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1 Introduction

OOMPA is a suite of object-oriented tools for processing and analyzing large
biological data sets, such as those arising from mRNA expression microarrays
or mass spectrometry proteomics.

This vignette documents the base package, oompaBase. A critical (but
invisible to the user) feature of the oompaBase package is that it defines a
class union allowing you to use “numeric” or “NULL” objects in the design
of an S4 class. More interesting user-visible features include alternative color
schemes and vectorized matrix operations to speed the computation of row-by-
row means, variances, and t-tests.

2 Getting Started

You invoke the package in the usual way:

> library(oompaBase)



3 Color Schemes

To illustrate the various color schemes, we first create a structured matrix:
> mat <- matrix(1:1024, ncol=1)
The following code is used to generate Figure

> # windows (width=6,height=8)

> opar <- par(mfrow=c(8, 1), mai=c(0.3, 0.5, 0.2, 0.2))
> image(mat, col=jetColors(128), main='jetColors')

> image(mat, col=wheel(64, 0.5), main='wheel, half saturation')
> image(mat, col=redgreen(64), main='redgreen')

> image(mat, col=blueyellow(32), main='blueyellow')

> image(mat, col=cyanyellow(32), main='cyanyellow')

> image(mat, col=redscale(64), main='redscale')

> image(mat, col=bluescale(64), main='bluescale')

> image(mat, col=greyscale(64), main='greyscale')

> par (opar)

4 Row-by-row Matrix Operations

We now want to illustrate the “matrix operations” that allow for rapid compu-
tation of row-by-row means, variances, and t-tests.

We start by creating a slightly more interesting matrix full of random data.
First, we make the variance larger in the second half (by column) of the data
than in the first half.

> ng <- 10000
> ns <- 50
> dat <- matrix(rnorm(ng*ns, 0, rep(c(1, 2), each=25)), ncol=ns, byrow=TRUE)

Next, we shift the mean for the first 500 “genes” (rows).
> dat[1:500, 1:25] <- dat[1:500, 1:25] + 2

In order to compute t-tests, we also assign arbitrary labels separating the “sam-
ple columns” into two groups.

> clas <- factor(rep(c('Good', 'Bad'), each=25))
Here we compute the row-by-row means.

> a0 <- proc.time()
> myMean <- matrixMean(dat)
> used0 <- proc.time() - a0

For comparison purposes, we perfom the same computation using apply.
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Figure 1: Eight color schemes.



> al <- proc.time()
> mm <- apply(dat, 1, mean)
> usedl <- proc.time() - al

The results are the same, to within round-off error.

> summary (as.vector (myMean-mm))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-8.882e-16 -2.776e-17 0.000e+00 -6.653e-19 2.776e-17 8.882e-16

There is a measurable (although not really user-perceptible) difference in the
time for the two methods.

> used0

user system elapsed
0 0 0

> usedl

user system elapsed
0.06 0.00 0.06

Here we compute the variances using two different methods.

a0 <- proc.time()

myVar <- matrixVar(dat, myMean)
al <- proc.time()

vv <- apply(dat, 1, var)

a2 <- proc.time()

vV VvV Vv v Vv

Again, the values are the same:

> summary (as.vector(myVar - vv))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.553e-15 -4.441e-16 0.000e+00 1.310e-18 4.441e-16 3.997e-15

However, the time savings is substantially larger.

> al - a0

user system elapsed
0.02 0.00 0.00

> a2 - al

user system elapsed
0.06 0.00 0.08



Not surprisingly, there is an even bigger time savings when computing (equal
variance) t-statistics.

t0 <- proc.time()
myT <- matrixT(dat, clas)
tl <- proc.time()
tt <- sapply(1l:nrow(dat), function(i) {
t.test(dat[i,clas=="Bad"], dat[i, clas=="Good"], var.equal=T)$statistic
»
t2 <- proc.time()

vV + + VvV Vv v Vv

A\

summary (as.vector(tt - myT))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.217e-15 -1.110e-16 0.000e+00 -6.080e-20 1.110e-16 4.441e-15

> tl - t0

user system elapsed
0.00 0.00 0.01

> t2 - ti

user system elapsed
1.47 0.14 1.61

5 Color Coded Graphs

We frequently find ourselves producing multiple figures with a common color
scheme, where each color or each symbol is used to denote samples or genes with
a particular property (in the simplest case, “cancer” versus “normal”). Because
we got tired of continually cutting and pasting plot and points commands and
making sure the color legends stayed synchronized, we developed the ColorCod-
ing and ColorCodedPair classes to encapsulate this notion.

We can simulate some data as an example.

> x <- matrix(rnorm(100*3), nrow=100, ncol=3)
> classl <- class2<- rep(FALSE, 100)
> classi[sample (100, 20)] <- TRUE
> class2[sample (100, 20)] <- TRUE
> class3 <- !(classl | class2)

> codes <- list(ColorCoding(classl, '"red", 16),

+ ColorCoding(class2, "blue", 15),
+ ColorCoding(class3, "black", 17))



> par(mfrow=c(2,1))
> plot(ColorCodedPair(x[,1], x[,2], codes), xlab="Coordl", ylab="Coord2")
> plot(ColorCodedPair(x[,1], x[,3], codes), xlab="Coordl", ylab="Coord3")
> par(mfrow=c(1,1))
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Figure 2: Color coded plots of three (simulated) related variables.
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