

Package ‘nmarank’

December 29, 2025

Title Complex Hierarchy Questions in Network Meta-Analysis

Version 0.3-0.1

Date 2023-02-23

Depends R (>= 4.0.0), meta, netmeta (>= 2.7-0)

Imports dplyr, tibble, rlang, MASS, data.tree, mvtnorm, tidyverse

Suggests testthat

Author Adriani Nikolakopoulou [aut] (ORCID:

[<https://orcid.org/0000-0001-5884-4319>](https://orcid.org/0000-0001-5884-4319)),

Guido Schwarzer [aut] (ORCID: [<https://orcid.org/0000-0001-6214-9087>](https://orcid.org/0000-0001-6214-9087)),

Theodoros Papakonstantinou [aut, cre] (ORCID:

[<https://orcid.org/0000-0002-6630-6817>](https://orcid.org/0000-0002-6630-6817)

Maintainer Theodoros Papakonstantinou <dev@tpapak.com>

URL [<https://github.com/tpapak/nmarank>](https://github.com/tpapak/nmarank)

Description Derives the most frequent hierarchies along with their probability of occurrence. One can also define complex hierarchy criteria and calculate their probability. Methodology based on Papakonstantinou et al. (2021) <[DOI:10.21203/rs.3.rs-858140/v1](https://doi.org/10.21203/rs.3.rs-858140/v1)>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Repository CRAN

Date/Publication 2025-12-29 15:36:17 UTC

Contents

condition	2
nmarank	3
opposite	5
%AND%	6
%OR%	7
%XOR%	8

condition	<i>Define which hierarchies to select</i>
-----------	---

Description

Defines a condition that is of interest to be satisfied involving a set of treatments in the network.

Usage

`condition(fn, ...)`

Arguments

<code>fn</code>	Character string specifying type of condition.
<code>...</code>	Function arguments.

Details

The following types of conditions are available.

The condition `fn = "sameHierarchy"` checks whether a specific hierarchy occurs. One additional unnamed argument has to be provided in `'...'`: a vector with a permutation of all treatment names in the network.

The condition `fn = "specificPosition"` checks whether a treatment ranks in a specific position. Two additional unnamed arguments have to be provided in `'...'`: (1) name of the treatment of interest and (2) a single numeric specifying the rank position.

The condition `fn = "betterEqual"` checks whether a treatment has a position better or equal to a specific rank. Two additional unnamed arguments have to be provided in `'...'`: (1) name of the treatment of interest and (2) a single numeric specifying the rank position.

The condition `fn = "retainOrder"` checks whether a specific order of two or more treatments is retained anywhere in the hierarchy. One additional unnamed argument has to be provided in `'...'`: a vector with two or more treatment names providing the order of treatments.

The condition `fn = "biggerCIV"` checks whether the effect of a treatment is bigger than that of a second treatment by more than a given clinically important value (CIV) on an additive scale (e.g. log odds ratio, log risk ratio, mean difference). Three additional unnamed arguments have to be provided in `'...'`: (1) name of the first treatment, (2) name of the second treatment and (3) a numerical value for the CIV. Note that the actual value of the relative effect is considered independently of whether `small.values` is "desirable" or "undesirable".

Composition of conditions for more complex queries:

Conditions can be combined to express more complex decision trees. This can be done by using the special operators `%AND%`, `%OR%`, `%XOR%` and the opposite function. The combination should be defined as a binary tree with the use of parentheses. If A, B, C and D are conditions, we can for example combine them into a complex condition E:

`E = A %AND% (B %OR% (opposite(C) %XOR% D))`

Value

A list with the defined function and its arguments.

See Also

[nmarank](#)

Examples

```
data("Woods2010", package = "netmeta")
p1 <- pairwise(treatment, event = r, n = N, studlab = author,
  data = Woods2010, sm = "OR")
net1 <- netmeta(p1, small.values = "good")

# criterionA if all treatments are in the exact defined order
criterionA <-
  condition("sameHierarchy",
  c("SFC", "Salmeterol", "Fluticasone", "Placebo"))

# criterionB respects the relative order of two or more treatments
criterionB <-
  condition("retainOrder",
  c("SFC", "Fluticasone", "Placebo"))

# Below we define the condition that SFC and Salmeterol are in the
# first two positions.

# We first define conditions that each one of them is in position 1
# or 2
criterionC1 <- condition("betterEqual", "SFC", 2)
criterionC2 <- condition("betterEqual", "Salmeterol", 2)
# We then combine them with operator %AND%
criterionC <- criterionC1 %AND% criterionC2

# Next we can feed the condition into nmarank to get the
# probability of the selection
nmarank(net1, criterionC,
  text.condition =
  "SFC and Salmeterol are the two best options", nsim = 100)

# We can further combine criteria
criterionD <- criterionA %AND% (criterionB %OR% opposite(criterionC))
```

Description

Specifies the frequencies of hierarchies along with their estimated probabilities and the probability that a specified criterion holds.

Usage

```
nmarank(
  TE.nma,
  condition = NULL,
  text.condition = "",
  VCOV.nma = NULL,
  pooled,
  nsim = 10000,
  small.values
)

## S3 method for class 'nmarank'
print(
  x,
  text.condition = x$text.condition,
  nrows = 10,
  digits = gs("digits.prop"),
  ...
)
```

Arguments

TE.nma	Either a netmeta object or a matrix with network estimates.
condition	Defines the conditions that should be satisfied by the treatments in the network. Multiple conditions can be combined with special operators into any decision tree. See condition .
text.condition	Optional descriptive text for the condition.
VCOV.nma	Variance-covariance matrix for network estimates (only considered if argument TE.nma isn't a netmeta object).
pooled	A character string indicating whether the hierarchy is calculated for the common effects ("common") or random effects model ("random"). Can be abbreviated.
nsim	Number of simulations.
small.values	A character string specifying whether small treatment effects indicate a "desirable" or "undesirable" effect.
x	A nmarank object.
nrows	Number of hierarchies to print.
digits	Minimal number of significant digits for proportions, see print.default .
...	Additional arguments.

Details

A simulation method is used to derive the relative frequency of all possible hierarchies in a network of interventions. Users can also define the set of all possible hierarchies that satisfy a specified criterion, for example that a specific order among treatments is retained in the network and/or a treatment is in a specific position, and the sum of their frequencies constitute the certainty around the criterion.

Value

An object of class "nmarank" with corresponding print function. The object is a list containing the following components:

- hierarchies A list of the most frequent hierarchies along with their estimated probability of occurrence.
- probabilityOfSelection Combined probability of all hierarchies that satisfy the defined condition.
- TE.nma, condition, VCOV.nma As defined above.
- pooled, nsim, small.values As defined above.

See Also

[condition](#), [netmeta](#)

Examples

```
data("Woods2010", package = "netmeta")
p1 <- pairwise(treatment, event = r, n = N, studlab = author,
  data = Woods2010, sm = "OR")
net1 <- netmeta(p1, small.values = "good")

nmarank(net1, nsim = 100)

criterionA <-
  condition("sameHierarchy",
    c("SFC", "Salmeterol", "Fluticasone", "Placebo"))
nmarank(net1, criterionA, nsim = 100)
```

opposite

The NOT function for a selection statement It simply reverses condition

Description

The NOT function for a selection statement It simply reverses condition

Usage

opposite(cond)

Arguments

cond [condition](#).

Value

Object of class 'data.tree'.

See Also

[condition](#), [nmarank](#)

Examples

```
data("Woods2010", package = "netmeta")
p1 <- pairwise(treatment, event = r, n = N, studlab = author,
  data = Woods2010, sm = "OR")
net1 <- netmeta(p1, small.values = "good")

A = condition("retainOrder", c("Placebo", "Salmeterol", "SFC"))
nmarank(net1, opposite(A), text.condition = "NOT order P-S-S", nsim = 5000)
```

%AND%

*Combine selections with AND***Description**

Combine selections with AND

Usage

cond1 %AND% cond2

Arguments

cond1	First condition .
cond2	Second condition .

Value

Object of class 'data.tree'.

See Also

[condition](#), [nmarank](#)

Examples

```
data("Woods2010", package = "netmeta")
p1 <- pairwise(treatment, event = r, n = N, studlab = author,
  data = Woods2010, sm = "OR")
net1 <- netmeta(p1, small.values = "good")

A <- condition("retainOrder", c("Placebo", "Salmeterol", "SFC"))
B <- condition("betterEqual", "Fluticasone", 2)

nmarank(net1, A %AND% B, nsim = 500)
```

%OR%

*Combine selections with OR***Description**

Combine selections with OR

Usage

```
cond1 %OR% cond2
```

Arguments

cond1	First condition .
cond2	Second condition .

Value

Object of class 'data.tree'.

See Also

[condition](#), [nmarank](#)

Examples

```
data("Woods2010", package = "netmeta")
p1 <- pairwise(treatment, event = r, n = N, studlab = author,
  data = Woods2010, sm = "OR")
net1 <- netmeta(p1, small.values = "good")

A <- condition("retainOrder", c("Placebo", "Salmeterol", "SFC"))
B <- condition("betterEqual", "Fluticasone", 2)

nmarank(net1, A %OR% B, nsim = 500)
```

%XOR%

*Combine selections with XOR***Description**

Combine selections with XOR

Usage

cond1 %XOR% cond2

Arguments

cond1	First condition .
cond2	Second condition .

Value

Object of class 'data.tree'.

See Also[condition](#), [nmarank](#)**Examples**

```
data("Woods2010", package = "netmeta")
p1 <- pairwise(treatment, event = r, n = N, studlab = author,
  data = Woods2010, sm = "OR")
net1 <- netmeta(p1, small.values = "good")

A <- condition("retainOrder", c("Placebo", "Salmeterol", "SFC"))
B <- condition("betterEqual", "Fluticasone", 2)

nmarank(net1, A %XOR% B, nsim = 3000)
```

Index

%AND%, 6
%OR%, 7
%XOR%, 8

condition, 2, 4–8

netmeta, 4, 5
nmarank, 3, 3, 4, 6–8

opposite, 5

print.nmarank (nmarank), 3