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1 Introduction

OOMPA is a suite of object-oriented tools for processing and analyzing large
biological data sets, such as those arising from mRNA expression microarrays
or mass spectrometry proteomics.

This vignette documents the base package, oompaBase. A critical (but
invisible to the user) feature of the oompaBase package is that it de�nes a
class union allowing you to use �numeric� or �NULL� objects in the design
of an S4 class. More interesting user-visible features include alternative color
schemes and vectorized matrix operations to speed the computation of row-by-
row means, variances, and t-tests.

2 Getting Started

You invoke the package in the usual way:

> library(oompaBase)
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3 Color Schemes

To illustrate the various color schemes, we �rst create a structured matrix:

> mat <- matrix(1:1024, ncol=1)

The following code is used to generate Figure 1.

> # windows(width=6,height=8)

> opar <- par(mfrow=c(8, 1), mai=c(0.3, 0.5, 0.2, 0.2))

> image(mat, col=jetColors(128), main='jetColors')

> image(mat, col=wheel(64, 0.5), main='wheel, half saturation')

> image(mat, col=redgreen(64), main='redgreen')

> image(mat, col=blueyellow(32), main='blueyellow')

> image(mat, col=cyanyellow(32), main='cyanyellow')

> image(mat, col=redscale(64), main='redscale')

> image(mat, col=bluescale(64), main='bluescale')

> image(mat, col=greyscale(64), main='greyscale')

> par(opar)

4 Row-by-row Matrix Operations

We now want to illustrate the �matrix operations� that allow for rapid compu-
tation of row-by-row means, variances, and t-tests.

We start by creating a slightly more interesting matrix full of random data.
First, we make the variance larger in the second half (by column) of the data
than in the �rst half.

> ng <- 10000

> ns <- 50

> dat <- matrix(rnorm(ng*ns, 0, rep(c(1, 2), each=25)), ncol=ns, byrow=TRUE)

Next, we shift the mean for the �rst 500 �genes� (rows).

> dat[1:500, 1:25] <- dat[1:500, 1:25] + 2

In order to compute t-tests, we also assign arbitrary labels separating the �sam-
ple columns� into two groups.

> clas <- factor(rep(c('Good', 'Bad'), each=25))

Here we compute the row-by-row means.

> a0 <- proc.time()

> myMean <- matrixMean(dat)

> used0 <- proc.time() - a0

For comparison purposes, we perfom the same computation using apply.
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Figure 1: Eight color schemes.
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> a1 <- proc.time()

> mm <- apply(dat, 1, mean)

> used1 <- proc.time() - a1

The results are the same, to within round-o� error.

> summary(as.vector(myMean-mm))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.882e-16 -2.776e-17 0.000e+00 -6.653e-19 2.776e-17 8.882e-16

There is a measurable (although not really user-perceptible) di�erence in the
time for the two methods.

> used0

user system elapsed

0 0 0

> used1

user system elapsed

0.06 0.00 0.06

Here we compute the variances using two di�erent methods.

> a0 <- proc.time()

> myVar <- matrixVar(dat, myMean)

> a1 <- proc.time()

> vv <- apply(dat, 1, var)

> a2 <- proc.time()

Again, the values are the same:

> summary(as.vector(myVar - vv))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.553e-15 -4.441e-16 0.000e+00 1.310e-18 4.441e-16 3.997e-15

However, the time savings is substantially larger.

> a1 - a0

user system elapsed

0.02 0.00 0.00

> a2 - a1

user system elapsed

0.06 0.00 0.08
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Not surprisingly, there is an even bigger time savings when computing (equal
variance) t-statistics.

> t0 <- proc.time()

> myT <- matrixT(dat, clas)

> t1 <- proc.time()

> tt <- sapply(1:nrow(dat), function(i) {

+ t.test(dat[i,clas=="Bad"], dat[i, clas=="Good"], var.equal=T)$statistic

+ })

> t2 <- proc.time()

> summary(as.vector(tt - myT))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.217e-15 -1.110e-16 0.000e+00 -6.080e-20 1.110e-16 4.441e-15

> t1 - t0

user system elapsed

0.00 0.00 0.01

> t2 - t1

user system elapsed

1.47 0.14 1.61

5 Color Coded Graphs

We frequently �nd ourselves producing multiple �gures with a common color
scheme, where each color or each symbol is used to denote samples or genes with
a particular property (in the simplest case, �cancer� versus �normal�). Because
we got tired of continually cutting and pasting plot and points commands and
making sure the color legends stayed synchronized, we developed the ColorCod-
ing and ColorCodedPair classes to encapsulate this notion.

We can simulate some data as an example.

> x <- matrix(rnorm(100*3), nrow=100, ncol=3)

> class1 <- class2<- rep(FALSE, 100)

> class1[sample(100, 20)] <- TRUE

> class2[sample(100, 20)] <- TRUE

> class3 <- !(class1 | class2)

> codes <- list(ColorCoding(class1, "red", 16),

+ ColorCoding(class2, "blue", 15),

+ ColorCoding(class3, "black", 17))
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> par(mfrow=c(2,1))

> plot(ColorCodedPair(x[,1], x[,2], codes), xlab="Coord1", ylab="Coord2")

> plot(ColorCodedPair(x[,1], x[,3], codes), xlab="Coord1", ylab="Coord3")

> par(mfrow=c(1,1))
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Figure 2: Color coded plots of three (simulated) related variables.
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