

rot
pos.x

pos.y
shd

vis

1ty
1wd

Value

star

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is sqrt(square()$ size.x[[1]]72 /2)

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x.
define the rotation. Default is %i
numeric, position on the x axis. Default is 0.
numeric, position the y axis, Default is 0.

character, define the shading of the figure. Default is NA which results in a
transparent figure

Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

integer, define the line type of the figure, default is 1 (solid line).
integer, define the line width of the figure. Default is 3.

Return the coordinates for drawing a square

Return the coordinates for drawing a square composed of 4 lines

Functions

* square4(): Coordinates of a square composed of 4 lines

Define the coordinates for drawing a square composed of 4 lines

Examples

return the default coordinates for drawing a square

square()

change the coordinates for drawing a smaller square
square(size.x = 5)
default coordinates of square composed of 4 lines

square4()

draw square composed of 4 lines with different 1ty
draw(square4(lty = 2))

star

Coordinates of a star

Description

Define the coordinates for drawing a star (composed of 4 luck)

triangle 55

Usage

star(size.x = 10, size.y = 15, shd = "black”, 1lwd = 3, 1ty = 0)

s_star(size.x = 10, size.y = 15, shd = "black”, lwd = 3, 1ty = 0)

Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10
size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is 15
shd character, define the shading of the figure. Default is black
lwd integer, define the line width of the figure. Default is 3
1ty integer, define the line type of the figure, default is 0
Value

Return the coordinates for drawing star composed of four lucks

Return the coordinates for drawing a single star composed of four lucks

Functions

* s_star(): Coordinates of a single star

Define the coordinates for drawing a single star (composed of 4 luck), to be used in shape()

Examples

get the coordinates of a star composed of four luck
star()

change the color of the star

draw(star(shd = "grey”, 1ty = 0))

get the coordinates of a single star composed of four luck
s_star()

change the color of the star
draw(s_star(shd = "grey”, lty = 0))

triangle Coordinates of a triangle

Description

Define the coordinates for drawing a triangle

56

Usage

triangle(

size.x

=109,

triangle

size.y = size.x,

pos.
pos.
rot

< X

shd =
vis =

1ty
lwd

Arguments

size.x

size.y

pos. X

pos.y
rot

shd

vis

1ty
Iwd

Value

= 0’
= @)
pi/2,
NA,
1,
1,

3

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x

numeric, position on the x axis. Default is O
numeric, position the y axis, Default is 0
define the rotation. Default is g

character, define the shading of the figure. Default is NA which results in a
transparent figure

Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0

integer, define the line type of the figure, default is 1 (solid line).

integer, define the line width of the figure. Default is 3

Return the coordinates for drawing a triangle

Examples

return the default coordinates for drawing a triangle
triangle()
change the coordinates for drawing a smaller triangle

triangle(size.x

5)

up_petal

57

up_petal Define the coordinates of petals

Description

Define the coordinates for drawing the circle arches composing some petals

Usage
up_petal(lwd = 3, 1ty = 1)

down_petal(lwd = 3, 1ty = 1)
left_petal(lwd = 3, 1ty = 1)

right_petal(lwd = 3, 1ty = 1)

Arguments

lwd integer, define the line width of the figure. Default is 3

1ty integer, define the line type of the figure, default is 1 (solid line)
Value

Return the coordinates for drawing the circle arches composing an up petal
Return the coordinates for drawing the circle arches composing a down petal
Return the coordinates for drawing the circle arches composing a left petal

Return the coordinates for drawing the circle arches composing a right petal

Functions

e down_petal(): Define the coordinates of a down petal
Define the coordinates for drawing the circle arches composing a down petal

» left_petal(): Define the coordinates of a left petal

Define the coordinates for drawing the circle arches composing a left petal
e right_petal(): Define the coordinates of a right petal

Define the coordinates for drawing the circle arches composing a right petal

Examples

return the default coordinates for drawing the circle arches composing an up petal
up_petal ()

change the line type of the up petal

up_petal(lty = 3)

return the default coordinates for drawing a down petal

down_petal()

58 vertical_eight

change the line type of the down petal

down_petal(lty = 3)

return the default coordinates for drawing a left petal
left_petal()

change the line type of the left petal

left_petal(lty = 3)

return the default coordinates for drawing a right petal
right_petal()

change the line type of the right petal

right_petal(lty = 3)

vertical_eight Eight-shaped figures

Description

Define the coordinates for drawing eight-shaped figures vertical_eight defines the coordinates for
drawing a vertical eight-shaped figures.

Usage

vertical_eight(lwd = 3, 1ty = 1)

horizontal_eight(lwd = 3, 1ty

1
—_
~

s_vertical_eight(lwd = 3, 1ty = 1)

s_horizontal_eight(lwd = 3, 1ty = 1)

Arguments

lwd integer, define the line width of the figure. Default is 3.

1ty integer, define the line type of the figure, default is 1 (solid line).
Value

Return the coordinates for drawing a vertical eight-shaped figure
Return the coordinates for drawing an horizontal eight-shaped figure
Return the coordinates for drawing a single vertical eight-shaped figure to be used in shape()

Return the coordinates for drawing a single horizontal eight-shaped figure to be used in shape()

Functions
e horizontal_eight(): Coordinates of an horizontal eight
Define the coordinates for drawing an horizontal eight-shaped figure

e s_vertical_eight(): Coordinates of a single vertical eight
Define the coordinates for drawing a single vertical eight-shaped figure, to be used in shape()

vertical_s 59

* s_horizontal_eight(): Coordinates of a single horizontal eight
Define the coordinates for drawing a single vertical eight-shaped figure, to be used in shape()

Examples

default coordinates of the vertical eight-shaped figure
vertical_eight()

change the line type

vertical_eight(lty = 2)

default coordinates of the horizontal eight-shaped figure
horizontal_eight()

change the line type

horizontal_eight(lty = 2)

default coordinates of the single vertical eight-shaped figure
s_vertical_eight()

change the line type

s_vertical_eight(lty = 2)

default coordinates of a single horizontal eight-shaped figure
s_horizontal_eight()

change the line type

s_horizontal_eight(lty = 2)

vertical_s Coordinates of S-shaped figures

Description

Define the coordinates for drawing S-shaped figures
Usage

vertical_s(lty = 1, lwd = 3)

vertical_s_inv(lty = 1, 1lwd = 3)

horizontal_s(lty = 1, 1lwd = 3)

horizontal_s_inv(lty = 1, 1lwd = 3)

s_vertical_s(lty = 1, 1lwd = 3)

s_vertical_s_inv(lty = 1, 1lwd = 3)
s_horizontal_s(lty = 1, 1lwd = 3)

s_horizontal_s_inv(lty = 1, lwd = 3)

60 vertical s

Arguments
1ty integer, define the line type of the figure, default is 1 (solid line).
lwd integer, define the line width of the figure. Default is 3.

Details

Define the coordinates of a vertical S-shaped figure

Value

Return the coordinates for drawing a vertical S-shaped figure

Return the coordinates for drawing an inverted vertical S-shaped figure
Return the coordinates for drawing an horizontal S-shaped figure
Return the coordinates for drawing an horizontal S-shaped figure
Return the coordinates for drawing a vertical S-shaped figure

Return the coordinates for drawing a single vertical S-shaped figure
Return the coordinates for drawing a single horizontal S-shaped figure

Return the coordinates for drawing a single inverted horizontal S-shaped figure

Functions

* vertical_s_inv(): Coordinates of an inverted vertical S-shaped figure

Define the coordinates of an inverted vertical S-shaped figure

* horizontal_s(): Coordinates of an horizontal S-shaped figure

Define the coordinates of an horizontal S-shaped figure

* horizontal_s_inv(): Coordinates of an inverted horizontal S-shaped figure

Define the coordinates of an inverted horizontal S-shaped figure

* s_vertical_s(): Coordinates of a single vertical S-shaped figure
Define the coordinates for drawing a single vertical S-shaped figure composed of two arches,
which is forced to be a single figure (to be used in shape())

e s_vertical_s_inv(): Coordinates of a single inverted vertical S-shaped figure
Define the coordinates for drawing a single inverted vertical S-shaped figure composed of two
arches, which is forced to be a single figure (to be used in shape())

* s_horizontal_s(): Coordinates of a single horizontal S-shaped figure
Define the coordinates for drawing a single horizontal S-shaped figure composed of two
arches, which is forced to be a single figure (to be used in shape())

* s_horizontal_s_inv(): Coordinates of a single inverted horizontal S-shaped figure

Define the coordinates for drawing a single inverted horizontal S-shaped figure composed of
two arches, which is forced to be a single figure (to be used in shape())

vert_bow _tie

Examples

default coordinates of the vertical S-shaped figure
vertical_s()

change the line type

vertical_s(lty = 2)

default coordinates of the inverted vertical S-shaped figure
vertical_s_inv()

change the line type

vertical_s_inv(lty = 2)

default coordinates of the horizontal S

horizontal_s()

change the line type

horizontal_s(lty = 2)

default coordinates of the horizontal S-shaped figure
horizontal_s_inv()

change the line type

horizontal_s_inv(lty = 2)

default coordinates of the vertical S-shaped figure
s_vertical_s()

change the line type

s_vertical_s(lty = 2)

default coordinates of the single inverted vertical S-shaped figure
s_vertical_s_inv()

change the line type

s_vertical_s_inv(lty = 2)

default coordinates of the single horizontal S-shaped figure
s_horizontal_s()

change the line type

s_horizontal_s(lty = 2)

default coordinates of the single inverted horizontal S-shaped figure
s_horizontal_s_inv()

change the line type

s_horizontal_s_inv(lty = 2)

vert_bow_tie Coordinates of bow ties

Description

Define the coordinates for drawing bow ties composed of two triangles

Usage

vert_bow_tie(
size.x = 10,
size.y = size.x,
pos.x = 0,
shd = NA,
1ty =1,

62

lwd =3

)

s_vert_bow_tie(
size.x = 10,

vert_bow _tie

size.y = size.x,

pos.

shd

1ty

lwd
)

X

0,

NA,

1
3

’

hor_bow_tie(
size.x = 10,
size.y = size.x,

pos.
shd

X

lwd =

1ty
)

s_hor_bow_tie(
size.x
size.y

pos.
shd
lwd
1ty
)

Arguments

size.x

size.y

pos.x

shd

1ty
lwd

Details

X

o,

NA,

3
1

’

10,

size.x,

0,

NA,

3
1

’

numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is 10

numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x

numeric, define the position on the x axis. Default is 0

character, define the color of the figure. Default is NA, which results in a trans-
parent figure

integer, define the line type of the figure, default is 1 (solid line)

integer, define the line width of the figure. Default is 3

vert_bow_tie() Define the coordinates for drawing a vertical bow tie composed of two triangles

vline 63

Value

Return the coordinates for drawing a vertical bow tie
Return the coordinates for drawing a single vertical bow tie
Return the coordinates for drawing a vertical bow tie

Return the coordinates for drawing a single horizontal bow tie

Functions

* s_vert_bow_tie(): Coordinates of a single vertical bow tie

Define the coordinates for drawing a single vertical bow tie composed of two triangles, to be
used in shape()

e hor_bow_tie(): Coordinates of an horizontal bow tie

Define the coordinates for drawing an horizontal bow tie composed of two triangles

* s_hor_bow_tie(): Coordinates of a single horizontal bow tie

Define the coordinates for drawing a single horizontal bow tie composed of two triangles, to
be used in shape()

Examples

return the default coordinates for drawing a vertical bow tie
vert_bow_tie()

change the coordinates for drawing a smaller bow tie
vert_bow_tie(size.x = 5)

return the default coordinates for drawing a bow tie
s_vert_bow_tie()

change the coordinates for drawing a smaller bow tie
s_vert_bow_tie(size.x = 5)

return the default coordinates for drawing a vertical bow tie
hor_bow_tie()

change the coordinates for drawing a smaller bow tie
hor_bow_tie(size.x = 5)

return the default coordinates for drawing a single horizontal bow tie
s_hor_bow_tie()

change the coordinates for drawing a smaller bow tie
s_hor_bow_tie(size.x = 5)

vline Coordinates of lines

Description

Define the coordinates for drawing lines

64 vline

Usage

vline(
size.x = sqgrt(square()$size.x[[1]]*2/2),
size.y = size.x,
pos.
pos.
1ty
lwd
vis

0,
0,

1< X

’

’

1]
- w = 1

)

hline(
size.x = sqrt(square()$size.x[[1]1]*2/2),
size.y = size.x,
pos.
pos.
1ty
lwd
vis

0,
0,

< X

1l
- w - 1

)

diagline(
size.x = list(sqrt(square()$size.x[[1]1]*2/2)),
size.y = size.x,

pos.x = 0,
pos.y = 0,
1ty =1,
lwd = 3,
rotation = pi - pi/4,
vis = 1
)

diagline_inv(
size.x = sqrt(square()$size.x[[1]1]*2/2),
size.y = size.x,

pos.x = 0,
pos.y = 0,
1ty =1,
lwd = 3,
rotation = pi + pi/4,
vis =1

)

Arguments
size.x numeric, define the semi-major axis of the ellipse within which the figure is

inscribed. Default is sqrt(square()$ size.x[[1]]"2 /2)

size.y numeric, define the semi-minor axis of the ellipse within which the figure is

vline 65

inscribed. Default is size.x.

poS. X numeric, position on the x axis. Default is 0
pos.y numeric, position the y axis, Default is O
1ty integer, define the line type of the figure, default is 1 (solid line).
lwd integer, define the line width of the figure. Default is 3.
vis integer, define the visibility of the figure (default is 1, visible)
rotation define the rotation of the line

Details

vline() Define the coordinates for drawing a vertical line

Value

Return the coordinates for drawing a vertical line
Return the coordinates for drawing an horizontal line
Return the coordinates for drawing the main diagonal line

Return the coordinates for drawing the inverse diagonal line

Functions

* hline(): description Coordinates of an horizontal line
Define the coordinates for drawing an horizontal line

* diagline(): Coordinates of the main diagonal line
Define the coordinates for drawing the main diagonal line

* diagline_inv(): Coordinates of the inverse diagonal line
Define the coordinates for drawing the inverse diagonal line

Examples

default coordinates of a vertical line

vline()

draw a vertical line with different 1ty
draw(vline(lty = 2))

default coordinates of an horizontal line
hline()

draw a vertical line with different 1ty
draw(hline(lty = 2))

default coordinates of the main diagonal line
diagline()

draw the main diagonal line with different 1ty
draw(diagline(lty = 2))

default coordinates of the inverse diagonal line
diagline_inv()

draw the inverse diagonal line with different 1ty
draw(diagline_inv(lty = 2))

66

v_arc_left_up

v_arc_left_up Coordinates for drawing circle arches

Description

Define the coordinates for drawing different circle arches

Usage

vV_

)

vV_

)

vV_

)

V_

arc_left_up(
size.x = square()$size.x[[111/2,
size.y = size.x,

pos.x = 0,
pos.y = 0,
vis = 1,
Ity =1,
lwd = 3

arc_right_up(
size.x = square()$size.x[[1]1/2,
size.y = size.x,

pos.x = 0,
pos.y = 0,
1ty =1,
lwd = 3,
vis =1

arc_left_down(

size.x = square()$size.x[[1]1/2,
size.y = size.x,

1ty =
lwd =
vis
pos. X
pos.y =

’

’

|
I == w =

’

o,
0

arc_right_down(

size.x = square()$size.x[[1]11/2,
size.y = size.x,

1ty =
lwd =
vis =
pos. X
pos.y

’

’

’

n - w =

v_arc_left_up 67

)

h_arc_left_up(
size.x = square()$size.x[[1]11/2,
size.y = size.x,
1ty =
lwd =
vis =
pos. X
pos.y =
)

’

’

’

n - w =

0,
0

h_arc_right_up(

size.x = square()$size.x[[1]11/2,
size.y = size.x,

1ty =
lwd =
vis
pos.
pos.

)

)

’

|
N - w =

’

x

0,
0

<

h_arc_left_down(

size.x = square()$size.x[[1]1/2,
size.y = size.x,

1ty =
lwd =
vis
pos.
pos.

)

’

’

|
N - w =

’

x

0,
0

<

h_arc_right_down(
size.x = square()$size.x[[1]]1/2,
size.y = size.x,
1ty =
lwd =
vis
pos.
pos.

)

|
N - w =

< X
1

Arguments

size.x numeric, define the semi-major axis of the ellipse within which the figure is
inscribed. Default is square()$size.x[[1]]/2

size.y numeric, define the semi-minor axis of the ellipse within which the figure is
inscribed. Default is size.x

68 v_arc_left_up

posS. X numeric, position on the x axis. Default is 0
pos.y numeric, position the y axis, Default is O
vis Visibility of the figure. Default is 1, making the figure visible. To hide the figure,
change it to 0
1ty integer, define the line type of the figure, default is 1 (solid line)
lwd integer, define the line width of the figure. Default is 3
Value

Return the coordinates for drawing the left up arch of a circle
Return the coordinates for drawing the right up arch of a circle
Return the coordinates for drawing the left down arch of a circle
Return the coordinates for drawing the right down arch of a circle
Return the coordinates for drawing the left up arch of a circle
Return the coordinates for drawing the right up arch of a circle
Return the coordinates for drawing the left down arch of a circle

Return the coordinates for drawing the right down arch

Functions

e v_arc_right_up(): Coordinates of a vertical right up arch
Define the coordinates for drawing the right up arch of a circle

e v_arc_left_down(): Coordinates of a vertical left down arch
Define the coordinates for drawing the left down arch of a circle

e v_arc_right_down(): Coordinates of a vertical right down arch
Define the coordinates for drawing f the right down arch of a circle

e h_arc_left_up(): Coordinates of a horizontal left up arch
Define the coordinates for drawing the left up arch of a circle

e h_arc_right_up(): Coordinates of a horizontal right up arch
Define the coordinates for drawing the right up arch of a circle

e h_arc_left_down(): Coordinates of a horizontal left down arch
Define the coordinates for drawing the left down arch of a circle

e h_arc_right_down(): Coordinates of a horizontal right down arch
Define the coordinates for drawing the right down arch of a circle

Examples

default coordinates of the left up arch
v_arc_left_up()

default coordinates of the right up arch
v_arc_right_up()

default coordinates of the left down arch
v_arc_left_down()

wp 69

default coordinates of the right down arch
v_arc_right_down()

default coordinates of the left up arch
h_arc_left_up()

default coordinates of the right up arch
h_arc_right_up()

default coordinates of the left down arch
h_arc_left_down()

default coordinates of the right down arch
h_arc_right_down()

wp Wrong principle distractors (method)

Description

Generate the wrong principle distractors

Usage
wp(obj, ...)

S3 method for class 'matriks'

wp(obj, ...)
Arguments
obj The matriks
Other arguments
Value

An object of class responses that contains the wrong principle distractors of a matriks (WP-Matrix
and WP-Copy). If the distractor could not be generated because of the constraints imposed by the
matrix, it will be covered by a thick, black X and a warning is given.

An object of class responses that contains the wrong principle distractors of a matriks (WP-Matrix
and WP-Copy). If the distractor could not be generated because of the constraints imposed by the
matrix, it will be covered by a thick, black X and a warning is given.

Methods (by class)

* wp(matriks): Wrong principle distractors

Generate the wrong principle distractors

70

Examples

ml <- mat_apply(hexagon(), hrules = "1ty")
draw the matriks

draw(m1)

draw the wp distractors with the title
draw(wp(m1), main = TRUE)

ml <- mat_apply(hexagon(), hrules = "1ty")
draw the matriks

draw(m1)

draw the wp distractors with the title
draw(wp(m1), main = TRUE)

Index

axe, 3
biscuit, 4

change_color, 5
circle, 6

cof, 7

com (cof), 7
concatenation (cof), 7
correct, 10

cross, 11

cross_dice (dice), 13

decof, 12

diagline (vline), 63
diagline_inv (vline), 63
dice, 13

difference, 14

dot, 15

down_petal (up_petal), 57
draw, 16

ellipse, 19

h_arc_left_down (v_arc_left_up), 66
h_arc_left_up (v_arc_left_up), 66
h_arc_right_down (v_arc_left_up), 66
h_arc_right_up (v_arc_left_up), 66
hexagon, 20

hide, 21

hide.figure, 21

hline (vline), 63

hor_bow_tie (vert_bow_tie), 61
horizontal_eight (vertical_eight), 58
horizontal_s (vertical_s), 59
horizontal_s_inv (vertical_s), 59

ic, 22

ic_flip(ic), 22
ic_inc (ic), 22
ic_neg (ic), 22

71

ic_size(ic), 22
identity, 25

left_petal (up_petal), 57
lily, 26

logic, 27

luck, 28

luck4 (luck), 28

malta, 29
margin, 30
mat_apply, 31
maxi, 32
miley, 33

ninja, 34

pacman, 35

pentagon, 36

phantom, 37

pizza_2 (pizza_4), 37
pizza_2_inv (pizza_4), 37
pizza_4,37

repetition, 40

replace, 41
response_list, 42
right_petal (up_petal), 57
rotate, 43

s_axe (axe), 3

s_biscuit (biscuit), 4
s_hor_bow_tie (vert_bow_tie), 61
s_horizontal_eight (vertical_eight), 58
s_horizontal_s (vertical_s), 59
s_horizontal_s_inv (vertical_s), 59
s_lily(1lily), 26

s_malta (malta), 29

s_maxi (maxi), 32

s_miley (miley), 33
s_ninja(ninja), 34

72

s_pizza_2 (pizza_4), 37

s_pizza_2_inv (pizza_4), 37

s_pizza_4 (pizza_4), 37

s_star (star), 54

s_vert_bow_tie (vert_bow_tie), 61

s_vertical_eight (vertical_eight), 58

s_vertical_s (vertical_s), 59

s_vertical_s_inv (vertical_s), 59

semi_circle_bottom
(semi_circle_bottom_inv), 44

semi_circle_bottom_inv, 44

semi_circle_top, 46

semi_circle_top_inv (semi_circle_top),
46

shade, 47

shape, 48

show, 49

size, 50

slice, 51

split_mat, 52

square, 53

square4 (square), 53

star, 54

triangle, 55
up_petal, 57

v_arc_left_down (v_arc_left_up), 66
v_arc_left_up, 66

v_arc_right_down (v_arc_left_up), 66
v_arc_right_up (v_arc_left_up), 66
vert_bow_tie, 61

vertical_eight, 58

vertical_s, 59

vertical_s_inv (vertical_s), 59
vline, 63

wp, 69

X (cross), 11

INDEX

	axe
	biscuit
	change_color
	circle
	cof
	correct
	cross
	decof
	dice
	difference
	dot
	draw
	ellipse
	hexagon
	hide
	hide.figure
	ic
	identity
	lily
	logic
	luck
	malta
	margin
	mat_apply
	maxi
	miley
	ninja
	pacman
	pentagon
	phantom
	pizza_4
	repetition
	replace
	response_list
	rotate
	semi_circle_bottom_inv
	semi_circle_top
	shade
	shape
	show
	size
	slice
	split_mat
	square
	star
	triangle
	up_petal
	vertical_eight
	vertical_s
	vert_bow_tie
	vline
	v_arc_left_up
	wp
	Index

