Maximum Entropy Bootstrap for Time Series:
Toy Example Exposition

Hrishikesh D. Vinod
Fordham University

January 9, 2026

Toy Example

The Maximum Entropy Bootstrap is illustrated with a small example. Let the
sequence x; = (4,12,36,20,8) be the series of data observed from the period

= 1 to t = 5 as indicated in the first two columns in Table 1. We jointly
sort these two columns on the second column and place the result in the next
two columns (Table 2 columns 3 and 4), giving us the ordering index vector in
column 3.

Next, the four intermediate points in Column 5 are seen to be simple averages
of consecutive order statistics. We need two more (limiting) "intermediate"
points. These are obtained as described in Step 3 above. Using 10% trimming,
the limiting intermediate values are zp = —11 and zp = 51. With these six z
values we build our five half open intervals:

U(—11,6] x U(6,10] x U(10,16] x U(16, 28] x U(28, 51]

The maximum entropy density of the ME bootstrap is defined as the combi-
nation of T uniform densities defined over (the support of) T half open intervals.

Interme- Preli-

. Ordering Sorted . Desired Uniform . Final
Time diate minary .
vector Tt . means draws replicate
points values
1 4 1 4 6 5 0.12 5.85 5.85
2 12 5 8 10 8 0.83 6.70 13.90
3 36 2 12 16 13 0.53 13.90 23.95
4 20 4 20 28 22 0.59 15.70 15.70
5 8 3 36 32 0.11 23.95 6.70

Table 1: Example of the ME bootstrap algorithm.

0.05 4

0.04

0.02

0.01 4

T
-10 0 10 20 30 40

Figure 1: Maximum entropy density for the x; = 4,12, 36, 20, 8 example.

trimprop <- 0.10 #trimming proportion

p <- c(0.12, 0.83, 0.53, 0.59, 0.11)
n <- length(xx)

x <- sort(xx)

ordxx <- sort(xx, index.return=TRUE)

V V V V V V V V V V

[[11]

[1] "ordxx="

$x
[1] 4 8 12 20 36

$ix
[11 15243

> print(c("ordxx$ix=",ordxx$ix))

[1] "OI‘dXX$iX=" nyqn ngn non

xx <- c(4,12,36,20,8) #original time series up and down shape

reachbnd <- FALSE #reaching the bound of the range forced or not?
uniform draws used as an example in Table 1 of the paper

print(c("ordxx=",ordxx)) #without the dollar ix appending

||4ll ll3|l

Index Return = TRUE using sort command

The above use of the sort command with index.return=TRUE is worth learning.
It will be used later to map from numerical magnitudes (values) domain to the
time domain. The use of sort with option index.return=TRUE allows us to
avoid explicit use of sorting on two columns of data.

> x <- sort(xx)
> x #sorted magnitudes original xx data in values domain

[1] 4 8 12 20 36

> #embed good for getting a matrix with lagged values in the second column
> embed(1:4,2) #allows no worry about missing values with lags

(.11 [,2]
[1,] 2 1
[2,] 3 2
(3,1 4 3

> embed(x, 2) #apply embed to our sorted xx

[,11 [,2]
[1,] 8 4
(2,1 12 8
[3,1] 20 12
(4,1 36 20

> z <- rowMeans(embed(x, 2))
> z #these are intermediate values

[1] 6 10 16 28

> dv <- abs(diff(xx))
> dv #vector of absolute differences

[1] 8 24 16 12

> dvtrim <- mean(dv, trim=trimprop)
> dvtrim #trimmed mean of dv

[1] 15

> xmin <- x[1]-dvtrim
> xmax <- x[n]+dvtrim
> xmin #ultimate minimum for resampled data gives z_0

[1] -11
> xmax #ultimate maximum for resampled data gives z_T

[1] 51

embed command

R function embed Embeds the time series x into a low-dimensional Euclidean
space. We are using dimension=2 here. It gives lagged values in second column
of a matrix without worrying about missing values.

dv denotes the absolute difference between consecutive sorted values.

z denotes intermediate values needed for defining half-open intervals I, =
(Z(t—1)s 2t]-

Unfortunately, the xmin (2o = —11) and xmax (27 = 51) do not appear in
the published Table.

Mass and Mean Preserving Constraints satisfy er-
godic theorem

A fraction 1/T of the mass of the probability distribution must lie in each
interval. meboot requires each half open interval I; to have an equal chance
being included in the resample.

Yxy = Ya) = Ymy, where m; denote the mean of f(x) within the interval
I;. mean preserving constraint.

f(x) =1/(z1 — 20), x€lny, mi=0.7520 + 0.252(3), (1a)
f@) =1/(zk — 2k-1), @ € (2 — 26-1], (1b)
with mean my, = 0.25z;,_1) + 0.502 () + 0.252 (1 1) (1c)

for k=2,...,T—1, (1d)

f(l‘) = 1/(ZT — ZT—1)7 T e I(T), mr = 0.25%‘(T,1) + 0.75@‘(7*). (16)
)

The weights for the two observations at the left end interval are (0.75, 0.25

Note that the weights are (0.25, 0.50, and 0.25) for all intermediate intervals
We have T' = 5 here leading to three intervals needing these weights.

The weights for the two observations at the right end interval are (0.25, 0.75)

Properties of uniform density

If the range of continuous uniform random variable are a to b the density of
uniform is f(1/(b-a))

Mean of uniform is (a+b)/2

We have used maximum entropy principle to say that the densities between
the intermediate points zy to z7 are all uniform.

The desired means for our toy example with order stats=(4,8,12,20,36) are

(6+10)/2=8, (10+16)/2=13, (16+28)/2=22 for intermediate intervals

For the left extreme we use 0.75 * 21y 4 0.25 * 1(2)=0.75%4+-0.25%8=5

For the right extreme interval desired mean is 0.25 * x(p_1) + 0.75 x z(7)
0.25%20+4-0.75*36=32

see last table column entitled desintxb with entries (5,8,13,22,32)

embed helps achieve desired means m; of the T in-
tervals

It is worth learning how three dimensional embed function of R works with this
toy example where we are considering mean of 3 consecutive values, except for
the two intervals at the two ends of the series.

> embed(1:5,3) #embeding 1:5 gives 3 by 3 matrix

[,11 [,2]1 [,3]
[1,] 3 2 1
[2,] 4 3 2
[3,] 5 4 3

> #Note j-th column has lag=j-1 values. Col.2 has lag 1
> #Note embed retains only non-missing lag values
> X

[11] 4 8 12 20 36
> t(embed(x,3))# transpose embed matrix

[,11 [,21 [,3]
[1,] 12 20 36
[2,] 8 12 20
[3,] 4 8 12

> t(embed(x, 3))*c(0.25,0.5,0.25) #multiply by weights

[,11 [,2]1 [,3]
[1,] 3 5 9
[2,] 4 6 10
[3,] 1 2 3

> t(t(embed(x, 3))*c(0.25,0.5,0.25)) #transpose twice to get back

[,11 [,2]1 [,3]
[1,] 3 4 1
[2,] 5 6 2
(3,1 9 10 3

Next we compute the row sum of above and call it a vector aux. This applies
to intermediate intervals not the extreme intervals a the bottom end and at the
top end, where one needs to average only two intermediate values with weights
0.75 and 0.25.

> aux <- rowSums(t(t(embed(x, 3))*c(0.25,0.5,0.25)))
> aux #these are only 3

[1] 8 13 22

> #append the means of two extreme intervals at the two ends
> desintxb <- c(0.75%x[1]+0.25*%x[2], aux, 0.25%x[n-1]+0.75*x[n])
> desintxb# des=desired, int=interval, xb=xbar=means

[11 5 8 13 22 32

> desintxb #desired means 5 8 13 22 32, Now 5 as desired
[11 5 8 13 22 32

> print("mean(xx) ,mean(desintxb) ,mean(x)") #all=16

[1] "mean(xx) ,mean(desintxb) ,mean(x)"

> print(c(mean(xx) ,mean(desintxb), mean(x)))

[1] 16 16 16

The above shows that the mean preserving constraint is satisfied, since
the mean of data and mean of desired means equal the same number 16. This
is no accident, but achieved by designed weights which force the desired means
of each interval to be based on the z; data. This helps ensure that the ergodic
theorem is satisfied by our resamples.

Drawing random quantile ¢ € [z, zr] from empiri-
cal cumulative ME densitye [0, 1]

Given empirical cdf of ME density consisting of uniform patches, we just draw
999 realizations of iid uniform in the values domain. For example, a random
draw of uniform between 0 to 1 illustrated in the toy example is:

p—c(0.12, 0.83, 0.53, 0.59, 0.11)

I wish I had included an additional column for sorted uniform draws pp=(0.11,
0.12, 0.53, 0.59, 0.83) in the published paper for clearer exposition. A complete
table is included toward the end of this document.

> gq=rep(0,n) #place holder for q
> pp=sort(p) #sorted random draws
> print(c("sorted random draws", pp))

[1] "sorted random draws" "O.11" "o.12"
[4] "0.53" "0.59" "0.83"

In traditional iid bootstrap each z; has 1/T (if we have T observations)
chance of being included in the resample. Of course, some x; might repeat and
some may not be present in some individual realizations of the random draws
from the uniform density. Imposing similar requirement in meboot algorithm is
called satisfying mass preserving constraint in the paper.

If the uniform random variable is defined over the range [a,b], then the its
mean is (a+b)/2. The first interval is (—11, 6] with width 17 and mean —5/2.
Since we have T=5 observations in the toy example, each interval should have
1/5 =0.2 probability of being included in the resample.

The sorted random draws are (0.11, 0.12, 0.53, 0.59, 0.83). the numbers
having the pp values less than 0.2 (=1/n or 1/T) are two numbers: 0.11 and
0.12. First we use the approx function to interpolate in I; interval to get the
corresponding two interpolated value qq=—1.65, —0.8. These do not satisfy the
mean preserving constraint. They need to be adjusted by adding the adjustment
7.5 (calculated above) to yield 5.85 and 6.7 as the two quantiles of the ME
density associated with the first two sorted random draws 0.11 and 0.12.

> z[1] #first intermediate value
[1] 6
> xmin #smallest

[1] -11

> 0.5%(z[1]+xmin) #average for the first interval

[1] -2.5

> desintxb[1] #des=desired, int=interval, xb=xbar=mean

(1] 5

> desintxb[1]-0.5%(z[1]+xmin)#adjustment for first interval

[1] 7.5

Thus the first interval adjustment 7.5 must be added so that the mean equals
the desired value so that eventually we satisfy mean preserving constraint.

Now we turn to random draw(s) which happen to be less than or equal to
(1/T=1/5), which will come from the first half open interval Iy = (2o, z1].

R commands approx (linear interpolate) and which

> refl <- which(pp <= (1/n)) #how many are less than or equal to 1/5 if n=T=5
> refl

[11 12

> # approx. returns list of points which linearly interpolate given data points,
> #first interval refl

>

> if (length(ref1)>0){

+ qq <- approx(c(0,1/n), c(xmin,z[1]), pplrefi])$y

+ qq #interpolated values

+ adj= desintxb[1]-0.5%(z[1]+xmin)

+ print(c("qgq=",qq,"adj=",adj))

+ qlrefi] <- qq

+ if(!reachbnd) ql[refl] <- qq + desintxb[1]-0.5*%(z[1]+xmin)

+}

(1] "qq=" "-1.65" ""-0.800000000000001"
[4] "adj=" "7.5"

> print(c("qg=",qq))
[1] "qq=" "-1.65" "-0.800000000000001"
> print(c("q",q))

[1] llqll ll5‘85ll |I6.7ll llOll llOll llOll

Second, Third and Fourth intervals

In our example sorted random draws are pp =(0.11 0.12 0.53 0.59 0.83) and
the relevant range limits are (0, 0.2, 0.4, 0.6, 0.8, 1.0). Clearly the first two pp
values are in the first interval 0 to 0.2 discussed above.

The second interval is I = (6, 10] with width 4 and mean 8 for sorted pp in
(1/T, 2/T]. None of our pp=(0.11 0.12 0.53 0.59 0.83) is between 0.2 and 0.4.

Two pp values 0.53 and 0.59 are both in the range 0.4 to 0.6 from which
there is no random draw. The next second range of probabilities is 0.2 to 0.4
and no draw in the range 06 to 0.8.

The third interval is Is = (10,16] with width 6 and mean 13 for sorted pp
in (2/T, 3/T]. After interpolation and adjustment, corresponding two quantile
values are 13.9 and 15.7.

The fourth interval is (16,28] with width 12 and mean 22 for sorted pp in
(3/T, 4/T]. No random draw here.

for(il in 1:(n-2)){

ref2 <- which(pp > (il/n))
print(c("ref2",ref2,"pplref2]", pplref2]))

ref3 <- which(pp <= ((i1+1)/mn))
print(c("ref3",ref3))

ref23 <- intersect(ref2, ref3)
print(c("ref23",ref23,"sorted draw pplref23]=",pplref23]))

>

+

+

+

+

+

+

+

+ if(length(ref23)>0){

+ qq <- approx(c(il/m, (i1+1)/n), c(z[il]l, z[i1+1]), pplref23])$y
+ print(c("interpolated value qg=",qq))
+ adj= desintxb[-1][i1]-0.5*%(z[i1]+z[i1+1])
+ print(c("qg=",qq,"adj=",adj))
+ qlref23] <- qq + desintxb[-1][i1]-0.5*%(z[i1]+z[i1+1])
+ print(c("q",q))

+ 7

+

}

[1] ||ref2l| l|3|| |l4l| ||5l| llpp [ref2] " l|0 . 53" ||O . 59“
[8] "0.83"

[1] ||ref3|| ||1|| |l2l|

[1] "ref23" "sorted draw pplref23]="

[1] ||ref2l| l|3|| "4" ||5l| llpp [ref2] " ||0 . 53" ||O . 59“
[8] "0.83"

[1] ||ref3|| l|1|| ||2l| l|3|| ||4l|

[1] ||I.ef23l| l|3|l ll4|l

[4] "sorted draw pplref23]=" "0.53" "0.59"

[1] "interpolated value qg=" "13.9" "15.7"

[1] |qu=|l l|13.9l| ||15.7|| lladj=l| ||Ol|

[1] Uq" l|5‘85l| ||6.7|| l|13.9l| ||15.7|| llo"

[1] "ref2" ngn "pp[ref2]" "0.83"
[1] |lref8l| l|1|| ||2l| l|3|| |l4l|
[1] "ref23" "sorted draw ppl[ref23]="

We find that the adjustment to interpolated value above is zero.

Interval called ref4 if pp exactly equals 4/5 (n-1)/n
is empty.

> ref4 <- which(pp == ((n-1)/n))
> print(c("refd", refd))

[1] "ref4"

> if (length(ref4)>0)
+ qlref4] <- z[n-1]
> q

[1] 5.85 6.70 13.90 15.70 0.00

Last interval, fifth here, is called ref5

Note that the last interval interpolated value qq is 31.45 and we adjust it by
adj=-7.5 to yield 23.95. Recall that the adjustment is designed to ensure the
ergodic theorem is numerically satisfied by the meboot algorithm.

ref5 <- which(pp > ((n-1)/n))
if (length(ref5)>0){
print(c("refb",ref5,"pplref5]=",pplrefs]))

qq <- approx(c((n-1)/n,1), c(z[n-1],xmax), pplref5])$y
print(c("interpolated value qq in last interval",qq))

qlref5] <- qq # this implicitly shifts xmax for algorithm
adj=desintxb[n]-0.5%(z[n-1]+xmax)
print(c("qgq=",qq,"adj=",adj))

if ('reachbnd) qlref5] <- qq + desintxb[n]-0.5%(z[n-1]+xmax)

+ 4+ 4+ + + + + + + VvV V

[1] "refH" ngn "pp[ref5]=" ny.83"
[1] "interpolated value qq in last interval"
[2] "31.45"

[1] uqq=u n31 ., 45" "adj=” n_7.5"

10

Now wrap up the entire calculation of meboot for
toy example

Following code maps the q vector from values domain to the time domain by
using the sort function with the option index.return=TRUE noted above.
We set qlordxx$ix] as sorted q denoted by gseq in the values domain.

> prel=q #preliminary quantile values
> gseq <- sort(q)
> print(c("sorted q",qgseq))

[1] "sorted q" "5.85" "e.7" "13.9" "15.7" "'23.95"

> qlordxx$ix] <- gseq
> print(c("after mapping to time domain",q))

[1] "after mapping to time domain" "5.85"

[3] "13.9" "23.95"
[5] " 7" ng . n
> print(q)

[1] 5.85 13.90 23.95 15.70 6.70
Now we produce the table.

Tim=1:5

xt=xx #notation xt for original data
xordstat=x #order stats
ordl=ordxx$ix #output of sort
intermed=c(z,xmax) #these are zt
prel

VvV V V V V V

[1] 5.85 6.70 13.90 15.70 23.95

> gseq #sorted quantiles

[1] 5.85 6.70 13.90 15.70 23.95

> final=q #final quantiles of ME density
> cb=cbind(Tim,xt,xordstat,ordl,intermed,desintxb, p,pp,prel,final)

11

> require(xtable)

> options(xtable.comment = FALSE)
> print(xtable(cb))
Tim xt xordstat ordl intermed desintxb p 9)8) prel final
1 1.00 4.00 4.00 1.00 6.00 5.00 0.12 0.11 585 5.8
2 2,00 12.00 8.00 5.00 10.00 8.00 0.83 0.12 6.70 13.90
3 3.00 36.00 12.00 2.00 16.00 13.00 0.53 0.53 13.90 23.95
4 4.00 20.00 20.00 4.00 28.00 22.00 0.59 0.59 15.70 15.70
5 5.00 8.00 36.00 3.00 51.00 32.00 0.11 083 2395 6.70

I thank Fred Viole, director of the consulting firm OVVO Financial Systems
specializing in analysis of stock market data for vastly improving an earlier draft
version of this vignette.

12

