Stochastic Gradient Ascent in maxLik

Ott Toomet
December 29, 2025

1 maxLik and Stochastic Gradient Ascent

maxLik is a package, primarily intended for Maximum Likelihood and related
estimations. It includes several optimizers and associated tools for a typical
Maximum Likelihood workflow.

However, as predictive modeling and complex (deep) models have gained
popularity in the recend decade, maxLik also includes a few popular algorithms
for stochastic gradient ascent, the mirror image for the more widely known
stochastic gradient descent. This vignette gives a brief overview of these meth-
ods, and their usage in maxLik.

2 Stochastic Gradient Ascent

In machine learning literature, it is more common to describe the optimiza-
tion problems as minimization and hence to talk about gradient descent. As
maxLik is primarily focused on maximizing likelihood, it implements the maxi-
mization version of the method, stochastic gradient ascent (SGA).

The basic method is simple and intuitive, it is essentially just a careful
climb in the gradient’s direction. Given and objective function f(0), and the
initial parameter vector 8y, the algorithm will compute the gradient g(6y) =
Vef(0)|0:00, and update the parameter vector as 61 = 0y + pg(8y). Here p,
the learning rate, is a small positive constant to ensure we do not overshoot the
optimum. Depending on the task it is typically of order 0.1...0.001. In common
tasks, the objective function f(0) depends on data, “predictors” X and “outcome”
y in an additive form f(6;X,y) = >, f(0;x;,y;) where i denotes “observations”,
typically arranged as the rows of the design matrix X. Observations are often
considered to be independent of each other.

The overview above does not specify how to compute the gradient g(€y) in
a sense of which observations i to include. A natural approach is to include the
complete data and compute

N
an(00) = 1 D Vol (6:31)]o_, (1)
i=1

In SGA context, this approach is called “full batch” and it has a number of ad-
vantages. In particular, it is deterministic (given data X and y), and computing
of the sum can be done in parallel. However, there are also a number of reasons
why full-batch approach may not be desirable (see Bottou et al., 2018):

e Data over different observations is often more or less redundant. If we use
all the observations to compute the update then we spend a substantial
effort on redundant calculations.

e Full-batch gradient is deterministic and hence there is no stochastic noise.
While advantageous in the latter steps of optimization, the noise helps the
optimizer to avoid local optima and overcome flat areas in the objective
function early in the process.

e SGA achieves much more rapid initial convergence compared to the full
batch method (although full-batch methods may achieve better final re-
sult).

e Cost of computing the full-batch gradient grows with the sample size but
that of minibatch gradient does not grow.

e It is empirically known that large-batch optimization tend to find sharp
optima (see Keskar et al., 2016) that do not generalize well to validation
data. Small batch approach leads to a better validation performance.

In contrast, SGA is an approach where the gradient is computed on just a
single observation as

91(600) = V@f(e;wivyi)|9:gg (2)

where ¢ is chosen randomly. In applications, all the observations are usually
walked through in a random order, to ensure that each observation is included
once, and only once, in an epoch. Epoch is a full walk-through of the data, and
in many ways similar to iteration in a full-batch approach.

As SGA only accesses a single observation at time, it suffers from other kind
of performance issues. In particular, one cannot parallelize the gradient function
(2), operating on individual data vectors may be inefficient compared to larger
matrices, and while we gain in terms of gradient computation speed, we lose by
running the optimizer for many more loops.

Minibatch approach offers a balance between the full-batch and SGA. In
case of minibatch, we compute gradient not on individual observations but on

batches
1

9m(00) = 18] ZVGf(e;wiayi”g:go (3)
i€B

where B is the batch, a set of observations that are included in the gradient
computation. Normally the full data is partitioned into a series of minibatches
and walked through sequentially in one epoch.

3 SGA in maxLik package

maxLik implements two different optimizers: maxSGA for simple SGA (includ-
ing momentum), and maxAdam for the Adaptive Moments method (see Good-
fellow et al., 2016, p. 301). The usage of both methods mostly follows that of
the package’s main workhorse, maxNR (see Henningsen and Toomet, 2011), but
their API has some important differences due to the different nature of SGA.
The basic usage of the maxSGA is as follows:

> maxSGA(fn, grad, start, nObs, control)

where fn is the objective function, grad is the gradient function, nObs is number
of observations, and control is a list of control parameters. From the user’s
perspective, grad is typically the most important (and the most complex) ar-
gument.

Next, we describe the API and explain the differences between the maxSGA
API and maxNR API, and thereafter give a few toy examples that demonstrate
how to use maxSGA in practice.

3.1 The objective function

Unlike in maxNR and the related optimizers, SGA does not directly need
the objective function fn. The function can still be provided (and perhaps
will in most cases), but one can run the optimizer without it. If provided,
the function can be used for printing the value at each epoch (by setting a
suitable printLevel control option), and for stopping through patience stopping
condition. If fn is not provided, do not forget to add the argument name for
the gradient, grad=, as otherwise the gradient will be treated as the objective
function with unexpected results!

If provided, the function should accept two (or more) arguments: the first
must be the numeric parameter vector, and another one, named index, is the
list of indices in the current minibatch.

As the function is not needed by the optimizer itself, it is up to the user to
decide what it does. An obvious option is to compute the objective function
value on the same minibatch as used for the gradient computation. But one can
also opt for something else, for instance to compute the value on the validation
data instead (and ignore the provided index). The latter may be a useful option
if one wants to employ the patience-based stopping criteria.

3.2 Gradient function

Gradient is the work-horse of the SGA methods. Although maxLik can also
compute numeric gradient using the finite difference method (this will be auto-
matically done if the objective function is provided but the gradient isn’t), this
is not advisable, and may be very slow in high-dimensional problems. maxLik
uses the numerator layout, i.e. the gradient should be a 1 x K matrix where

columns correspond to the components of the parameter vector 8. For com-
patibility with other optimizers in maxLik it also accepts a observation-wise
matrix where rows correspond to the individual observations and columns to
the parameter vector components.

The requirements for the gradient function arguments are the same as for
fn: the first formal argument must be the parameter vector, and it must also
have an argument index, a numeric index for the observations to be included
in the minibatch.

3.3 Stopping Conditions

maxSGA uses three stopping criteria:

e Number of epochs (control option iterlim): number of times all data is
iterated through using the minibatches.

e Gradient norm. However, in case of stochastic approach one cannot expect
the gradient at optimum to be close to zero, and hence the corresponding
criterion (control option gradtol) is set to zero by default. If interested,
one may make it positive.

e Patience. Normally, each new iteration has better (higher) value of the
objective function. However, in certain situations this may not be the case.
In such cases the algorithm does not stop immediately, but continues up to
patience more epochs. It also returns the best parameters, not necessarily
the last parameters.

Patience can be controlled with the options SG_patience and SG_patienceStep.
The former controls the patience itself~-how many times the algorithm is
allowed to produce an inferior result (default value NULL means patience
criterion is not used). The latter controls how often the patience criterion

is checked. If computing the objective function is costly, it may be useful

to increase the patience step and decrease the patience.

3.4 Optimizers

maxLik currently implements two optimizers: SGA, the stock gradient ascent
(including momentum), and Adam. Here we give some insight into the momen-
tum, and into the Adam method, the basic gradient-only based optimization
technique was explained in Section 2.

It is easy and intuitive to extend the SGA method with momentum. As
implemented in maxSGA, the momentum g (0 < p < 1) is incorporated into the
the gradient update as

0i41 =0, +v, where wv;=pvi_1+pg(6). (4)

See Goodfellow et al. (2016, p. 288). The algorithm takes the initial “velocity”
vg = 0. It is easy to see that u = 0 is equivalent to no-momentum case, and if

g(0) is constant, v; — pg(0)/(1 —). So the movement speeds up in a region
with stable gradient. As a downside, it is also easier overshoot a maximum. But
this behavior makes momentum-equipped SGA less prone of getting stuck in a
local optimum. Momentum can be set by the control option SG_momentum, the
default value is 0.

Adaptive Moments method, usually referred to as Adam, (Goodfellow et al.,
2016, p. 301) adapts the learning rate by variance of the gradient—if gradient
components are unstable, it slows down, and if they are stable, it speeds up. The
adaptation is proportional to the weighted average of the gradient divided by
the square root of the weighted average of the gradient squared, all operations
done component-wise. In this way a stable gradient component (where moving
average is similar to the gradient value) will have higher speed than a fluctuating
gradient (where the components frequently shift the sign and the average is much
smaller). More specifically, the algorithm is as follows:

1. Initialize the first and second moment averages s = 0 and r = 0.
2. Compute the gradient g, = g(0).

3. Update the average first moment: S;y1 = p18:+(1—p1)g,. p1 is the decay
parameter, the larger it is, the longer memory does the method have. It
can be adjusted with the control parameter Adam_momentumi, the default
value is 0.9.

4. Update the average second moment: r; 1 = por; + (1 — p2)g, © g, where
® denotes element-wise multiplication. The control parameter for the po
is Adam_momentum?2, the default value is 0.999.

5. As the algorithm starts with the averages sg = r¢ = 0, we also correct the
resulting bias: § = s/(1 — p}) and 7 = /(1 — ub).

6. Finally, update the estimate: 6,4, = 0, + p3/(8 + /1) where division and
square root are done element-wise and § = 108 takes care of numerical
stabilization.

Adam optimizer can be used with maxAdam.

3.5 Controlling Optimizers

Both maxSGA and maxAdam are designed to be similar to maxNR, and mostly
expect similar arguments. In particular, both functions expect the objective
function fn, gradient grad and Hessian function hess, and the initial parameter
start values start. As these optimizers only need gradient, one can leave out
both fn and hess. The Hessian is mainly included for compatibility reasons
and only used to compute the final Hessian, if requested by the user. As SGA
methods are typically used in contexts where Hessian is not needed, by default
the algorithms do not return Hessian matrix and hence do not use the hess
function even if provided. Check out the argument finalHessian if interested.

An important SGA-specific control options is SG_batchSize. This deter-
mines the batch size, or NULL for the full-batch approach.

Finally, unlike the traditional optimizers, stochastic optimizers need to know
the size of data (argument nObs) in order to calculate the batches.

4 Example usage: Linear regression

4.1 Setting Up

We demonstrate the usage of maxSGA and maxAdam to solve a linear regression
(OLS) problem. Although OLS is not a task where one commonly relies on
stochastic optimization, it is a simple and easy-to understand model. We use
the Boston housing data, a popular dataset where one traditionally attempts
to predict the median house price across 500 neighborhoods using a number
of neighborhood descriptors, such as mean house size, age, and proximity to
Charles river. All variables in the dataset are numeric, and there are no missing
values. The data is provided in MASS package.

First, we create the design matrix X and extract the house price y:

> i <- which(names (MASS: :Boston) == "medv")
> X <- as.matrix(MASS::Boston[,-i])

> X <- cbind("const"=1, X) # add constant
> y <- MASS::Boston[,i]

Although the model and data are simple, it is not an easy task for stock gradient
ascent. The problem lies in different scaling of variables, the means are

> colMeans (X)

const crim zZn indus
1.00000000 3.61352356 11.36363636 11.13677866
chas nox rm age
0.06916996 0.55469506 6.28463439 68.57490119
dis rad tax ptratio
3.79504269 9.54940711 408.23715415 18.45553360
black lstat

356.67403162 12.65306324

One can see that chas has an average value 0.069 while that of taz is 408.237.
This leads to extremely elongated contours of the loss function: One can see
that the ratio of the largest and the smallest eigenvalue is X'X = 228400000.
Solely gradient-based methods, such as SGA, have trouble working in the re-
sulting narrow valleys.
For reference, let’s also compute the analytic solution to this linear regression
model (reminder: 3 = (X X)~1 X' y):

> betaX <- solve(crossprod(X)) J}*}, crossprod(X, y)
> betaX <- drop(betaX) # matrix to vector

> betaX
const crim zZn indus
3.645949e+01 -1.080114e-01 4.642046e-02 2.055863e-02
chas nox rm age
2.686734e+00 -1.776661e+01 3.809865e+00 6.922246e-04
dis rad tax ptratio
-1.475567e+00 3.060495e-01 -1.233459e-02 -9.527472e-01
black lstat

9.311683e-03 -5.247584e-01

Next, we provide the gradient function. As a reminder, OLS gradient in
numerator layout can be expressed as

2 T T 2 T
0) — — i—x, -0, = —— —X5-0) X
gm() |B| g (y Z;) Z; |B| (yB B) B (5)

where yg and Xp denote the elements of the outcome vector and the slice of
the design matrix that correspond to the minibatch B. We choose to divide the
value by batch size |B| in order to have gradient values of roughly similar size,
independent of the batch size. We implement it as:

> gradloss <- function(theta, index) {

+ e <- ylindex] - X[index,,drop=FALSE] J}*}, theta
+ g <- t(e) %*) X[index,,drop=FALSE]

+ 2*g/length (index)

+ }

The gradloss function has two arguments: theta is the parameter vector, and
index tells which observations belong to the current minibatch. The actual
argument will be an integer vector, and hence we can use length(index) to
find the size of the minibatch. Finally, we return the negative of (5) as maxSGA
performs maximization, not minimization.

First, we demonstrate how the models works without the objective func-
tion. We have to supply the gradient function, initial parameter values (we
use random normals below), and also nObs, number of observations to select
the batches from. The latter is needed as the optimizer itself does not have
access to data but still has to partition it into batches. Finally, we may also
provide various control parameters, such as number of iterations, stopping con-
ditions, and batch size. We start with only specifying the iteration limit, the
only stopping condition we use here:

> library(maxLik)

> set.seed(3)

> start <- setNames (rnorm(ncol(X), sd=0.1), colnames (X))

> # add names for better reference

> res <- try(maxSGA(grad=gradloss,

+ start=start,

+ nObs=nrow(X),

+ control=list(iterl1im=1000)
+)

+)

Iteration 63
Parameter:

[1] 3.47655620157556e+298, 1.55792823742485e+299, 3.46679084058245e+299, 4.20148533450887e+:
Gradient:

[,1] [,2] [,3]
[1,] -2.176452e+304 -9.753202e+304 -2.170338e+305
[,4] [,5] [,6]
[1,] -2.630284e+305 -1.489548e+303 -1.238498e+304
[,7]
[1,] -1.359004e+305
reached getOption("max.cols") -- omitted 7 columns

Error in maxSGACompute(fn = function (theta, fnOrig, gradOrig, hessOrig,
NA/Inf in gradient

This run was a failure. We encountered a run-away growth of the gradient
because the default learning rate p = 0.1 is too big for such strongly curved
objective function. But before we repeat the exercise with a smaller learning
rate, let’s incorporate gradient clipping. Gradient clipping, performed with
SG_clip control option, caps the Lo-norm of the gradient while keeping it’s
direction. We clip the squared norm at 10,000, i.e. the gradient norm cannot
exceed 100:

> res <- maxSGA(grad=gradloss,

+ start=start,

+ nObs=nrow(X),

+ control=list(iterlim=1000,
+ SG_clip=1e4) # limit |lgl| <= 100
+)

>

summary (res)

Stochastic Gradient Ascent

Number of iterations: 1000

Return code: 4

Iteration limit exceeded (iterlim)
Function value:

Estimates:

estimate gradient
const -0.07999887 -1.749115e-05
crim 0.02785691 -7.755669e-05

zn 0.22208281 -1.754769e-04
indus 0.06456437 -2.106458e-04
chas 0.02077633 -1.198114e-06
0
0
1

nox .01196464 -9.941313e-06
rm .11108882 -1.092356e-04
age .20485974 -1.245784e-03

dis -0.06026450 -6.282687e-05
rad 0.28567967 -1.921515e-04
tax 6.62820142 -7.689873e-03
ptratio 0.18507316 -3.261922e-04
black 5.81629057 -6.246515e-03
lstat 0.22176090 -2.326626e-04

This time the gradient did not explode and we were able to get a result. But
the estimates are rather far from the analytic solution shown above, e.g. the
constant estimate -0.08 is very different from the corresponding analytic value
36.459. Let’s analyze what is happening inside the optimizer. We can ask for
both the parameter values and the objective function value to be stored for each
epoch. But before we can store its value, in this case mean squared error (MSE),
we have to supply an objective function to maxSGA. We compute MSE on the
same minibatch as

> loss <- function(theta, index) {

+ e <- ylindex] - X[index,] J}*J, theta
+ -crossprod(e)/length(index)

+ }

Now we can store the values with the control options storeParameters and
storeValues. The corresponding numbers can be retrieved with storedParameters
and storedValues methods. For iterlim=R, the former returns a (R+1) x K
matrix, one row for each epoch and one column for each parameter component,
and the latter returns a numeric vector of length R+ 1 where R is the number of
epochs. The first value in both cases is the initial value, so we have R+ 1 values

in total. Let’s retrieve the values and plot both. We decrease the learning rate

to 0.001 using the SG_learningRate control. Note that although we maximize
negative loss, we plot positive loss.

> res <- maxSGA(loss, gradloss,

+ start=start,

+ nObs=nrow(X),

+ control=1list(iterlim=1000,

+ # will misbehave with larger numbers
+ SG_clip=1le4,

+ SG_learningRate=0.001,

+ storeParameters=TRUE,

+ storeValues=TRUE

+)
+)
> par <- storedParameters(res)
> val <- storedValues(res)
> par(mfrow=c(1,2))
> plot(par[,1], par[,2], type="b", pch=".",
+ xlab=names (start)[1], ylab=names(start)[2], main="Parameters")
> ## add some arrows to see which way the parameters move
> iB <- ¢ (40, nrow(par)/2, nrow(par))
> iA <- iB - 10
> arrows(par[iA,1], par[iA,2], par[iB,1], par[iB,2], length=0.1)
> ##t
> plot(seq(length=length(val))-1, -val, type="1",
+ xlab="epoch", ylab="MSE", main="Loss",
+ logznyu)
Parameters Loss
Q
N 8
S 3
(o) —
Ioe)
E 8 - 0
o o = 8 _
T s
-
N T Q|
8 B
o \
9

| | | | 1 T T T 1
-0.09620 —-0.09605 0 200 600 1000

const epoch

We can see how the parameters (the first and the second components, “const”

and “crim” in this figure) evolve through the iterations while the loss is rapidly
falling. One can see an initial jump where the loss is falling very fast, followed
but subsequent slow movement. It is possible the initial jump be limited by

gradient clipping.

4.2 Training and Validation Sets

However, as we did not specify the batch size, maxSGA will automatically

pick the full batch (equivalent to control option SG_batchSize = NULL). So
there was nothing stochastic in what we did above. Let us pick a small batch

10

size—a single observation at time. However, as smaller batch sizes introduce
more noise to the gradient, we also make the learning rate smaller and choose
SG_learningRate = le-5.

But now the existing loss function, calculated just at the single observation,
carries little meaning. Instead, we split the data into training and validation sets
and feed batches of training data to gradient descent while calculating the loss
on the complete validation set. This can be achieved with small modifications
in the gradloss and loss function. But as the first step, we split the data:

> i <- sample(nrow(X), 0.8*nrow(X)) # training indices, 807, of data
> Xt <- X[i,] # training data

> yt <- yli]
> Xv <- X[-i,] # validation data
> yv <- y[-i]

Thereafter we modify gradloss to only use the batches of training data while
loss will use the complete validation data and just ignore index:

> gradloss <- function(theta, index) {

+ e <- ytl[index] - Xt[index,,drop=FALSE] 7J*J, theta
+ g <- -2xt(e) J*J) Xt[index,,drop=FALSE]

+ -g/length(index)

+ }

> loss <- function(theta, index) {

+ e <- yv - Xv }*), theta

+ -crossprod(e)/length(yv)

+ }

Note that because the optimizer only uses training data, the nObs argument
now must equal to the size of training data in this case.

Another thing to discuss is the computation speed. maxLik implements SGA
in a fairly complex loop that does printing, storing, and complex function calls,
computes stopping conditions and does many other checks. Hence a smaller
batch size leads to many more such auxiliary computations per epoch and the
algorithm gets considerably slower. This is less of a problem for complex ob-
jective functions or larger batch sizes, but for linear regression, the slow-down
is very large. For demonstration purposes we lower the number of epochs from
1000 to 100.

How do the convergence properties look now with the updated approach?

> res <- maxSGA(loss, gradloss,

+ start=start,

+ nObs=nrow(Xt), # note: only training data now
+ control=1list(iterlim=100,

+ SG_batchSize=1,

+ SG_learningRate=1le-5,

+ SG_clip=1le4,

+ storeParameters=TRUE,

11

+ storeValues=TRUE
+)
+)
> par <- storedParameters(res)
> val <- storedValues(res)
> par(mfrow=c(1,2))
> plot(par(,1], par([,2], type="b", pch=".",
+ xlab=names (start)[1], ylab=names(start)[2], main="Parameters")
> iB <- ¢ (40, nrow(par)/2, nrow(par))
> iA <- iB - 1
> arrows(par[iA,1], par[iA,2], par[iB,1], par[iB,2], length=0.1)
> plot(seq(length=length(val))-1, -val, type="1",
+ xlab="epoch", ylab="MSE", main="Loss",
+ lOg=”y")
Parameters Loss
—] /,-1 o
S S -
.-""r o
Q /
o) s o
(ID 41“‘:; 8]
_ 7 w
E 7 wo g
(&) I 2 o
&
_ ..J__.-“ 8 —
B <
o o
31/ 8 -
o <
[[[[[[[[[[[[
-0.096192 -0.096186 0 20 40 60 80
const epoch

We can see the parameters evolving and loss decreasing over epochs. The con-
vergence seems to be smooth and not ruptured by gradient clipping.

Next, we try to improve the convergence by introducing momentum. We
add momentum g = 0.95 to the gradient and decrease the learning rate down
to1-1076:

> res <- maxSGA(loss, gradloss,

+ start=start,

+ nObs=nrow(Xt),

+ control=list(iterlim=100,

+ SG_batchSize=1,

+ SG_learningRate=1e-6,

12

+ SG_clip=1e4,
+ SGA_momentum = 0.99,
+ storeParameters=TRUE,
+ storeValues=TRUE
+)
+)
> par <- storedParameters(res)
> val <- storedValues(res)
> par(mfrow=c(1,2))
> plot(par([,1], par[,2], type="b", pch=".",
+ xlab=names (start)[1], ylab=names (start)[2], main="Parameters")
> iB <- ¢(40, nrow(par)/2, nrow(par))
> iA <- iB - 1
> arrows (par[iA,1], par[iA,2], par[iB,1], par[iB,2], length=0.1)
> plot(seq(length=length(val))-1, -val, type="1",
+ xlab="epoch", ylab="MSE", main="Loss",
+ logzuyn)
Parameters Loss
A _
o
S _|
_ e}
<
0 _
b o
g & - W8
5 o A >
| :../-:1. p—
o _|
o) Ire}
N R\
o
IS
o
o I I I I [I I I I I [
1
-0.09618 -0.09612 0 20 40 60 80
const epoch

We achieved a lower loss but we are still far from the correct solution.

As the next step, we use Adam optimizer. Adam has two momentum pa-
rameters but we leave those untouched at the initial values. SGA_momentum is
not used, so we remove that argument.

> res <- maxAdam(loss, gradloss,

+ start=start,
+ nObs=nrow(Xt),
+ control=list(iterlim=100,

13

+ +VVVVH+VVVV++++ o+ o+ o+

SG_batchSize=1,
SG_learningRate=1e-6,
SG_clip=1le4,
storeParameters=TRUE,
storeValues=TRUE
)
)
par <- storedParameters(res)
val <- storedValues(res)
par (mfrow=c(1,2))
plot(par[,1], par[,2], type="b", pch=".",
xlab=names (start)[1], ylab=names (start)[2], main="Parameters")
iB <- ¢ (40, nrow(par)/2, nrow(par))
iA <- iB - 1
arrows (par[iA,1], par[iA,2], par[iB,1], par[iB,2], length=0.1)
plot(seq(length=length(val))-1, -val, type="1",
xlab="epoch", ylab="MSE", main="Loss",
10g=“y")
Parameters Loss
il _
_ S |
| 2
S s |
£ 5 8 B
o]
— A o
g | 2 -
S 4 A N
¢ |~
I I I I I I I I I I I I I
-0.095 -0.080 -0.065 0 20 40 60 80
const epoch

As visible from the figure, Adam was marching toward the solution without any
stability issues.

4.3 Sequence of Batch Sizes

The OLS’ loss function is globally convex and hence there is no danger
to get stuck in a local maximum. However, when the objective function is
more complex, the noise that is generated by the stochastic sampling helps the

14

algorithm to leave local maxima. A suggested strategy is to increase the batch
size over time to achieve good exploratory properties early in the process and
stable convergence later (see Smith et al., 2018, for more information). This
approach is in some ways similar to Simulated Annealing.

Here we introduce such an approach by using batch sizes B = 1, B = 10
and B = 100 in succession. We also introduce patience stopping condition. If
the objective function value is worse than the best value so far for more than
patience times then the algorithm stops. Here we use patience value 5. We
also store the loss values from all the batch sizes into a single vector val. If
the algorithm stops early, some of the stored values are left uninitialized (NA-s),
hence we use na.omit to include only the actual values in the final val-vector.
We allow the algorithm to run for 200 epochs, but as we now have introduced
early stopping through patience, the actual number of epochs may be less than
that.

> val <- NULL
> # loop over batch sizes
> for(B in ¢(1,10,100)) {

+ res <- maxAdam(loss, gradloss,

+ start=start,

+ nObs=nrow (Xt),

+ control=list (iterl1im=200,

+ SG_batchSize=1,

+ SG_learningRate=1e-6,
+ SG_clip=1le4,

+ SG_patience=5,

+ # worse value allowed only 5 times
+ storeValues=TRUE

+)

+)

+ cat("Batch size", B, ",", nIter(res),

+ "epochs, function value", maxValue(res), "\n")
+ val <- c(val, na.omit(storedValues(res)))

+ start <- coef(res)

+ }

Batch size 1 , 200 epochs, function value -573.5616
Batch size 10 , 200 epochs, function value -477.1564
Batch size 100 , 7 epochs, function value -476.9687

> plot(seq(length=length(val))-1, -val, type="1",
+ xlab="epoch", ylab="MSE", main="Loss",

+ 10g=“y")

> summary (res)

Stochastic Gradient Ascent/Adam

15

Number of iterations:
Return code:

10

Lost patience (SG_patience)

Function value:

Estimates:
const -0
crim -0
zZn 0
indus -0
chas 0
nox 0
rm 0
age 0.
dis -0
rad 0.
tax -0
ptratio -0
black -0
1stat 0

-476.9687

estimate gradient
.039415021 1.315825e-05
.006873007 4.571544e-05
.097802487 0.000000e+00
.066295960 2.381643e-04
.057364690 1.315825e-05
.058696481 9.447622e-06
.065297664 1.155294e-04
164299062 1.090819e-03
.070026405 2.506251e-05
171508473 3.157979e-04
.019731897 8.763393e-03
.056611015 2.657966e-04
.007726219 4.665257e-03
.074810043 6.960713e-05

16

Loss

5000
|

2000

MSE

1000

500

I I I I I
0 100 200 300 400

epoch

Two first batch sizes run through all 200 epochs, but the last run stopped
early after 7 epochs only. The figure shows that Adam works well for approx-
imately 170 epochs, thereafter the steady pace becomes uneven. It may be
advantageous to slow down the movement further.

As explained above, this dataset is not an easy task for methods that are
solely gradient-based, and so we did not achieve a result that is close to the
analytic solution. But our task here is to demonstrate the usage of the package,
not to solve a linear regression exercise. We believe every R-savy user can adapt
the method to their needs.

References

Bottou, L., Curtis, F. and Nocedal, J. (2018) Optimization methods for large-
scale machine learning, SIAM Review, 60, 223-311.

Goodfellow, I. J., Bengio, Y. and Courville, A. (2016) Deep Learning, MIT
Press.

Henningsen, A. and Toomet, O. (2011) maxlik: A package for maximum likeli-

17

hood estimation in r, Computational Statistics, 26, 443-458, 10.1007/s00180-
010-0217-1.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. and Tang, P. T. P.
(2016) On large-batch training for deep learning: Generalization gap and
sharp minima, ArXiv, abs/1609.04836.

Smith, S. L., Kindermans, P.-J. and Le, Q. V. (2018) Don’t decay the learning
rate, increase the batch size, ArXiv, abs/1711.00489.

18

